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CHAPTER 1: Introduction

The way people watch videos has dramatically changed over the past decades.

From traditional TV systems, to video streaming on desktops, laptops, and smart phones

through Internet. Consumer adoption of streaming video services is surging, according to

a new report by Juniper Research [1], which finds that subscriber numbers for services like

Netflixa and Amazon Prime Instant Videob will grow from 92.1 million in 2014 to 333.2

million global subscriptions by 2019. The US revenue for video streaming services grew by

29% to $5.1 billion in 2015. Based on the Global Internet Phenomena Report [2], video

streaming currently constitutes approximately 64% of all U.S. Internet traffic. It is

estimated that streaming traffic will increase up to 80% of the whole Internet traffic by

2019[3].

Video content, either in form of on-demand streaming (e.g., YouTubec or Netflix)

or live-streaming (e.g., Livestreamd), needs to be converted based on the device

characteristics of viewers. That is, the original video has to be converted to a supported

resolution, frame rate, video codec, and network bandwidth to match the viewers’

devices [4]. The conversion is termed video transcoding [5], which is a computationally

heavy and time-consuming process. Due to the limitations in processing power and energy

sources (e.g., in smart phones), it is not practical to transcode videos on clients devices.

In addition, provisioning and maintaining in-house infrastructures to meet the

fast-growing demands of video transcoding is cost-prohibitive. Therefore, streaming

service providers have become reliant on cloud services. One approach currently used to

ahttps://www.netflix.com
bhttps://www.amazon.com/Prime-Video
chttps://www.youtube.com
dhttps://livestreams.com



support a diversity of client devices is to transcode and store numerous versions of the

same video in advance (called pre-transcoding). However, pre-transcoding requires massive

storage and processing capabilities. Given the explosive growth of the video streaming

demands on a large diversity of the client devices, this approach remains cost-prohibitive,

specifically for small- and medium-size streaming service providers.

1.1.Motivations for On-Demand Video Transcoding

Recent studies (e.g., [6, 7]) reveal that the access pattern to video streams follows a

long-tail distribution. That is, there is a small percentage of videos that are accessed

frequently while the majority of them are accessed very infrequently. With the explosive

demand for video streaming and the large diversity of viewing devices, the

pre-transcodiing approach is inefficient. Therefore, instead of spending money on

pre-transcoding and storing multiple versions of the same video that are barely requested

by clients, the idea that we explore in this dissertation is to transcode these unpopular

video streams in an on-demand (i.e., lazy) manner using computing services offered by

cloud providers. With high performance computing resources, streaming service providers

can flexibly manage Virtual Machines (VMs) and transcode video streams at a much

faster and cost-efficient way, even in real time.

1.2.Research Problem and Objectives

Robustness is defined as the degree to which a system can function correctly in the

presence of uncertain parameters in the system [8]. In a system for on-demand

transcoding, the arrival pattern of the streaming requests is uncertain, which can

significantly harm quality of service (QoS) and viewer’s satisfaction [9]. Ideally, the
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system has to be robust against uncertainty in the arrival pattern of the streaming

requests. That is, the system has to satisfy a certain level of QoS, even in the presence of

uncertain arrival of streaming requests.

Video stream viewers have unique QoS demands. In particular, they need to

receive video streams without any delay. Such delay may occur either during streaming,

due to an incomplete transcoding task by its presentation time, or at the beginning of a

video stream. In this paper, we refer to the former delay as missing presentation deadline

and the latter as the startup delay for a video stream. Previous studies (e.g., [6, 7])

confirm that viewers mostly do not watch video streams to the end. However, they rank

the quality of a stream provider based on the video stream’s startup delay. Another

reason for the importance of the startup delay is the fact that once the beginning part of a

stream is processed and buffered, the provider has more time to process the rest of the

video stream. Therefore, to maximize viewers’ satisfaction, we define viewers’ QoS

demand as: minimizing the startup delay and the presentation deadline violations.

Based on the provided definitions, the specific research questions we address in

this research are:

• How can SSPs satisfy the QoS demands of viewers by minimizing both the video

streaming startup delay and presentation deadline violations?

• How can SSPs minimize their incurred costs while maintaining a robust QoS for the

viewers?

To minimize the network delay, transcoded streams are commonly delivered to

viewers through Content Delivery Networks (CDNs) [10]. It is worth noting that, the

focus of this dissertation is not about the CDN technology for video streaming. Instead, it
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concentrates on the computational and cost aspects of on-demand video transcoding using

cloud services.

1.3.Contributions

Considering the research questions described in the previous section, the major

contributions of this dissertation are:

• It proposes a Cloud-based Video Streaming Service (CVSS) architecture to

transcode video streams in an on-demand manner. The architecture provides a

platform for streaming service providers to utilize cloud resources in a cost-efficient

manner and with respect to the Quality of Service (QoS) demands of video streams.

• It presents a QoS-aware scheduling method to efficiently map video streams to cloud

resources, and a cost-aware dynamic (i.e., elastic) resource provisioning policy that

adapts the resource acquisition with respect to the video streaming QoS demands.

Simulation results based on realistic cloud traces and with various workload

conditions, demonstrate that the CVSS architecture can satisfy video streaming QoS

demands and reduces the incurred cost of stream providers up to 70%.

• It provides a detailed study on the performance of the transcoding operations on

heterogeneous cloud VMs. Based upon the findings of the analysis and by

considering the cost factor, as a second contribution, we provide a model to identify

the degree of suitability of each VM type for various transcoding tasks. The provided

model can supply resource allocation and scheduling methods with accurate

performance and cost trade-offs to utilize cloud services for video streaming.

• It presents a QoS-aware scheduling component that maps transcoding tasks to the
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Virtual Machines (VMs) by considering the affinity of the transcoding tasks with the

allocated heterogeneous VMs. To maintain robustness in the presence of varying

streaming requests, the architecture includes a cost-efficient VM Provisioner

component. The component provides a self-configurable cluster of heterogeneous

VMs. The cluster is reconfigured dynamically to maintain the maximum affinity

with the arriving workload. Simulation results obtained under diverse workload

conditions demonstrate that CVSS architecture can maintain a robust QoS for

viewers while reducing the incurred cost of the streaming service provider by up to

85%.

• It proposes a cloud-based architecture that facilitates transcoding for live video

streaming. Then, we propose a scheduling method for the architecture that is

cost-efficient and satisfies viewers’ QoS demands. We also propose a method–

utilized by the scheduler– to predict the execution time of transcoding tasks before

their executions. Experiment results demonstrate the feasibility of cloud-based

transcoding for live video streams and the efficacy of the proposed scheduling

method in satisfying viewers’ QoS demands without imposing extra cost to the

stream provider.

1.4.Methodology

We used CloudSim [11], a discrete event simulator, to model our system and evaluate

performance of the scheduling methods and VM provisioning policies. To create a

diversity of video streaming requests, we uniformly selected videos over the range of [10 ,

600] seconds from a set of benchmark videos. We made the benchmarking videos publicly
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available for reproducibility purposese. We modeled our system based on the

characteristics and cost of VM types in Amazon EC2. We considered t2.micro for

homogeneous cloud cluster, g2.2xlarge, c4.xlarge, r3.xlarge, and m4.large for

heterogeneous cloud cluster in our experiments. The VMs represent the characteristics of

various VM types offered by Amazon cloud and form a heterogeneous VM cluster.

To simulate a realistic video transcoding scenario, using FFmpegf, we performed

four different transcoding operations (namely codec conversion, resolution reduction, bit

rate adjustment, and frame rate reduction) for each of the benchmarking videos. Then,

the execution time of each transcoding operation was obtained by executing them on the

different VM types.

To capture the randomness in the execution time of video segments on cloud VMs,

we transcoded each video segment 30 times and modeled the transcoding execution times

of segment based on the normal distributiong.

To study the performance of the system comprehensively, we evaluated the system

under various workload intensities. For that purpose, we varied the arrival rate of the

video streaming requests from 100 to 1000 within the same period of time. The

inter-arrival times of the requested videos are generated based on the Normal distribution,

where the mean of inter arrival time is based on the time divided by the number of

requests and standard deviation is the mean divided by 3. All experiments of this section

were run 30 times, and the mean and the 95% of the confidence interval of the results are

reported for each experiment. In all the experiments, we considered the values of α and β

equal to 0.05 and 0.1, respectively. That is, we consider that the SSP chose to keep the

eThe videos can be downloaded from: https://goo.gl/TE5iJ5
fhttps://ffmpeg.org
gThe generated workload traces are available publicly from: https://goo.gl/B6T5aj
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deadline miss rate between 5% to 10%. Any deadline miss beyond 10% is considered as a

QoS violation.

1.5.Dissertation Organisation

Apart from this chapter and the Conclusion chapter, the dissertation consists of other six

chapters. The core chapters of this dissertation derive from research papers published or

submitted during the course of the Ph.D. candidature. The dissertation chapters and their

respective papers are the following:

• Chapter 2 presents background information, challenges, and existing solutions for

cloud-based on-demand video transcoding:

– X. Li, M. A. Salehi, and M. Bayoumi. High Perform On-Demand Video

Transcoding Using Cloud Services. Proceedings of the 16th ACM/IEEE

International Conference on Cluster Cloud and Grid Computing, ser. CCGrid

16, May 2016.

– X. Li, M. A. Salehi, and M. Bayoumi. Cloud-Based Video Streaming for

Energy- and Compute-Limited Thin Clients. Presented in Stream2016

workshop, Indiana University, Indianapolis, USA, Oct. 2015.

• Chapter 3 proposes a Cloud-based Video Streaming Service (CVSS) architecture. It

includes eight main components, namely Video Splitter, Admission Control, Time

Estimator, Task (i.e., GOP) Scheduler, Heterogeneous Transcoding VMs, VM

Provisioner, Video Merger, and Caching.

• Chapter 4 explores the feasibility of on-demand video transcoding using cloud
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services. It includes a QoS-aware scheduling method to efficiently map video streams

to cloud resources, and a cost-aware dynamic (i.e., elastic) resource provisioning

policy that adapts the resource acquisition with respect to the video streaming QoS

demand:

– X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya. CVSS: A Cost- Efficient and

QoS-Aware Video Streaming Using Cloud Services. Proceedings of the 16th

ACM/IEEE International Conference on Cluster Cloud and Grid Computing,

ser. CCGrid 16, May 2016.

– X. Li, M. A. Salehi, and M. Bayoumi. High Perform On-Demand Video

Transcoding Using Cloud Services. Submitted to U.S. Patent, Nov. 2016.

• Chapter 5 explores the performance of the transcoding operations on different cloud

Virtual Machines (VMs):

– X. Li, Y. Joshi, M. K. Darwich, B. Landreneau, M. A. Salehi, and M.

Bayoumi. Performance Analysis and Modeling of Video Transcoding Using

Heterogeneous Cloud Services. Ready for submission to IEEE Transactions on

Cloud Computing, 2016.

• Chapter 6 presents a study on CVSS architecture when heterogeneous cloud

resources are utilized. It includes a QoS-aware scheduling component that maps

transcoding tasks to the Virtual Machines (VMs) by considering the affinity of the

transcoding tasks with the allocated heterogeneous VMs, and a cost-efficient VM

Provisioner component that provides a self-configurable cluster of heterogeneous

VMs. The cluster is reconfigured dynamically to maintain the maximum affinity
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with the arriving workload.

– X. Li, M. A. Salehi, M. Bayoumi, N.F. Tzeng, and R. Buyya. Cost-Efficient

and Robust On-Demand Video Transcoding Using Heterogeneous Cloud

Services. Submitted to IEEE Transactions on Parallel and Distributed Systems,

Aug. 2016.

• Chapter 7 proposes a cloud-based architecture that facilitates transcoding for live

video streaming:

– X. Li, M. A. Salehi, and M. Bayoumi. VLSI:Video Live Streaming Us- ing

Cloud Services. Accepted to the 6th IEEE International Conference on Big

Data and Cloud Computing Conference, ser. BDCloud 16, Oct. 2016.

– M. A. Salehi, and X. Li. HLSaaS: High-Level Live Video Streaming as a

Service. Presented in Stream2016 workshop, Washington DC, USA, Mar. 2016.

• Chapter 8 concludes the dissertation with a discussion of our main findings and

future research directions in the area of on-demand video transcoding using cloud

services.

9



CHAPTER 2: Background, Challenges, and Existing Solutions

This chapter presents the backgrounds information of video streaming service,

video transcoding, and cloud service to facilitate a better understanding of the topics

addressed in the remaining chapters, and position the dissertation in regards to related

works.

2.1.Introduction

Back to 1995, ESPN a SportsZone streamed a live radio broadcast of a baseball game

between the Seattle Mariners and the New York Yankees to thousands of its subscribers

worldwide using cutting-edge technology developed by a Seattle-based startup company

named Progressive Networks. It was the world’s first livestreaming event [12]. A few years

later, a brand new technology market emerged - streaming media, which was dominated

by Microsoft. Though the infancy years of streaming media were primarily focused on

pragmatic problems such as how to successfully stream a watchable video. Thanks to

Windows Media technologies, Microsoft was the winner of the streaming media war, but

soon found itself unable to capitalise on the victory. In the mid-2000s, Macromedia (later

acquired by Adobe Systems b) introduced its increasingly popular Flash Player

technology. Flash shook up the streaming media industry by seamlessly marrying

interactivity, Web 2.0 and streaming media for the first time [13]. A new era in streaming

media had arrived, but the old problems still remainedbandwidth, scalability and reach.

By the mid-2000s, the vast majority of the Internet traffic was HTTP-based and

content delivery networks (CDNs) [10] were increasingly being used to ensure delivery of

ahttp://www.espn.com
bhttp://www.adobe.com



popular content to large audiences. Streaming media, with its hodgepodge of proprietary

protocols suddenly found itself struggling to keep up with demand. In 2007, a company

named Move Networks (acquired by Echostar c in 2010) introduced a technology and

service that once again would change the industry: HTTP-based adaptive streaming [14].

In order to avoid relying on proprietary streaming protocols and leave users at the

mercy of the Internet bandwidth, several companies, including Move Networks, have

pioneered HTTP chunking [15, 16], which enables the delivery of video and audio over

HTTP instead of traditional streaming protocols. It delivers media in small file chunks

while utilizing the player application to monitor download speeds and request chunks of

varying quality (size) in response to changing network conditions. The technology had a

huge impact because it allowed streaming media to be distributed far and wide using

CDNs (over standard HTTP) and cached for efficiency, while at the same time eliminating

annoying buffering and connectivity issues for customers. Other HTTP-based adaptive

streaming solutions soon followed: Microsoft launched its Smooth Streaming technology in

2008, the same year Netflix developed its own technology to power its pioneering Watch

Instantly streaming service. Apple followed suit in 2009 with HTTP Live Streaming

(HLS) designed for delivery to iOS devices, and Adobe joined the party in 2010 with

HTTP Dynamic Streaming (HDS) [17]. HTTP-based adaptive streaming quickly became

the weapon of choice for high-profile live streaming events (Vancouver and London

Olympics, Wimbledon, Roland Garros, Felix Baumgartner’s Stratos jump, etc.) and

premium on-demand services (Netflix, LoveFilm, Amazon Instant Video, etc.). It was a

time of adolescence for streaming media bursting with potential. We are introducing

video streaming service in the following.

chttp://www.echostar.com
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2.2.Video Streaming Service

2.2.1.Video Streaming Service Structure

Figure 2.1. The structure of video streaming service.

Video streaming are mainly categorized into two types: Video On-Demand

(VOD) [18] and Live Streaming [19]. Video contents, either in form of on-demand

streaming or live-streaming, needs to be transcoded based on the device characteristics of

viewers. The difference between VOD and live streaming is that VOD transcode the

videos to multiple versions and stores them in the repository before streaming to viewers,

while live streaming does transcoding and streaming process simultaneously. With the

surging of streaming business, provisioning and maintaining in-house infrastructures to

meet the fast-growing demands of video transcoding is cost-prohibitive. Therefore,

streaming service providers have become reliant on cloud services to store and transcode

videos. Content delivery network (CDN) [10] is used to setup several data centers at

different geographical locations over the Internet and deliver the video streams to the
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viewers all over the world. The streaming service structure is shown in Figure 2.1.

Providing high QoS video streaming service is challenging, because it involve

multiple fields, including video transcoding, Content Delivery Network (CDN), storage

management, as well as security and privacy concerns. We will discuss each of the

challenges in the following.

2.2.2.Video Transcoding

Video contents are initially captured with a particular format, spatial resolution, frame

rate, and bit rate. Then, the video is uploaded to streaming servers. Streaming server

usually has to adjust the original video based on the client’s network bandwidth, device

resolution, frame rate, and video codec. All these conversions and adjustments are

generally called video transcoding [4, 5]. Below, we briefly introduce video stream

structure and different types of transcoding operations:

Video Stream Structure

A Video stream, as shown in Figure 2.2, consists of several sequences. Each sequence is

divided into multiple Group Of Pictures (GOP) with sequence header information at the

front. A GOP is essentially a sequence of frames beginning with an I (intra) frame,

followed by a number of P (predicted) frames or B (be-directional predicted) frames.

There are two types of GOP: open-GOP and closed-GOP. In closed-GOP, there is no

inter-relation among GOPs, hence, these can be transcoded independently. In contrast,

there is an inter-dependency between GOPs in open-GOP. The way to transcode

ope-GOP seperately have been discussed in [20]. Each frame of the GOP contains several

slices that consist of a number of macroblocks (MB) which is the basic operation unit for

video encoding and decoding.
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For the transcoding process, video streams can be split at different levels, namely

sequence level, GOP level, frame level, slice level, and macroblock level. Sequence level

contains several GOPs that can be transcoded independently. However, due to the large

size of each sequence, its transmission and transcoding time is time-consuming. On the

other hand, frames, slices and macroblocks have temporal and spatial dependency. That

makes their processing complicated and slow [21].

Figure 2.2. The structure of a video stream that consists of several sequences. Each sequence

includes several GOPs. Each frame of GOP contains several macroblocks.

In order to avoid unnecessary communication delay between different cloud servers

(i.e., virtual machine), video stream are commonly split into GOPs, that can be

transcoded independently [22].

Bit Rate Adjustment

To produce high quality video contents, it has to be encoded with high bit rate. However,

high bit rate also means the video content needs large network bandwidth for transmission.

Considering the diverse network environment of clients, streaming service providers

14



usually have to reduce the video stream’s bit rate to ensure smooth streaming [23].

Spatial Resolution Reduction

Spatial resolution indicates the encoded dimensional size of a video. The dimensional size

does not necessarily match to the screen size of clients’ devices. To avoid losing content,

macroblocks of an original video have to be removed or combined (aka downscaled) to

produce lower spatial resolution video. There are several circumstances where the spatial

resolution algorithms can be applied to reduce the spatial resolution without sacrificing

quality, Figure 2.3a and 2.3b show the challenge in mapping four motion vectors (MV) to

one [24] and determine the type from several types [25], respectively.

