
Fog Computing for Low Latency, Interactive Video Streaming

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Vaughan Veillon

April 2019

c© Vaughan Veillon

2019

All Rights Reserved

Fog Computing for Low Latency, Interactive Video Streaming

Vaughan Veillon

APPROVED:

Mohsen Amini Salehi, Chair
Assistant Professor of Computer Science
The Center for Advanced
Computer Studies

Nian-Feng Tzeng
Professor of Computer Science
The Center for Advanced
Computer Studies

Miao Jin
Associate Professor of Computer Science
The Center for Advanced
Computer Studies

Sheng Chen
Assistant Professor of Computer Science
The Center for Advanced
Computer Studies

Mary Farmer-Kaiser
Dean of the Graduate School

To my parents for all their love and support.

Acknowledgments

My sincerest gratitude goes out to my supervisor, Professor Mohsen Amini

Salehi, for persistence and encouragement to push me further as an academic. I would

like to thank my thesis committee, Nian-Feng Tzeng, Miao Jin, and Sheng Chen.

Finally, my thanks goes out to the Center for Advanced Computer Studies and the

Graduate School at the University of Louisiana at Lafayette for their support.

v

Table of Contents

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1

1.1 Motivations . 1

1.2 Research Problem and Objectives . 4

1.3 Methodology Overview . 5

1.4 Thesis Contributions . 8

1.5 Thesis Organization . 9

Chapter 2: Background and Related Works . 11

2.1 Overview . 11

2.2 Background . 11

2.2.1 Video processing libraries. 11

2.2.2 Structure of video streaming. 11

2.3 Video Stream Scheduling . 14

2.4 Cloud Resource Provisioning for Video Stream 15

2.5 Distributed Fog Computing Systems . 17

2.6 Summary . 18

Chapter 3: Developing CVSE . 19

3.1 Overview . 19

3.2 Challenges in Providing Interactive Video Streaming
Services . 19

3.3 Architecture of CVSE . 23

3.3.1 Architectural components of cvse. 24

3.3.2 Video processing interface. 25

3.3.3 Compute engine interface. 27

3.3.4 Deployment interface. 27

3.3.5 Billing interface. 28

3.4 Implementation . 29

3.5 Experiments . 30

3.5.1 Analyzing worker node cluster size. 30

vi

3.5.2 Web demo. 33

3.6 Summary . 34

Chapter 4: Federated Fog Delivery Networks (F-FDN) 35

4.1 Overview . 35

4.1.1 Central cloud. 37

4.1.2 Fog delivery network (fdn). 37

4.2 Maximizing Robustness of F-FDN . 40

4.2.1 Network latency of streaming a video segment in
fdn. 40

4.2.2 Robust video segment delivery in f-fdn. 41

4.3 Methods for Video Streaming Delivery . 45

4.4 Performance Evaluation . 48

4.4.1 Analyzing suitable cache size for fdns. 49

4.4.2 Analyzing the impact of oversubscription. 51

4.4.3 Analyzing the impact of network latency. 52

4.5 Summary . 56

Chapter 5: Conclusion and Future Research Directions 57

5.1 Discussion . 57

5.2 Future Research Directions in Interactive Video
Streaming . 58

5.2.1 Heterogeneous container types. 58

5.2.2 Multi-tier f-fdn architecture. 60

5.2.3 On-demand processing of 360 degree videos. 61

5.2.4 Dynamic billing. 62

Bibliography . 64

Abstract . 70

Biographical Sketch . 71

vii

List of Tables

Table 4.1. Important symbols used in Section 4.2. 41

Table 4.2. Characteristics of various methods implemented to examine the
performance of the F-FDN platform. 45

viii

List of Figures

Figure 1.1. Map of the global distribution of the Open Connect Appliances

that constitute Netflix’s content delivery network [1]. 3

Figure 1.2. Viewers’ and video stream service providers’ interaction with

Cloud-based Video Streaming Engine (CVSE) . 6

Figure 1.3. High level view of the F-FDN architecture. Note the viewers
that are receiving video content from multiple FDN. 1) shows video
content coming from FDN local cache 2) shows video content being
processed on-demand 3) shows video content coming from a neighboring
FDN’s cache . 7

Figure 2.1. Structure of a video stream [2]. 12

Figure 3.1. System components of the Cloud-based Video Streaming Engine

(CVSE) . 22

Figure 3.2. High level view of interfaces that Cloud-based Video Streaming

Engine (CVSE) deals with. These interfaces provide the extensibility to

CVSE. 26

Figure 3.3. Deadline miss rate of CVSE in emulation mode with varying

numbers of worker nodes in the compute engine. Each VM’s processing

capability is based on the AWS g2.2xlarge VM type. 31

Figure 3.4. Home page of CVSE Web Demo. 33

Figure 4.1. System Components of the F-FDN architecture. It is
composed of a centrally located cloud and a federation of multiple Fog
Delivery Networks (FDNs). 36

Figure 4.2. Deadline miss rate of different streaming methods as the
caching level is increased. The simulations are run using a work load of
3500 segments. 51

Figure 4.3. Deadline miss rate at increasing workload intensity.
FDN-based methods cache 30% of video segments while CDN has 75%
of videos cached. 53

ix

Figure 4.4. Deadline miss rate with increasing latency of the edge network.
The experiments are conducted using 3500 video segments. FDN-based
methods contain 30% and CDN has 75% cached video contents. 54

Figure 5.1. Structure of multi-tiered F-FDN platform 59

x

Chapter 1: Introduction

Video streaming occupies more than 75% of the whole Internet bandwidth and it

is predicted that the growth will persist [3]. The resources required to provide video

streams are also increasing. High quality video (such as 4K Ultra High-Definition/UHD)

and advanced video streaming (such as 360 degree videos, motion tracking, face

recognition analysis, dynamic censorship) are becoming commonplace.

High quality and advanced video streaming increases data rate consumption and

demands low streaming latency [4]. With the demand for streaming video content

steadily increasing, the ability to effectively deliver video content to viewers that are

spread on a global scale is a major concern for video streaming providers [5]. Many

video stream providers (e.g., Netflix [6], YouTube [7], Amazon Prime Video [8]) are

reliant on clouds for their offered services; hence, clouds have gained a pivotal role in

the streaming process over the past few years. For many video stream providers, cloud

services are the major source of ongoing costs [9]. In addition, clouds are inherently

built in a centralized manner via gigantic datacenters. However, such a centralized

nature is detrimental to video streaming latency.

Accordingly, in this thesis, the goal is to investigate how distributed, fog, and

cloud computing can be efficiently utilized to offer a high quality, low latency, and

albeit, cost-efficient video streaming.

1.1 Motivations

In this thesis, we define interactive video streaming as the ability to perform any

form of processing for viewers, enabled by video stream providers, on the videos being

1

streamed. Examples of interactive video streaming include:

• Dynamic Video Stream Summarization - Consider an e-learner who does not have

time to stream the whole educational video and would like to stream only a

summary of the video with a given duration.

• Dynamic Content Rating of Video Streams - Family viewers of an online movie

would like to remove inappropriate content from the stream. Adult viewers of the

same stream may not have such a constraint.

• Dynamic Video Transcoding - The display device of a viewer cannot play a video

stream because the device does not support the streaming format. The viewer

would like to stream a converted (i.e., transcoded) version of the stream

supported by their device. In this case, viewers require dynamic transcoding of

video streams based on the characteristics of their display devices to be able to

watch the best quality video on their devices.

If a streaming service provider would like to provide these services in a

non-dynamic manner, then multiple versions of each video would have to be

pre-processed and persisted. With the increasing number of video processing options,

the number of possible versions of a video increases as well. In addition, the

heterogeneity of viewers’ devices (e.g., smart phone, smart TV, laptop) increases the

overall number of possible versions for each video. This is the case because a video

stream must be configured to the specific device that requests the stream. It quickly

2

Figure 1.1. Map of the global distribution of the Open Connect Appliances that constitute
Netflix’s content delivery network [1].

becomes infeasible to persist and cache all versions of videos, especially in the context

of a distributed system attempting to service globally-spread viewers.

To address increasing data rate concerns, streaming providers require large-scale

computing and storage resources. Therefore, many video providers (e.g., Netflix) have

migrated to cloud services to host and deliver their video contents. Using cloud services

alleviates the burden of maintaining and upgrading physical resources from the video

streaming provider. For instance, since 2015, Netflix stopped using their own

datacenters and moved their entire streaming service to Amazon cloud (AWS) and

Open Connect Appliances (OCA) [6]. Also, YouTube utilizes Google cloud services to

3

achieve their streaming demands [10]. However, the latency of accessing cloud services

can be significant, specifically, for viewers that are distant to the cloud servers [5].

In order to overcome this inherent latency issue, stream providers commonly

utilize a distributed system known as a Content Delivery Network (CDN) [5]. A CDN

caches part of the video repository into its edge locations that are physically close to

viewers, resulting in a lower latency compared to accessing from a more centrally

located cloud server. Figure 1.1 [1] shows the locations of the OCA devices that

constitute Netflix’s CDN infrastructure. A motivation of this work is to take existing

CDN practices and further enhance them, specifically with the capability of interactive

streaming.

1.2 Research Problem and Objectives

In this research the question that must be addressed is: How can we have a

generic video streaming engine that can support any interaction on the video streams for

viewers? Since there are a wide variety of possible interactions with video streams, it is

not possible to pre-process and store video streams in all possible versions; instead,

they must be processed upon viewer’s request, in a real-time manner. It is not possible

to process the video streams on viewers’ thin-clients (e.g., smartphones), due to energy

and computational limitations [11]. The emergence of cloud services has provided the

computational power required for such processing. However, the remaining question is:

how to provision cloud resources (e.g., containers and storage) for viewers’ interactions

and schedule streaming tasks on the allocated resources so that the Quality of

Experience (QoE) for viewers is guaranteed and the minimum cost is incurred to the

4

streaming provider?

The problem is that the large and fast-growing repository size of streaming

providers has made it infeasible to cache a large portion of the overall content on their

CDNs. In addition, caching on CDNs is less effective because of the fact that streaming

providers have to maintain multiple versions of the same video to be able to support

heterogeneous display devices and network conditions [12]. As such, instead of

pre-processing video streams into multiple versions, mechanisms for on-demand

processing (e.g., on-demand transcoding [12]) of video streams are becoming

prevalent [13, 14]. However, the challenge is that on-demand video processing cannot

be performed on CDNs since they are predominantly used for caching purposes [15].

These limitations lead to frequent streaming directly from more centrally located

cloud servers, which increases streaming latency, hence decreasing viewers’ QoE,

particularly in distant areas [16]. In this research, we aim to overcome these limitations

in existing systems and develop a system that can provide low latency interactive video

streams independent of a viewer’s geographical location.

1.3 Methodology Overview

Our goal is to enable video stream providers to offer a wide range of interactive

services to viewers (e.g., dynamic video summarization or dynamic transcoding)

through on-demand processing of video streams on the cloud. To achieve this goal we

have developed the platform Cloud-based Video Streaming Engine (CVSE). This

platform enables interactive streaming services through on-demand video stream

processing using potentially heterogeneous cloud services, in a cost-efficient manner,

5

Figure 1.2. Viewers’ and video stream service providers’ interaction with Cloud-based Video
Streaming Engine (CVSE)

r0.53

while observing viewers’ QoE guarantees. CVSE will be extensible, meaning that the

stream service provider will be able to introduce new interactive services on video

streams and the core architecture can accommodate the services while respecting the

QoE and cost constraints of the stream service provider. The ways in which viewers

and streaming providers can interact with CVSE are shown in Figure 1.2.

