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Abstract

Heterogeneity is an indispensable part of modern distributed computing

systems. With the ubiquity of accelerators (e.g., GPUs and TPUs) and

domain-specific computing (through ASICs and FPGA), the matter of heterogeneity

and harnessing it has become a more critical challenge than ever to deal with. In

fact, considering heterogeneity in devising middleware-level solutions (e.g., resource

allocation) is decisive in optimizing the system performance objective (e.g., QoS,

incurred cost, and energy consumption). Accordingly, our goal in this dissertation is

to take a holistic approach to heterogeneity and harness it as a result of multiple

cooperation between middleware solutions. The core contribution of this

dissertation is to propose a “performance-driven heterogeneity measure” that can

characterize the impact of the heterogeneity level of a system on its performance

objective (QoS) and make the system comparable with its counterparts. In

particular, we develop a mathematical model based on statistical measures to

characterize a heterogeneous system in terms of its task and machine heterogeneity

dimensions, and then reduce it to a single value that represents the execution time

behavior of the entire system. Performance evaluations across various simulated and

real-world heterogeneous systems demonstrate that the mathematical model can

accurately characterize the performance behavior of these systems. Such a

heterogeneity measure is instrumental for solution architects to proactively

configure their systems to be sufficiently heterogeneous such that they can meet

their desired performance objectives. Particularly, for a large heterogeneous
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configuration space, such as those offered by public clouds, the proposed

heterogeneity measure can be instrumental to proactively configuring a

heterogeneous system (instead of trial and error) with respect to the desired QoS

and without examining the workload. Moreover, this dissertation develops

heterogeneity-aware solutions at the admission control and scheduling levels. In

particular, we propose a fair energy- and latency-aware scheduler that considers

heterogeneity in the computing system to efficiently assign tasks to heterogeneous

machines. To capture uncertainties in the execution and arrival times of tasks, we

devise an admission control that proactively drops tasks to maintain the robustness

of the heterogeneous computing system against uncertainties.
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Chapter 1: Introduction

1.1 Overview

Heterogeneity has been an indispensable aspect of distributed computing

throughout the history of these systems. In the modern era, as Moore’s law is losing

momentum due to the power density and heat dissipation limitations [2, 3],

heterogeneous computing systems have attracted even more attention to overcome

the slowdown in Moore’s law and fulfilling the desire for higher performance in

various types of distributed systems. Nowadays, the footprint of heterogeneity can

be traced in all forms of distributed systems.

Hyperscaler cloud providers, such as AWS and Microsoft Azure, offer and

operate based on a wide range of “machine types” ranging from general-purpose X86

and ARM machines to FPGAs and accelerators. Cloud users can take advantage of

this heterogeneity to mitigate their cloud expenditure and to improve QoS. For

instance, Amazon SageMaker [4] operates based on heterogeneous Cloud machines

to build, train, and deploy machine learning (ML) models. It is reported that the

training of ResNet-50 Neural Network model on a heterogeneous cluster with GPUs

(ml.g5.xlarge) and compute-optimized (ml.c5n.2xlarge) machines yields 13%

lower cost than on a homogeneous cluster with only ml.g5.xlarge GPUs [5].

In the context of Edge computing, domain-specific accelerators (ASICs and

FPGA) and general-purpose processors are commonly used in tandem to perform

near-data real-time processing. For instance, Google smartglasses Enterprise

Edition 2 [6] is equipped with a System-on-Chip (SoC) that includes a multi-core
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ARM CPU, a GPU, and a Qualcomm AI Engine to provide onboard computer

vision [6, 7].

In the HPC context, deploying architecturally heterogeneous machines has

become prevalent to fulfill the power and performance desires [8]. As just one

example, HPE Cray EX architecture combines third-generation AMD EPYC CPUs

(optimized for HPC and AI) with AMD Instinct 250X accelerators [9].

The heterogeneity of Computing systems can be broadly categorized as

consistent or inconsistent [10, 11]. Consistent heterogeneity describes a computing

system of multiple machines with the same architecture, but different performance

characteristics (e.g., different clock speeds). In a consistent heterogeneity, if machine

“A” is faster than machine “B” for task 1, it is also faster for all other tasks. The

inconsistent heterogeneity describes a system where each task may have different

execution times on different machines of the system. Formally, an inconsistently

heterogeneous system is defined as a computing system in which machine “A” may

be faster than machine “B” for task 1 but slower than other machines for task 2 [12].