Figure 2.3. Spatial resolution downscaling

(a) MV dowscaling (b) MB type downscaling

Temporal Resolution Reduction

Temporal resolution reduction happens when the client’s device only support lower frame

rate, and the stream server has to drop some frames. However, due to dependency

between frames, dropping frames may cause motion vectors (MV) become invalid for the

incoming frames. Temporal resolution reduction can be achieved using methods explained

in [26, 27].
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Video Compression Standard Conversion

Video compression standards vary from MPEG2, to H.264, and to the most recent one,

HEVC. Video contents are encoded by various video compression standards. Therefore,

video streams usually need to be transcoded to the supported codec on clients device

[28, 29].

2.2.3.Content Delivery Network (CDN)

A CDN is an infrastructure that replicates Web content from origin servers to replica

servers (surrogates) placed in strategic locations. The main aim is to minimise internet

traffic and response time by making clients retrieve files from nearby servers. Each CDN is

set up and operated by providers such as Akamai [30]. It is important to note that CDNs

have incentives for cooperating with one another, to alleviate flash crowd events, provide a

better QoS to their customers and minimize the costs of expensive infrastructures [31].

Video content that are usually subscribed and viewed by clients from different

geography, therefore multiple copies of the video contents are maintained on strategically

dispersed servers. Before delivering the video file to a client, the nearest and efficient path

with less hops for a data packet is calculated and then sent over to client. Once the videos

are on the network, most popular content or frequently accessed videos are cached on the

edge servers located close to the users thus making the video streaming much efficient.

Apostolopoulos et al. [32] proposed Multiple Description coding (MDC) which is used to

code a media stream into multiple complementary descriptions, which are distributed

across the edge servers in the CDN. When a client requests a media stream, it is directed

to multiple nearby servers which host complementary descriptions. These servers

simultaneously stream these complementary descriptions to the client over different
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network paths.

2.2.4.Storage Management

To better serve the diverse viewer devices, video contents are usually transcoded into

multiple versions and stored in the repository. As accessing and recording video becomes

much easier these days, storing a large amount of video contents incurs big cost. Storage

deduplication technology [33] have been used to avoid multiple copies of the data files,

where the copies of the data files are saved as one and maintains index files to the same

data blocks containing the file content.

However, video files are different, as the video contents may have different formats,

resolution, bit rate and frame rate for one give video. To reduce storage space usage for a

single video content, we can use scalable video coding (SVC) [34] technique to separate

the video to several layers with different quality instead of storing multiple copies of them.

In the meantime, cloud services nowadays provides massive cheaper cost storage

on the cloud(e.g., Amazon S3). Therefore, streaming service providers become to move

their video content on the cloud instead of building their own storage infrastructure.

2.2.5.Security and Privacy Concerns

In the context of video streaming, security concerns arise when unauthorized users gain

access to the copy righted video files. Video encryption is one solution for such security

concerns. Multimedia encryption technology was first reported in the 1980s [35].

According to the content, encryption can be done on image, audio and video. The

algorithms for these encryption can be classified into direct encryption, partial encryption

and compression combined encryption. In direct encryption, the compressed video files are

encrypted with a traditional cipher and often encrypts the largest data volumes, and thus,
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is of the highest security and lowest efficiency. Whereas in partial encryption, significant

parts of video files are encrypted and rest are left unencrypted. In compression-combined

the encryption operation is combined with a compression operation, and they are

implemented simultaneously. Partial encryption and compression-combined encryption

reduce the encrypted data volumes, and thus, get higher efficiency and lower security.

When a person in the video is unaware that he is recorded or doesnt want to be

seen in the video then privacy concerns arise. Whether it is a live broadcast or

pre-recorded video, to protect the privacy of a person and their identity, image

masking [36] and audio modulation [37] are applied to video files. These techniques are

added to the raw video content and then compressed for transmission and encryption

techniques. To protect the copy rights adding water marking is practiced from very long

time. With recent techniques of inserting ads according to the browser history is also a

privacy concern. There is no control on the information that is being known to the

internet world from ones browser.

2.3.Cloud Computing Service

Generally speaking, clouds offer services that can be grouped into three categories:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS). We describe each of them in detail:

2.3.1.Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is a term that refer to the practice of delivering IT

infrastructure based on virtual or physical resources as a commodity to customers. These

resources meet the end user requirements in terms of memory, CPU type and power,
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storage, and, in most of the cases, operating system. Users are billed on a pay per use

basis and have to set up their system on top of these resources that are hosted and

managed in datacenters owned by the vendor [38]. Amazon is one of the major players in

providing IaaS solutions. Amazon Elastic Compute Cloud (EC2) provides a large

computing infrastructure and a service based on hardware virtualization. By using

Amazon Web Services, users can create Amazon Machine Images (AMIs) and save them as

templates from which multiple instances can be run. It is possible to run either Windows

or Linux virtual machines and the user is charged per hour for each of the instances

running. Amazon also provides storage services with the Amazon Simple Storage Service

(S3), users can use Amazon S3 to host large amount of data accessible from anywhere.

Based on the hardware characteristics heterogeneity and the rental cost difference

of the cloud VMs on Amazon EC2, it can be categorized into next six types of instance:

General-Purpose Instances

CPU, memory and networks are usually well balanced within General-Purpose instances,

which makes them a ideal candidate for many applications, such as memory-hungry tasks,

Microsoft SharePoint, caching fleets, as well as running small and mid-size databases at

the backend servers. Although the VMs from general-purpose type usually have the

cheapest cost, these VMs also have less computing power among other instance types

available, more nodes may need to be allocated to process a large application [39].

CPU-Optimized Instances

This instance family has a higher ratio of vCPUs compared to others, which is aimed for

compute-intensive applications. Many examples of these applications are web application

servers, on-demand batch processing, distributed analytics, web servers, video encoding,
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and high performance science and engineering applications like genome analysis and

high-energy physics [40].

Memory-Optimized Instances

Memory-Optimized instances are designed for memory-intensive applications. These

instances have the lowest cost per GiB of RAM compared to Amazon’s other EC2

instance types. In the case of using a memory bound application, a user would consider

using these instances. Other examples of Memory Optimized Instance applications are

high performance databases, distributed cache, and memory analytics [41].

GPU-Optimized Instances

The advantages of this instance type are the parallelism of performance with high CPU

capabilities. It also support for cluster networking. Applications like computational

chemistry, rendering, financial analysis and some scientific applications can speedup

dramatically with GPU processing [42].

Storage-Optimized Instances

Storage-Optimized instances are utilized in cases where low storage cost and high data

density is necessary while parallelism is not required. This instance is designed for large

data instances such as Hadoop clusters, data warehouses and date encryption [43]

Dense-Storage Instances

Dense storage instances offers large HDD based local storage with the lowest price per

disk throughput performance. Such feature of this instance type benefits applications like

parallel processing data warehousing, Hadoop distributed computing, and some other

data-processing applications [44].
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2.3.2.Platform as a Service (PaaS)

Platform as a Service solutions provide an application or development platform in which

users can create their own application that will run on the Cloud. PaaS implementations

provide users with an application framework and a set of API that can be used by

developers to program or compose applications for the Cloud. In some cases, PaaS

solutions are generally delivered as an integrated system offering both a development

platform and an IT infrastructure on top of which applications will be executed. The two

popular platforms are Google AppEngine [45] and Aneka [46].

2.3.3.Software as a Service (SaaS)

Software as a Service solutions are at the top end of the Cloud computing stack and they

provide end users with an integrated service comprising hardware, development platforms,

and applications. Users are not allowed to customize the service but get access to a

specific application hosted in the Cloud. Examples of the SaaS implementations are the

services provided by Google for office automation, such as Google Document and Google

Calendar, which are delivered for free to the Internet users and charged for professional

quality services. Examples of commercial solutions are Salesforce d and Clarizen e, which

respectively provide on line CRM and project management services.

2.4.An Investigation of Existing Works

Techniques, architectures, and the challenges of video transcoding have been investigated

by Ahmad et al. [4] and Vetro et al. [5]. However, provisioning and upgrading these

infrastructures to meet the fast-growing demands of video transcoding is cost-prohibitive,

dhttps://www.salesforce.com
ehttps://www.clarizen.com
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specifically for small- and medium-size streaming service providers. Moreover, given the

explosive growth of video streaming demands on a large diversity of the client devices, this

approach remains inefficient. Alternatively, streaming service providers (SSPs) begun to

utilize cloud services for computing and storage.

Cloud-based video transcoding for VOD has been studied in [47, 48] in recent

years. While most of the studies investigated the case of pre-transcoding(i.e., transcoding

offline and store all transcoded versions), to save more unnecessary storage cost for

infrequently requested videos, some of recent studies [49, 50] have proposed to transcode

videos in a on-demand manner by utilizing cloud services. Meanwhile, cloud-based video

transcoding has also has been applied for live streaming [51, 52]. A taxonomy of the

studies undertaken on cloud-based video transcoding is illustrated in Figure 2.4.

Figure 2.4. A taxonomy of video transcoding using cloud. Red blocks position the contri-

butions of this dissertation.
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2.4.1.Cloud-Based Video Transcoding for Video On Demand (VOD)

Jokhio et al. [53] presents a computation and storage trade-off strategy for cost-efficient

video transcoding in the cloud. The trade-off is based on the computation cost versus the

storage cost of the video streams. They determine how long a video should be stored or

how frequently it should be re-transcoded from a given source video. Zhao et al. [54] take

the popularity, computation cost, and storage cost of each version of a video stream into

account to determine versions of a video stream that should be stored or transcoded.

In systems with dynamical task arrival, task scheduling can be performed either in

an Immediate or a Batch mode [55]. In the former, the tasks are mapped to processing

machines as soon as they arrive to the scheduler, whereas in the latter, few tasks are

collected in a batch queue and are scheduled at the same time. Salehi et al. [8] have

compared these scheduling types in heterogeneous computing systems and concluded that

the batch-mode significantly outperforms the immediate-mode. The reason is that, in the

batch-mode, tasks can be shuffled and they do not have to be assigned in the order they

arrived. To improve QoS for on-demand video transcoding, Li et al. [49] proposed a

startup queue to prioritize the first few GOPs in video streams.

Previous work on cloud-based VM provisioning for video transcoding (e.g.,

[48, 56]) mostly considers the case of offline transcoding. Thus, their focuses are mainly on

reducing makespans (i.e., total transcoding times) and costs.

Netflix adopts the scale up early, scale down slowly principle for its VM

provisioning [57] on Amazon EC2. It periodically checks the utilization of its allocated

VMs. The allocated VMs are scaled up by 10%, if their utilization is greater than 60% for

5 minutes. They are also scaled down by 10%, if the VMs utilizations is less than 30% for
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20 minutes. Lorido et al. [58] catogrize current auto-scaling techniques into five main

families: static threshold-based rules, control theory, reinforcement learning, queuing

theory, and time series analysis. Then, they utilize the classification to carry out a

literature review of proposals for auto-scaling in the cloud. In [49, 50], a QoS-aware VM

provisioning policy was proposed for on-demand video transcoding. While unlike CPU

and memory resources, a guarantee of bandwidth is not provided in current cloud services,

a few studies have been focued on the network bandwidth of cloud services [59, 60, 61].

Niu et al. [59] proposed an unobstrusive, predictive and elastic loud bandwidth

auto-scaling system for SSPs, which can automatically predict the future demands and

reserve bandwidth in advance to maintain QoS.

Nonetheless, most previous works did not consider heterogeneous types of VMs

offered by cloud providers. They just consider one type of VM (i.e., a homogeneous cluster

of VMs) and try to minimize the incurred cost of video transcoding. Given the affinity

between different transcoding tasks and VM types, VM provisioning policies are required

to provision from heterogeneous types of VM resources to minimize the incurred cost.

While in a Heterogeneous Computing (HC) environment, different transcoding

tasks may have different transcoding (i.e., execution) times on different VMs. This make

it even more difficult to assign tasks to machines to optimize a given performance metric.

Resource allocation also becomes more complicated when compared to a homogeneous

cluster.

Many studies have been focused on exploring the performance analysis of

heterogeneous cloud services [62, 39, 40, 63, 64]. Iosup et al. [62] and Jackson et al. [40]

studied application oriented performance analysis using heterogeneous cloud services. The
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results shows that although cloud services still have its drawback in terms of

communication and processing, utilizing cloud services is a good solution for processing

big scientific data workloads, especially for those who need resources instantly and

temporarily. The longer the communication time, the worse the overall performance

becomes. Lee et al. [39] further investigated the affinity of job and machine affinity in

heterogeneous clusters. They proposed a metric termed share in this heterogeneous cluster

to realize a scheduling scheme that achieves high performance and fairness. However, few

studies focus on the specific application of video transcoding for cloud services and little

research has been done to analyze the affinities of transcoding tasks and hetergeneous VM

types.

In the meantime, Expected time to compute (ETC) [9, 8, 65] and estimated

computation speed (ECS) [10, 66] matrix are commonly used to explain the affinity of

tasks on heterogeneous machines. These matrices can be utilized for better task

scheduling and VM allocation. However, the definition of both ETC and ECS only

considers execution time as the performance metric and ignores the cost difference among

different VM types. Our proposed suitability matrix can provide a better metric in terms

of both performance and cost.

2.4.2.Cloud-Based Video Transcoding for Live Streaming

For live video streaming, in which the transcoding time of GOPs are unknown. Also, GOP

tasks that miss their deadlines are dropped whereas in VOD they have to be completed

even if they miss their deadlines. These differences increase the uncertainty in live video

streams and makes their scheduling a more challenging problem.

Networking challenges in live video streaming has been the subject of many
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interesting research works during the past few years. In particular, Cicco et al. [67] present

an approach to adapt live streaming bit-rate based on viewers’ Internet bandwidth. Liao

et al. [68] propose a framework that applies optimization techniques in live video streaming

to improve the viewers’ QoS demands, such as startup delay and playback continuity.

Live video streaming is rapidly becoming a global service. Such rapid growth in

demand has essentially introduced scalability challenges. Cloud services provide features

that can be utilized to address the scalability challenges. Wang et al. [69] propose a cloud

resource management framework that functions based on the global demand for live

streaming. Payberah et al. [70] investigate how to minimize the cost of cloud services

while providing desired QoS for peer to peer (P2P) video streaming. It presents a model

to decide the right number of active helper (e.g., Amazon EC2) and passive helper (e.g.,

Amazon S3) to limit the expense while maximizing the QoS (e.g., playback continuity).

Previous research works on live video streaming using cloud concentrate on

utilizing cloud services to gain a higher QoS satisfaction (e.g., provide less delay) and more

scalability. However, transcoding of live video streams using cloud services to provide a

high display quality on a wide variety of display devices has not been studied yet.

2.5.Conclusion

This chapter presented a background and survey on video streaming using cloud

computing services. One of the main challenges of video streaming service is video

transcoding, which is computationally complex and time consuming. As video streaming

business grows dramatically, streaming service providers have begun to rely on cloud

service that provides massive computing and storage resources. However, making use of

cloud raises another challenge, how to efficiently use cloud resources for video streaming,
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in general, and video transcoding, in particular?

This chapter also provides a literal review of the existing works on cloud-based

video transcoding. Most of the related works focus on pre-transcoding, and do not consider

quality of service (e.g., startup delay of video stream or deadline miss during playback).

Therefore, in the rest of the dissertation, we will present our proposed cloud-based

on-demand video transcoding architecture, and the way its components operate.
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CHAPTER 3: CVSS: Cloud-Based Video Streaming Service Architecture

3.1.Architecture for Video On Demand

The CVSS architecture aims to deal with a received request for streaming a video format

that is not available in the repository (i.e., it is not pre-transcoded). An overview of the

architecture is presented in Figure 3.1. It shows the sequence of actions taken place to

transcode a video stream in an on-demand manner. The dashed lines in this figure will be

investigated in our future studies.

CVSS architecture includes eight main components, namely Video Splitter,

Admission Control, Time Estimator, Task (i.e., GOP) Scheduler, Heterogeneous

Transcoding VMs, VM Provisioner, Video Merger, and Caching. These components are

explained in the next few subsections.

3.1.1.Video Splitter

The Video Splitter splits the video stream into several GOPs that can be transcoded

independently. Each generated GOP is identified uniquely in form of Gij , where i is the

video stream id and j is the GOP number within the video stream.

Each GOP is treated as a task with an individual deadline. The deadline of a

GOP is the presentation time of the first frame in that GOP. In the case of VOD, if a

GOP misses its deadline, it still has to complete its transcoding. We have made the source

code for Video Splitter publiclya available.

aThe source code for GOP task generation is available here:https://github.com/lxb200709/

videotranscoding gop

https://github.com/lxb200709/videotranscoding_gop
https://github.com/lxb200709/videotranscoding_gop


Figure 3.1. An overview of the Cloud-based Video Streaming Service (CVSS) architecture.

3.1.2.Admission Control

The Admission Control component includes policies that regulate GOP dispatching to the

scheduling queue. The policies dispatch GOPs of streaming requests that consumes GOPs

with a higher rate. In fact, the Video Splitter generates GOPs for all requested video

streams. Then, the admission control policies determine the priority (i.e., urgency) of the

GOPs and dispatches them accordingly to the scheduling queue. Without an admission

control policy in place, all of the GOPs are dumped to the scheduling queue. This results

into a large scheduling queue that in turn makes the scheduling time-consuming and

inefficient.More importantly, the admission control policy dispatches GOPs that are

urgent to keep up with the streaming. Hence, it makes the whole architecture more
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efficient. The admission control policies act based on the inputs it receives from Video

Splitter and Video Merger. The Video Merger includes buffers for transcoded GOPs of

each video stream that demonstrate the GOP consumption rate of each video.

The way Admission Control prioritizes a GOP is based-on the GOP sequence

number in a video stream. Although we consider the admission control as a component

within the CVSS architecture, we leave the development of its policies as a future work.

3.1.3.Transcoding Virtual Machines (VMs)

VMs are allocated from the cloud provider to transcode GOP tasks. As discussed in

Section 2.3.1., cloud providers offer VMs with diverse architectural configurations. Although

GOPs can be processed on all VM types, their execution times vary. In fact, the execution

time of a GOP on a particular VM type can depend on factors such as the size of data it

processes or the type of transcoding operations it performs. For instance, our initial

experiments have revealed that, generally, GOPs with small data size that perform bit

rate transcoding have better execution time on CPU optimized VMs. In addition,

heterogeneous VMs incur different costs to the stream provider. Additionally, different

transcoding operations have different affinity with VM types. That is, some VMs provide

a better execution time for some types of transcoding while some others perform better

with other types of transcoding. The type of VM heterogeneity exists within the

transcoding VMs is known as inconsistent heterogeneity.

The type of affinity exists between different VM types and GOP tasks is termed

inconsistent heterogeneity [8]. Inconsistent heterogeneity is formally defined as a system

that includes a mixture of different machines to execute tasks with various computational

needs. In particular, in such a system, each task may have different execution times on
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different machines of the system. For instance, machine A may be faster than machine B

for task 1 but slower than other machines for task 2.

Each VM is assigned a local queue where the required data for GOPs are preloaded

before execution. The scheduler maps GOPs to VMs until the local queue gets full.

3.1.4.Execution Time Estimator

The role of the Time Estimator component is to estimate the execution time of GOP

tasks. Such estimation of execution times helps the Scheduler and VM Provisioner

components to function efficiently.