To ensure that the interactive video streams are provided with sufficiently low

latency, we have also developed a distributed video delivery platform, Federated Fog

Delivery Networks (F-FDN). F-FDN leverages the computing ability of fog systems to

carry out on-demand processing of videos at the edge level. F-FDN is composed of

several Fog Delivery Networks (FDN) that collaboratively stream videos to viewers

6

Figure 1.3. High level view of the F-FDN architecture. Note the viewers that are
receiving video content from multiple FDN. 1) shows video content coming from FDN
local cache 2) shows video content being processed on-demand 3) shows video content
coming from a neighboring FDN’s cache

with the aim of minimizing video streaming latency. Our goal in this study is to utilize

our platform CVSE to provide interactive video streams within our video stream

delivery platform F-FDN taking advantage of fog computing practices and dynamic

decision making based on probabilistic methodologies.

Using F-FDN, video streaming providers only need to cache a base version of a

video in an edge (fog) and process them to match the requested video processing service

and characteristics of the viewers’ devices in an on-demand manner. In addition,

F-FDN can achieve location-aware caching (i.e., pre-processing) of video streams. That

is, video streams that are popular (i.e., hot) in a certain region are pre-processed and

cached only in that region. Due to resource limitations of FDN, we propose to

7

pre-process only the hot portions of videos [17] and the remaining portions are

processed in an on-demand manner. To alleviate the on-demand processing load in an

FDN, we develop a method to leverage the distributed nature of F-FDN and reuse

pre-processed video contents on neighboring FDNs. The full ultilization of the F-FDN

platform can be observed in Figure 1.3. This allows the streaming of different portions

of a video from multiple sources (i.e., FDNs), subsequently, increasing viewers’ QoE.

1.4 Thesis Contributions

This thesis makes the following contributions:

• Development of an interactive cloud-based streaming platform (CVSE). The

platform follows micro-service architecture and adopts serverless computing

paradigm in a sense that users (i.e., stream providers) who deploy CVSE do not

need to worry about details of server configurations. CVSE is flexible from several

aspects. In particular, it can be extended by new services defined by service

providers. It can work under various computing platforms, and offers variety of

billing options to viewers.

• Evaluation of CVSE platform when performing various stream processing tasks.

We evaluate the performance of CVSE in accommodating new interactions

(services) defined by streaming providers. We also experiment with the streaming

performance under various computing engines, namely emulation, thread-based,

and containers.

• Proposing F-FDN platform to improve QoE for viewers’ located in distant areas.

8

The platform leverages regional popularity of video streams and creates a

federation of fog computing systems to improve interactive video streaming QoE

for viewers.

• Developing a method within each FDN to achieve video streaming from multiple

FDNs simultaneously. The platform has the ability to stream cached video

segments from multiple sources and at the same time processes some other

segments. The platform makes decision probabilistically at the video segment level

and determines the best way to stream a video segment to a requesting viewer.

• Analyzing the impact of F-FDN on the viewers’ QoE, under varying workload

characteristics. We evaluate the performance of F-FDN against CDN technology

and several other baseline approaches for interactive video streaming. We

demonstrate the impact of considering end-to-end latency which is composed of

both communication and computation latencies. We evaluate the performance of

F-FDN against streaming approaches that are oblivious to the latency imposed

both by communication and computation.

1.5 Thesis Organization

This thesis is organized into the following chapters:

• Chapter 2 is a collection of background and related works in the literature. The

contributions of these works and their relation to the work of this thesis will be

presented.

9

• Chapter 3 provides an overview of the architecture and development of the CVSE

platform. The means in which interactive video streams are provided and the

different ways in which CVSE can be deployed are further detailed. We are

preparing a journal paper to be submitted on development of CVSE platform.

• Chapter 4 details the architecture of the F-FDN platform. In addition, the

probabilistic decision making method used for streaming video segments are

explained. A number of experiments were performed testing F-FDN against

alternative video delivery methods through emulation of video stream requests.

This chapter of thesis has derived from the following publication:

– Vaughan Veillon, Chavit Denninnart, Mohsen Amini Salehi, “F-FDN:

Federation of Fog Computing Systems for Low Latency Video Streaming”, In

Proceedings of the 3rd IEEE International Conference on Fog and Edge

Computing (ICFEC ’19), Larnaca, Cyprus, May 2019.

• Chapter 5 concludes the work and outlines the future directions of the CVSE and

F-FDN platforms.

10

Chapter 2: Background and Related Works

2.1 Overview

This chapter covers a number of background works in regards to the nature of

how videos are streamed and the viewing behavior of viewers when videos are streamed.

Additionally, a number of works related to this research are provided in this chapter.

This thesis builds upon the field of cloud resource provisioning and utilizing certain fog

computing practices that aim to enhance user experience.

2.2 Background

2.2.1 Video processing libraries. In CVSE we utilize a video processing

software library known as FFmpeg. FFmpeg is a mutlimedia framework that allows

CVSE to perform various video processing tasks (i.e., decoding, encoding, transcoding,

transmuxing, filtering, etc.) [18]. However, it is important to note that CVSE is not

limited strictly to the use of FFmpeg as the sole video processing software. Based on

the extendability of the architecture of CVSE, any new software can be integrated into

the platform to be utilized in newly defined services.

2.2.2 Structure of video streaming. As shown in Figure 2.1 [2], a video

stream consists of a number of sequences. Each sequence is divided into several GOPs.

A GOP in composed of multiple frames beginning with the I (intra) frame, the rest of

the frames consist of either P (predicted) frames or B (bi-directional predicted) frames.

Every frame within a GOP has multiple slices that are composed of a number of

macroblocks (MB) which is the basic operation unit for video encoding and decoding.

There are two types of GOPs, open-GOP and closed-GOP. In the case of closed-GOP,

11

Figure 2.1. Structure of a video stream [2].

12

there exists no interdependence between GOPs, which allows each closed-GOP to be

processed independently [2]. It is important to note that in this work, we use

closed-GOPs in the videos that we stream. Due to this nature of GOPs, video

streaming is achieved via processing and streaming independent video segments in the

form of Group Of Pictures (GOP) [19].

QoE of the viewer is defined as the ability to stream each GOP within its

allowed latency time to create an uninterrupted streaming experience. The allowed

latency time for a GOP is its presentation time; hence, that is considered as the GOP’s

deadline [19, 20]. It is important to note that ”GOP” and ”video segment” are used

interchangeably throughout this work.

A large body of research studies have been undertaken to maintain the desired

video streaming QoE through efficient use of cloud services [12, 13]. Particularly, the

earlier studies have shown that the access pattern of video streams follows a long-tail

distribution [21, 17]. Meaning, only a small percent of videos are streamed frequently

(known as hot video streams) and the majority of videos are rarely streamed [22]. For

instance, in the case of YouTube, it has been shown that only 5% of videos are hot [23].

It has also been shown that, even within a hot video, some portions are accessed more

often than others. For instance, the beginning portion of a video or a popular highlight

in a video is typically streamed more often than the rest of the video [17].

Considering this long-tail access pattern, streaming service providers commonly

pre-process (store) hot videos or GOPs in multiple versions to fit heterogeneous

viewers’ devices [17]. Alternatively, they only keep a minimal number of versions for the

13

rarely accessed videos [12, 24]. For any portions of the video that are not pre-processed,

they are processed in an on-demand manner upon viewer’s request [13].

A video stream of an interactive video, such as 360 degree or story branching

videos, changes based on how a viewer is consuming it. These types of videos benefit

greatly from lowered streaming latency. In general, if the latency is high, the viewer

will need a higher amount of buffer to cover processing and streaming delay. Based on

the nature of interactive videos, some parts of the buffer may end up not being viewed.

Therefore, low latency streaming reduces the amount of buffer needed and thus reduces

the amount of wasted processing.

2.3 Video Stream Scheduling

A number of works have been done regarding scheduling video streaming tasks

on cloud. Video processing is computationally heavy to process. As such, many video

streaming providers tend to outsource their storage, computation, and bandwidth

requirements to clouds [25].

Jokhio et al., [26] present a computation and storage trade-off strategy for

cost-efficient transcoding in the cloud. For a given stream, they determine if it should

be pre-transcoded, or should be processed upon request. Zhao et al., [27] consider the

popularity, computation, and storage costs of each version of a video stream to

determine if it should be pre-transcoded or not. Both of these works demonstrate the

possibility of lazy processing of videos streams. However, they do not study the general

case of interactive video streaming and do not explore the impact of efficient scheduling

and VM provisioning.

14

In systems with uncertain tasks arrival, scheduling can be performed either in

the immediate or batch mode [28]. In the former, the tasks are mapped to machines as

soon as they arrive whereas, in the latter, few tasks are batched in a queue before they

are scheduled. Khemka et al., [28] show that the batch mode scheduling outperforms

the immediate mode in heterogeneous systems. In the batch-mode, tasks can be

shuffled and they do not have to be assigned in the order they arrive. Nonetheless,

currently, there is no batch scheduling method tailored for video streaming to consider

their unique QoS demands.

Ashraf et al., [29] propose an admission control and scheduling systems to

foresee the upcoming streams rejection rate through predicting the waiting time at each

server. The scheduling method drops some video segments to prevent video processing

delays. In contrast, the admission control policy we propose assigns priority to video

streaming tasks based on their position in the stream. Also, it is aware of the viewer’s

subscription type and is able to reject tasks with lower priority (e.g., free viewer) to

alleviate over-subscription of VMs.

2.4 Cloud Resource Provisioning for Video Stream

Resource (VM) Provisioning for Video Stream Processing. Previous works on

cloud-based VM provisioning for video processing (e.g., [30, 31]) mostly consider the

case of offline video processing. Thus, they mainly focus on reducing the makespan

(i.e., total execution times) and the incurred cost. Netflix uses a time-based approach

for VM provisioning on cloud [32]. It periodically checks the utilization of allocated

VMs and scales them up by 10%, if their utilization is greater than 60% for 5 minutes.

15

The VMs are terminated by 10%, if their utilization remains less than 30% for 20

minutes. In [33, 25], a QoS-aware VM provisioning was proposed for lazy video stream

processing. In [34, 35], authors provide an on-demand transcoding for cost-efficient

live-streaming videos on geographically distributed clouds. Nonetheless, neither of these

methods consider heterogeneous VMs offered by cloud nor they provide a generic

platform that can accommodate any user-defined interaction on video streams.

With traditional CDNs, the CDN servers are only used to cache data. This

implies that any update to the CDNs’ contents is dependent on centrally located cloud

servers. With the integration of fog/edge computing into a distributed system like a

CDN, computation can be performed on the network edge, near data users. Having the

computation performed closer to the data source reduces the streaming latency, hence,

higher QoE [36]. Alternatively, our system utilizes fog computing to perform

on-demand video processing to reduce video streaming latency.