As an example, ESP32 is a powerful microcontroller chip that is widely used

in the development of IoT applications. It has built-in Wi-Fi and Bluetooth

connectivity and is equipped with a powerful dual-core processor [13]. The Himax

WE-I is a low-power, ultra-small AI processor developed by Himax Technologies. It

is designed for running AI algorithms on edge devices, such as wearables, smart

home devices, and surveillance cameras [14]. While ESP32 is faster at executing

visual wake word datasets compared to the Himax WE-I, but the Himax WE-I
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performs better when executing audio wake word datasets. Thus, employing ESP32

and Himax WE-I devices for processing visual and audio wake word datasets forms

an inconsistent heterogeneous Edge system.

With the ubiquity of accelerators (e.g., GPUs and TPUs) and

domain-specific computing (via ASICs [15] and FPGA [16]), the matter of

inconsistent heterogeneity and harnessing it has become a more critical challenge

than ever before to deal with. In fact, Heterogeneity plays a key role in improving

various performance objectives of distributed systems, such as cost, energy

consumption, and QoS. That is why harnessing system heterogeneity has been a

longstanding goal in distributed systems. Accordingly, our goal in this dissertation

is to take a holistic approach to heterogeneity and harness it as a result of multiple

cooperation between middleware solutions. In particular, we theoretically and

empirically investigate the impact of heterogeneity on the system performance and

devise system-level solutions (e.g., task scheduling, cloud elasticity) that consider

heterogeneity to improve the overall system-level objectives (e.g., QoS, cost, or

energy consumption).

We formally define a heterogeneous computing system as a set of

architecturally diverse machines that work together to complete a set of task

requests (a.k.a. tasks) with different computational requirements. We categorize the

tasks arriving in a system based on the type of operation they perform and call

them task types. For instance, in a system that assists blind and visually impaired

people (e.g., [17, 18]), the task types can be obstacle detection, face recognition, and
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speech recognition. Moreover, we classify machines of a computing system based on

their architectural and performance characteristics and call each one a machine

type. For instance, a cloud solution architect can form a virtual compute cluster

using ARM, x86-based, and GPU machine types. In this work, we consider that the

system heterogeneity emanates from the diversity in machine types and

computational requirements of task types. That is, the system heterogeneity has

two dimensions: (i) machine heterogeneity ; and (ii) task heterogeneity. Variations in

the performance (a.k.a. execution time) of a given task type across all the machine

types are defined as machine heterogeneity, whereas, variations in the execution

time of different task types on a given machine type are represented by the task

heterogeneity. Then, the system heterogeneity is defined as the compounded

heterogeneity of these two dimensions. Thus, for a holistic understanding of how

heterogeneity impacts system performance, it is essential to consider both task

heterogeneity and machine heterogeneity dimensions, however, the task

heterogeneity dimension has been overlooked in many prior works.

1.2 Motivation

Prior research works in this regard have predominantly aimed at optimizing

a certain QoS metric (e.g., latency constraint) with respect to the heterogeneity of

underlying computing systems. Examples of such works are those for task

scheduling [17, 19, 20], load balancing [21, 22, 23, 24], and cloud elasticity [25, 26].

Nonetheless, to the best of our knowledge, there is no holistic approach that natively

deals with the matter of heterogeneity in modern distributed systems. In particular,
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there is no concrete study on the performance of these works upon changing the

degree (level) of heterogeneity in the underlying system. That is, the impact of the

same system-level solutions (e.g., scheduling methods) across computing systems

with various degrees of heterogeneity is unknown.

For instance, in the specific area of task scheduling, numerous

heterogeneity-aware scheduling methods (e.g., MinMin [27, 28], weighted Max-Min

Fairness [29], SoonestDeadline [19], MaxUrgency [12]) have been developed and

widely used. However, our evaluations, shown in Figure 1.1, express that their QoS