In VoD streaming, a video usually has been streamed multiple times. Therefore,

the transcoding execution time for each Gij can be estimated from the historic execution

information of Gij [66].

As we consider the case of heterogeneous transcoding VMs, each GOP has a

different execution time on each VM type. Therefore, the Time Estimator stores the

execution time estimations within Estimated Time to Completion (ETC) matrices [8]. An

entry of the ETC matrix expresses the execution time of a given GOP Gij on a given VM

type m.

We note that, even in transcoding the same GOP Gij on the same type of VM,

there is some randomness (i.e., uncertainty) in the transcoding execution time. That is,

the same VM type does not necessarily provide identical performance for executing the

same GOP at different times [71]. This variance is attributed to the fact that the same

VM type can be potentially allocated on different physical machines on the cloud. It can

also be attributed to other neighboring VMs that coexist with the VM on the same

physical host in the cloud datacenter. For instance, if the neighboring VMs have a lot of
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memory access, then, there will be a contention to access the memory and the

performance of the VM will be different from the situation that there is no such a

neighboring VM. Therefore, to capture randomness that exists in the GOP execution

time, the mean execution time and its standard deviation of the historic execution time

for Gij is stored in the corresponding entry of the ETC matrix.

It is noteworthy that there is a major difference in execution time estimation of live

streaming videos. In that case, the execution time of arriving GOP tasks are unknown, as

it is the first time that the stream is being transcoded. However, since GOPs share similar

charateristics in the same video, the latter GOP’s execution time usually can be estimated

by previous ones. An execution time prediction model has been studied in [51].

3.1.5.Transcoding (GOP) Task Scheduler

The GOP task scheduler (briefly called transcoding scheduler) is responsible for mapping

GOPs to a set of heterogeneous VMs. Considering the heterogeneity in performance and

cost of different VM types, the scheduler’s goal is to map GOP tasks to VMs with the

minimum incurred cost while satisfying the QoS demands of the viewers.

GOPs of different video streams are interleaved within the scheduling queue. In

addition, the scheduler has no prior knowledge about the arrival pattern of the GOPs to

the system. Details of the scheduling method are presented in Section 4.2 and Section 6.2.

3.1.6.VM Provisioner

The VM Provisioner component monitors the operation of transcoding VMs in the CVSS

architecture and dynamically reconfigures the VM cluster with two goals: (A) minimizing

the incurred cost to the stream provider; (B) maintaining a robust QoS for viewers. For

that purpose, the VM Provisioner includes provisioning policies that are in charge of
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allocating and deallocating VM(s) from the cloud based on the streaming demand type

and rate.

VM provisioning policies generally have to determine when and how many VMs

need to be provisioned (known as elasticity [49]). For a heterogeneous VM cluster, the

policy also has to determine which type of VM needs to be provisioned. Another

interesting question that is introduced in this situation is how the heterogeneous should be

reconfigured? That is, determining the proper replacement for a given VM to satisfy the

dynamically changing arriving workload.

The VM provisioning policies are executed periodically and also in an event-based

fashion to verify whether or not the allocated VMs are sufficient to meet the QoS

demands. Once the provisioning policy updates the set of allocated VMs, it informs the

scheduler about the latest configuration of the VM cluster. Details of the VM provisioning

policies are discussed in Section 4.3 and Section 6.3.

3.1.7.Video Merger

GOPs are transcoded on different VMs independently. Thus, latter GOPs in a video

stream may be completed before the earlier ones in a stream. The role of Video Merger is

to rebuild the sequence of GOPs in the right order. To build the transcoded stream, Video

Merger maintains an output window for each video stream.

Video Merger is in contact with the Admission Control component. In the event

that a GOP is delayed (e.g., due to failure) the Video Merger asks the Admission Control

for resubmission of the GOP.
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3.1.8.Caching

To avoid redundant transcoding of the trending videos, the CVSS architecture provides a

caching policy to decide whether a transcoded video should be stored or not. If the video

is barely requested by viewers, there is no need to store (i.e., cache) the transcoded

version. Such videos are transcoded in an on-demand manner upon viewers’ request. We

will explore more details of the caching policy in a future research.

3.2.Architecture for Live Streaming

We propose an architecture for live streaming using cloud services. An overview of the

architecture is presented in Figure 3.2. The architecture shows the sequence of actions

taken place when viewers request videos from a live streaming service provider. The

architecture includes six main components, namely video splitter, time estimator, task

(i.e., GOP) scheduler, transcoding virtual machines (VM), virtual cluster manager

(VCM), and video merger. The cooperation of these components leads to cost-efficient and

QoS-aware transcoding of live streams on the cloud. These components are explained in

the rest of this section.

Figure 3.2. An overview of VLSC: A cloud-based live streaming transcoding architecture
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3.2.1.Video Splitter

In the video splitter component, the live video stream is split into several GOPs upon

arrival, that can be then transcoded independently. Each GOP has an individual hard

deadline based on the presentation time of the first frame in that GOP. As we study the

case of live streaming, if a GOP misses its deadline, there is no value in transcoding that

and it has to be dropped.

3.2.2.Execution Time Estimator

In live streaming, the execution time of arriving GOP tasks are unknown. It is noteworthy

that this is a major difference of live streaming with the case of Video-on-Demand (VOD)

where a video stream is processed several times. Thus, the transcoding (i.e., execution)

time of each GOP task can be estimated based on the prior execution information. Such

prior execution information do not exist in live video streaming as it is the first time the

video being streamed.

Although prior GOP execution information do not exist in live streaming, our

initial experiment results demonstrate that the execution time of a GOP has a correlation

with the execution time of other GOPs within the same video. In fact, generated GOPs

within a video include similar number of frames, hence, similar execution times.

Therefore, in live video streaming, the execution time of a given GOP task can be

estimated based on the execution time information of previous transcoded GOPs within

the same video stream.

We model the transcoding time of the previous GOPs within a video stream as a

Normal distribution N(µ, σ). Transcoding time of a GOP also has a correlation with the

size of data (i.e., frames) that GOP processes (termed GOP size hereafter). Let Savg the
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average GOP size of the previous transcoded GOPs within the video stream. Therefore,

for a given GOPn with size Sn, the estimated transcoding time, denoted τn, is calculated

as follows.

τn =
Sn
Savg

· µ+ σ (3.1)

It is worth noting that by adding σ, Equation 3.1 provides a worst-case estimation

for transcoding time of GOPn. Also, we should note that Sn is known prior to the

execution of GOPn.

3.2.3.Transcoding (GOP) Task Scheduler

The transcoding task scheduler (briefly called transcoding scheduler) is responsible for

mapping GOP tasks to transcoding servers. The scheduler goal is to satisfy the QoS

demands of clients (in terms of minimum startup delay and GOP drop rate of video

streams) without incurring extra cost to the stream provider.

Details of the proposed scheduling method is presented in Section 7.2.

3.2.4.Transcoding Virtual Machine (VM)

VM(s) are allocated from the cloud provider to process GOP tasks. In this work, we

assume that the allocated VMs are homogeneous. Each VM has a local queue where the

required data for GOPs are preloaded before execution. When a free spot appears in the

local queue of a VM, the scheduler is notified to map a GOP to the VM. We assume that

the GOP tasks in the local queue are scheduled using the FCFS method.

3.2.5.Virtual Cluster Manager (VCM)

VCM monitors the operation of transcoding VMs in the VLSC architecture, and resizes

the VM cluster to meet the clients’ QoS demands and to minimize the incurred cost of the
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streaming service provider. In the current study, we consider a static resource provision

policy (i.e., a fixed number of VMs). The implementation of dynamic resource

provisioning will be studied in our future work.

3.2.6.Video Merger

The purpose of video merger is to place all the transcoded GOPs in the right order and

create the live stream. Video merger sends the transcoded live streams to the viewers.
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CHAPTER 4: QoS-Aware On-Demand Video Transcoding Using Cloud

Services

The challenge in utilizing cloud services for video transcoding is how to deploy

cloud resources in a cost-efficient manner without any major impact on the quality of

video streams. In this Chapter, we present the Cloud-based Video Streaming Service

(CVSS) architecture to transcode video streams in an on-demand manner. The

architecture provides a platform for streaming service providers to utilize cloud resources

in a cost-efficient manner and with respect to the Quality of Service (QoS) demands of

video streams. In particular, the architecture includes a QoS-aware scheduling method to

efficiently map video streams to cloud resources, and a cost-aware dynamic (i.e., elastic)

resource provisioning policy that adapts the resource acquisition with respect to the video

streaming QoS demands. Simulation results based on realistic cloud traces and with

various workload conditions, demonstrate that the CVSS architecture can satisfy video

streaming QoS demands and reduces the incurred cost of stream providers up to 70%.

4.1.Introduction

Video stream clients have unique QoS demands. In particular, they need to receive video

streams without any delay. Such delay may occur either during streaming, due to an

incomplete transcoding task by its presentation time, or it may occur at the beginning of

a video stream. In this paper, we refer to the former delay as missing presentation

deadline and the latter as the startup delay for a video stream. Previous studies (e.g., [7])

confirm that streaming clients mostly do not watch videos to the end. However, they rank

the quality of a stream provider based on the video’s startup delay. Therefore, to

maximize clients’ satisfaction, we consider video streaming QoS demand as: minimizing



the startup delay without missing the presentation deadline.

Streaming service provider’s goal is to spend the minimum for cloud resources,

while meets the QoS requirements of video streams. Satisfying this goal becomes further

complicated when we consider the variations exist in the demand rate of video streams.

Thus, to minimize the cost of utilizing cloud resources, our system should adapt its service

rate (i.e., transcoding rate) based on the clients’ demand rate and with respect to the

video streams QoS requirements.

To answer these research challenges, in this paper, we propose the Cloud-based

Video Streaming Service (CVSS) architecture. It enables a stream provider to utilize

cloud resources with the minimum incurred cost and maximum client satisfaction. More

specifically, the proposed architecture provides a system that maps transcoding tasks to

cloud resources with the goal of minimizing the number of transcoding tasks that miss

their individual deadlines and minimizing the startup delay of video streams while

incurring minimum cost for using cloud resources.

We extended the existing solutions on advance reservations and contributed to the

research field by:

• Developing a QoS-aware scheduling method of CVSS architecture to map

transcoding tasks on cloud resources with minimum deadline miss rate and

minimum start up delay.

• Proposing a dynamic resource provisioning policy of CVSS architecture that

minimizes the incurred cost to the streaming service providers without any major

impact on the video streams’ QoS.
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• Analyzing the behavior of the scheduling methods and dynamic resource

provisioning policy from different perspectives and under various workloads.

• Discussing the trade-off involved in configuring the dynamic resource provisioning

policy.

4.2.QoS-Aware Transcoding Scheduling Method

Transcoding scheduler architecture is shown in Figure 4.1. For scheduling, GOPs of the

requested video streams are batched in a queue upon arrival. To minimize the startup

delay of video streams, we consider another queue termed startup queue. The first few

GOPs of each new video stream are placed in the startup queue that has a higher priority

in compare to the batch queue. To avoid any execution delay, each VM is allocated a local

queue where required data for GOPs are preloaded, before the GOP transcoding execution

started.

Figure 4.1. QoS-aware Scheduling Architecture

For each GOP j from video stream i, denoted Gij , the arrival time and the

deadline (denoted δij) are available. It is worth noting that the GOP deadline is relative

to the beginning of the video stream. Therefore, to obtain the absolute deadline for Gij
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(denoted ∆ij) the relative deadline must be added to the presentation start time of the

video stream (denoted ψi). That is, ∆ij = δij + ψi.

In on-demand video streaming, a video usually has been streamed multiple times

by different clients. Therefore, an estimation of the transcoding execution time for each

Gij (briefly called transcoding time and denoted τij), can be obtained from the historic

execution information of Gij . We note that, although we transcode the same GOP of a

given video on a cluster of homogeneous VMs, there is some randomness (i.e.,

uncertainty) in the transcoding execution time. That is, the homogeneous VMs do not

necessarily provide identical performance [71]. This is attributed to the fact that the VMs

can be potentially allocated on different (i.e., heterogeneous) physical machines on the

cloud. The performance variation of a VM can also be attributed to other neighboring

VMs that coexist with the VM on the same physical host in the cloud datacenter. For

instance, if the neighboring VMs have a lot of memory access, then, there will be a

contention to access the memory and the performance of the VM will be different with

situation that there is not such neighboring VM.

To capture the randomness in the estimated execution time of GOPs, we consider

τij as the worst-case analysis of transcoding time estimation. That is, in the scheduling, we

consider τij as the sum of mean historic execution times of Gij plus its standard deviation.

Once a free spot appears in a VM local queue, the scheduler is executed to map a

GOP to the free spot. The scheduler maps GOPs to the VM that provides the shortest

completion time.

In general, to estimate the completion time of an arriving GOP Gx on VMj , we

add up the estimated remaining execution time of the currently executing GOP in VMj
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with the estimated execution time of all tasks ahead of Gx in the local queue of VMj .

Finally, we add the estimated execution time of Gx (i.e., τx). Let tr the remaining

estimated execution time of the currently executing task on VMj , and let tc is the current

time. Then, we can estimate the task completion time for Gx (denoted ϕx) as follows:

ϕx = tc + tr +
n∑

p=1

τp + τx (4.1)

where τp denotes the estimated execution time of any task waiting ahead of Gx in

local queue of VMj and n is the number of waiting tasks in local queue of VMj .

In the proposed scheduling method, we assign a higher priority to the GOP tasks

in the startup queue. However, the priority should not cause missing the deadlines of

tasks waiting in the batch queue. Let Gb, the first GOP in the batch queue and Gs, the

first GOP in the startup queue. At each scheduling event, Gs can be scheduled before Gb

only if it does not cause Gb to miss its deadline. For that purpose, we calculate the

minimum completion time of Gs across all VMs. Then, we can calculate the minimum

completion time of Gb, assuming that Gs has already been mapped to a VM, and finally

check if Gb will miss its deadline or not. If not, then Gs can be scheduled before Gb.

The performance of the proposed scheduling method also depends on the queuing

policy of the batch queue. We can utilize any conventional queuing policy (e.g., FCFS or

SJF) to determine the ordering of tasks in the batch queue. However, to have a

comprehensive study on the performance of the QoS-aware scheduling method, in the

experimental results section (Section 4.4) we have investigated the impact of several

queuing policies.
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4.3.Dynamic Resource Provisioning Policy

EM in the CVSS architecture is in charge of adapting cloud resource acquisition based on

the clients demand rate. For that purpose, EM includes resource provisioning policies that

dynamically allocates or deallocates VMs from the cloud provider. Then, the policies

notify the transcoding scheduler to consider the changes in its task mapping decisions.

The goal of the provisioning policies is to minimize the incurred cost to the stream

provider while respecting the video streaming QoS demands. More specifically, the stream

provider can determine an upper bound threshold (denoted β) for the percentage of

transcoding tasks that can miss their deadlines (termed deadline miss rate and denoted γt

in a given time t). Similarly, there is a lower bound threshold (denoted α) that enables

the provisioning policies to reduce the incurred cost of stream providers through

terminating VM(s). Therefore, any provisioning policy has to manage VM allocation so

that the deadline miss rate remains between α and β. That is, at any given time t we

should have α ≤ γt ≤ β.

Resource provisioning policies of the EM follow the scale up early and scale down

slowly principle. That is, VM(s) are allocated from cloud as soon as a provisioning

decision is made. However, as the stream provider has already paid for the current

charging cycle of the allocated VMs, the deallocation decisions are not practiced until the

end of the current charging cycle.

In the next subsections, we introduce two resource provisioning policies for EM

that work together to satisfy the goals of cost and QoS violation minimization.
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4.3.1.Periodic Resource Provisioning Policy

This resource provisioning policy occurs periodically (we term it provisioning event) to

make allocation or deallocation decisions. At each provisioning event, the policy predicts

the deadline miss rate that will occur at the next provisioning event (i.e., γt+1) based on

the current states of the local queues and the batch queue.

Algorithm 1 provides a pseudo-code for the periodic provisioning policy. The

policy makes allocation decisions based on the current deadline miss rate (γt in step 1 of

the Algorithm 1) and the predicted (i.e., estimated) deadline miss rate in the next

provisioning event (γt+1 in steps 2 to 6). To predict γt+1, the policy assumes that there is

no limit on the VMs’ local queue sizes. Then, it obtains the expected completion time for

each task waiting in the batch or startup queue based on Equation 4.1 and the scheduling

method (see Section 4.2). Once the tasks completion times are calculated, the provisioning

policy can determine the deadline miss rate at the next provisioning event (γt+1).

Decision making on allocating new VMs does not only depend on the predicted

deadline miss rate in the next provisioning event (γt+1), but it also depends on the

variation of deadline miss rate until the next event. That is, if the predicted deadline miss

rate is beyond the upper bound threshold (γt+1 > β) but it is less that the current

deadline miss rate (i.e., γt+1 − γt < 0), then it means that the current allocation is

effective and the deadline miss rate is reducing (see step 8). Similar phenomenon can

happen for deallocating VMs. Having a predicted deadline miss rate less than α is not

sufficient to deallocate VMs. In fact, if γt+1 < α but the deadline miss rate is predicted to

increase (i.e., γt+1 − γt > 0), then we should not deallocate any VM (see step 10).

The number of VM allocations by the policy depends on how far γt+1 is from β.
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Algorithm 1 Periodic Resource Provisioning Policy

Input:

α: lower threshold

β: upper threshold

λt: provisioning event

k: an coefficient based on the arrival rate

Output:

n: number of VMs to be allocated.

1: Calculate current deadline miss rate (γt)

2: while Expected task completion time ≤ λt+1 do

3: Hypothetically map a task from startup or batch queue

4: Update the task completion time

5: end while

6: Estimate next provisioning event deadline miss rate (γt+1)

7: Calculate deadline miss rate variation (ν = γt+1 − γt)
8: if ν ≥ 0 and γt+1 ≥ β then

9: Allocate n VMs, where n = bk · γt+1

β
c

10: else if ν ≤ 0 and γt+1 ≤ α then

11: Deallocate the VM with the minimum remaining time

12: else

13: No allocation or deallocation action

14: end if

That is, the further the predicted deadline miss rate is from β, more VMs have to be

allocated (step 9). Arrival rate of transcoding tasks also impacts the deadline miss rate in

the system. Therefore, the periodic resource provisioning policy considers the arrival rate

(k in step 9) when decides about allocating new VMs. In the case that the predicted

deadline miss rate is between the allowed thresholds (α ≤ γt ≤ β), the policy does not to

take any action in terms of allocating or deallocating VMs (step 13).
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4.3.2.Remedial Resource Provisioning Policy

The periodic dynamic provision policy introduced in the previous section predicts deadline

miss rates accurately. However, in our initial experiments we noticed that obtaining

estimated completion time for all tasks is a time consuming process and imposes a

significant overhead at each provisioning event. Hence, it is not efficient to perform

provisioning events frequently. In addition, the uncertainty exists in the execution time of

each transcoding task is compounded as the length of the VM local queues increases.

Thus, the accuracy of predictions on task completion times and deadline miss rates

decreases. The last but not the least is the fact that we have no assumption or knowledge

about the demand rate that will arrive to the system.