Li et al., [12] developed an architecture for CVSS, Cloud-based Video

Streaming Service. CVSS utilizes cloud resources to deliver video streams through a

balanced combination of on-demand processing and partial caching in order to

minimize use of resources and maintain high QoE to viewers. Our work integrates

CVSS into a distributed system in the form of F-FDN, where fog computing is

performed by the CVSS located in FDN. In this work, the CVSS that was proposed has

been further expanded, resulting in our video stream processing platform CVSE.

16

2.5 Distributed Fog Computing Systems

Lin et al., [37] propose a system, called CloudFog, that utilizes fog computing

to enable thin-client Massive Multiplayer Online Gaming while maintaining a high user

QoE. Their system works by having powerful and centrally located servers perform the

computational tasks that are associated with the game state. The less computationally

intensive task of rendering and streaming game video is handled by intermediate

machines (called supernodes) that are physically closer to the users. This enables a user

to play the game without the need of a powerful device, since the heavy computation is

handled within the system enabled by fog computing. Similar to [37] we stream video

from physically close servers (i.e., FDN). However, our work is different than [37] in the

sense that our system has more intelligence in reusing contents on peering FDNs. This

enables F-FDN to operate with a greater independence from the central cloud.

Ryden et al., [38] provides an architecture for a fog system, called Nebula,

designed for applications where user data is geographically spread. An example of this

type of application is managing video feeds from multiple cameras spread amongst

various locations. Nebula specializes in performing location-aware and and

location-specific processing of data-intensive and compute-intensive tasks. They were

able to fully utilize the fog machines by monitoring the data storage and computational

potential of the machines by forming machine groups based on their proximity to

neighboring machines. Their methodology allows for multiple machines to compute or

store data that is only relevant to its location. In a similar fashion, F-FDN keeps

updated knowledge of the data stored in its FDN. Unlike [38], we do not estimate the

17

storage or computational potential of our FDN, but the knowledge we maintain allows

us to consider the cached video content of multiple FDN for every video being streamed.

Provensi et al., [39] worked on a platform called Maelstream, a decentralized,

self-organizing system that delivers media streams in a peer-to-peer manner. They

focus on live streaming applications with users that consist of producers and consumers,

such as webinars. Each node of Maelstream receives its media stream from neighboring

nodes based on dynamic latency estimations and fair bandwidth usage. Similarly,

F-FDN chooses the FDN from where videos are streamed based on accurate latency

estimations in addition to the estimations from on demand video stream processing.

Also, F-FDN follows a hybrid peer-to-peer and hierarchical structure as opposed to a

purely decentralized nature that Maelstream has.

2.6 Summary

Many research works have been carried out to improve system performance

utilizing fog computing, however, none of them have concentrated on video streaming in

the ways we propose in F-FDN. To elaborate further on the way our on-demand video

streaming engine (CVSE), which is utilized within FDNs, operates, in the next chapter,

we explain architectural details and study the performance of CVSE.

18

Chapter 3: Developing CVSE

3.1 Overview

In this chapter, an interactive video streaming engine is developed (called

CVSE). We present the challenges that are inherent to interactive video streaming. The

goals of CVSE include:

• The ability to extend the platform with any video processing service even if added

from third parties.

• Update the platform with these new service in a real-time manner.

• Allocate an appropriate amount of resources based on the current workload of the

system.

We provide a detailed explanation of the CVSE architecture. In the final point

of the chapter, we run tests to measure the performance of CVSE when executing

various video processing tasks.

3.2 Challenges in Providing Interactive Video Streaming Services

While the research problems of cloud resource provisioning and scheduling have

been thoroughly investigated (e.g., in [40, 41, 42]), the challenges for video streaming

are different in certain ways from existing solutions for other applications. In particular,

video streaming tasks have unique QoE demands, distinct processing demands, and

characterizable access patterns. In addition, video streaming has become a dominant,

resource-demanding service and is used in various applications, from e-learning [43] to

natural disaster management [44], and public broadcasting [34]. The prevalence of

19

video streaming (currently forms around 75% of the whole Internet traffic [45]) has

generated a need for tailored solutions in order to provide efficient processing of videos.

The main challenge in this chapter is: Is it feasible to provide interactive video

streaming using cloud resources? One approach to address this challenge is to

pre-process all possible versions of each video. However, this approach is not always

feasible for interactive video streaming. The main reason being, in video on demand

(VOD), given the long tail distribution in accessing video streams [46] and the fact that

viewers’ requests can contain combinations of multiple configurations together,

generating exhaustively all possible versions for each video is cost-prohibitive [27]. For

instance, just to cover all display standards, for each video stream, 90 to 270 versions

must be pre-processed and stored [47, 48]. In fact, pre-processing of video streams can

be performed only for frequently-used interactive services, in a way called “lazy

processing”. The majority of streams (i.e., those in the tail of access distribution) can

be processed in an on-demand (i.e., lazy) manner.

The challenge in lazy processing of video stream requests is two-fold: first, video

stream processing is computationally expensive and requires large amounts of

computational infrastructures, requiring a significant cost to the stream service

provider [49]; second, the video processing has to be performed in a real-time manner

(i.e., with minimum latency) to guarantee the QoE demands of the viewers.

To address the first challenge, video stream providers commonly rely on cloud

services for their computational demands [32]. Since cloud providers commonly provide

heterogeneous computational services (virtual machines (VMs) and containers) that

20

can be matched with different interactive tasks and have diverse prices. To minimize

the incurred cost, the stream service provider needs to acquire heterogeneous cloud

resources that have the best match (i.e., affinity) with the requested interactions.

For the second challenge, a stream service provider needs to assure that it can

guarantee a certain QoE level, regardless of the viewer’s geographical location, in the

presence of budget constraints, and with uncertainties in request arrival. Robustness is

defined as the degree to which a system can function correctly in the presence of

uncertain parameters in the system [50]. An interactive video streaming service is

robust, if it can guarantee a certain QoE level, regardless of the request arrival intensity

and the geographical location of the viewers. The main QoE demands from interactive

video playing is to have video streams delivered uninterrupted in a timely manner.

That is, the video stream tasks must be completed within a short deadline, which is

their presentation time. In addition, viewers generally judge the quality of a stream

service provider based on the delay they perceive when streaming begins, termed the

startup delay. Recent studies [46] show that around 60% of viewers watch only a few

seconds of the stream before terminating it. Hence, the unique QoE demand of viewers

is defined as minimizing the start-up delay and the deadline miss rate. To address the

problem of delivering video streams while maintaining sufficient QoE to geographically

spread viewers, we developed the F-FDN platform which utilizes CVSE. The F-FDN

platform is further explained in Chapter 4. While the challenge of maximizing cloud

resource usage is addressed in the CVSE platform through a combination of on-demand

processing and partial caching of pre-processed video streams explained in this chapter.

21

Figure 3.1. System components of the Cloud-based Video Streaming Engine (CVSE)

22

3.3 Architecture of CVSE

The individual components and the ways in which stream service providers and

viewers interact with CVSE are presented in Figure 3.1. Firstly, each viewer issues a

streaming request for a particular video that needs to be processed to the viewer’s

specifications. Upon receiving a streaming request from a viewer, multiple video

streaming requests are generated. Each request is a Group of Pictures (GOPs) [51]

processing requests. Each GOP can be processed independently and it has its own

individual deadline which is its presentation time. For each video stream, the

Admission Control component assigns a priority value to all its GOPs and dispatch it

to the scheduling queue. The Resource Provisioner component allocates the appropriate

resources from cloud (e.g., containers and VMs), forming a cluster of worker nodes to

execute the processing of GOPs. Each worker node maintains a local queue to pre-load

GOPs’ data and execute assigned tasks in order. The Resource Provisioner component

monitors the performance of the worker nodes and adaptively configures the size of the

cluster based on workload intensity. The Time Estimator provides predictive

information on the affinity of GOP streaming tasks based on historical execution times.

The Scheduler component uses the estimated execution time information for efficient

assign tasks to worker nodes. Video Merger collects the processed streams using an

output window for each stream. In the event that a GOP is delayed (e.g., due to

failure), Video Merger asks the Admission Control to resubmit the GOP request with

urgent priority. The Caching component decides if a part of, or the whole processed

stream should be stored and reused.

23

3.3.1 Architectural components of cvse. CVSE is able to achieve

interactive video streaming through a number of individual components working in

tandem as shown in Figure 3.1. The function of each component is explained below.

• Ingestion Processor - handles all stream requests being made by viewers. The

processing of the video stream is determined by the characteristics within a

viewers’ request.

• Video Repository - contains a copy of each video available on the CVSE platform

at an unspecified setting. Once a video stream request is made, then a copy of the

video will be processed to the specifications of the video stream request.

• Caching - contains cached, pre-processed portions of videos in different versions

based on their popularity. For parts of a video that are not cached, they are

processed on-demand.

• Service Repository - the collection of processing types that the CVSE can

perform. As shown the Figure 3.1, new stream processing services can be defined

and extended within CVSE by third parties (e.g., stream service providers).

• Admission Control - assigns a priority level to each video segment based on their

level of urgency.

• Time Estimator - collects and maintains historical execution data to estimate

execution time of new tasks.

• Task Scheduler - distributes streaming tasks to available worker nodes based on

24

scheduling policies, the current workload of resources, task’s meta data and its

assigned priority.

• Resource Provisioner - allows the platform to dynamically allocate or deallocate

heterogeneous resources in the Compute Engine based on processing demands.

• Compute Engine - performs the processing of video segments to the specified

characteristics.

• Video Merger and Output Windows - location where the video segments of the

stream are copied to once processing is finished. These segments are then sorted

and streamed to the viewer.

CVSE also contains various interfaces in which the platform can be extended.

These interfaces can be observed in Figure 3.2. The details of these interfaces are

explained in the following subsections.

3.3.2 Video processing interface. The Video Processing Interface allows

CVSE to perform any type of video processing that a stream service provider would like

to offer its viewers. When a stream service provider chooses to utilize CVSE as its

video streaming engine, any form of video processing offered to viewers is made

available within the Video Service Repository of CVSE. When the stream service

provider wants to offer a new type of video processing that is not readily available, they

can send the request through the Video Processing Interface of CVSE. The request

needs a defined unique processing service name, required software, and the command

that must be executed to perform the processing.

25

Figure 3.2. High level view of interfaces that Cloud-based Video Streaming Engine (CVSE)
deals with. These interfaces provide the extensibility to CVSE.

26

For example, if a stream service provider would like to provide subtitles in a

foreign language that is currently not offered in CVSE, then they needs to define the

video processing task of providing said subtitles to a video. Once the processing task is

defined, it can be added to the CVSE as a new service. When the CVSE acknowledges

the request, the newly defined service can be offered to viewers.

3.3.3 Compute engine interface. The Compute Engine Interface enables the

worker nodes that perform the video processing of CVSE to exist in various forms.

Currently we have four options in which CVSE can allocate its compute engine:

emulation, local threads, VMs, and containers. Emulation mode allows us to run

benchmarks on CVSE, observing how CVSE operates in each configuration (such as

during oversubscription) without utilizing large amounts of resources in the process.