(on-time completion rate) is not universal and can vary across systems with various

degrees of heterogeneity. That is, the same scheduling methods operating on the

same input workload can lead to different QoS when applied to two systems with

various degrees of heterogeneity. In Figure 1.1, we examined several scheduling

methods, namely Min-Min (MM), Min Completion-Soonest Deadline (MSD), Min

Completion-Max Urgency (MMU), Min Expected Completion Time (MECT), Min

Expected Execution Time (MEET) [19] and First Come First Serve (FCFS), on the

same workload against two systems A and B both with four machines, but different

heterogeneity levels, as described in Tables 1.1 and 1.2. We observe that the

comparative behavior of the scheduling methods varies upon changing the system

heterogeneity. For example, MSD outperforms FCFS in the system with

heterogeneity level A, but the opposite happens in the system with heterogeneity

level B. Also, MECT outperforms other scheduling methods in system A, but that

does not hold in system B. These observations indicate that to attain the maximum
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performance of heterogeneous computing systems, we need to first be able to

measure its heterogeneity, and then configure it with the most performant

scheduling method accordingly.

Table 1.1. Heterogeneous system A is represented by a matrix whose entries show
time units as the expected execution time (EET) of four task types (T1—T4) across
four machine types (A1—A4).

Task
Types

Machines
A1 A2 A3 A4

T1 0.598 0.739 1.612 4.510
T2 0.655 0.809 1.765 4.937
T3 0.686 0.847 1.848 5.171
T4 1.326 1.639 3.575 10

Table 1.2. Heterogeneous system B is represented by a matrix whose entries include
the expected execution time (EET) of four task types (T1—T4) across four machine
types (B1—B4).

Task
Types

Machines
B1 B2 B3 B4

T1 2.218 2.702 5.692 20.15
T2 2.448 2.982 6.281 22.24
T3 2.576 3.138 6.610 23.40
T4 5.504 6.704 14.122 50

In the context of cloud elasticity, for a given cloud-based application,

solution architects need to know the implications of modifying (i.e., adding,

removing, or replacing) the allocated machines on the application performance in

terms of throughput and cost incurred. The architects have to answer questions like

“For a certain arriving workload pattern, what type of machine(s) must be allocated

to the existing machines so that the user-defined performance objective (e.g., cost
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Figure 1.1. Performance comparison of the same set of scheduling methods with
the same workload across two computing systems, A and B, with different levels
of heterogeneity (horizontal axis). The vertical axis shows the percentage of tasks
completed on time.
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and throughput) are satisfied?” They need the ability to compare performances of

the different (potentially) heterogeneous systems in terms of their performance

objectives (e.g., incurred costs and throughput constraint) prior to committing their

allocation decisions. Figure 1.2 shows the throughput of different heterogeneous

systems, featuring varying numbers of AWS EC2 instances of t2.large and

g4dn.xlarge types, along with the corresponding incurred cost. In Figure 1.2a,

configurations (i.e., a certain number of t2.large and g4dn.xlarge instances) that

meet the throughput constraint (i.e., 125 tasks/sec) are shown in green, and those

that are not satisfying the throughput constraint are in red. While there are

multiple viable configurations that meet the throughput constraint, there is an

optimal configuration that minimizes the incurred cost. Figure 1.2b also shows the

number of instances with the corresponding price. These observations indicate that

to minimize the incurred cost of different heterogeneous computing systems, we need

to be able to quantify the impact of heterogeneity on the performance metric (e.g.,
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Figure 1.2. Illustrating the optimal system configuration that minimizes the cost
while meeting the throughput target for a workload of 1000 tasks of speech recogni-
tion, image classification, object detection, and question-answering types. Different
numbers of AWS EC2 instances of t2.large and g4dn.xlarge types are used to form
heterogeneous system configurations. In Figure 1.2a, the green points represent the
system configurations that satisfy the throughput target (ą125 tasks/sec), and the
red ones violate this constraint. The golden star point is the optimal configuration
that meets the throughput target with minimum cost. In Figure 1.2b, numbers in
each cell show the cost of each configuration, and colors illustrate the throughput.
Darker red represents higher throughput. The cell with a blue frame is the optimal
configuration.
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throughput), then we can configure a heterogeneous system with the minimum cost.

Consequently, in this study, we introduce a novel heterogeneity measure aimed at

making the performance (i.e., throughput) of heterogeneous systems predictable.

Performance predictability empowers solution architects to estimate the throughput

of various system configurations offline. Consequently, they can identify the optimal

configuration that minimizes cost while meeting the throughput target.