To cope with the inherent problems of the periodic provisioning policy, we propose

a lightweight remedial resource provisioning policy that can improve the efficiency of the

EM. By injecting this policy to the intervals of the periodic provisioning policy, we can

perform the periodic policy less frequently. The remedial provisioning policy provides a

quick prediction of the system based on the state of the startup queue.

Recall that the tasks in the startup queue have a higher precedence over those in

the batch queue. However, such tasks cannot be executed if they cause a deadline miss for

the tasks in the batch queue. This implies that when there is a congestion in the startup

queue, the tasks deadlines in the batch queue are urgent (i.e., have fast approaching

deadlines). Therefore, there is a correlation between the number of tasks waiting in the

startup queue and the deadline miss rate in the near future. To avoid such deadline miss

rate, our lightweight remedial policy checks the size of the startup queue (denoted Ns).

Then, it uses Equation 4.2 to decide for the number of VMs that should be allocated.
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n = b(Ns − 1)

θ · β
c (4.2)

where n is the number of VM(s) that should be allocated, Ns − 1 is the number of

waiting tasks excluding the new arrived one. θ is a constant factor that determines the

aggressiveness of the VM allocation in the remedial policy. That is, lower values of θ leads

to allocating more VMs and vice versa. In the implementation, we considered θ = 10.

Experiment results indicate that the remedial provisioning policy does not incur

any extra cost to the stream service provider. Nonetheless, it increases the efficacy of the

dynamic provisioning policy by reducing the deadline miss rate and startup delay (see

Section 4.4.4).

4.4.Performance Evaluation

We used CloudSim [11], a discrete event simulator, to model our system and evaluate the

performance of scheduling methods and resource provisioning policies. To create a

diversity of video streaming requests, we uniformly selected videos from the range of [10 ,

600] seconds from a set of benchmark videos. We made the benchmarking videos publicly

available for reproducibility purposes a. We modeled our system based on the

characteristics of VMs in Amazon EC2 b. Accordingly, transcoding execution times of the

benchmark videos were obtained by transcoding them on T2.Micro instances of Amazon

EC2 that are available for free. In calculating the cost of cloud resources, we excluded the

storage costs. This is because we focus on the cost of VMs allocated for transcoding

operations. Moreover, all methods provide the same storage cost.

aThe videos can be downloaded from: https://goo.gl/TE5iJ5
bhttp://aws.amazon.com/ec2
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To capture the randomness in the execution time of transcoding tasks on cloud

VMs, we transcoded GOPs of each benchmark video for 30 times and modeled the

transcoding execution times of GOPs based on the Normal distribution.

To study the performance of the system comprehensively, we evaluated the system

under various workload intensities. For that purpose, we varied the arrival rate of the

video streaming requests from 100 to 1000 within the same period of time. The

inter-arrival times of the requested videos are generated based on the Normal distribution.

All experiments of this section were run for 10 times and the average and 95% of the

confidence interval of the results are reported for each experiment.

4.4.1.Impact of the QoS-aware Scheduling Method

Figure 4.2 demonstrates how the average startup delay of video streams varies when our

proposed QoS-aware scheduling method is applied in compare with the situation that the

scheduling method is not QoS-aware. To show the impact of different workload intensities,

we perform the experiment with various number of video stream requests arriving during

the same time interval (horizontal axis in Figure 4.2). To focus merely on the impact of

the scheduling method, in this experiment, we consider static resource provisioning policy

with 10 VMs. Also, Shortest Job First (SJF) is used for the queuing policy in the batch

queue.

We observe in Figure 4.2a that using the QoS-aware scheduling, we can keep the

average startup delay less than 1 second. The startup delay remains almost the same as

the number of video streams increases. More importantly, the reduced startup delay is

obtained without a major impact on the video streams’ deadline miss rate. In fact,

Figure 4.2b shows that the average deadline miss rate is almost always less than 10%. This
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experiment demonstrates that it is possible to transcode videos in an on-demand manner.

Figure 4.2c shows that both with and without QoS-aware scheduling, the incurred cost is

almost the same. The reason is that in both methods all tasks have to be completed.

Thus, the total time cloud VMs are utilized is the same. This means that we can improve

the users’ QoS satisfaction, without incurring extra cost to the stream provider.

Figure 4.2. Comparing the impact of using QoS-aware scheduling method with non-QoS-

aware scheduling. The video QoS violation and the cost of using cloud are plotted when

the number of video requests varies. (a) shows the average startup delay. (b) shows the

deadline miss rate. (c) shows the cost of using cloud resources in both cases.

(a) Startup delay of various

videos

(b) Deadline miss rate of various

videos

(c) Incurred cost of various

videos

4.4.2.Impact of the Queuing Policy

The queuing policy applied on the batch queue, impacts the startup delay, deadline miss

rate, and the incurred cost. To obtain the best queuing policy that can work with the

QoS-aware scheduling method, we evaluated three different policies, namely first come

first serve (FCFS), shortest job first (SJF) and shortest deadline first (SDF).

To differentiate the impact of these queuing policies on the static and dynamic

resource provisioning policies, we run the queuing policies on both scenarios separately

and compare their QoS violations and their costs. We utilize 10 VMs in running the

experiments with the static provisioning policy. The result of this experiment is shown in

49



Figure 4.3.

Static Resource Provisioning

Figures 4.3a, 4.3b, and 4.3c show the performance of the queuing policies when combined

with the static resource provisioning policy. We observe that as the number of video

requests increases, the startup delay and deadline miss rate grow significantly in SDF and

FCFS, while remains low and stable with SJF. This is mainly because when there are

massive number of videos being transcoded, the batch queue is congested and GOPs miss

their deadlines. The growth of the deadline miss rate prevents our QoS-based scheduling

method to be effective, thus, the startup delay increases too. However, SJF priorities

GOPs with shorter execution times that significantly reduces congestion. Hence, SJF

produces a better startup delay and lower deadline miss rate when combined with the

static provisioning policy.

Figure 4.3c shows that all three queuing policies cost almost the same. In fact, the

total transcoding time of all the videos are the same and stream provider has to pay

almost the same amount for any static method with a fixed number of VMs.

Dynamic Resource Provisioning

As shown in Figures 4.3d and 4.3e, SDF produces the lowest deadline miss rate in the

dynamic provisioning policy. This is because SDF maps the most urgent GOP tasks first.

Therefore, the rest of GOPs will have enough slack time and allow the GOP tasks in the

startup queue to execute without missing their own deadlines. The reason that SJF has

low startup delay but higher deadline miss rate is that it priorities GOPs the GOPs with

short transcoding time from middle or rear part of the video stream. This creates an

opportunity for the GOPs in the startup queue, while incurs a large deadline miss rate for
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long GOPs with short deadlines. In the FCFS policy, GOPs in the batch queue have to

wait until all GOPs arrived earlier be transcoded, this leads to a high deadline miss rate.

Figure 4.3. Comparing the impact of different queuing policies on the QoS-aware scheduling

method when combined with both dynamic and static provisioning policies. (a)(d) Show

the average startup delay of different queuing policies with static and dynamic provisioning,

respectively. (b)(e) Show the average deadline miss rate of resulted from different queuing

policies with static and dynamic provisioning. (c)(f) Incurred cost of different queuing

policies in static and dynamic provisioning.

(a) Startup delay of static provi-

sioning

(b) Deadline miss rate of static

provisioning

(c) Incurred cost of static provi-

sioning

(d) Startup delay of dynamic

provisioning

(e) Deadline miss rate of dynamic

provisioning

(f) Incurred cost of dynamic pro-

visioning

As demonstrated in Figure 4.3f, SDF incurs the lowest cost, especially when the

video requests arrival is low and the system is not congested. As the number video

requests increases and the system becomes congested, the cost of all three queuing policies

increases and becomes similar.

From Figure 4.3, we can conclude that with the static resource provisioning policy,

SJF provides the lowest startup delay and deadline miss rate while the incurred cost is
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similar to other two policies. However, in the dynamic resources provisioning, SDF

provides better startup delay, deadline miss rate, and also a lower cost compared with the

other two queuing policies.

4.4.3.Dynamic versus Static Resource Provisioning Policy

To further investigate the behavior of the dynamic resource provisioning policy, we

compare the QoS violation and the incurred cost of both static and dynamic policies. As

SJF and SDF perform the best in static and dynamic provisioning policies, we just

compare the results from these two policies. For static policy, we only present the results

for fixed number of VMs —from 5 to 10. The startup delay and deadline miss rate are

very high when few VMs are allocated and there is no point to discuss them.

Figure 4.4. Comparing the performance of the static and dynamic provisioning policies.

(a) Presents the average startup delay in the dynamic and static policies. (b) Presents the

average deadline miss rate in the dynamic and static provisioning policies. (c) Incurred cost

to the streaming provider using dynamic and static provisioning policies.

(a) Comparison of average

startup delay

(b) Comparison of average dead-

line miss rate (c) Comparison of incurred cost

In Figure 4.4a, as the number of video requests increases, the average startup

delay in all static policies grows while in the dynamic policy it produces a low and stable

startup delay. When the workload is not intensive (i.e., system is lightly loaded), the

dynamic policy has a little bit higher startup delay (' 1 second) than the static policy. In
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fact, to reduce the incurred cost, the dynamic policy usually allocated fewer VMs in

compare with the static one. Therefore, new GOP tasks have to wait in the queue to be

transcoded. However, the static policy with a large number of VMs can process GOPs in

the startup queue quickly that reduces the startup delay.

Figure 4.4b illustrates that the dynamic resource provisioning policy leads to low

and stable deadline miss rate in compare with the static one. In the static policy with few

VMs, as the number of video requests increases, the deadline miss rate grows dramatically.

As the dynamic provisioning policy functions based on the deadline miss rate to resize the

VM cluster, it keeps the average deadline miss rate low, even when the system is

congested.

With low and stable startup delay and deadline miss rate, Figure 4.4c shows that

the dynamic provisioning policy reduces up to 70% cost when the system is not congested.

In fact, when the video demand rate is low, VMs are under-utilized in the static policy,

however, the stream provider still has to pay for them. In the dynamic provisioning policy,

however, the system deallocates idle VMs when the deadline miss rate is below the lower

bound threshold (α), that reduces the incurred cost significantly. As the video demands

rate becomes intensive, more VMs are created, therefore, the cost incurred by the dynamic

policy approaches the static one.

4.4.4.The Impact of Remedial Resource Provisioning Policy

To evaluate the efficacy of the remedial provisioning policy, we conduct an experiment on

the dynamic resource provisioning policy in two scenarios: when the dynamic provisioning

uses the remedial approach against the case that only the periodic provisioning policy is in

place. As illustrated in Figure 4.5, when the system is not congested, the difference
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between the two scenarios is negligible. This is because when few videos arrive during the

next provisioning event, it does not significantly impact the accuracy of deadline miss rate

estimation. In this case, the VMs allocated by periodic resource provisioning policy are

capable to keep streaming QoS violation low and stable.

Alternatively, when the video demand rate is high, the inaccuracy in the estimated

deadline miss rate becomes remarkable. Under this circumstance, as depicted in

Figure 4.5, relying only on the periodic provisioning policy leads to a high QoS violation

rate. Nonetheless, when the remedial resource provisioning policy is utilized and the

system is congested, we notice a remarkable difference in the QoS violation rate. It is

shown in the last subfigure of Figure 4.5 that injecting remedial resource provisioning

policy comes without incurring any extra cost to the stream provider.

Figure 4.5. Impact of remedial resource provisioning policy on the performance and cost.

In the second sub-figure, DMR stands for the Deadline Miss Rate.

4.4.5.Pareto Analysis for the Cost and QoS Trade-off

The challenge in dynamic provisioning policy is how to handle the trade-off between the

the cost and the QoS violation, with different values of the upper bound threshold (i.e.,

β). In this experiment, we utilize the idea of Pareto front analysis [72] to understand the
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relation between these factors and find the optimal range for β.

Figure 4.6 shows the Pareto optimal front based on different values of β that the

CVSS users (i.e., stream provider) can choose. As we can see, the lower β value produces

lower startup delay and deadline miss rate, but also incurs higher cost. In the contrary,

higher β value reduces the expense at the cost of higher QoS violation. However, at some

points, we can find some β values (e.g., 0.15 to 0.3) that produce good video streams QoS

with reasonably low cost. We noticed that the relationship between the cost and QoS

violation in our system is not linear. That is, there are some optimal solutions, where a

stream provider can spend a relatively low cost but gain a fairly low QoS violation too.

Figure 4.6. Illustration of the Pareto front for determining the upper bound threshold (β)

in the dynamic provisioning policy. When β = 0.05, it produces the lowest startup delay

and deadline miss rate at the highest cost. In contrast, when β = 0.5, it produces the

highest startup delay and deadline miss rate at the lowest cost. There are values of β (e.g.,

between 0.15 to 0.3) that provide low QoS violations with less incurred costs.

4.5.Conclusion

In this chapter, we proposed the CVSS architecture for on-demand transcoding of video

streams using cloud resources. The architecture includes a scheduling method that is

aware of QoS demands of video streams. It also includes a cost-aware dynamic
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provisioning policy to allocate cloud resources. The goal of this work is to decrease the

deadline miss rate and startup delay of video streams and minimize the incurred cost of

cloud resources. Experiment results show that our proposed scheduling method provides

low QoS violation rate, specifically when combined with SDF queuing policy. In addition,

the dynamic resource provisioning policy helps streaming providers to significantly reduce

the cost of using cloud services. In particular, when the video demand rate is not high, it

reduces the costs up to 70% in compare with the static policies. To further save the cost,

we investigated the video transcoding performance on different VM types, which will be

discussed in the next two chapters.
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CHAPTER 5: Performance Analysis and Modeling of Video Transcoding

Using Cloud Services

Although utilizing cloud services for video transcoding seems to be a promising

approach, it introduces new challenges that needs to be addressed for efficient video

streaming. One prominent challenge is to strike a trade-off between satisfying viewers’

QoS demands and cost-efficiency in utilizing cloud services. The challenge becomes further

complicated when we consider heterogeneous computational services (i.e., Virtual

Machines types) offered by the cloud providers in variety of prices. Efficient utilization of

cloud services for video transcoding requires detailed performance analysis of different

video transcoding tasks on heterogeneous cloud VMs. In particular, such analysis is

crucial for efficient functionality of any VM allocation and scheduling policy tailored for

video transcoding. There is no prior investigation on the performance of the transcoing

operations on heterogeneous cloud VMs. Thus, in this paper, we provide a detailed study

and analysis to fill the gap. Based upon the findings of the analysis and by considering the

cost factor, as a second contribution, we provide a model to identify the degree of

suitability of each VM type for various transcoding tasks. The provided model can supply

resource allocation and scheduling methods with accurate performance and cost trade-offs

to utilize cloud services for video streaming.

5.1.Introduction

Cloud service providers currently offer various types of VMs (i.e., heterogeneous VMs).

For instance, Amazon EC2 offers X Y and Z VM types. In such a Heterogeneous

Computing (HC) environment, different transcoding tasks can potentially have various

transcoding time (i.e., execution time) on heterogeneous VMs. For instance, codec



transcoding generally demands a lot of processing power whereas XXX transcoding needs

larger memory for fast processing. The task-machine affinity that potentially exists

between different transcoding tasks and heterogeneous VMs, makes decision making in

problems such as scheduling and resource (VM) allocation even more complicated in

compare to circumstances where there are only homogeneous VMs. Such decision making

should rely on detailed performance information of transcoding tasks and their affinities

with heterogeneous VMs.

Expected time to compute (ETC) [9, 65] and estimated computation speed

(ECS) [10, 66] matrix are commonly used to explain the affinity of tasks on heterogeneous

machines. These matrices can be utilized for better task scheduling and VM allocation.

However, definition of both ETC and ECS considers only execution time as the

performance metric and ignores the cost difference among different VM types.

The challenge in utilizing cloud services lies in constructing a heterogeneous VM

cluster that maintains a robust QoS while minimizing the incurred cost of the SSPs. To

achieve this, a better understanding of the performance and cost affinities among different

transcoding operations, VM instances and video contents is necessary.

In this chapter, we compare and analyze the performance and cost of different

transcoding operations on various VM instances. The impact of video contents on

transcoding time has also been discussed to find the affinity of video segment size and

transcoding time difference among different VMs. With collected affinity data

information, SSPs can better balance the performance and cost with more efficient

mapping heuristics and resource provisioning policies.

In summary, the key contributions of this chapter are:
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• Analyzing the performance difference and pattern among different transcoding

operations.

• Evaluating the relative transcoding performance among different VMs.

• Comparing the impact of different video contents on transcoding time.

• Investigating factors that influence the performance of VMs for a given task.

• Providing a suitability matrix (SM) based on the performance and cost of each VM

for a give transcoding task.

5.2.Performance Analysis

To create diverse characteristics of heterogeneous VM types offered by cloud service

providers, we selected one VM instance that represents the characteristics within each

category. More specifically, for General-Purpose, CPU-Optimized, Memory-Optimized,

and GPU instance types we chose m4.large, c4.xlarge, r3.xlarge, and g2.2xlarge,

respectively. We did not consider any of the Storage Optimized and Dense Storage VM

types in our evaluations as we observed that IO and storage are not influential factors for

transcoding tasks. Some characteristics and the cost of chosen instance types are

illustrated in Table 5.1. More details can be found at Amazon EC2 websitea.

We uniformly selected videos over the range of [10, 600] seconds from a set of

benchmark videos to create a diverse repository of video contents. The benchmarking

videos are publicly available for reproducibility purposesb.

ahttps://aws.amazon.com/ec2/instance-types/
bThe videos can be downloaded from: https://goo.gl/TE5iJ5
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Table 5.1. Cost of different VM types in Amazon EC2

VM Type
General

(m4.large)
CPU Opt.

(c4.xlarge)
Mem. Opt.

(r3.xlarge)
GPU

(g2.xlarge)

vCPU 2 4 4 8

Memory (GiB) 8 7.5 30.5 15

Networking Moderate High Moderate High

Hourly Cost ($) 0.15 0.20 0.33 0.65

FFmpegc open source tool has been used for transcoding purposes. For each one of

the benchmarking videos, four different transcoding operations, namely codec conversion,

resolution reduction, bit rate adjustment, and frame rate reduction, are performed on

different VMs. The transcoding time of each VM for a given GOP is obtained for

comparison and analysis in this paper.

To capture the randomness in the transcoding time of GOPs on cloud VMs, we

transcoded each GOP 30 times and modeled the transcoding execution times of GOPs

based on the normal distributiond.