The local thread compute engine option creates threads as the worker nodes for video

processing on the host machine that is also running CVSE. This option is primarily

used for in-house testing or when the workload is not enough to warrant even a single

dedicated worker node. CVSE can outsource its compute engine to cloud resources

through either VMs or containers operating as its worker nodes. This is achieved by

CVSE establishing a socket connection to the worker node daemon running in the VM

or container. Once the connection is established, CVSE can send any number of

streaming tasks to the worker nodes of the compute engine. CVSE will also be able to

accommodate additional compute engine options as they are continuously developed

and become readily available (e.g., serverless computing service).

27

3.3.4 Deployment interface. The Deployment Interface allows for CVSE to

be deployed in different capacities. The ways in which CVSE can be deployed allows for

the platform to be flexible in accommodating the needs of stream service providers

whether it be large-scale or small-scale. We currently have four options in which CVSE

can be deployed: local, cloud, edge, or federated deployment. The local deployment

option allows CVSE to operate on a desktop, laptop, or any local machine. Similar to

the local deployment, the cloud deployment option allows CVSE to operate within

public cloud resources (e.g., Amazon Web Services, Microsoft Azure, Google Cloud

Platform) or private cloud servers.

The edge deployment of CVSE pertains to a stream service provider maintaining

a geographically distributed system in which there are a number of edge servers that

are located physically close to viewers. In this type of distributed system, a form of

CVSE is deployed in each of these edge servers. Finally, the federated deployment of

CVSE is similar to the edge deployment, however there is also a certain level of

communication and coordination that is performed between the edge servers in the

distributed system. The nature of the federated and edge deployment are further

expanded upon in Chapter 4.

3.3.5 Billing interface. The Billing Interface allows for stream service

providers to tailor the costs incurred to their viewers when using CVSE. CVSE offers

two main forms of billing: a monthly charge in the form of a subscription, or a

pay-as-you-watch model. The monthly billing policy allows for unlimited amounts of

streaming at whatever tier of subscription level the viewer has paid. The pay as you

28

watch billing policy allows for viewers to be charged not only by the amount of time

that videos are streamed, but also by the type of video processing that is performed for

the video stream. Complicated types of video processing require more resources,

therefore, they are be more expensive than simpler tasks.

We note that our CVSE platform enables the pay-as-you-watch billing manner.

This type of billing is fairer and fits viewers who sporadically use the streaming service

(e.g., to watch movies). In this case, CVSE has the ability to charge users based on the

amount of cloud resources they have utilized to offer their requested services. It is

possible that third-party companies emerge whose job is only offering new services on

video streams and they charge for making use of their services, in addition to the cost

of cloud resources.

3.4 Implementation

CVSE is implemented primarily in Java. It utilizes ffmpeg (multimedia

conversion library) [18], and other video processing utilities through the calling of batch

scripts. All communications from front end (i.e., viewers and streaming service

providers) are through web-services. All communication between the components that

span across multiple machines is achieved through socket connections. Communication

with computing resource provider (i.e., cloud service provider) are made through

official API of each platform.

CVSE is designed and implemented in a modular and extendable way. Each

main components are implemented as a class interface, there are several different

implementations which extend the same interface. Therefore a suitable variant of each

29

component can be selected at the deployment stage.

For example, the time estimator must have a function to estimate the execution

time based on GOP request and machine type. The most basic version returns a

constant number based on operation type. A more sophisticated version allows for more

detailed estimation based on various offline-learned historical data tables and other

various factors. An experimental version learns and adapts its estimation on the fly as

the the CVSE continues to run. This allows for CVSE to be not only a practical video

streaming platform, but also a platform for experiments to research in depth for each

component. For instance, when focusing on task scheduling policy, CVSE can be

deployed with the caching system disabled and Resource Provisioner is set to not gain

extra resources in face of oversubscription. With the ability to isolate each component

of CVSE, we are able to focus more specifically on system weaknesses and strengths

when testing new features.

3.5 Experiments

In order to show the performance of CVSE, we ran tests to demonstrate the

dynamics within the platform. In Subsection 3.5.1., we show CVSE operating in

emulation mode. We show the impact on performance within CVSE when the number

of worker nodes in the compute engine varies during oversubscription. To show the

results of video stream processing by CVSE, in Subsection 3.5.2. we provide an example

of CVSE operating in local thread mode as a part of a web demo. Here we demonstrate

CVSE processing a video to different settings requested by a viewer.

30

Figure 3.3. Deadline miss rate of CVSE in emulation mode with varying numbers of worker
nodes in the compute engine. Each VM’s processing capability is based on the AWS g2.2xlarge
VM type.

2000 2400 2800 3200
Number of Video Segments

0

20

40

60

80

100

Se
gm

en
t d

ea
dl

in
es

 m
iss

ed
 (%

) Four VMs
Five VMs

Six VMs
Seven VMs

Eight VMs

31

3.5.1 Analyzing worker node cluster size. CVSE needs to be sensitive to

the QoE requirements for each video stream requests that is being processed. In order

for compute engine of CVSE to sufficiently meet these QoE demands, enough resources

must be allocated in the form of worker nodes, which is handled by the resource

provisioner. An additional consideration of CVSE is to be cost-efficient with its

allocation of computational resources. If an excess of worker nodes are allocated based

on the current workload of the platform, then there are resources are wasted.

These factors dictate the balance that the resource provisioner must keep to

neither over-allocate nor under-allocate computational resources (i.e., size of the cluster

of worker nodes) when CVSE is processing video segments. In Figure 3.3 we ran CVSE

in emulation mode against a number of workload testbenches. The lowest workload

starts at 2000 video segments and the workload increases by 400 total segments up to

3200 total segments. In this experiment, the cluster size of the worker nodes were set to

a fixed number in order to show the relationship of resource allocation and

oversubscription. It is important to note that the processing power of worker node

within the compute engine of CVSE is modeled after the AWS g2.2xlarge VM type.

The results show a dramatic difference in deadline miss rate for particular

cluster sizes once workloads reach a certain volume. For instance when the cluster of

worker nodes consists of 7 VMs, at 2000 total video segments the deadline miss rate is

close to 0%. However when the workload is increased to 2400, the deadline miss rate for

the 7-VM cluster size increases to approximately 26%. These results show that dynamic

allocation of resources within the compute engine of CVSE is crucial to maintaining

32

performant QoE standards.

Figure 3.4. Home page of CVSE Web Demo.

[(a) Video processed to a low resolution.]

[(b) Video processed to a high resolution.]

3.5.2 Web demo. In Figure 3.4 we provide screenshots of a web demo of

CVSE. This demo processes videos to various requested settings, then allows the viewer

to watch the processed video. The demo consists of two parts: 1) A Java project that

33

runs CVSE as a web service with an open socket that can receive incoming stream

requests, 2) A web page hosted on a local web server that sends streaming requests to

the web service, and then plays the processed video provided by CVSE. In this demo,

CVSE is being run using local threads as the worker nodes of its compute engine. In

Subfigure 3.4 (a), we show a video that CVSE has processed to a very low resolution.

In Subfigure 3.4 (b), the same video is shown, but the video has been processed by

CVSE at a high resolution.

3.6 Summary

In this chapter, we addressed the feasibility of an interactive video streaming

using cloud resources through the development of the platform CVSE. We have shown

the extensibilty of CVSE in multiple capacities, namely in its deployment, video

processing services, and billing policies. We also highlighted the importance of proper

allocation of cloud resources within the CVSE platform. In the following chapter, we

address the challenge of providing interactive video stream while maintaining low

latency to geographically spread viewers.

34

Chapter 4: Federated Fog Delivery Networks (F-FDN)

4.1 Overview

The aim of F-FDN is to deliver the highest possible QoE to viewers,

independent of their geographical location. We position F-FDN to achieve this by

utilizing all of the resources that we have available in the system. One of the most

differentiating qualities of F-FDN compared to other video streaming systems is the

ability to evaluate on a segment by segment basis how to stream a video. It is worth

noting that, in traditional CDNs, the entire video is always streamed from the same

CDN server as long as a connection is maintained with the viewer [52].

F-FDN is composed of several connected, peer Fog Delivery Networks (FDNs)

that are also connected to a central cloud server. An FDN caches pre-processed GOPs

for videos that are hot in that region. This results in each FDN having varied

pre-processed video content that is optimized to the viewers local to that FDN. When a

video stream is requested, the viewer is connected to its most local FDN. As the video

is being streamed, decisions are made on a segment (GOP) by segment basis as to how

the GOP is delivered to the viewer. The aim of these decisions is to maximize the

likelihood of meeting each GOP’s deadline. The process in making these decisions is

described in detail in Section 4.2.

An example of a video being streamed to a viewer from multiple sources can be

observed in Figure 1.3. As we can see in the figure, using F-FDN, a video segment can

be streamed to a viewer in three different ways:

1. FDN Local Cache - the FDN local to the viewer already has the requested video

35

Figure 4.1. System Components of the F-FDN architecture. It is composed of a
centrally located cloud and a federation of multiple Fog Delivery Networks (FDNs).

segment in it’s cache and streams the segment to the viewer.

2. Processed On-demand - the local FDN processes the missing (i.e., non-cached)

segments according to the characteristics of the request and then stream them to

the viewer.

3. Neighboring FDN’s Cache - the missing segments exist in the cache of a

neighboring FDN, the segment is then transferred to the local FDN and then

streamed to the viewer.

At a high level, F-FDN is composed of two main components, namely a Central

Cloud and a distributed network of FDNs. Figure 4.1 shows the internals of the Central

Cloud and each FDN. Details of each component is elaborated in the next subsections.

36

4.1.1 Central cloud. The Central Cloud, with virtually unlimited storage and

processing capabilities, is where all streaming requests are initially ingested and where

all FDNs in the system are managed. As we can see in Figure 4.1, Central Cloud

consists of four main components:

• Ingestion Processor - handles all the incoming stream requests made by viewers.

It determines which FDN is the most local to the viewer in order to start the

video streaming process. The FDN that is selected is the one that determines the

way each video segment is streamed to the viewer.

• Metadata Manager - keeps track of all the cached video segments contained

throughout the FDNs. In addition, it keeps track of other metadata, such as file

size and network latency between neighboring FDNs. In Section 4.2, we explain

how this metadata helps in determining the way to stream a video to the viewer.

• Fog Monitor - keeps track of the availability of FDNs via sending heartbeat pings

to them. Also, it evaluates network latency between FDNs which is then

communicated to the Metadata Manager to maintain up-to-date information.

• Video Repository - contains a repository of all videos, pre-processed in multiple

versions. This is where any cached video content on FDNs originates from. In the

event that one or more video segments are missing in a local FDN, one decision

can be fetching the segments from the video repository of the Central Cloud.

4.1.2 Fog delivery network (fdn). Each FDN consists of six components, as

shown in Figure 4.1 and explained below.

37

• Request Processor - receives video stream requests from the Central Cloud and

puts them into a request queue.

• Segment Cost Estimator - makes the decision as to how each video segment in a

video stream request should be streamed to viewers with minimum latency (i.e.,

maximum likelihood of meeting the segment’s deadline). For a given video

segment, it is determined whether the segment should be streamed from the local

FDN’s cache, processed on-demand by the local FDN, or retrieved from a

neighboring FDN’s cache and then streamed by the local FDN. The process by

which these decisions are made is explained in Section 4.2.