1.3 Goals and Problem Statement

The influence of system heterogeneity on the system-level solutions calls for a

holistic approach that natively considers heterogeneity in all aspects of middleware

for modern distributed systems. Even though heterogeneous computing has been
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extensively investigated in the past, there is yet to be a concrete approach to

harness heterogeneity in a computing system. As such, the overarching goal of this

dissertation is to take a holistic approach to heterogeneity and harness it as a result

of multiple cooperation between middleware solutions. In particular, this

dissertation develops heterogeneity-aware solutions at the admission control and

scheduling levels. The core contribution of this dissertation is to propose a

“performance-driven heterogeneity measure” that can characterize the impact of the

heterogeneity level of a system on its performance objective (QoS) and make the

system comparable with its counterparts.

Figure 1.3 shows our holistic approach to considering heterogeneity in

different parts of modern distributed systems. First, we devise an admission control

to maintain the robustness of the heterogeneous computing system against

uncertainties in tasks’ execution times and arrival times. Then, we propose a fair

energy- and latency-aware scheduler that considers heterogeneity in the computing

system to efficiently assign tasks to the heterogeneous machines. Lastly, we develop

a performance-driven heterogeneity measure that can characterize the impact of the

heterogeneity level of a system on its performance behavior (a.k.a. QoS) in terms of

makespan.

With the aim of harnessing the heterogeneity to improve the system

performance, in this dissertation, we address the following problems:

1. How to develop a proactive task-dropping mechanism as an admission control

to make the heterogeneous computing system robust against uncertainties in
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tasks’ execution times?

2. How to quantify the scheduling fairness across different task types in a

heterogeneous computing system?

3. How to leverage the multi-objective analysis to develop a fair latency- and

energy-aware heuristic for concurrent task types in the heterogeneous

computing system?

4. How to provide a measure to quantify the system heterogeneity such that it

can be used to determine the overall QoS of the system for a given workload?

1.4 Contributions and Dissertation Organization

Figure 1.3 depicts the relationships between chapters and the contribution to

which they are related to. The core chapters of this dissertation are derived from

several research papers published during the course of the PhD

candidacy [17, 30, 19, 18].

• Chapter 2 provides background for heterogeneity-aware and fair task

scheduling in modern distributed computing systems and explores related

research works.

• Chapter 3 studies the robustness of distributed computing systems against

uncertainties in tasks’ execution time and arrival time. In this chapter, we

consider task execution time as a random variable and use probabilistic

analysis to develop an autonomous proactive task-dropping mechanism to
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Figure 1.3. Illustration of inter-relationship between chapters and contributions
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attain our robustness goal. Experimental results demonstrate that the

autonomous proactive dropping mechanism can improve the system

robustness by up to 20%.

– Ali Mokhtari, Chavit Denninnart, and Mohsen Amini Salehi,

Autonomous task dropping mechanism to achieve robustness in

heterogeneous computing systems, in 29th Heterogeneity in Computing

Workshop (HCW 2020), in the Proceedings of the IPDPS 2020

Workshops PhD Forum (IPDPSW), 2020, pp. 17–26, © 2020 IEEE.

• Chapter 4 explores fairness in the scheduling of latency-sensitive and

concurrent Machine Learning (ML) applications on battery-powered

heterogeneous Edge systems. To that end, we investigate edge-friendly
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(lightweight) multi-objective mapping heuristics that do not become biased

toward a particular application type to achieve the objectives; instead, the

heuristics consider “fairness” across the concurrent ML applications in their

mapping decisions. Moreover, we study and analyze resource allocation

solutions that can increase the on-time task completion rate while considering

the energy constraint. Performance evaluations demonstrate that the proposed

heuristic outperforms widely used heuristics in heterogeneous systems in terms

of latency and energy objectives.

– Ali Mokhtari, Md Abir Hossen, Pooyan Jamshidi, and Mohsen Amini

Salehi, Felare: Fair scheduling of machine learning tasks on

heterogeneous edge systems, in 2022 IEEE 15th International Conference

on Cloud Computing (CLOUD), 2022, pp. 459–468, © 2022 IEEE.

• Chapter 5 studies developing a “performance-driven heterogeneity measure”

that can characterize the impact of the heterogeneity level of a system on its

performance behavior (a.k.a. QoS) in terms of makespan. Performance

evaluations across various simulated and real-world heterogeneous systems

demonstrate that our proposed mathematical model can accurately

characterize the performance behavior of these systems. Particularly, the

results show that our proposed heterogeneity measure is able to predict the

true makespan of heterogeneous systems without online evaluations with an

average accuracy of 84%.
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– Ali Mokhtari, Saeid Ghafouri, Pooyan Jamshidi, Mohsen Amini Salehi,

HEET: A Heterogeneity Measure to Quantify the Difference across

Distributed Computing Systems, unpublished manuscript.