5.2.1.Analysis of Different Video Transcoding Operations

As we discussed in Section 2.2.2, there are several types of video transcoding operation for

different purposes. Although the transcoding detail of each operation is different, all of

them have to go through video decoding and re-encoding processes. This led us to

compare the transcoding time of different transcoding operations for a given GOP, and

further analyze the possible affinity among them. In this experiment, we performed four

different types of transcoding operation for a given video.

chttps://ffmpeg.org
dThe generated workload traces are available publicly from: https://goo.gl/B6T5aj
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Figure 5.1b shows that the transcoding time taken for different transcoding

operations on c4.xlarge. As we expected, the execution time of different transcoding

operations for a given video are not the same. However, it is noteworthy that the time

taken by different transcoding operations follows a pattern. That is, converting video

codec and adjusting frame rate always takes more time than changing bit rate and spatial

resolution. This is because converting from one codec to another means the whole original

encoded video has to be decoded with the former codec and then re-encoded with new

one. This makes the process complex and time-consuming. For frame rate adjustment,

due to the inter dependencies among frames, removing frames may cause other frames to

lose reference. This will increase the amount of time taken due to searching for a new

reference. This causes more computation time to rebuild the dependency between frames.

The reason reducing resolution takes the least time is because the process can be achieved

by just utilizing filters to resample each macroblock. The more complex

encoding/decoding and inter dependency remain the same. Therefore, it takes much less

time than other transcoding operations.

To further investigate if this pattern applies to other VM types, we captured the

transcoding time taken by different transcoding operations on different VMs for a given

video. Figures 5.3(a)(b)(c)(d) demonstrate that although the transcoding time of each

transcoding operation varies on different VM instances, overall it shows the same pattern

among m4.large, c4.xlarge, r3.xlarge and g2.2xlarge. Further investigation

regarding video transcoding performance on different VM types is dicussed in next section.
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Figure 5.1. Performance comparison of different transcoding operations under different

VMs. (a) shows that the time taken by different transcoding operations on c4.large is

different whereas follows a pattern . (a)(b)(c)(d) demonstrates that this transcoding time

variation remains the same pattern among different VM instances.

(a) Time taken by different transcoding

operations on m4.large

(b) Time taken by different transcoding

operations on c4.xlarge

(c) Time taken by different transcoding

operations on r3.xlarge

(d) Time taken by different transcoding

operations on g2.2xlarge

5.2.2.Analysis of Different VM Instance Types

As we mentioned above, cloud providers offer very diverse (both performance and cost)

VM instances. To better balance the trade-off between performance and cost, in this

experiment, we compare and analyze video transcoding on different VM types.

Since the performance of video transcoding operations follows a pattern among

different VM instances, to further study the performance of different type of VMs for

video transcoding, we perform codec transcoding on different VMs, namely m4.large,
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c4.xlarge, r3.xlarge, and g2.2xlarge.

Figure 5.2. Performance comparison of different VM types for video codec transcoding.

Figure 5.2 shows that g2.2xlarge generally outperforms other instances due to its

large parallel processing power. m4.large performance was the worst as it has fewer

processing units compared to others. However, it is noticeable that the performance of

these four instances vary significantly. In some cases the GPU obviously outperforms

other VMs, while in other cases the difference is negligible.

To find out the reason and possible correlations, we categorize and compare the

performance of these four instances in Figure 5.3. Since g2.2xlarge takes the least time

to perform a given transcoding operation, we compare the performance of other instances

with g2.2xlarge.

The performance of other VMs with respect to g2.2xlarge is as follows:

1. Performance of m4.large lies within the range 2.781± 1.524

2. Performance of c4.xlarge lies within the range 1.263± 0.508

3. Performance of r3.xlarge lies within the range 1.608± 0.652
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Figure 5.3. Performance analysis of other instances with g2.2xlarge on transcoding op-

erations in ters of ratio of time taken by the instance and the time taken by g2.2xlarge.

(a) shows the performance of m4.large w.r.t. g2.2xlarge. (b) shows the performance of

c4.xlarge w.r.t. g2.2xlarge. (c) shows the performance of r3.xlarge w.r.t. g2.2xlarge.

(a)(b)(c)(d) demonstrate that the distribution of performance for all transcoding types fol-

lows the same pattern among different VM instances.

(a) Performance compari-

son between m4.large and

g2.2xlarge.

(b) Performance compari-

son between c4.xlarge and

g2.2xlarge.

(c) Performance compari-

son between r3.xlarge and

g2.2xlarge.

To investigate this further, we generated data from all the GOPs in the repository

to check the percentage of GOPs transcoded on VMs other than g2.2xlarge with better

performance < 1.0 in Table 5.2 and (≤ 1.2) Table 5.3. We found the following results:

Table 5.2. Percentage of GOPs with performance < 1.0

Transcoding Type Codec Frame Rate Bit Rate Resolution

m4.large 0% 2.4% 2.7% 2.4%

c4.xlarge 2.2 % 24.8% 28.0% 3.9%

r3.xlarge 0.6% 2.8% 4.2% 2.5%

We observed that irrespective of the transcoding type, when other VMs perform

better than g2.2xlarge, the delta i.e., the difference between the trancoding time of the

VM and g2.2xlarge is very low (≤ 0.242s). Also, in such cases, the transcoding time of
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Table 5.3. Percentage of GOPs with performance (≤ 1.2)

Transcoding Type Codec Frame Rate Bit Rate Resolution

m4.large 0% 2.72% 2.87% 2.72%

c4.xlarge 12.28% 33.33% 63.93% 22.28%

r3.xlarge 1.36% 23.78% 23.63% 3.49%

Table 5.4. Percentage of GOPs with performance < 1.2 and maximum gpu time 2.1 s

Transcoding Type Codec Frame Rate Bit Rate Resolution

m4.large 14.70% 10.46% 4.70% 2.73%

c4.xlarge 26.82% 41.07% 65.31% 22.58%

r3.xlarge 16.07% 31.52% 25.60% 3.49%

g2.2xlarge is less(≤ 2.1s). However, even in such cases, when maximum time taken by the

gpu instance to transcode a GOP is 2.1 seconds, the percentage of GOPs performing

better (≤ 1.2) for any transcoding type on other instance types is not significant as shown

in Table 5.4. Thus, the following conclusions were made by this analysis:

1. If g2.2xlarge takes less time to transcode a GOP, other VMs may outperform it.

2. None of the transcoding types are memory intensive.

3. All of the VM instances have sufficient memory.

4. All of the transcoding types are compute intensive.

5. To increase performance, more computing power is required.
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5.2.3.Analysis of Different Video Contents

Based on the frequency of scene changes, video contents generally can be categorized into

three types: slow motion, fast motion, and mixed motion. The scene of slow motion video

changes slowly or the background remains still, while the scene of fast motion video

changes dramatically. A mixed motion video is a combination of both fast and slow

motion scenes. In this experiment, we transcoded codec of each video content category on

different VM types.

Figure 5.4a shows that, for slow motion video, the transcoding time taken by VM

instances mainly depends on their processing power. The performance difference among

the chosen VM types are obvious. g2.2xlarge and m4.large have the best and worst

performance among the chosen instances, respectively.

Figure 5.4. Performance analysis of different video contents. (a)(b)(c) demonstrates that

the performance of each VM type transcoding slow motion, fast motion and mixed motion

videos, respectively.

(a) Analysis of slow motion

video.

(b) Analysis of fast motion

video.

(c) Analysis of mixed motion

video.

However, the advantage of g2.2xlarge becomes less obvious for fast motion video,

as shown in Figure 5.4b. Although g2.2xlarge is still slightly better than other VMs in

performance, other instances may be a better choice in considering the cost.

To confirm this finding, we performed transcoding on a mixed motion video where
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the results show that g2.2xlarge sometimes outperforms others VMs significantly while

almost performing the same as others at some point, as shown in Figure 5.4c.

With further investigation, we noticed that due to the high frequency of changing

scenes, the GOP size and the number of frames in a GOP are generally small for a fast

motion video. In contrast, the GOP size and frame numbers are much larger than normal

for a slow motion video. The influence of GOP size and GOP frame number for video

transcoding performance will be discussed in the next section.

5.2.4.Discussion

As we noticed in Section 5.2.2, the performance of different VM types varies significantly

based on the video contents. Since a GOP is the basic transcoding unit in our

experiments, we assume that there can be two possible causes: GOP size and GOP frame

number. In this experiment, we further investigate the influence of GOP size and GOP

frame number for VM transcoding performance.

The transcoding result data is collected from all benchmark videos in our

repository which contains different slow, fast and mixed motion video contents. Due to

the large amount of data, the second degree regression is used to process the result data

and draw a line for each VM’s performance to gain a better visual comparison.

Figure 5.5 and Figure 5.6 show that the transcoding time taken by VMs increases

along with both the GOP size and GOP frame numbers, respectively. Table 5.5

demonstrates the regression confidence value of GOP size and frame number. In

comparison with GOP size, the number of frames in a GOP shows better regression

confidence for influence video transcoding performance.

From Figure 5.5, we also noticed that when the GOP frame number is small, the
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performance of g2.2xlarge is very close to other VM instances. While the number of

GOP frames grows larger, the performance gap between g2.2xlarge and others increase.

Therefore, we assume that each GOP can transcoded in a way to maximize performance

and minimize cost.

Figure 5.5. The 2nd degree regression of the influence of GOP size on video transcoding.

Figure 5.6. The 2nd degree regression of the influence of GOP frame number on video

transcoding.

5.3.GOP Suitability Matrix Model

The VM instances offered by cloud service providers are very diverse in terms of both

performance and cost. Choosing the correct VM for transcoding operations can be

68



Table 5.5. The regression confidence of GOP size vs. GOP frame number

VM Type m4.large c4.xlarge r3.xlarge g2.xlarge

GOP Size 69.68% 68.76% 69.11% 67.56%

Frame Number 77.15% 78.16% 77.31% 78.17%

difficult. As we mentioned in Section 5.2.2, the more powerful g2.2xlarge typically

outperforms others VMs but has similar performance at some point. In Section 5.2.4, we

discussed that this is most likely due to GOP size in comparison with GOP frame

numbers. When the GOP size is small, the difference between powerful VMs (e.g.,

g2.2xlarge) and general VMs (e.g., m4.large) is negligible because transcoding the GOP

is a small process and the VMs are powerful enough to handle the task. However, the

performance difference is significant when the GOP size is large. In considering both the

performance and cost, we can find a more suitable VM for each GOP transcoding task.

Therefore, we propose a GOP suitability maxtrix which provides the suitability

factor of each VM for each GOP. With this matrix, users can manage cloud resource and

allocate more suitable VMs for transcoding tasks in terms of performance and cost.

In this experiment, g2.2xlarge has the most powerful processor among all of the

other VM instances. g2.2xlarge produces the best performance in general while also

having the highest cost. m4.large has the lowest cost, but the performance is the worst

when compared to other VMs. To balance the performance and cost trade-off, we define a

performance gap ∆ as the performance difference between other VMs and g2.2xlarge.

For a given GOP, when ∆ is too large, other VMs perform much worse than g2.2xlarge,

and therefore g2.2xlarge should be assigned higher suitability than others VMs for this
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GOP. The question will be how do we define a ∆th to decide which VM is more suitable

for a given GOP?

In order to obtain the ∆th, while allowing users to decide whether they choose

more performance-preference VMs (e.g., g2.2xlarge) or cost-preference VMs (e.g.,

m4.large), we propose a fuzz logic membership as shown in Figure 5.7. From membership

functions (5.2), (5.1), we can obtain the ∆th based on percent of performance-preference

or cost-preference that a user choose, respectively

Figure 5.7. The fuzz logic membership of performance and cost based on ∆th

∆th =
ln p

1−p

a
+ b (5.1)

∆th =
ln c

1−c

a
− b (5.2)

where p and c are the performance and cost that user defined, respectively. a is

the fuzzy function inflection point and b is the slope at a. In Figure 5.7, a and b are equal

to 5 and 0.7, respectively.

With the ∆th we obtained above, we can further analyze and calculate a weight

value Xi of the VMi for a given GOP based on its performance difference to g2.2xlarge
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∆i and the cost for transcoding the GOP, as shown in function (5.3). In this function, if a

Deltai is smaller than ∆th, its weight value Xi will be positive. Otherwise, the weight

value will be negative. Also, the lower cost the higher weight of this VM will be.

Xi =
∆th −∆i∑N

n=1 ∆n

· (1− ci∑N
n=1 cn

) (5.3)

For better analysis and comparison, we normalized all VM’s weight values Xi

using function (5.4) to make their suitability values Si all between [0, 1].

Si =
Xi −Xmax

Xmax −Xmin
(5.4)

For a given video, each GOP will have different suitability values on different VMs.

With these values, we can build a suitability matrix for each video to demonstrates each

VM’s suitability value Si for a give GOPi in this video. In this experiment, we compare

four group of suitability matrix with different ∆th which obtained by the

performance-preference or cost-preference that user can define, as shown in Table 5.6.

In Table 5.6a, it shows the suitability matrix for a give video when the ∆th equal

to 1. This ∆th is obtained when user prefer performance over cost, choosing p and c equal

to 98.20% and 1.79%, respectively. As we can see, in this case, the suitability value of

g2.2xlarge and c4.xlarge have higher suitability value than others, while the suitability

value of m4.large are most likely 0.

When user’s preference over performance drop down to 50% and cost raise up to

50%, as we can see in Table 5.6b, the suitability value of g2.2xlarge drops down while

m4.large goes up. With the user’s performance-preference keeps decreasing while

cost-preference increasing, the suitability value of the powerful g2.2xlarge will drop to
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almost 0, and the value of low cost m4.large keeps increasing, as shown in Table 5.6c and

5.6d. It noteworthy that c4.xlarge always has high suitability value no matter what ∆th

is, this is because c4.xlarge produces good performance while the cost is relative low.

5.4.Conclusion

With the emergence of cloud-based video transcoding, balancing the trade-off between

performance and costs incurred from renting cloud resources becomes challenging. This

becomes even more complicated in a heterogeneous computing (HC) environment. To

understand the affinities of transcoding tasks and VM types, in this paper, we provide a

detailed study and analysis of different transcoding operations on heterogeneous VMs.

Experiment results show that the time taken by different transcoding operations for a

given GOP follows a pattern. That is, converting the video codec and adjusting frame

rates always takes more time than changing bit rate and spatial resolution. Meanwhile,

the performance of different VM types varies among video contents. Normally GPU VMs

outperforms other VM types significantly, but the difference may be negligible in some

cases. Further investigation finds that the number of frames inside each slow motion GOP

is much larger than a fast motion GOP. The greater number of frames for a given GOP,

the greater performance difference among different VM types and vice versa. Based upon

the findings of the analysis and by considering the cost factor, we also provide a model to

identify the degree of suitability of each VM type for a given transcoding task. The

provided model can supply resource allocation and scheduling methods with accurate

performance and cost trade-offs to utilize cloud services for video streaming.
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Table 5.6. Suitability matrices with different ∆th. From (a) to (d), the subtables show

that as the performance-preference p decrease and cost-preference c increases, ∆th grows

up. Correspondingly, the suitability degree moves from performance type g2.2xlarge to

cost-efficient type m4.large.

VM Type m4.large c4.xlarge r3.xlarge g2.xlarge

GOP1 0.00 1.00 0.78 0.98

GOP2 0.00 1.00 0.68 0.26

GOP3 0.00 1.00 0.67 0.30

GOP4 0.00 1.00 0.61 0.01

GOP5 0.00 1.00 0.71 0.60

GOP6 0.00 1.00 0.80 0.89

GOP7 0.00 0.91 0.74 1.00

GOP8 0.00 0.88 0.72 1.00

GOP9 0.00 0.87 0.72 1.00

GOP10 0.00 0.86 0.71 1.00

...
...

...
...

...

(a) Suitability Matrix, when p = 98.20%, c =

1.79%, and ∆th = 1

VM Type m4.large c4.xlarge r3.xlarge g2.xlarge

GOP1 0.00 1.00 0.63 0.03

GOP2 0.69 1.00 0.78 0.00

GOP3 0.67 1.00 0.78 0.00

GOP4 0.75 1.00 0.78 0.00

GOP5 0.57 1.00 0.74 0.00

GOP6 0.26 1.00 0.71 0.00

GOP7 0.00 1.00 0.72 0.54

GOP8 0.00 1.00 0.75 0.70

GOP9 0.00 1.00 0.77 0.77

GOP10 0.00 1.00 0.77 0.77

...
...

...
...

...

(b) Suitability Matrix, when p = 50.00%, c =

50.00%, and ∆th = 5

VM Type m4.large c4.xlarge r3.xlarge g2.xlarge

GOP1 0.48 1.00 0.73 0.00

GOP2 0.79 1.00 0.80 0.00

GOP3 0.79 1.00 0.80 0.00

GOP4 0.83 1.00 0.80 0.00

GOP5 0.74 1.00 0.78 0.00

GOP6 0.59 1.00 0.77 0.00

GOP7 0.06 1.00 0.65 0.00

GOP8 0.00 1.00 0.68 0.20

GOP9 0.00 1.00 0.71 0.35

GOP10 0.00 1.00 0.70 0.32

...
...

...
...

...

(c) Suitability Matrix, when p = 0.67%, c =

99.33%, and ∆th = 10

VM Type m4.large c4.xlarge r3.xlarge g2.xlarge

GOP1 0.63 1.00 0.76 0.00

GOP2 0.82 1.00 0.81 0.00

GOP3 0.83 1.00 0.81 0.00

GOP4 0.85 1.00 0.81 0.00

GOP5 0.79 1.00 0.80 0.00

GOP6 0.69 1.00 0.79 0.00

GOP7 0.37 1.00 0.72 0.00

GOP8 0.19 1.00 0.69 0.00

GOP9 0.04 1.00 0.66 0.00

GOP10 0.08 1.00 0.67 0.00

...
...

...
...

...

(d) Suitability Matrix, when p = 0.01%, c =

99.99%, and ∆th = 15
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CHAPTER 6: Cost-Efficient and Robust On-Demand Video Transcoding

Using Cloud Services

With the performance analysis, in this chapter, we present a QoS-aware scheduling

component that maps transcoding tasks to the Virtual Machines (VMs) by considering

the affinity of the transcoding tasks with the allocated heterogeneous VMs in the CVSS

architecture. To maintain robustness in the presence of varying streaming requests, the

architecture includes a cost-efficient VM Provisioner component. The component provides

a self-configurable cluster of heterogeneous VMs. The cluster is reconfigured dynamically

to maintain the maximum affinity with the arriving workload. Simulation results obtained

under diverse workload conditions demonstrate that CVSS architecture can maintain a

robust QoS for viewers while reducing the incurred cost of the streaming service provider

by up to 85%.

6.1.Introduction

Considering the fact that cloud providers offer heterogeneous types of Virtual Machines

(VMs). For instance, Amazon EC2 provides General Purpose, CPU-Optimized,

GPU-Optimized, Memory-Optimized, Storage-Optimized, and Dense-Storage VMsa with

costs varying significantly. Moreover, the execution time of different transcoding

operations varies on different VM types. That is, different transcoding operations have

different affinities with different VM types.

The challenge is how to construct a heterogeneous cluster of VMs to minimize the

incurred cost of SSPs while the QoS demands of viewers are respected? More importantly,

the heterogeneous VM cluster should be self-configurable. That is, based on the arriving

ahttps://aws.amazon.com/ec2/instance-types



transcoding tasks, the number and the type of VMs within the cluster should be

dynamically altered to maximize the affinity with VMs and reduce the incurred cost.