• Neighboring FDN Metadata - contains knowledge of all cached video segments on

other FDNs and the network latency for accessing them. It is worth noting that

the latency of accessing Central Cloud is also maintained by this component.

• On-demand Processing Engine - is in charge of on-demand processing of video

streams. We have developed the engine in our prior studies [12, 13]. The engine

uses multiple worker Virtual Machines (VMs) and enables the FDN to process

incoming video segments based on the characteristics of the viewer’s device.

• Cached Video Segments - GOPs of videos that are determined to be hot [17] in a

region are pre-processed and cached by the FDN. For a given video streaming

request, if some of the segments are locally cached, they impose the minimum

network latency and cause higher QoE for the viewer.

38

• Video Merger and Output Window - where the video segments of the video

stream are put in the correct order and then streamed to the viewer.

39

4.2 Maximizing Robustness of F-FDN

Streaming service providers aim at providing an uninterruptable streaming

experience to their viewers. They strive to avoid and minimize missing deadlines of

streaming tasks. The distributed nature of F-FDN provides multiple options (sources)

to stream a single video segment. To minimize missing the presentation deadline of a

video segment, it should be streamed from the source that imposes the minimum

streaming latency; hence, offering the maximum probability to meet the segment’s

deadline.

The streaming latency is affected by two main factors, namely video segment

processing time and transfer time across the network. In particular, both of these

factors have a stochastic nature [53]. An ideal method to stream videos in F-FDN

should be robust against these stochasticities. That is, the method should maintain its

performance, in terms of meeting the deadlines of streaming tasks, even in the presence

of these uncertainties. We implement a method within FDNs to account for the

uncertainties of F-FDN and maximize the probability of meeting the deadline for a

given streaming task. This method is utilized within the Segment Cost Estimator

component of FDN and makes the FDN robust.

4.2.1 Network latency of streaming a video segment in fdn. For a given

video segment i, the latency probability distribution of transferring it between two

points can be obtained based on the segment size (detnoted si) and the amount of data

that can be transferred within a time unit between the two points (i.e., network

throughput). Prior studies show that the latency probability distribution to transfer

40

Table 4.1. Important symbols used in Section 4.2.

Symbol Description

si size of video segment i
ri probability of processing segment i

on time (robustness)
NC
i (µi, σi) overall delivery distribution

(end-to-end latency) for segment i
N τ
i (µjv, σjv) distribution of network throughput between

two points for a given segment i
NE
i (µij , σij) processing time distribution for segment i

video segment i follows a normal distribution (denoted N τ
i) [54, 14]. The two points

can be between two FDNs or an FDN and a viewer.

4.2.2 Robust video segment delivery in f-fdn. We formally define

robustness of segment i, denoted ri, as the probability that segment i is delivered to

the viewer’s device before or at its deadline δi.

As mentioned earlier, each video segment can be retrieved using one of the

following choices: (A) from the FDN’s local cache; (B) processing it on-demand in the

local FDN; (C) from a neighboring FDN’s cache.

In choice (A), the robustness of delivering segment i is obtained from the

segment latency probability distribution between local FDN j and viewer’s device v. As

such, the probability distribution for delivering a segment to the viewer, denoted

NC
i (µi, σi), for choice (A) is determined using Equation 4.1.

NC
i (µi, σi) = N τ

i (µjv, σjv) (4.1)

In choice (B), the latency is impacted not only by the segment latency

probability distribution between FDN j and the viewer’s device v, but also by the time

41

to process the segment in FDN j. The processing times of a video segment can be

estimated based on a probability distribution. This distribution is obtained from

historical execution times of a particular processing type (e.g., bit-rate transcoding) for

a segment. It has been shown that the processing time of a video segment exhibits a

normal distribution [14]. Let NE
i (µij, σij) be the probability distribution of completing

the processing of segment i on FDN j; also let NT
i (µjv, σjv) be a normal distribution

representing latency to deliver segment i from the local FDN j to the viewer’s device v.

Then, the probability distribution of delivering segment i to the viewer is calculated by

convolving the two distributions as shown in Equation 4.2.

NC
i (µi, σi) = NE

i (µij, σij) ∗N τ
i (µjv, σjv) (4.2)

Similarly, the latency for choice (C) is impacted by two factors, the latency

distribution for retrieving a segment from a neighboring FDN k to the local FDN j,

denoted NT
i (µkj, σkj), and the segment latency distribution between FDN j and

viewer’s device v, denoted N τ
i (µjv, σjv). Therefore, to obtain the probability

distribution of delivering segment i, we convolve these two probability distributions as

shown in Equation 4.3.

NC
i (µi, σi) = N τ

i (µkj, σkj) ∗N τ
i (µjv, σjv) (4.3)

Once we have the final distribution, NC
i (µi, σi) the robustness of segment i can

be measured using its deadline δi based on Equation 4.4. In fact, in this case the

liklihood that segment i can be delivered before δi is the cumulative probability for a

42

random variable X to be less than or equal to δi which is the robustness of segment i.

ri = P (X ≤ δi) (4.4)

The algorithm for the Segment Cost Estimator utilizes the robustness for each

segment of a video stream to determine how to fetch that segment, hence, assuring a

high quality and uninterruptable video streaming experience for viewers. The algorithm

first checks if segment i exists in the local cache of FDN j to be streamed to the viewer

(Step 1). If it does not exist locally, then a list of all neighboring FDN containing

segment i is retrieved from the Metadata Manager and their respective robustness

values are calculated (Steps 2—6). The robustness of on-demand processing segment i

is also calculated and compared against the neighboring FDN that has segment i with

the highest robustness (Steps 7—8). Finally, in Step 9, the option with the highest

robustness is chosen to provide segment i. The individual steps of the algorithm are

provided below.

Upon receiving a video stream request m, at FDNj and for every segment i in

video stream request m:

(1) if i exists in FDNj’s local cache, stream i to viewer

(2) else if i is available in neighboring FDNs or in central cloud:

(3) retrieve list of metadata of all remote locations that match segment i

(4) For each metadata item l in the metadata list:

43

(5) calculate the cumulative probability of the transfer time from l using the

presentation time of i

(6) track which FDN l offers the highest probability of success

(7) convolve processing and transfer time distributions for segment i in FDNj

and calculate its cumulative probability

(8) compare the probability of processing i on-demand with the probability of

streaming i from FDN offers the highest probability of success

(9) stream segment i from the option with the highest probability of satisfying

i′s deadline

44

4.3 Methods for Video Streaming Delivery

Table 4.2. Characteristics of various methods implemented to examine the performance
of the F-FDN platform.

hhhhhhhhhhhhhhhhhhMethods

Characteristics
Caching
at
Edge

Federated

On-
demand
Processing

Robustness
Consideration

Central Cloud no no no no
CDN yes no no no
Federated CDN (F-CDN) yes yes no yes
Isolated FDN (I-FDN) yes no yes yes
Deterministic F-FDN yes yes yes no
Robust F-FDN yes yes yes yes

In this section, we explain alternative methods for stream delivery. Table 4.2

provides an overview for the various methods we implemented and highlights differences

in their characteristics. These methods encompass current practices for video streaming

(namely, CDN and Central Cloud) and baseline methods (namely, F-CDN, Isolated

FDN, and Deterministic F-FDN) that focus on various aspects of the F-FDN platform

in isolation. Finally, the Robust F-FDN is the streaming delivery method operating

based on the theory developed in Section 4.2. . It is noteworthy that these methods are

implemented within the Segment Cost Estimator component of the FDN (see

Figure 4.1). The rest of this section further elaborates on the characteristics of the

implemented methods that are used in the experiment section.

Central Cloud.

This method considers only the central cloud where all the video contents are

available in the main video repository. Every video segment is streamed directly from

the cloud and no geographically spread FDN or CDN are considered to reduce the

45

streaming latency.

CDN. Due to popularity of the CDN approach in the streaming industry, we consider

it in our evaluations. Our simulated CDN consists of a central cloud that holds the

same characteristics as the previously described system and CDN servers which have

75% of the requested videos cached, which is a realistic level for CDN caching [55]. As

CDNs are located close to viewers, any segments streamed from them have a lower

latency compared to the central cloud. It is noteworthy that CDN servers do not

perform any computation and caches the entirety of a video, rather than only a portion.

Also, any segment that is not found in a CDN, is streamed from the central cloud.

Federated CDN. The Federated CDN (F-CDN) includes a central cloud and CDN

servers in its system. The key difference of F-CDN with CDN is partial video caching.

In F-CDN, it is possible to cache only few segments of a video, rather than the entirety

of the video. Owing to the federated nature, in F-CDN, video segments can be

streamed from the local CDN, a neighboring CDN, or from the central cloud. The

rationale of implementing this method is to study the impact of federation of cached

contents, without the ability to process videos on-demand. This method makes use of

the robustness definition, introduced in Section 4.2. , to stream a given video segment

from the CDN that offers the highest probability to meet the deadline of that segment.

Isolated FDN (I-FDN). The Isolated FDN method includes a central cloud and a

single FDN. In this system, the FDN node performs on-demand processing of video

segments, in addition to caching. However, it does not consider retrieving segments

46

from neighboring FDNs. That is, the segments are streamed only from the FDN’s

cache, processed on-demand, or from the central cloud. The streaming decisions for

each video segment is made between the local FDN and central cloud based on the

robustness definition (see Section 4.2). The rationale of implementing this method is to

study the impact of lack of federation on the streaming QoE.

Deterministic F-FDN.

The Deterministic F-FDN method consists of a central cloud and a federation of

FDNs. While each FDN can perform caching and on-demand processing, the federation

enables the option to stream cached segments from neighboring FDNs as well. In the

Deterministic F-FDN, for each segment, streaming decisions are only made based on

expected transmission and processing times, i.e., it ignores the stochastic nature that

exists in the F-FDN environment. This method demonstrates the impact of ignoring

uncertainties that exist in the system on the overall streaming QoE.

Robust F-FDN.

Unlike Deterministic F-FDN, the Robust F-FDN operation takes into account

the stochastic nature that exists in both communication and computation of the

F-FDN platform. The more informed decision making is expected to have more

streaming tasks meeting their deadlines, resulting in a more robust streaming service,

regardless of the viewers’ geographical location. It is, in fact, the implementation of the

theory developed in Section 4.2and the method described in the algorithm of Figure 4.2.2.

47

4.4 Performance Evaluation

Experimental Setup

We conducted an emulation study to understand the behavior of the F-FDN

platform. We developed a prototype of F-FDN by expanding the CVSS (Cloud Video

Streaming Service) platform [13, 12, 56]. The prototype has the ability to operate for

all video streaming methods described in Section 4.3. . Within CVSS, we simulated three

worker VMs that are modeled after the Amazon GPU (g2.2xlarge) VM to perform

the video processing. The reason we considered GPU-based VMs is that in [14] it is

shown that these VM types fit the best for video processing tasks. Our experiments are

conducted by using three FDNs in the system, in addition to a central cloud server.

Our experiments consider streaming requests arriving to one of these FDNs and we

measure the performance metrics obtained in that FDN. The other two FDNs serve as

neighbors, caching a portion of video segments (as detailed in Subsection 4.4.1.).