Previous works (e.g., [73, 56]) either did not consider on-demand transcoding of

video streams or disregarded the specific QoS demands. Therefore, to answer these

research questions, we propose the Cloud-based Video Streaming Service (CVSS)

architecture that enables on-demand video transcoding using cloud services. The

architecture includes a scheduling component that maps transcoding tasks to cloud VMs

with the goal of satisfying viewers’ QoS demands. It also includes a VM Provisioner

component that minimizes the incurred cost of the SSP through constructing a

self-configurable heterogeneous VM cluster, while maintaining robust QoS for viewers.

In summary, the key contributions of this chapter are as follows:

• Developing a QoS-aware scheduling component within the CVSS architecture to

map the transcoding tasks to a heterogeneous VM cluster with respect to the

viewers’ QoS demands.

• Developing a VM Provisioner component within the CVSS architecture that forms a

self-configurable heterogeneous VM cluster to minimize the incurred cost to the

SSPs while maintaining a robust QoS for viewers.

• Analyzing the behavior of the CVSS architecture from the QoS, robustness, and cost

perspectives under various workload intensities.

6.2.QoS-Aware Transcoding (GOP) Task Scheduler

Details of the GOP task scheduler are shown in Figure 6.1. According to the scheduler,

GOPs of the requested video streams are batched in a queue upon arrival to be mapped to
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VMs by the scheduling method. To avoid any execution delay, the required data for GOPs

are fetched in the local queue of the VMs, before the GOP transcoding started. Previous

studies [8] show that the local queue size should be short. Accordingly, we consider the

local queue size to be 2 in all VMs. We assume that the GOP tasks in the local queue are

scheduled in the first come first serve (FCFS) fashion. Once a free slot appears in a VM

local queue, the scheduling method is notified to map a GOP task from those in the batch

queue to the free slot. We assume that GOP scheduling is non-preemptive and

non-multi-tasking.

Figure 6.1. QoS-aware transcoding scheduler that functions based on the utility value of

the GOPs.

Recall that the scheduler goal is to satisfy the QoS demands of viewers by

minimizing the average deadline miss rate and the average startup delay of the video

streams. The scheduling method maps the GOP tasks to a heterogeneous cluster of VMs

where GOPs have different execution times on different VM types. In such a system,

optimal mapping of GOP tasks to heterogeneous VMs is an NP-complete problem [74].

Thus, development of mapping heuristics to find near-optimal solutions forms a large

body of research [55, 8].
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6.2.1.Utility-based GOP Task Prioritization

One approach to minimize the average startup delay of video streams is to consider a

separate dedicated queue for the startup GOPs of the streams [49]. Such a queue can only

prioritize a constant number of GOPs at the beginning of the streams, with the rest of the

GOPs treated as normal priority. In practice, however, the priority of GOPs should be

decreased gradually as the video stream moves forward.

To implement the gradual prioritization of GOPs in a video stream, we define a

utility function that operates on a video stream and assigns utility values to each GOP.

Equation (6.1) shows the utility function the admission control policy uses for assigning

utility values. In Equation (6.1), c is a constant and i is the order number of GOP in the

video stream. We experimentally realized that c = 0.1 provides the prioritization we need

for the GOP tasks.

U = (
1

e
)c·i (6.1)

The utility values assigned to a given video stream are depicted in Figure 6.2. In

this figure, the horizontal axis is the GOP number and the vertical axis is the utility

value. As we can see, the utility function assigns higher utility values (i.e., higher priority)

to earlier GOPs in the stream. The utility value drops for the latter GOPs in the stream.

It is worthy to mention that the proposed Equation (6.1) serves the purpose of

utility priority for this architecture, however, there are still some rooms for improvement

or better function to represent the utility priority. The exploration can be an extended

future direction work.
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Figure 6.2. Utility values of different GOP tasks to indicate their processing priority within

a video stream.

6.2.2.Estimating Task Completion Time on Heterogeneous VMs

For each GOP j from video stream i, denoted Gij , the arrival time and the deadline

(denoted δij) are available. It is worth noting that the GOP deadline is relative to the

beginning of the video stream. Therefore, to obtain the absolute deadline for Gij (denoted

∆ij) the relative deadline must be added to the presentation start time of the video

stream (denoted ψi). That is, ∆ij = δij + ψi.

Recall that the estimated execution time for Gij on VM type m is available

through the ETC matrix (see Section 3.1.4). To capture randomness in the estimated

execution time of GOPs, let τmij be the worst-case transcoding time estimation. That is, in

the scheduling, we consider τmij as the sum of mean historic execution times of Gij plus its

standard deviation on VMm.

Our scheduling method also needs to estimate the tasks’ completion times to be
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able to efficiently map them to VMs. To estimate the completion time of an arriving GOP

task Gn on VMm, we add up the estimated remaining execution time of the currently

executing GOP in VMm with the estimated execution time of all tasks ahead of Gn in the

local queue of VMm. Finally, we add the estimated execution time of Gn (i.e., τmn ).

Recall that each GOP task has a different execution time on different VM types that can

be obtained from the ETC matrix. Let tr denote the remaining estimated execution time

of the currently executing task on VMm, and let tc be the current time. Then, we can

estimate the task completion time of Gn on VMm (denoted ϕm
n ) as follows:

ϕm
n = tc + tr +

N∑
p=1

τmp + τmn (6.2)

where τmp denotes the worst case estimated execution time of any task waiting

ahead of Gn in local queue of VMm and N is the number of waiting tasks in local queue

of VMm.

6.2.3.Mapping Heuristics

Mapping heuristics that operate on a batch queue generally function in two phases [75]. In

Phase 1, it identifies the machine with minimum expected completion time (i.e., VM) for

each task in the batch queue and generates task-machine pairs. Then, in Phase 2, the

heuristic recognizes the pair that maximizes a performance objective over all task-machine

pairs identified in Phase 1. Based on this mechanism, MinCompletion-MinCompletion

(MM) [76, 77, 78, 79], MinCompletion-SoonestDeadline (MSD) [8, 80], and

MinCompletion-MaxUrgency (MMU) [8, 80] are defined as follows:

MinCompletion-MinCompletion (MM): In the first phase, the heuristic finds the

machine (i.e., VM) that provides the minimum expected completion time for the GOP
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task. In the second phase, the heuristic selects the pair that has the minimum completion

time from all the task-machine pairs generated in the first phase. Then, the heuristics

maps the task to that machine, removes it from batch queue and repeats the process until

all tasks are assigned or there is no free slot left on local machine queues.

MinCompletion-SoonestDeadline (MSD) The heuristic selects the minimum

expected completion time VM for each task in the first phase. In the second phase, MSD

assigns the task that has the soonest deadline from the list of task-machine pairs found in

the first pahse.

MinCompletion-MaxUrgency (MMU): In the first phase of MMU, the heuristic

identifies the shortest expected completion time machine for each task. In the second

phase, MMU selects the assignment whose task urgency is the greatest (i.e., has the

shortest slack) from the task-matching pairs.

Although these mapping heuristics are extensively employed in heterogeneous

computing systems, none of them consider the task precedence based on the utility value.

Utility-Based Mapping Heuristics

Recall that each GOP is assigned a utility value that shows its precedence. Therefore, in

the first phase of our proposed scheduling method, as shown in Figure 6.3, the GOPs with

the highest utility values are selected and put into a virtual queue. The rest of the

scheduling method is applied on the virtual queue rather than the whole batch queue.

Given the large number of GOPs in the batch queue, making use of the virtual queue

reduces the scheduling overhead.

In the second phase, similar to the heuristics introduced in Section 6.2.3, task-VM

pairs are formed based on the VM that provides the minimum expected completion time
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for each GOP in the priority queue. Then, in the third phase, the mapping decision is

made by combining a performance objective (e.g., SoonestDeadline) and the utility values

of the GOP tasks. For combining, we prioritize the GOP with the highest utility value

from the pairings of a VM, if and only if it does not violate the deadline of the task

selected based on the performance objective.

Figure 6.3. Virtual Queue to hold GOPs with the highest utility values from different video

streams. GOPs in Virtual Queue are ready for mapping to VMs.

To clarify further, we explain the third phase using an example. Let GOP tasks

Ga and Gb denote pairs for VMm. Also, let SoonestDeadline be the performance

objective. Assume that Ga has a sooner deadline, whereas Gb has a higher utility value.

In this case, Gb can be assigned to VMm, if and only if it does not violate the deadline of

Ga. To assure that assigning Gb does not cause a violation of the deadline of Ga, we

assume that Gb has already been assigned to VMm and run the mapping heuristic again

to see if Ga can still meet its deadline or not.

Based on the way the third phase of our proposed mapping heuristic functions, we

can have 3 variations, namely Utility-based MinCompletion-MinCompletion (MMUT),

Utility-based MinCompletion-SoonestDeadline (MSDUT), and Utility-based

MinCompletion-MaximumUrgency (MMUUT).
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6.3.Self-Configurable Heterogeneous VM Provisioner

The goal of the VM Provisioner component is to maintain a robust QoS while minimizing

the incurred cost to the stream provider. To that end, the component includes VM

provisioning policies that make decisions for allocating and deallocating VMs from cloud.

To achieve the QoS robustness, the SSP needs to define the acceptable QoS

boundaries. Therefore, the SSP provides an upper bound threshold for the deadline miss

rate of GOPs that can be tolerated, denoted β. Similarly, it provides a lower bound

threshold for the deadline miss rate, denoted α, that enables the provisioning policies to

reduce the incurred cost of the stream provider through deallocating VM(s).

The strategy of the VM provisioning to maintain QoS robustness is to manage the

VM allocation/deallocation so that the deadline miss rate at any given time t, denoted γt,

remains between α and β. That is, at any given time t, we should have α ≤ γt ≤ β.

The VM Provisioner component follows the scale up early and scale down slowly

principle. That is, VM(s) are allocated from the cloud as soon as a provisioning decision is

made. However, as the stream provider has already paid for the current charging cycle of

the allocated VMs, the deallocation decisions are not practiced until the end of the

current charging cycle.

In general, any cloud-based VM provisioning policy needs to deal with two main

questions:

1. When to provision VMs?

2. How many VMs to provision?

The self-configurable VM provisioning, however, introduces a third question to the VM
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provisioning policies:

3. What type of VM(s) to provision?

In the next subsections, we first provide a method to determine the suitability of

VM types for GOP tasks, then we introduce two provisioning policies, namely periodic

and remedial, that work together to answer the three aforementioned questions.

6.3.1.Identifying Suitability of VM Types for GOP Tasks

Recall that each GOP task has different execution times on different VM types (see

Section 2.4). In general, GPU provides a shorter execution time compared with other VM

types. However, for some GOPs, the execution time on GPU is close to other VM types

while its cost is significantly higher. Therefore, we need a measure to determine the

suitability of a VM type for a GOP based on the two factors.

For a given GOP task, we define suitability, denoted Si, as a measure to quantify

the appropriateness of a VM type i for executing the GOP task both in terms of

performance and cost. We calculate the suitability measure for a task based on Equation

(6.3). The measure establishes a trade-off between the performance (Ti) and the cost (Ci)

for a given GOP on VM type i.

Si = k · Ti + (1− k) · Ci (6.3)

The value of Ti is defined based on Equation (6.4).

Ti =
ti − tmin

tmax − tmin
(6.4)

where ti is the GOP execution time on VM type i (obtained from the ETC matrix). Also,

tmax and tmin are the maximum and minimum GOP execution times across all VM types,

respectively.
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In Equation (6.3), the value of Ci is determined according to Equation (6.5).

Ci =
ci − cmin

cmax − cmin
(6.5)

where ci is the cost of transcoding the same GOP on VM type i. Also, cmax and cmin are

the maximum and minimum GOP transcoding costs across all VMs, respectively.

Based on Equation (6.3), for a given GOP task, we define the GOP type based on

the type of VM that provides the highest suitability measure. Later, the VM provisioning

policies will utilize the concept of GOP type in their provisioning decisions.

6.3.2.Periodic VM Provisioning Policy

This VM provisioning policy occurs periodically (we term it provisioning event) to make

VM allocation or deallocation decisions. The policy includes two methods, namely

Allocation and Deallocation.

Allocation Method

Algorithm 2 provides a pseudo-code for the VM allocation method. The method is

triggered when the deadline miss rate (γt) goes beyond the upper bound threshold β (line

2 in the Algorithm).

To determine what type of VM(s) to be allocated, we need to understand the

demand for different VM types. Such demand can be understood from the concept of

GOP type, introduced in Section 6.3.1. In fact, the number of GOP tasks from different

types can guide us to the types of VMs that are required. More specifically, we can

identify the type of required VMs based on two factors: (A) the proportion of deadline

miss rate for each GOP type, denoted σi, and (B) the proportion of GOPs of each type
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waiting for execution in the batch queue, denoted φi. In fact, factor (A) indicates the

current QoS violation status of the system, whereas factor (B) indicates the QoS violation

status of the system in the near future.

Algorithm 2 Pseudo-code for the VM Allocation Method

Input:

β: upper bound threshold

r: streaming request arrival rate

Output:

n: list of number of VMs of each type to be allocated.

1: γt ← current deadline miss rate

2: if γt ≥ β then

3: for each VM type i do

4: σi ← deadline miss rate for each GOP type i

5: φi ← ratio of each GOP type i in the batch queue

6: Calculate the demand (ωi) for each VM type

7: ρi ← minimum utilization in VMs of type i

8: if ωi ≥ ωth and ρi ≥ ρth then

9: ni ← b
r · ωi

β
c

10: Allocate ni VM type i

11: end if

12: end for

13: end if

Based on these factors, we define the demand for each VM type i, denoted ωi,

according to Equation (6.6). The constant factor 0 ≤ k ≤ 1, in this equation, determines

the weight assigned to the current deadline miss rate status and to the future status of the

system. For implementation, we experimentally realized that k = 0.3 produces the best

results (see line 6).

ωi = k · σi + (1− k) · φi (6.6)
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If the demand for VM type i is greater than the allocation threshold (ωth in line

8), and also the utilization of corresponding VM type (ρi) is greater than the utilization

threshold (ρth), then the policy decides to allocate from VM type i.

Once we determine the type of VMs that needs to be allocated, the last question

to be answered is how many VMs of each type to be allocated (lines 8 - 11 in the

Algorithm). The number of allocations of each VM type depends on how far is the

deadline miss rate of GOP type i is from β. For that purpose, we use the ratio of ωi/β to

determine the number of VM(s) of type i that has to be allocated (line 9). The number of

VM(s) allocated also depends on the arrival rate of GOP tasks to the system. Therefore,

the GOP arrival rate, denoted r, is also considered in line 9 of Algorithm 2.

Deallocation Method

The VM deallocation method functions are based on the lower bound threshold (α). That

is, it is triggered when the deadline miss rate (γt) is less than α. Once the deallocation

method is executed, it terminates at most one VM. The reason is that, if the VM

deallocation decision is practiced aggressively, it can cause loss of processing power and

results in QoS violation in the system. Therefore, the only question in this part is which

VM should be deallocated.

In the first glance, it seems that the deallocation method can simply choose the

VM with the lowest utilization for deallocation. However, this is not the case when we are

dealing with a heterogeneous VM cluster. The utilizations of the VMs are subject to the

degree of heterogeneity in the VM cluster. For instance, when the VM cluster is in a

mostly homogeneous configuration, the task scheduler has no tendency to a particular VM

type. This causes all VMs in the cluster to have a similar and high utilization. Hence, if
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the deallocation method functions just based on the utilization, it cannot terminate

VM(s) in a homogeneous cluster, even if the deadline miss rate is low.

The challenge is how to identify the degree of heterogeneity in a VM cluster. To

cope with this challenge, we need to quantify the VM cluster heterogeneity. Then, we can

apply the appropriate deallocation method accordingly.

We define degree of heterogeneity, denoted η, as a quantity that explains the VM

diversity (i.e., heterogeneity) that exists within the current configuration of the VM

cluster. We utilize the Shannon Wiener equitability [81] function to quantify the degree of

heterogeneity within our VM cluster. The function works based on the Shannon Wiener

Diversity Index that is represented in Equation (6.7).

H = −
N∑
i=1

pi · ln pi (6.7)

where, N is the number of VM types, pi is the ratio of VM type i of the total number of

VMs. Then, the degree of heterogeneity is defined as follows:

η = H/Hmax (6.8)

Higher values of η indicates a higher degree of heterogeneity in a cluster and vice

versa. Once we know the degree of heterogeneity in a VM cluster, we can build the

deallocation method accordingly. Algorithm 3 provides the pseudo-code proposed for the

VM deallocation method.

The deallocation method is carried out in 4 main steps. In the first step, the

VM(s) with the lowest utilization are chosen (lines 3 — 4 in Algorithm 3). In the second

step, ties are broken by selecting the least powerful VM (line 5). If more than one VM

remains, in the third step (line 6), ties are broken based on the VM with the minimum
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remaining time to its charging cycle.

Algorithm 3 Pseudo-code for the VM Deallocation Method

Input:

α: lower bound threshold

1: γt ← current deadline miss rate

2: if γt ≤ α then

3: calculate the utilization of each VM in the cluster

4: find VM(s) with the lowest utilization

5: resolve ties by choosing the least powerful VM(s)

6: VMj ← resolve ties by selecting the VM with the minimum remaining time to its

charging cycle

7: η ← calculate the degree of heterogeneity

8: if η ≥ ηth and ρj ≥ ρth then

9: No deallocation

10: else

11: Deallocate VMj

12: end if

13: end if

For a VM cluster that tends to a heterogeneous configuration (i.e., η ≥ ηth), the

policy deallocates the selected VM (termed VMj in the algorithm) if its utilization is less

than the VM utilization threshold (i.e., ρj < ρth). In contrast, in a VM cluster that tends

to a homogeneous configuration, even if the utilization is high, the policy can deallocate

VMj based on the deadline miss rate (lines 8 — 12).

It is worth noting that the deallocation method is also executed at the end of the

charging cycle of the current VMs to deallocate the VMs that are underutilized.

6.3.3.Remedial VM Provisioning Policy

The periodic VM provision policy cannot cover request arrivals to the batch queue that

occur in the interval of two provisioning events.
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To cope with the shortage of the periodic policy, we propose a lightweight remedial

provisioning policy that can improve the overall performance of the VM Provisioner

component. By injecting this policy into the intervals of the periodic provisioning policy,

we can perform the periodic policy less frequently.

In fact, the remedial provisioning policy provides a quick prediction of the system

based on the state of the virtual queue. Recall that the Virtual Queue includes the

distinction of streaming requests waiting for transcoding in the batch queue. Hence, the

length of the Virtual Queue implies the intensity of streaming requests waiting for

processing. Such long batch queue increases the chance of a QoS violation in the near

future. Thus, our lightweight remedial policy only checks the size of the Virtual Queue

(denoted Qs). Then, it uses Equation (6.9) to decide for the number of VMs that should

be allocated.

n = b Qs

θ · β
c (6.9)

where n is the number of VM(s) that should be allocated; Qs is the size of the

Virtual Queue. θ is a constant factor that determines the aggressiveness of the VM

allocation in the policy. That is, lower values of θ leads to allocating more VMs and vice

versa. In the implementation, we considered θ = 10. In the remedial policy, we allocate a

VM type that, in general, provides a high performance per cost ratio (in the experiments,

we used c4.xlarge).