We generated different workload traces of video stream requests to examine

behavior of the system under various workload conditions and streaming methods. The

workloads used in the experiments are created using a set of benchmark videos that

contain different lengths and content types. The benchmark videos are publicly

available for reproducibility purposes at https://goo.gl/TE5iJ5. For each video

segment in the workload traces, there is an associated processing (i.e., execution) time,

which is obtained from the mean of 30 times execution of that segment on Amazon

GPU VM. For the sake of accuracy and to remove uncertainty in the results, we

generated 30 different workload traces. Each workload trace simulates 3 minutes of

48

https://goo.gl/TE5iJ5

video stream request arrivals. The arrival time of each streaming request is determined

by uniformly sampling within the time period. All segments of the same video have the

same arrival time but different deadlines (i.e., presentation times). Accordingly, each

experiment is conducted with the 30 workload traces and the mean and 95% confidence

interval of the results are reported.

We track the number of deadlines that are missed, which indicates the

robustness of the system. A deadline is considered missed due to a segment being

streamed after its associated presentation time. The presentation time of a segment is

based on the order of the segment’s appearance in a video. As we consider a Video

On-demand streaming service, even if a segment misses its deadline, it still must

complete its execution and is streamed to the viewer.

To consider bandwidth usage in the evaluations, we have a limited bandwidth

value from the local FDN to the viewer, and from the local FDN to other neighboring

FDN. This bandwidth value becomes more congested as segments are initially streamed

and less congested as segments finish streaming. Each node also has an associated

latency value. The network latency values used for the edge servers and the central

cloud server were taken from [5, 57]. For our bandwidth values, we used an average of 1

Gbps.

Experimental Results

4.4.1 Analyzing suitable cache size for fdns. In our first experiment, we

intend to find the minimum percentage of video contents that needs be cached within

an FDN, so that a high level of QoE is maintained for viewers. Recall that we measure

49

QoE in terms of percentage of video segments missing their presentation deadline. We

evaluate variations of FDNs (namely, F-CDN, I-FDN, Deterministic F-FDN, and

Robust F-FDN) to understand how different methods take advantage of the caching

feature. For that purpose, as shown in Figure 4.2, we increase the percentage of video

segments that are cached in each FDN (horizontal axis) and measure the percentage of

video segments that miss their deadlines (vertical axis). In this experiment, we used

workload traces consisting of 3,500 segments being streamed to viewers.

We observe that as the percentage of cached segments is increased, the deadline

miss rate drops remarkably across all methods—from approximately 53% to around 2%.

Specifically, when the total cached video content is at zero percent, we are able to see a

major difference between F-CDN and the other three systems. Zero percent caching for

F-CDN, in fact, shows the case of streaming only from the central cloud. However, we

can observe that other methods with the ability to process segments at the fog (FDN)

level, in addition to streaming segments from cloud, can dramatically reduce deadline

miss rate (approximately 52% improvement).

As the level of cached video content is increased, we observe the benefit of

streaming video segments from neighboring FDNs. For instance, comparing the I-FDN

and Deterministic F-FDN shows that at 30% caching, deadline miss rate is reduced by

2.3% (denoting 18% improvement), whereas at 90% caching, the deadline miss rate of

Deterministic F-FDN is 2.7% lower than I-FDN (denoting 53% improvement). We can

conclude that the streaming of video segments from neighboring FDNs unburdens the

on-demand processing of the local FDN to the point where missing a deadline becomes

50

Figure 4.2. Deadline miss rate of different streaming methods as the caching level is
increased. The simulations are run using a work load of 3500 segments.

0 20 40 60 80
Percent of Cached Video Segments

0

10

20

30

40

50
Se

gm
en

t d
ea

dl
in

es
 m

iss
ed

 (%
) F-CDN

I-FDN
Deterministic F-FDN
Robust F-FDN

significantly less likely.

Based on our observation and analysis in this experiment, we choose to use a

caching level of 30% for the FDN systems in the next experiments. We believe that this

caching level provides a sustainable trade-off between caching size and streaming QoE.

4.4.2 Analyzing the impact of oversubscription. In this experiment, our

goal is to study the robustness of the F-FDN platform against increasing workload

intensity (aka oversubscription) and compare it against alternative methods. For that

purpose, we vary the number of arriving video segments from 3,000 to 4,500 (with

increments of 500) within the same time interval and measure the percentage of video

segments that miss their deadlines. In this experiment, FDN-based methods cache 30%

and the CDN method caches 75% (for practical reasons [55]) of video segments, while

Central Cloud stores all the video contents.

Figure 4.3 demonstrates the performance of different methods as the workload

51

size increases (horizontal axis). We observe that as the number of arriving requests

increases, the percentage of segments missing their deadlines increases too. In

particular, in comparing the CDN and Central Cloud methods, we see the benefit of a

viewer being able to access a CDN server that is much closer to them geographically.

Across all workloads the CDN method misses an average of 54% less deadlines than the

Central Cloud method. With the presence of on-demand processing in the I-FDN

compared to CDN, there is an average of a 17% deadline miss rate improvement.

Performance is shown to further increase upon adding the federation of FDNs for

streaming, as is present in the Deterministic and Robust F-FDN methods. Compared

to the I-FDN, the Deterministic F-FDN has an average of 34% less deadlines missed.

Comparing the performance of the Deterministic F-FDN and the Robust F-FDN

methods, we observe a further improvement of deadline miss rate. Across all workloads,

the Robust F-FDN performs an average of 28% better than the Deterministic F-FDN.

This is due to capturing the stochastic factors (related to communication and

computation) present in Robust F-FDN and absent in the Deterministic F-FDN.

4.4.3 Analyzing the impact of network latency. The goal of this

experiment is to evaluate the robustness of our methods against viewers’ geographical

locations. This is particularly important for viewers located in distant areas, where the

quality of the edge network commonly fluctuates and is highly uncertain. For that

purpose, we study the performance of different methods where the uncertainty in the

network latency between the viewer and FDNs and between FDNs is steadily increased.

The result of this experiment is shown in Figure 4.4. The horizontal axis shows

52

Figure 4.3. Deadline miss rate at increasing workload intensity. FDN-based methods
cache 30% of video segments while CDN has 75% of videos cached.

3000 3500 4000 4500
Number of Video Segments

0

20

40

60

80

100

Se
gm

en
t d

ea
dl

in
es

 m
iss

ed
 (%

)
Central Cloud
CDN
I-FDN

Deterministic F-FDN
Robust F-FDN

the average latency to receive a cached video segment and the vertical axis shows the

percentage of segments that missed their deadlines. We evaluated CDN, I-FDN,

Deterministic F-FDN, and Robust F-FDN methods. Because our focus is on the edge

network, we do not consider the Central Cloud method. This experiment is conducted

with 3,500 segments and 30% of video segments are cached in each FDN, except CDN

that caches 75% of all videos.

We observe that all methods result in a higher deadline miss rate as the network

latency is increased. However, we observe that CDN deadline miss rate is increased at a

greater rate than that of the other methods. When comparing the CDN and I-FDN

system at an average network latency of 1,000 ms the deadline miss rate is at a

difference of 20.2%. Nonetheless, when the average network latency is increased to

53

Figure 4.4. Deadline miss rate with increasing latency of the edge network. The
experiments are conducted using 3500 video segments. FDN-based methods contain 30%
and CDN has 75% cached video contents.

1000 2000 3000 4000
Average Cached Segment Latency (ms)

0

5

10

15

20

25

30

35

40
Se

gm
en

t d
ea

dl
in

es
 m

iss
ed

 (%
)

CDN
I-FDN

Deterministic F-FDN
Robust F-FDN

4,000 ms, the difference in deadline misses maintains at 20.4%.

For the CDN method, all segments that are not cached must be streamed from

the central cloud. When the latency for streaming from the CDN is not ideal, more

segments are streamed from central cloud. Since I-FDN can perform on-demand

processing for segments that are not cached, there is less of a reliance on the central

cloud. This explains the consistently better performance of I-FDN as the average

network latency is increased when compared to the CDN method.

In comparing I-FDN to Deterministic F-FDN, we notice that the difference of

deadline miss rate decreases between the two methods as the network latency increases.

Particularly, at an 1,000 ms network latency, the Deterministic F-FDN performs 64%

54

better than I-FDN. However, when the network latency is increased to 4,000 ms, there

is only a 7.6% difference in deadline miss rate between the two methods. This decrease

in difference of deadline miss rates can be explained by the Deterministic F-FDN

choosing to stream segments from neighboring FDNs less, instead, processing those

segments in an on-demand manner. The same phenomenon can be observed when

comparing I-FDN and Robust F-FDN. At 1,000 ms network latency, the deadline miss

rate difference is 97% and at 4,000 ms network latency, the difference is only 15.4%.

This observation shows the adaptability that is inherent to our system.

In general, we observe that Robust F-FDN outperforms other methods.

However, the difference between Deterministic F-FDN and Robust F-FDN becomes less

prominent, when the network latency at the edge is at the highest we tested (4,000 ms).

The reason for outperformance is capturing stochasticity in the network latency.

However, the reason for similar performance at 4,000 latency is that both methods

choose to process on-demand as opposed to relying on a highly uncertain network and

fetch segments from neighboring FDNs.

We can conclude that F-FDN platform, in general, can remarkably improve the

performance of streaming compared to traditional CDN-based methods. Interestingly,

the improvement becomes more significant, as the network becomes more uncertain.

Among FDN-based methods, Robust F-FDN can capture the stochasticity that exists

in the network to a certain level and further improve the performance.

55

4.5 Summary

We presented F-FDN, a novel distributed platform for low latency video

streaming that enhances the traditional CDN system with fog computing capabilities.

The primary goal of F-FDN is to deliver a streaming service with a high QoE,

specifically to viewers located in geographically distant areas. Along with the proposal

of the platform, we created a method to make intelligent streaming decisions at each

FDN, so that the likelihood of having an uninterrupted video streaming experience is

maximized. Our experiment results show F-FDN having an average of a 52%

improvement in deadline miss rate, when compared to the traditional CDN system that

neither processes videos at the edge nor considers the cached video content of

neighbors. Adaptive decision making within each FDN provides robustness against

network latency fluctuations.

56

Chapter 5: Conclusion and Future Research Directions

5.1 Discussion

With the prevalence of video streaming and lack of flexible streaming services for

viewers, this thesis explored the viability of offering interactive video streaming services

using cloud systems. This exploration was achieved in two major directions that form

the core chapters of this thesis.

The first direction of this thesis, discussed in Chapter 3, verifies the feasibility of

interactive video streaming. We developed a platform, called CVSE, that provides

interactive video streaming by enabling stream providers to develop new services for

their viewers. CVSE then accommodates the new service by maintaining certain QoE

standards for viewers. In order to maintain QoE performance, a combination of

pre-processed partial video caching and on-demand processing is utilized. Also, cloud

resources (VMs or containers) are provisioned in an elastic manner to provide sufficient

computing power for the requested services. The architecture for CVSE is designed to

be modular and extensible. Because of this modular design, CVSE can be tailored or

expanded in terms of resource type (e.g., cloud or edge), available services, type of

computing resources (e.g., emulation, local threads, containers, and VMs), and billing

types (e.g., pay-as-you-watch) to fit the demands of the context in which the platform

is utilized.