Experiment results indicate that the remedial provisioning policy does not incur

any extra cost to the stream service provider. Nonetheless, it increases the robustness of

the QoS by reducing the average deadline miss rate and average startup delay (see Section

6.4.4).
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6.4.Performance Evaluation

We used CloudSim [11], a discrete event simulator, to model our system and evaluate

performance of the scheduling methods and VM provisioning policies. To create a

diversity of video streaming requests, we uniformly selected videos over the range of [10 ,

600] seconds from a set of benchmark videos. We made the benchmarking videos publicly

available for reproducibility purposesb. We modeled our system based on the

characteristics and cost of VM types in Amazon EC2. We considered g2.2xlarge,

c4.xlarge, r3.xlarge, and m4.large in our experiments. The VMs represent the

characteristics of various VM types offered by Amazon cloud and form a heterogeneous

VM cluster.

To simulate a realistic video transcoding scenario, using FFmpegc, we performed

four different transcoding operations (namely codec conversion, resolution reduction, bit

rate adjustment, and frame rate reduction) for each of the benchmarking videos. Then,

the execution time of each transcoding operation was obtained by executing them on the

different VM types.

To capture the randomness in the execution time of GOPs on cloud VMs, we

transcoded each GOP 30 times and modeled the transcoding execution times of GOPs

based on the normal distributiond.

To study the performance of the system comprehensively, we evaluated the system

under various workload intensities. For that purpose, we varied the arrival rate of the

video streaming requests from 100 to 1000 within the same period of time. The

bThe videos can be downloaded from: https://goo.gl/TE5iJ5
chttps://ffmpeg.org
dThe generated workload traces are available publicly from: https://goo.gl/B6T5aj
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inter-arrival times of the requested videos are generated based on the Normal distribution,

where the mean of inter arrival time is based on the time divided by the number of

requests and standard deviation is the mean divided by 3. All experiments of this section

were run 30 times, and the mean and the 95% of the confidence interval of the results are

reported for each experiment. In all the experiments, we considered the values of α and β

equal to 0.05 and 0.1, respectively. That is, we consider that the SSP chose to keep the

deadline miss rate between 5% to 10%. Any deadline miss beyond 10% is considered as a

QoS violation. The QoS boundary is shown in the form of a horizontal line in the

experiment results.

6.4.1.Average Completion Time of Early GOP Tasks

The goal of using utility-based mapping heuristics is to prioritize GOPs with high utility

(i.e., earlier GOPs in the stream) for reducing their completion time. Although this factor

is extended in next experiments through evaluating the average startup delay. We conduct

the experiment to further evaluate how this goal is satisfied when our utility-based

scheduling methods with different mapping heuristics are applied.

In Figure 6.4, the horizontal axis is the GOP number of the first 20 GOPs in the

benchmark video streams and the vertical axis is the average completion time of the

GOPs in seconds. For this experiment, we have used 1000 GOP tasks and VM

provisioning policies are in place.

Figure 6.4 demonstrates that, in general, the utility-based heuristics provide a

significantly lower average completion time. Among traditional heuristics, MM performs

the best. This is because MM prioritizes the GOPs with short execution times, which

results in faster processing in the system. We also observed that MSDUT performs better
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in compare with other utility-based heuristics, specifically for GOP numbers more than

15. This is because the dynamic VM provisioning policy works based on the tasks

deadline miss rate. Since MSDUT favors tasks with short deadlines, many GOPs miss

their deadlines as the system becomes busy. Therefore, it allocates more VMs that, in

turn, reduces the average completion time of the GOPs.

Figure 6.4. Average completion time of early GOPs under different scheduling methods.

The horizontal axis shows the GOP numbers in the video stream and the vertical axis shows

the average completion time of GOPs. We used 1000 GOP tasks and the VM provisioning

policies are applied.

6.4.2.Impact of Utility-based Mapping Heuristics

To evaluate the impact of utility-based mapping heuristics on QoS and cost, we compare

them with the traditional mapping heuristics in two scenarios: (1) VM provisioning

performed in the static way and (2) under the VM provisioning policies. To construct a

static heterogeneous cluster, we allocate three VMs of each type.
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Static Heterogeneous VM Cluster

Figure 6.5 compares the results of utility-based mapping heuristics with the traditional

batch heuristics under a static heterogeneous VM cluster. For traditional mapping

heuristics, Figures 6.5a and 6.5b show that MM provides a significantly lower average

deadline miss rate (by up to 40%) than MSD and MMU, in particular when the system is

more oversubscribed (i.e., overloaded). However, MSD and MMU provide a lower average

startup delay than MM. This is because both MSD and MMU function based on the

deadline and the deadline of the startup GOPs is low since they are prioritized.

Figure 6.5. The results under utility-based mapping heuristics against those under tradi-

tional mapping heuristics when the number of video requests varies. Subfigures (a), (b),

and (c), respectively, show the average startup delay, deadline miss rate, and the incurred

cost under traditional mapping heuristics, while (d), (e), and (f) show the same factors

under utility-based mapping heuristics are applied. The horizontal dashed line denotes the

acceptable QoS boundary (β).

(a) Startup delay under tradi-

tional heuristics

(b) Deadline miss rate under

traditional heuristics

(c) Cost under traditional

heuristics

(d) Startup delay under utility-

based heuristics

(e) Deadline miss rate under

utility-based heuristics

(f) Cost under utility-based

heuristics

93



In Figure 6.5e, we observe that MMUT provides a significantly better average

deadline miss rate (around 50% when there are 1000 video requests) in comparison with

MSDUT and MMUUT. More importantly, we can see, in Figure 6.5d, that MMUT

provides a low and stable startup delay in comparison with other heuristics even when the

system is oversubscribed. This is because prioritizing shorter tasks in MMUT produces a

lower average deadline miss rate which, in return, benefits the startup GOPs to be

processed.

We do not observe any major cost difference for more intensive workloads. This is

because in the static cluster, the workload can be handled within the same time period.

When the system is oversubscribed, there is a minor increase in cost, as seen in

Figure 6.5c and Figure 6.5f. This is because it takes a longer time to finish the processing

of the tasks in those cases.

Dynamic Heterogeneous VM Cluster

Figure 6.6c demonstrates that, regardless of the mapping heuristic, the dynamic VM

provisioning policy significantly reduces the incurred cost (up to 80% when the system is

not oversubscribed) in comparison to the static heterogeneous VM cluster. The incurred

cost increases as the VM provisioning policy needs to allocate additional VMs to maintain

QoS robustness for more video streaming requests.

In Figure 6.6a, we can observe that the average startup delay increases for

traditional mapping heuristics. However, it is more stable in comparison with Figure 6.5a

with static heterogeneous VMs. This is because the VM provisioning policy adapts the

VM provisioning to the workload intensity to meet the QoS demands of the stream

viewers.
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Figure 6.6. The results under utility-base mapping heuristics against those under traditional

mapping heuristics when dynamic previsioning policies are applied. The X-axis indicates the

number of streaming requests, and Subfigures (a), (b), and (c) show the average startup

delay, deadline miss rate, and the incurred cost, respectively, under traditional mapping

heuristics, while (d), (e), and (f) show the same factors under utility-based mapping heuris-

tics. The horizontal dashed line indicates the acceptable QoS boundary (β).

(a) Startup delay under tradi-

tional heuristics

(b) Deadline miss rate under

traditional heuristics

(c) Cost under traditional

heuristics

(d) Startup delay under utility-

based heuristics

(e) Deadline miss rate under

utility-based heuristics

(f) Cost under utility-based

heuristics

Figures 6.6d, 6.6e, and 6.6f demonstrate the robustness resulted from applying

the utility-based mapping heuristics together with the VM provisioning policies. That is,

with the increase of the workload, the system all together produces a low and stable

average startup delay and average deadline miss rate without incurring extra cost to the

stream provider. In particular, we observe the average deadline miss rates of MMUUT

and MSDUT have dramatically decreased. Normally, MMUUT and MSDUT lead to

higher average deadline miss rates than MMUT. However, with the dynamic VM

provisioning policies, the high deadline miss rates of MMUUT and MSDUT trigger the

VM provisioning policies to allocate more VMs that, in turn, reduce the deadline miss
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rate. Nonetheless, the deadline miss rate of MMUT is not sufficiently high enough to

trigger the allocation method.

Discussion

In conclusion, when using a static heterogeneous VM cluster, MMUT provides the lowest

average startup delay and average deadline miss rate, while incurring roughly the same

cost to the stream provider.

When the dynamic heterogeneous VM provisioning policies are applied, MMUT

heuristic still provides a better average startup delay than other heuristics. However, in

this case, MMUUT and MSDUT outperform in terms of the average deadline miss rate

and the incurred cost.

6.4.3.The Impact of VM Provisioning Policies

To further investigate the performance of the proposed VM provisioning policies, we

compare it against the case in which a static homogeneous VM cluster is deployed. For

evaluation, we vary the number of streaming requests in the system from 100 to 1000.

Since MMUT, in general, outperforms other heuristics in both static and dynamic

provisioning, we utilize it in this experiment. For the static clusters, as it is shown in

Figure 6.7, we evaluate clusters with 5 to 10 VMs. In all of them we utilized GPU VM

type (g2.2xlarge). We observed that the average startup delay, and the average deadline

miss rate are too high when fewer VMs are allocated. Therefore, we do not include them

in the graphs.

In Figure 6.7a, we can see that as the number of video requests increases, the

average startup delay in all static policies grows. However, the dynamic VM provisioning

policy provides a low and stable average startup delay. When the system is not
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oversubscribed (i.e., number of stream requests less than 400), the dynamic provisioning

policies provide a slightly higher startup delay than the static policy. The reason is that

when the deadline miss rate is low, the VM provisioning policies allocate fewer VMs to

reduce the incurred cost. Hence, new GOP tasks have to wait for transcoding. However,

in the static policy, specifically with a large number of VMs, GOPs in the startup queue

can be transcoded quickly, reducing the average startup delay.

Figure 6.7b illustrates that the VM provisioning policies lead to low and stable

average deadline miss rate in comparison with the static ones. In the static configuration,

as the number of video requests increases, the average deadline miss rate grows

dramatically. However, we notice that the average deadline miss rate with the dynamic

VM provisioning policies remains stable, even when the system becomes oversubscribed.

We can conclude from the experiment that the proposed VM Provisioner component in

the CVSS enables the system to tolerate workload oversubscription. That is, it makes the

system robust against the fluctuations in the arrival workload.

In addition to low and stable average startup delay and average deadline miss rate,

Figure 6.7c shows that the dynamic VM provisioning policies reduce the incurred cost by

up to 85% when the system is not oversubscribed. Even when the system is

oversubscribed (i.e., with more than 500 streaming requests in the system) the dynamic

VM provisioning policies reduced the cost to around 50%. In fact, when the streaming

request rate is low, VMs are under-utilized; however, in the static VM cluster, the

streaming service provider still has to pay for them. In contrast, with the dynamic VM

provisioning, the system deallocates idle VMs when the deadline miss rate is low, which

reduces the incurred cost significantly. As the number of streaming requests increases,
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more VMs of the appropriate types are created, and hence, the incurred cost of the

dynamic VM provisioning policies approaches that of the static one. We can conclude

that, from the cost perspective, our proposed VM provisioning policies are more efficient,

particularly when the system is lightly loaded.

Figure 6.7. Performance comparison under static and dynamic VM provisioning policies.

Subfigure (a) illustrates the average startup delay, (b) shows the average deadline miss rate,

and (c) demonstrates the incurred cost to the streaming provider under dynamic and static

provisioning policies, with MMUT applied as the mapping heuristic.

(a) Comparison of average

startup delay

(b) Comparison of average

deadline miss rate (c) Comparison of average cost

6.4.4.Impact of the Remedial VM Provisioning Policy

To evaluate the efficacy of the remedial provisioning policy, we conduct an experiment on

the dynamic VM provisioning policy in two scenarios: (A) when the VM Provisioner

component uses both the periodic and remedial polices and (B) when only the periodic

provisioning policy is in place. We measure QoS in terms of average deadline miss rate

(DMR), average startup delay, and the incurred cost when the number of streaming

requests varies in the system (along the X-axis in Figure 6.8). In this experiment we

assume that the MMUT mapping heuristic is utilized.

As illustrated in Figure 6.8, when the system is not oversubscribed (i.e., withe

fewer than 500 streaming requests), the difference between the two scenarios is negligible.
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This is because when streaming requests arrived between two provisioning events are not

excessive, the VMs allocated by the periodic VM provisioning policy are sufficient to keep

the QoS robust.

Alternatively, when the system is oversubscribed, the number of streaming

requests that arrive between two provisioning events is high and affects the prediction of

the provisioning policy. Under this circumstance, as depicted in Figure 6.8, relying only

on the periodic provisioning policy leads to a high deadline miss rate. Nonetheless, when

the remedial VM provisioning policy is utilized even with the system is oversubscribed,

the deadline miss rate remains stable. In addition, as it is shown in the last subfigure of

Figure 6.8, the remedial VM provisioning policy comes without incurring any extra cost to

the stream provider.

Figure 6.8. Impact of the remedial VM provisioning policy on the startup delay, deadline

miss rate (DMR) and the incurred cost.
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6.5.Conclusion

In this chapter, we developed the Task Scheduler and VM Provisioner components of

CVSS architecture. The components are aware of the viewers’ QoS demands and aim to

maintain QoS robustness while minimizing the incurred cost to the SSP. To that end, the

components take advantage of the heterogeneous VMs, offered by the cloud providers with

different prices. The Scheduler component includes mapping heuristics that have two

goals: minimizing the startup delay of video streams and the deadline violations of the

streams. The VM Provisioner component includes cost-aware VM provisioning policies to

allocate/deallocate heterogeneous VMs from cloud providers and maintains the QoS

robustness against uncertainties in the arriving workload. Experiment results demonstrate

that proposed mapping heuristics significantly reduce the average startup delay as well as

the deadline miss rate of the video streams. In addition, the self-configurable VM

provisioning policies enable streaming providers to reduce the cost of using cloud services

remarkably. We concluded that VM provisioning based on heterogeneous VMs can reduce

the incurred cost up to 85%, particularly, when the system is not oversubscribed.

Additionally, the VM provisioning policies make the architecture robust against

uncertainties in the arrival of streaming requests, without incurring any extra cost to the

provider.
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CHAPTER 7: QoS-Aware Video Live Streaming Using Cloud Services

Due to the complexity of video transcoding process, live streaming service

providers are also becoming reliant on cloud services. With the scalable and reliable

processing capability that clouds offer, live streaming service providers are able to

transcode the live streams in a timely manner and fulfill viewers’ Quality of Service (QoS)

demands. For that purpose, cloud services must be utilized efficiently. In this chapter, we

present a cloud-based architecture that facilitates transcoding for live video streaming.

Then, we propose a scheduling method for the architecture that is cost-efficient and

satisfies viewers’ QoS demands. We also propose a method– utilized by the scheduler– to

predict the execution time of transcoding tasks before their executions. Experiment

results demonstrate the feasibility of cloud-based transcoding for live video streams and

the efficacy of the proposed scheduling method in satisfying viewers’ QoS demands

without imposing extra cost to the stream provider.

7.1.Introduction

One increasingly popular type of video streaming is live streaming services that enable

clients (i.e., video publishers) to use a camera and broadcast videos via the Internet. For

instance, using Livestreama, viewers are able to watch the contents being captured by

video publishers on their smart phone, laptop, and TV. To provide a high-quality live

video streaming service on a variety of viewers’ devices, the video contents need to be

transcoded (i.e., converted) based on the characteristics of the viewers’ devices (e.g.,

spatial resolution, network bandwidth, and supported codec).

Currently, to support a high-quality live stream on different display devices, video

ahttps://livestream.com/



publishers have to generate multiple versions (i.e., formats) of the same video (e.g.,

multiple video encodings) at their own end. However, this approach suffers from hardware

limitations and network bandwidth bottleneck. In addition, this approach is not aware of

the viewers’ demands. That is, it can potentially generate versions that are not requested

by viewers. Thus, this approach has remained cost-prohibitive and inefficient. Another

approach is on-demand live video stream transcoding. In this approach, the publisher

generates only one version of the video at her end. The live video can be streamed to the

viewers as long as their display devices are compatible with the streamed format.

On-demand live video transcoding takes place upon joining a new viewer with an

incompatible display device format.

Video transcoding for live streaming is a computationally heavy and time

consuming process, it requires huge storage and computing infrastructures. In-house

provisioning and upgrading of such infrastructures to meet the fast-growing global

demands of video transcoding is cost-prohibitive. Therefore, making use of cloud services

is becoming a common practice amongst streaming service providers [69, 70, 52, 82].

The challenge for live streaming providers in utilizing cloud services, however, is to

spend the minimum cost for the services while meeting the viewers’ QoS demands. In

particular, live streaming viewers have unique QoS demands that need to be respected to

achieve the user satisfaction.

Viewers of a live streaming service, firstly, demand to receive video streams

without any delay. We define presentation time as the latest time (i.e., deadline) that a

transcoding operation can be completed to stream the video without any interruption.

There is no value in transcoding a video after its presentation time. That is, each
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transcoding task has an individual hard deadline. The transcoding tasks that miss their

presentation times must be dropped (i.e., discarded) to keep up with the live streaming.

In this research, we define drop rate as the percentage of transcoding tasks that are

dropped as they cannot complete transcoding by their presentation times. To maximize

viewers’ satisfaction, we need to minimize the drop rate of the video streams.

Secondly, previous studies (e.g., [6, 7]) show that more than 40% of viewers only

watch few seconds of a video stream. However, they judge the streaming provider quality

based on the delay they perceive in the beginning of the stream. We define the delay that

the user perceives in the beginning of the stream as the startup delay. Under this

circumstance, to maximize viewers’ satisfaction, we need to minimize the startup delay of

the video streams.

In summary, we consider video live streaming QoS demand as: minimizing the

startup delay and the drop rate. Therefore, the challenge in this research is how to

allocate (i.e., schedule) transcoding tasks on cloud resources to satisfy the QoS demands of

live streams viewers without incurring extra cost to the stream provider?

To address this challenge, in this paper, we present an architecture for Video Live

Streaming using Cloud, briefly termed VLSC. Then, we present a scheduling method

within the VLSC architecture that maps the transcoding tasks to the cloud Virtual

Machines (VMs) with the goal of minimizing QoS violations and without incurring extra

cost to the stream provider.

Efficient operation of a scheduling method generally depends on the execution

time information it has about the tasks in the scheduling queue [83, 84]. The execution

time information are generally obtained from prior executions of the same (or similar)
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task(s) [83]. However, such prior executions are not available in live video streaming, as it

is the first time ever the video being transcoded. To provide an efficient scheduling

method, in this paper, we also propose a method to estimate the execution time of

transcoding tasks in a live video stream.

In summary, the key contributions of this chapter are as follows:

• Developing a QoS-aware scheduling method of VLSC architecture to map

transcoding tasks on cloud VMs without imposing extra cost to the live stream

provider.

• Analyzing the performance of the proposed QoS-aware scheduling method under

different live streaming workloads.

7.2.QoS-Aware Scheduling Method

The transcoding scheduler architecture is illustrated in Figure 7.1. For scheduling, GOPs

of the requested video streams are batched in a queue upon arrival. To minimize the

startup delay of video streams, we consider another queue termed the startup queue. The

first few GOPs of each new video stream are placed in the startup queue that has a higher

priority in compare to the batch queue. To avoid any execution delay, each VM is

allocated a local queue where the required data for GOPs are preloaded, before the GOP

transcoding execution started.

For each GOP j from video stream i, denoted Gij , the arrival time and the

deadline (denoted δij) are available. In live video streaming, the scheduler is not aware of

the execution time Gij of the transcoding tasks. However, the GOP execution time can be

predicted based on the method provided in Section 3.2.2. Therefore, we assume that an
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estimation for the execution time of each GOP Gij (briefly called transcoding time and

denoted τij) is available. We note that, although we transcode the same GOP of a given

video on a cluster of homogeneous VMs, there is some randomness (i.e., uncertainty) in

the transcoding execution time. That is, the homogeneous VMs do not necessarily provide

identical performance [71]. This is attributed to the fact that the VMs can be potentially

allocated on different (i.e., heterogeneous) physical machines on the cloud. The

performance variation of a VM can also be attributed to other neighboring VMs that

coexist with the VM on the same physical host in the cloud datacenter. For instance, if

the neighboring VMs have a lot of memory access, then, there will be a contention to

access the memory and the performance of the VM will be different with situation that

there is not such neighboring VM.

Figure 7.1. QoS-aware scheduling architecture in VLSC. First few GOPs of each stream

is queued in the startup queue and the rest are placed in the batch upon arrival. Each

transcoding VM is allocated a local queue to preload GOPs before starting their execution.

Once a free spot appears in a VM local queue, the scheduler is executed to map a

GOP to the free spot. The scheduler maps GOPs to the VM that provides the shortest

completion time.

In general, to estimate the completion time of an arriving GOP Gx on VMj , we
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add up the estimated remaining execution time of the currently executing GOP in VMj

with the estimated execution time of all tasks ahead of Gx in the local queue of VMj .

Finally, we add the estimated execution time of Gx (i.e., τx). Let tr the remaining

estimated execution time of the currently executing task on VMj , and let tc is the current

time. Then, we can estimate the task completion time for Gx (denoted ϕx) as follows:

ϕx = tc + tr +

n∑
p=1

τp + τx (7.1)

where τp denotes the estimated execution time of any task waiting ahead of Gx in

local queue of VMj and n is the number of waiting tasks in the local queue of VMj .

Recall that, in live streaming, transcoding tasks have hard deadline. That is, if a GOP’s

estimated minimum completion time ϕx is larger than its presentation deadline δij , then

the GOP is dropped, and the scheduler moves to the next GOP in the queue.

In the proposed scheduling method, we assign a higher priority to the GOP tasks

in the startup queue. However, the priority should not cause missing the deadlines of

tasks waiting in the batch queue. Let Gb, the first GOP in the batch queue and Gs, the

first GOP in the startup queue. At each scheduling event, Gs can be scheduled before Gb

only if it does not cause Gb to miss its deadline. For that purpose, we calculate the

minimum completion time of Gs across all VMs. Then, we can calculate the minimum

completion time of Gb, assuming that Gs has already been mapped to a VM, and finally

check if Gb will miss its deadline or not. If not, then Gs can be scheduled before Gb.

The performance of the proposed scheduling method also depends on the queuing

policy of the batch queue. We can utilize any conventional queuing policy (e.g., FCFS,

SDF or SJF) to determine the precedence of tasks in the batch queue.
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7.3.Performance Evaluation

We used CloudSim [11], a discrete event simulator, to model our system and evaluate the

performance of the scheduling methods. The results of our evaluations are depicted in

Figures 7.2 to 7.3. To study the system under different live streaming traffics, we

evaluated it with varying number of live streaming requests within the same time unit.

We utilized benchmarking videosb to simulate the live streaming sources. We modeled the

performance of our VMs based on the characteristics of T2.Micro VMs in Amazon EC2c

that are available for free. For the sake of accuracy, each experiment has been repeated 10

times and the average and 95% confidence interval of the results are reported.

7.3.1.Impact of Applying QoS-aware Scheduling

Figure 7.2a demonstrates how the average startup delay of live streams is reduced when

the proposed QoS-aware scheduling method is applied in compare with the situation that

the scheduling method is not QoS-aware. We observe that using the QoS-aware scheduling,

we can keep the average startup delay less than 1 second. More importantly, the startup

delay remains almost constant as the number of live streaming requests increases.

Figure 7.2b shows that the average drop rate is almost always less than 7%. The

essence of this experiment is to demonstrate that it is feasible to transcode live video

streams while they are streamed and in an on-demand basis.

Figure 7.2c illustrates the incurred cost to the service provider with and without

QoS-aware scheduling. In this figure, the vertical axis shows the incurred cost based on

the AWS costs. However, because the incurred costs values were small for the

bThe videos can be downloaded from: https://goo.gl/TE5iJ5
chttps://aws.amazon.com/ec2
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experimented benchmarks, for better representation, the values has been multiplied by

1000 in the graph. As we can see in this figure, the incurred cost to the service provider is

almost the same in both cases. The total time that cloud VMs are utilized is also the

same. This experiment expresses that using the QoS-aware scheduler, we can improve the

users’ QoS satisfaction without incurring extra cost to the stream provider.

Figure 7.2. Performance comparison under QoS-aware and non-QoS-aware scheduling

method, where (a) shows the average startup delay, (b) illustrates the average drop rate,

and (c) demonstrates the average incurred cost with various number of live streaming video

requests. The incurred cost is multiplied by 1000 for better presentation.

(a) Average startup delay of var-

ious videos

(b) Average drop rate of various

videos (c) Average cost of various videos

7.3.2.Impact of Applying Various Queuing Policies

Figure 7.3 shows how the queuing policy of the batch queue impacts the startup delay and

the GOP drop rate, when the QoS-aware scheduling method is applied. To demonstrate

that, we evaluated three different policies, namely first come first serve (FCFS), shortest

job first (SJF) and shortest deadline first (SDF).

The results of these experiments are shown in Figure 7.3. We observe that as the

number of live streaming requests increases, SDF leads to the lowest startup delay and

drop rate. This is because SDF maps the most urgent GOP tasks (i.e., tasks with fast

approaching deadlines) first. However, SJF prioritizes GOPs with short transcoding time,
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regardless of their deadline urgency. This results in a large drop rate for GOP tasks with

urgent deadlines, which are common in live streaming systems. In the FCFS policy, GOPs

in the batch queue have to wait until all GOPs arrived earlier to be transcoded. This

leads to the highest drop rate in compare with other queuing policies.

Figure 7.3. Performance comparison with different queuing policies applied on the QoS-

aware scheduling method, where (a) shows the average startup delay, (b) illustrates the

average drop rate, and (c) demonstrates the average incurred cost under different queuing

policies. The incurred cost is multiplied by 1000 for better presentation.

(a) Average startup delay under

different queuing policies

(b) Average drop rate under dif-

ferent queuing policies

(c) Average cost under different

queuing policies

Figure 7.3c illustrates that all three queuing policies cost almost the same. Similar

to Figure 7.2c, we multiplied the incurred cost by 1000 for better presentation. In fact,

the total transcoding time of all the videos are the same and the stream service provider

incurs almost the same amount for any queuing policy when a fixed number of VMs are

allocated.

7.4.Conclusion

In this chapter, we proposed the VLSC architecture to enable cloud-based transcoding of

live video streams to support high video quality on diverse viewers’ display devices. We

also proposed a scheduling method that is aware of the QoS demands of live streaming

viewers. The scheduling method functions based on a time estimator component that
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predicts the transcoding (i.e., execution) time of GOP tasks before executing them. In

particular, this research presented how to increase the live streaming quality by decreasing

the startup delay and the GOP drop rate and without imposing extra cost to the video

stream provider. Experimental results based on realistic workloads illustrated that the

proposed scheduling method provides a low drop rate (less that 10% of GOP tasks) and a

low startup delay (less that 1 second), specifically when combined with the SDF queuing

policy. The VLSC architecture and its QoS-aware scheduling can help small- and

medium-size live video stream providers to utilize cloud resources as their infrastructure

and offer a high-quality live streaming service to their viewers without investing in

infrastructure or incurring any extra cost.
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CHAPTER 8: Conclusions and Future Directions

This chapter summarises the research work as well as the major findings of this

dissertation. Moreover, research topics that have emerged during this research but have

not been addressed in this dissertation are discussed. These future directions can be

pursued by other researchers in the area.

8.1.Discussion

To meet the fast growing streaming business, streaming service providers have begun to

rely on cloud service that provides flexible powerful servers and massive storage.

Cloud-based video transcoding have been studied and applied for a few years, while most

of the works mainly focus on pre-transcoding. That means all the videos have been

transcoded and stored in the repository before streaming them to the viewers. Although

this approach relieves the streaming service provider from QoS concerns, it imposes a

large storage cost overhead that is costly for streaming service providers. This is

particularly important for streaming service providers like Netflix that stores peta bytes of

video storage on the cloud.

Some recent studies (e.g., [6, 7]) reveal that the access pattern to video streams

follows a long tail distribution. That is, there is a small percentage of videos that are

accessed frequently while the majority of them are accessed very infrequently. With the

explosive demand for video streaming and the large diversity of viewing devices, the

pre-transcodiing approach becomes inefficient. Therefore, instead of spending money on

pre-transcoding and storing multiple versions of the same video that are barely requested

by clients, the idea that we develop is to transcode these unpopular video streams in an

on-demand (i.e., lazy) manner using computing services offered by cloud providers.



The challenge for on-demand video transcoding is how to utilize cloud services to

maintain a robust Quality of Service (QoS) for viewers, while incurring the minimum cost

to the Streaming Service Provider (SSP). To address this challenge, we defined the

following objectives:

• Literature review on the application of cloud services for video streaming.

• Design an architecture for cloud-based video streaming;

• Analyze the affinity of different video transcoding operations on different types of

virtual machine.

• Develop scheduling methods and resource provisioning policies.

Based on the lessons we learned, in this dissertation, we proposed a cloud-based

video streaming service (CVSS) architecture to perform on-demand video transcoding. It

contains eight main components, namely Video Splitter, Admission Control, Time

Estimator, Task (i.e., GOP) Scheduler, Transcoding VMs, VM Provisioner, Video Merger,

and Caching. We first investigated a QoS-aware scheduling by adding a startup priority

queue in the architecture. The results show that it can produce low and stable startup

time without major impact on deadline miss rate. It also proves that on-demand video

transcoding can be applied to save storage cost. We also noticed that the affinity between

cost and QoS violation is not linear. That is, there are optimal points where streaming

service providers can pay reasonable money but still provide an acceptable QoS for their

clients.

To further investigate the cost efficiency, we compared and analyzed the
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performance and cost of different transcoding operations on various VM instances. The

impact of video contents on transcoding time has also been discussed to find the affinity of

video segment size and transcoding time difference among different VMs. With collected

affinity data information, SSPs can better balance the performance and cost with more

efficient mapping heuristics and resource provisioning policies.

With these information, we provided a self-configurable cluster of heterogeneous

VMs on cloud. The cluster is reconfigured dynamically to maintain the maximum affinity

with the arriving workload. Performance evaluations demonstrate that proposed mapping

heuristics significantly reduce the average startup delay as well as the deadline miss rate of

the video streams. In addition, the self-configurable VM provisioning policies enable

streaming providers to reduce the cost of using cloud services remarkably. We concluded

that VM provisioning based on heterogeneous VMs can reduce the incurred cost up to

85%, particularly, when the system is not oversubscribed. Additionally, the VM

provisioning policies make the architecture robust against uncertainties in the arrival of

streaming requests, without incurring any extra cost to the provider.

In addition to video on demand (VOD) streaming service, we also provide

on-demand video transcoding architecture for live streaming (VLSC). The main

differences between live streaming and VOD are that we do not have history execution

time of transcoding tasks, and if the transcoding tasks miss their presentation times, they

must be dropped (i.e., discarded) to keep up with the live streaming. The results show

that VLSC architecture with a QoS-aware scheduling method provide a low drop rate (less

that 10% of GOP tasks) and a low startup delay (less that 1 second).

In conclusion, the CVSS and VLSC architecture can be particularly useful for
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small- or medium-size video streaming service provides to utilize cloud services as their

infrastructure, and improve their clients’ satisfaction with low cost.

8.2.Future Directions

The focus of this dissertation was mainly on scheduling and resource provisioning aspects

of cloud-based on-demand video transcoding. There are several other open issues that

have not been addressed in this dissertation and can serve as a starting point for future

research. In the next section, we explain few avenues that this research can be extended in

future.

8.2.1.Storage and Computation Cost Trade-off for On-Demand Video Transcoding

To save unnecessary storage cost, in this dissertation, we proposed to transcode those

unpopular videos in an on-demand manner. However, how to decide a video should be

stored or transcoded on-demand has not been discussed in this dissertation. Although

transcoding all videos on-demand can save the storage cost, it incurs computation cost for

using VMs. Therefore, it is important to balance the trade-off between storage and

computation cost.

Jokhio et al. [53] presents a computation and storage trade-off strategy for

cost-efficient video transcoding in the cloud. The trade-off is based on the computation

cost versus the storage cost of the video streams. They determine how long a video should

be stored or how frequently it should be re-transcoded from a given source video.

Zhao et al. [54] take the popularity, computation cost, and storage cost of each version of

a video stream into account to determine versions of a video stream that should be stored

or transcoded.
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In the future work, with better understanding of the balance of video storage and

transcoding cost, we can even further split the video into segments to balance the storage

and computation cost of each video segment.

8.2.2.Similarity-based Scheduling for Video Transcoding

Commonly, a given video may need to be transcoded into multiple supported versions.

Current scheduling treats each request separately, that means for each transcoding

request, we have to send the video to the batch queue and transcoding VM, even though

they are the same video. To save more transcoding time, instead of decoding the original

video and then re-encoding it to a new version multiple time, Sambe [20] proposed a a

high speed video transcoding for multiple rates and formates in the distributed system, it

decodes the original video once, and encode it to different versions simultaneously.

Reusing the video segments to apply different transcoding operations decreases

total transcoding significantly, it also reduces the congestion of batch queue. While this

approach can be challenging, because transcoding the same video to different versions in

parallel can jeopardize other video tasks to wait longer time to be processed. Thus, better

scheduling method will be necessary to handle such issue.

8.2.3.Machine Learning Based Transcoding Time Prediction

An accurate transcoding time estimation can significantly benefit task scheduling and VM

resource provisioning. However, predicting the time is effortless. In this dissertation, we

are using VOD historic data as our estimated transcoding time for each GOP. With our

analysis results, we also find out there are some affinity between GOP size and

transcoding time, the confidence is around 70%. We propose a time estimation model for

our live streaming based on the GOP size. However, better estimation can be achieved by
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using machine learning approaches.

Deneke et al. [85] utilize a machine learning technique to predict each video

segment’s transcoding time before scheduling. It shows significantly better load balancing

than classical methods. In the future work, combining the analysis findings regarding the

affinity of GOP size, frame number and transcoding time, more sophisticated machine

learning technique can be designed to predict video tasks’ transcoding time.

8.2.4.Fault Tolerant Cloud-based Video Transcoding

Fault tolerance can be categorized into two categories: virtual machines failure and video

transcoding failure.

Virtual Machine Fault Tolerance

Virtual machine availability is essential for streaming service providers. To maintain good

availability, when one server is down, it needs to migrate its workloads to another server

to keep the service smooth. Vitual machine fault tolerance has been widely studied in the

cloud computing [86, 87, 88]. However, virtual machine migration for specific video

transcoding application needs further investigation.

Video Transcoding Fault Tolerance

Some transcoding tasks may get lost during processing (e.g., due to transcoding process

failure), it needs to informs the system to resend the missing tasks. To address video

transcoding failure, we can extend the architecture with admission control policies that

are failure-aware. The Admission Control component can include policies that regulate

GOP dispatching to the scheduling queue. The policies dispatch GOPs of streaming

requests that consumes GOPs with a higher rate.In fact, the Video Splitter generates
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GOPs for all requested video streams. Then, the admission control policies determine the

priority (i.e., urgency) of the GOPs and dispatches them accordingly to the scheduling

queue. Without an admission control policy in place, all of the GOPs are dumped to the

scheduling queue. This results into a large scheduling queue that in turn makes the

scheduling time-consuming and inefficient. More importantly, the admission control policy

dispatches GOPs that are urgent to keep up with the streaming. Hence, it makes the

whole architecture more efficient. The admission control policies act based on the inputs it

receives from Video Splitter and Video Merger. The Video Merger includes buffers for

transcoded GOPs of each video stream that demonstrate the GOP consumption rate of

each video.

8.2.5.Federation of Clouds for Video Transcoding

To optimally serve needs of their customers around the world, cloud service providers have

setup several data centers at different geographical locations over the world. However,

existing systems do not support mechanisms and policies for dynamically coordinating

load distribution among different cloud-based data centers in order to determine optimal

location for hosting streaming service (including both storage and transcoding) to achieve

better QoS. Further, the cloud service providers are unable to predict geographic

distribution of users consuming their services, hence, the load coordination should happen

automatically, and distribution of services should change in response to changes in the

load. To address this problem, Buyya [89] advocated creation of federated cloud

computing environment (InterCloud) that facilitates just-in-time, opportunistic, and

scalable provisioning of application services, consistently achieving QoS targets under

variable workload, resource and network conditions.
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In the context of video streaming, a more cost-efficient approach can be achieved

by utilizing federated cloud computing environment. To save cost, it is not just find the

nearest data center to stream a video, it also has to consider the cost of transcoding the

video. When a given video has been transcoded in a data center, if clients requested the

same version of that video in another data center, instead of transcoding it again, maybe

streaming it from the transcoded data center can save cost and even improve QoS.
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ABSTRACT

Video streams usually have to be transcoded to match the characteristics of

viewers’ devices. Transcoding is a computationally expensive and time-consuming task.

Streaming service providers have to store numerous transcoded versions of a given video

to serve various display devices, which becomes cost-prohibitive while the video streaming

demands increase significantly. Given the fact that viewers’ access pattern to video

streams follows a long tail distribution, we propose to transcode video streams with low

access rate in an on-demand manner using cloud computing services. The challenge in

utilizing cloud services for on-demand video transcoding is to maintain a robust QoS for

viewers and cost-efficiency for streaming service providers. To address this challenge, in

this dissertation, we present a Cloud-based Video Streaming Service (CVSS) architecture

which includes a QoS-aware scheduling method to efficiently map video streams to cloud

resources. With a detailed study and anlysis of the performance affinity of the transcoding

operations on different types of Virtual Machines (VMs), we proposed self-configurable

VM provisioning policies to transcode video in a more cost-efficient way. Simulation

results demonstrate that with the policies, CVSS architecture maintains a robust QoS for

viewers while reducing the incurred cost of the streaming service provider by up to 85%.

This dissertation also presents a Cloud-based Video Live Streaming (VLSC) architecture

that facilitates transcoding for live video streaming while considering QoS.
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