The second direction of this thesis, discussed in Chapter 4, focuses on the

possibility of satisfying QoE demands of viewers in interactive video streaming. We

considered the fact that the viewers can be scattered globally and the QoE must be

57

offered regardless of the viewers’ location. We developed a platform, F-FDN, that

utilizes CVSE within a distributed fog system. This platform was developed in order to

provide interactive video streaming with a high QoE, specifically to viewers located in

geographically distant areas. We developed methods within F-FDN to make streaming

decisions that provide the highest probability of streaming a video with low latency. It

is important to note that the current evaluations of F-FDN have been primarily through

emulation. As we develop more practical implementations of F-FDN, measuring

overhead and deployment costs of the platform will become another area of focus in this

research. Finally, through our experiments we were able to observe an improvement in

performance in comparison to other existing distributed video streaming systems.

In addition to those areas we explored in this thesis, there are a number of

future research avenues that should be explored to further evolve the interactive video

streaming. In the next section, we mention a few of these avenues.

5.2 Future Research Directions in Interactive Video Streaming

5.2.1 Heterogeneous container types. As currently implemented, all the

container-based resources that constitute the compute engine of CVSE are considered

to be a universal type (i.e., can process tasks of any request type). However, there are

some performance benefits in specializing the containers for specific task types (i.e.,

make each of them specialized to only certain types of tasks). For instance, we can have

containers with hardware specifications that matches better to changing video codecs

and another container type that matches better with object detection in videos.

To incorporate heterogeneous container types into CVSE, there are certain

58

Figure 5.1. Structure of multi-tiered F-FDN platform

management mechanisms and policies to be explored. For example, container types for

tasks that are very common should be made available at all times, while containers for

uncommon tasks are allocated when those requests arrive. What types of tasks should

be processed on specialized containers versus general-use containers? How many of the

containers of each type should the resource provisioner instantiate from, in both

reactive to workload and predictive to expected workloads?

This change even has some implications on software engineering methodologies

used for micro-service based applications. In fact, in such software systems some

services are permanently running (warm services) while others have intermittent nature

(cold services). Function-as-a-service can be used particularly to accommodate cold

services.

Such research questions that are needed to be addressed in future.

59

5.2.2 Multi-tier f-fdn architecture. To further enhance F-FDN, a

multi-tiered (i.e., hierarchical) structure of FDNs will be explored. The current version

of F-FDN has two tiers—Central Cloud and FDN. A multi-tier architecture of F-FDN,

however, consists of a Central Cloud and a number of increasingly granular FDN. In

Figure 5.1 a 3-tier system is depicted that consists of a Central Cloud, a number of

Regional FDN, and a number of Local FDN, with Local FDN being the most granular

pieces of the platform.

As the FDN become more granular (e.g., more geographically spread) the

associated latency for video streaming decreases since those FDN are physically closer

to viewers. With a higher granularity, the security of those FDN is higher, conversely,

the computational processing power and video segment caching capabilities decrease.

For example, the Central Cloud, which has the greatest amount of resources

within our platform, has 100% of videos cached, the Regional F-FDN has 70% of videos

cached, and the Local FDN have 30% of videos cached. If a video that is being

requested does not exist in the Local FDN, the cache of the Regional F-FDN will be

considered before the cache of the Central Cloud is considered. The multi-tier

architecture of F-FDN allows for more tailored solutions specifically in the context of a

very large, geographically spread population of viewers that a streaming service

provider is servicing.

Another area of exploration within the multi-tier F-FDN architecture, is the

utilization of Distributed Hash Tables (DHT) in the Regional F-FDN and Local FDN

tiers. This could potentially replace the function of the Metadata Manager located in

60

the Central Cloud. Through the use of DHT, the FDN would keep an updated

knowledge of neighboring FDN metadata without the need of constant referrals and

updates to the Central Cloud. This communication would occur directly between

neighboring FDN. The use of DHT could provide a much more efficient overhead for

this feature of the F-FDN platform.

Another issue that can be more specifically evaluated with a multi-tier

architecture is the concerns of Net Neutrality and the prevalence of ”fast tracks” in

Internet bandwidth that exist solely for larger companies. We will be able to investigate

if the consideration of retrieving cached video segments from neighboring FDN is either

a benefit or detriment when there is biased sharing of the Internet bandwidth.

5.2.3 On-demand processing of 360 degree videos. Another future

research of CVSE involves developing the methods on how to best deliver 360 degree

video streams. 360 degree videos are comprised of multiple video sections that are

stitched together. This future work focuses on processing these sections of video in an

on-demand manner at different resolutions, rather than streaming the full resolution of

the 360 degree view.

GOPs for the default view of 360 degree videos and its peripheral area would be

pre-processed at high resolutions, while unobserved sections of the 360 degree videos

are streamed at lower resolution to save bandwidth. However, viewers are still able to

change their viewing angle without interrupting the video. As the viewer pans around,

the system can process and stream parts of the requested view at higher resolutions

on-demand.

61

This type of video benefits greatly from lowered streaming latency. In general, if

the latency is high, viewers will need a higher amount of buffer to cover processing and

streaming delay. In the case of 360 degree videos, some parts of the buffer may end up

not being viewed. Low latency streaming reduces the amount of buffer needed, thus

reducing the amount of wasted processing and transferring bandwidth. Therefore,

extending CVSE and F-FDN platform to leverage on-demand processing for 360 degree

videos can reduce cost and improve QoE considerably.

5.2.4 Dynamic billing. In this work, the way in which viewers are charged

when using CVSE services is further explored. While most video streaming service

companies are using a monthly subscription as their payment model for viewers, we

believe there is a desire for a new payment policy with the pay-as-you-watch model.

The CVSE platform would collect resource usage information that enables the

pay-as-you-watch payment model. This usage information is then calculated in order to

determine the cost charged to the viewer.

There are numerous factors to be considered when calculating cost in the

pay-as-you-watch model. Here are a few examples: (1) What is the availability of the

video in the viewer’s requested format?, (2) What is the current oversubscription status

of the platform?, (3) Is the video currently cached?, and (4) What is the level of

processing required for the video stream request? are just a few of the many possible

factors to consider while calculating cost.

The pay-as-you-watch model mostly benefits viewers who want to stream certain

contents from a stream service provider, but do not watch said videos often. We believe

62

the pay-as-you-watch model can become a legitimate alternative to the commonly used

monthly subscription model in certain cases for viewers.

63

Bibliography

[1] “How Netflix Works With ISPs Around the Globe to
Deliver a Great Viewing Experience,” https://media.netflix.com/en/company-blog/
how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience”,
accessed on Mar. 31, 2019.

[2] X. Li, “High performance on-demand video transcoding using cloud services,” PhD
dissertation, University of Louisiana at Lafayette, 2016.

[3] “Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,”
www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.html#
Toc484813971”, accessed on Aug. 07, 2018.

[4] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming high-quality mobile
video with multipath tcp in heterogeneous wireless networks,” IEEE Transactions
on Mobile Computing, vol. 15, no. 9, pp. 2345–2361, 2016.

[5] “CDN Performance,” www.cloudflare.com/learning/cdn/performance/”, accessed
on Aug. 07, 2018.

[6] “Open Connect Overview,”
https://openconnect.netflix.com/Open-Connect-Overview.pdf”, accessed on Aug.
06, 2018.

[7] A.-T. Nguyen, O. Fourmaux, and C. Deleuze, “Exploring youtubes cdn
heterogeneity,” in International Conference on Heterogeneous Networking for
Quality, Reliability, Security and Robustness. Springer, 2018, pp. 158–166.

[8] M. L. Wayne, “Netflix, amazon, and branded television content in subscription
video on-demand portals,” Media, Culture & Society, vol. 40, no. 5, pp. 725–741,
2018.

[9] “Can Netflix Rein in Skyrocketing Costs?” https://www.fool.com/investing/2016/
06/22/can-netflix-rein-in-skyrocketing-costs.aspx”.

[10] W. Hoiles, O. N. Gharehshiran, V. Krishnamurthy, and H. Zhang, “Adaptive
caching in the youtube content distribution network: A revealed preference
game-theoretic learning approach,” IEEE Transactions on Cognitive
Communications and Networking (TCCN), vol. 1, no. 1, pp. 71–85, Mar. 2015.

[11] Y. Lin and H. Shen, “Cloudfog: Leveraging fog to extend cloud gaming for
thin-client mmog with high quality of service,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 28, no. 2, pp. 431–445, Feb. 2017.

64

https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience"
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience"
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813971"
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813971"
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813971"
www.cloudflare.com/learning/cdn/performance/"
https://openconnect.netflix.com/Open-Connect-Overview.pdf"
https://www.fool.com/investing/2016/06/22/can-netflix-rein-in-skyrocketing-costs.aspx
https://www.fool.com/investing/2016/06/22/can-netflix-rein-in-skyrocketing-costs.aspx

[12] X. Li, M. Amini Salehi, M. Bayoumi, and R. Buyya, “CVSS: A Cost-Efficient and
QoS-Aware Video Streaming Using Cloud Services,” in Proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, ser.
CCGrid ’16, May 2016.

[13] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-Efficient and
Robust On-Demand Video Stream Transcoding Using Heterogeneous Cloud
Services,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 29, no. 3, pp. 556–571, Mar. 2018.

[14] X. Li, M. Amini Salehi, Y. Joshi, M. Darwich, L. Brad, and M. Bayoumi,
“Performance Analysis and Modelling of Video Stream Transcoding Using
Heterogeneous Cloud Services,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), Sep. 2018, doi: url10.1109/TPDS.2018.2870651.

[15] “Content Delivery Network (CDN) Caching,” aws.amazon.com/caching/cdn/”,
accessed on Aug. 06, 2018.

[16] S. Khan, R. Schollmeier, and E. Steinbach, “A performance comparison of multiple
description video streaming in peer-to-peer and content delivery networks,” in
Proceedings of the IEEE International Conference on Multimedia and Expo, ser.
ICME ’04, vol. 1, Jun. 2004, pp. 503–506.

[17] M. Darwich, M. A. Salehi, E. Beyazit, and M. Bayoumi, “Cost-efficient cloud-based
video streaming through measuring hotness,” The Computer Journal, Jun. 2018.

[18] “FFmpeg,” https://ffmpeg.org/”.

[19] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Analysis of video segmentation for
spatial resolution reduction video transcoding,” in Proceedings of the 19th
International Symposium on Intelligent Signal Processing and Communications
Systems, Dec. 2011, pp. 1–6.

[20] M. Hosseini, M. A. Salehi, and R. Gottumukkala, “Enabling Interactive Video
Stream Prioritization for Public Safety Monitoring through Effective Batch
Scheduling,” in Proceedings of the 19th IEEE International Conference on High
Performance Computing and Communications, ser. HPCC ’17, Dec. 2017.

[21] M. Darwich, E. Beyazit, M. A. Salehi, and M. Bayoumi, “Cost efficient repository
management for cloud-based on-demand video streaming,” in Proceedings of the
5th IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering, Apr. 2017, pp. 39–44.

[22] L. C. Miranda, R. L. Santos, and A. H. Laender, “Characterizing video access
patterns in mainstream media portals,” in Proceedings of the 22nd Conference on
World Wide Web, May 2013, pp. 1085–1092.

65

aws.amazon.com/caching/cdn/"
https://ffmpeg.org/

[23] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view
from the edge,” in Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, Oct. 2007, pp. 15–28.

[24] X. Li, M. A. Salehi, and M. Bayoumi, “VLSC: Video Live Streaming Using Cloud
Services,” in Proceedings of the 6th IEEE International Conference on Big Data
and Cloud Computing Conference, ser. BDCloud ’16, Oct. 2016, pp. 595–600.

[25] X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya, “CVSS: A Cost-Efficient and
QoS-Aware Video Streaming Using Cloud Services,” in Proceedings of the 16th
IEEE/ACM International Conference on Cluster Cloud and Grid Computing, ser.
CCGrid ’16, May 2016.

[26] F. Jokhio, A. Ashraf, S. Lafond, and J. Lilius, “A computation and storage
trade-off strategy for cost-efficient video transcoding in the cloud,” in Proceedings
of the 39th EUROMICRO Conference on Software Engineering and Advanced
Applications, ser. SEAA ’13, Sep. 2013, pp. 365–372.

[27] H. Zhao, Q. Zheng, W. Zhang, B. Du, and Y. Chen, “A version-aware computation
and storage trade-off strategy for multi-version VOD systems in the cloud,” in
Proceedings of the 20th IEEE Symposium on Computers and Communication, ser.
ISCC ’15, July 2015, pp. 943–948.

[28] B. Khemka, R. Friese, L. D. Briceno, A. A. Maciejewski, G. A. Koenig,
G. Okonski, M. M. Hilton, R. Rambharos, S. Poole, and C. Groer, “Utility
functions and resource management in an oversubscribed heterogeneous computing
environment,” IEEE Transactions on Computers, vol. 64, no. 8, pp. 2394–2407,
Aug. 2015.

[29] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius, “Stream-based
admission control and scheduling for video transcoding in cloud computing,” in
Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ser. CCGrid ’13, May 2013, pp. 482–489.

[30] S. Lin, X. Zhang, Q. Yu, H. Qi, and S. Ma, “Parallelizing video transcoding with
load balancing on cloud computing,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, ser. ISCAS ’13, May 2013, pp. 2864–2867.

[31] M. Kim, Y. Cui, S. Han, and H. Lee, “Towards efficient design and implementation
of a hadoop-based distributed video transcoding system in cloud computing
environment,” International Journal of Multimedia and Ubiquitous Engineering,
vol. 8, no. 2, pp. 213–224, Mar. 2013.

[32] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling
techniques for elastic applications in cloud environments,” Journal of Grid
Computing, vol. 12, no. 4, pp. 559–592, Mar. 2014.

66

[33] X. Li, M. A. Salehi, and M. Bayoumi, “High Perform On-Demand Video
Transcoding Using Cloud Services,” in Proceedings of the 16th IEEE/ACM
International Conference on Cluster Cloud and Grid Computing (Ph.D.
Symposium), ser. CCGrid ’16, May 2016.

[34] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous video contributors
and viewers in crowdsourced live streaming: A cloud-based approach,” IEEE
Transactions on Multimedia, vol. 18, no. 5, pp. 916–928, May 2016.

[35] Q. He, C. Zhang, X. Ma, and J. Liu, “Fog-based transcoding for crowdsourced
video livecast,” IEEE Communications Magazine, vol. 55, no. 4, pp. 28–33, Apr.
2017.

[36] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, May 2016.

[37] Y. Lin and H. Shen, “Leveraging fog to extend cloud gaming for thin-client mmog
with high quality of experience,” in Proceedings of the 35th IEEE International
Conference on Distributed Computing Systems, ser. ICDCS ’15, Jun. 2015, pp.
734–735.

[38] M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed edge cloud
for data-intensive computing,” in Proceedings of the International Conference on
Collaboration Technologies and Systems, ser. CTS ’14, May 2014, pp. 491–492.

[39] L. L. Provensi, A. Singh, F. Eliassen, and R. Vitenberg, “Maelstream:
Self-organizing media streaming for many-to-many interaction,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), Jan. 2018.

[40] B. Jennings and R. Stadler, “Resource management in clouds: Survey and research
challenges,” Journal of Network System Management, vol. 23, no. 3, pp. 567–619,
Jul 2015.

[41] M. A. Salehi, P. R. Krishna, K. S. Deepak, and R. Buyya, “Preemption-aware
energy management in virtualized data centers,” in Proceedings of the 5th IEEE
International Conference on Cloud Computing, ser. CLOUD ’12, Jul., pp. 844–851.

[42] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing:
Issues and challenges,” Journal of Grid Computing, vol. 14, no. 2, pp. 217–264,
June 2016.

[43] E. Delen, J. Liew, and V. Willson, “Effects of interactivity and instructional
scaffolding on learning: Self-regulation in online video-based environments,”
Computers & Education, vol. 78, pp. 312–320, Sep. 2014.

[44] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann, “Dynamic
urban surveillance video stream processing using fog computing,” in In Proceedings

67

of the 2nd IEEE International Conference on Multimedia Big Data, Apr. 2016, pp.
105–112.

[45] C. V. N. Index, “Forecast and methodology, 2014-2019,” 2015.

[46] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of internet short
video sharing: A YouTube-based measurement study,” IEEE Transactions on
Multimedia, vol. 15, no. 5, pp. 1184–1194, Aug. 2013.

[47] Y. Jin, Y. Wen, and C. Westphal, “Optimal transcoding and caching for adaptive
streaming in media cloud: an analytical approach,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 12, pp. 1914–1925, Dec 2015.

[48] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for adaptive live
video streaming,” in Proceedings of the Second Annual ACM Conference on
Multimedia Systems, ser. MMSys ’11, 2011, pp. 145–156.

[49] J. He, Y. Wen, J. Huang, and D. Wu, “On the Cost–QoE Tradeoff for Cloud-Based
Video Streaming Under Amazon EC2’s Pricing Models,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 669–680, Apr. 2014.

[50] M. A. Salehi, J. Smith, A. A. Maciejewski, H. J. Siegel, E. K. P. Chong,
J. Apodaca, L. D. Briceno, T. Renner, V. Shestak, J. Ladd, A. Sutton, D. Janovy,
S. Govindasamy, A. Alqudah, R. Dewri, and P. Prakash, “Stochastic-based robust
dynamic resource allocation for independent tasks in a heterogeneous computing
system,” in Journal of Parallel and Distributed Computing (JPDC), vol. 97, no. C,
Nov. 2016.

[51] F. Song, C. Zhu, Y. Liu, Y. Zhou, and Y. Liu, “A new gop level bit allocation
method for hevc rate control,” in Proceedings of 12th IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting, ser. BSMB ’17,
June 2017, pp. 1–4.

[52] V. Stocker, G. Smaragdakis, W. Lehr, and S. Bauer, “The growing complexity of
content delivery networks: Challenges and implications for the internet
ecosystem,” Telecommunications Policy, vol. 41, no. 10, pp. 1003–1016, Nov. 2017.

[53] A. Shojaeifard, K.-K. Wong, W. Yu, G. Zheng, and J. Tang, “Full-duplex cloud
radio access network: Stochastic design and analysis,” IEEE Transactions on
Wireless Communications, vol. 17, no. 11, pp. 7190–7207, Nov. 2018.

[54] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems:
twelve ways to tell the masses when reporting performance results,” in The
International Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’15, Nov. 2015, p. 73.

68

[55] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan, “Cache
content-selection policies for streaming video services,” in Proceedings of the 35th
Annual IEEE International Conference on Computer Communications, ser.
INFOCOM ’16, Apr. 2016, pp. 1–9.

[56] C. Denninnart, M. Amini Salehi, A. N. Toosi, and X. Li, “Leveraging
computational reuse for cost-and qos-efficient task scheduling in clouds,” in
Proceedings of the International Conference on Service-Oriented Computing, ser.
ICSOC ’18, Nov. 2018, pp. 828–836.

[57] “CDN Network Test,” cloudharmony.com/speedtest-for-cdn”, accessed on Aug. 07,
2018.

69

cloudharmony.com/speedtest-for-cdn"

Veillon, Vaughan. Bachelor of Science, University of Louisiana at Lafayette, Spring
2017; Master of Science, University of Louisiana at Lafayette, Spring 2019

Major: Computer Science

Title of Thesis: Fog Computing for Low Latency, Interactive Video Streaming

Thesis Director: Mohsen Amini Salehi

Pages in Thesis: 81; Words in Abstract: 196

Abstract

Video streaming is growing in popularity and has become the most

bandwidth-consuming Internet service. As such, robust streaming in terms of low

latency and uninterrupted streaming experience, particularly for viewers in distant

areas, has become a challenge. The common practice to reduce latency is to pre-process

multiple versions of each video and use Content Delivery Networks (CDN) to cache

videos that are popular in a geographical area. However, with the fast-growing video

repository sizes, caching video contents in multiple versions on each CDN is becoming

inefficient. Accordingly, in this paper, we propose the architecture for Fog Delivery

Networks (FDN) and provide methods to federate them (called F-FDN) to reduce video

streaming latency. In addition to caching, FDNs have the ability to process videos in an

on-demand manner. F-FDN leverages cached contents on the neighboring FDNs to

further reduce latency. In particular, F-FDN is equipped with methods that aim at

reducing latency through probabilistically evaluating the cost benefit of fetching video

segments either from neighboring FDNs or by processing them. Experimental results

against alternative streaming methods show that both on-demand processing and

leveraging cached video segments on neighboring FDNs can remarkably reduce

streaming latency (on average 52%).

Biographical Sketch

Vaughan Veillon received his Bachelor of Science in the field of computer science

in the spring of 2017 from the University of Louisiana at Lafayette. The son of Bernard

Veillon and Monique Lake, he began pursuing a master’s degree in computer science at

the University of Louisiana at Lafayette in the fall of 2017. He completed the

requirements for the degree in the spring of 2019.

71

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivations
	Research Problem and Objectives
	Methodology Overview
	Thesis Contributions
	Thesis Organization

	Background and Related Works
	Overview
	Background
	Video processing libraries.
	Structure of video streaming.

	Video Stream Scheduling
	Cloud Resource Provisioning for Video Stream
	Distributed Fog Computing Systems
	Summary

	Developing CVSE
	Overview
	Challenges in Providing Interactive Video Streaming Services
	Architecture of CVSE
	Architectural components of cvse.
	Video processing interface.
	Compute engine interface.
	Deployment interface.
	Billing interface.

	Implementation
	Experiments
	Analyzing worker node cluster size.
	Web demo.

	Summary

	Federated Fog Delivery Networks (F-FDN)
	Overview
	Central cloud.
	Fog delivery network (fdn).

	Maximizing Robustness of F-FDN
	Network latency of streaming a video segment in fdn.
	Robust video segment delivery in f-fdn.

	Methods for Video Streaming Delivery
	Performance Evaluation
	Analyzing suitable cache size for fdns.
	Analyzing the impact of oversubscription.
	Analyzing the impact of network latency.

	Summary

	Conclusion and Future Research Directions
	Discussion
	Future Research Directions in Interactive Video Streaming
	Heterogeneous container types.
	Multi-tier f-fdn architecture.
	On-demand processing of 360 degree videos.
	Dynamic billing.

	Bibliography
	Abstract
	Biographical Sketch