• Chapter 6 explains an open-source simulation tool, called E2C, that can help

students researchers, and practitioners to study any type of heterogeneous (or

homogeneous) computing system and measure its performance under various

system configurations. E2C is equipped with an intuitive graphical user

interface (GUI) that enables its users to easily examine system-level solutions

(scheduling, load balancing, scalability, etc.) in a controlled environment

within a short time and at no cost. In particular, E2C is a discrete event

simulator that offers the following features: (i) simulating a heterogeneous

computing system; (ii) implementing a newly developed scheduling method

and plugging it into the system, and (iii) measuring energy consumption and

other output-related metrics.

– Ali Mokhtari, Drake Rawls, Tony Huynh, Jeremiah Green, and Mohsen

Amini Salehi, E2C: A Visual Simulator to Reinforce Education of

Heterogeneous Computing Systems, in 13th NSF/TCPP Workshop on

Parallel and Distributed Computing Education (EduPar), May 2023,

© 2023 IEEE.
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Chapter 2: Background and Literature Study

This chapter provides background and a survey of other research works

undertaken in the fields most related to heterogeneous computing systems.

2.1 Prior Literature for Admission Control in Heterogeneous Computing

Systems

In spite of substantial exploration of uncertainty in different areas, ranging

from biology to economics, it has not yet been sufficiently explored in the

distributed computing literature. The majority of current studies in scheduling

assume a static deterministic execution environment [31, 32] or consider predictable

and stable performance for distributed computing environments [33, 34, 32]. In

practice, these assumptions do not hold. Even in the case of clouds that guarantee

certain characteristics (e.g., processor speed and memory capacity) for their

services, the actual performance is subject to several underlying factors, such as

multi-tenancy, that cause uncertainty. To offer robustness, uncertainty and dynamic

performance variations, inherent to heterogeneous and shared infrastructures [35],

must be captured.

Optimal task mapping in HC systems and in the presence of uncertain

(stochastic) parameters has shown to be an NP-complete problem [36]. Therefore, a

large body of research works has been undertaken to capture the stochastic behavior

and provide a near-optimal task mapping to fulfill various performance goals (e.g.,

minimizing average waiting time [37] and maximizing throughput [38, 39]).

With respect to capturing uncertainty in tasks’ execution time, Aupy
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et al.[40] treat tasks’ execution time as a random variable and use probabilistic

distributions to model the uncertainty. With the goal of minimizing the incurred

cost of using cloud-based reservations, they leverage their proposed strategy to

allocate an optimal reservation sequence and schedule tasks on the reserved

resources.

Shestak et al. [41] investigate and prepare a foundation work for stochastic

task execution time modeling using probability mass function (PMF). They

establish fundamental tools for the system that use PMF instead of scalar values for

task scheduling. Our work builds on top of their findings, adopts their PMF

modeling, calculates tasks’ completion time based on the convolution of PMFs, and

measures robustness in a similar way to their work.

Khemka et al. [42] design and evaluate four resource allocation heuristics in

oversubscribed HC systems. These heuristics include the use of different utility

functions based on urgency, priority, and utility class. Although they utilize

PMF-based task execution times, they treat tasks’ execution time in a deterministic

(i.e., not probabilistic) manner. Their approaches include the use of preemptive

task-dropping procedure (i.e., discard task before reaching its deadline). However,

their approach relied on a static threshold and only drop tasks, if the task’s utility

goes below the specified threshold.

Salehi et al.[12] mathematically model the impact of task dropping on the

completion time PMF of tasks in an HC system. However, task dropping is carried

out either based on a static threshold or in a reactive manner (i.e., after a task
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misses its deadline). Later, Gentry et al. [11] extend the earlier study and presented

a task pruning mechanism for HC systems. Denninnart et al. [43], show a

generalized form of the pruning mechanism and deploy it as a separate component

in the system to improve the robustness of homogeneous or heterogeneous systems.

The generalized pruning mechanism can work in conjunction with any mapping

heuristic to improve the system’s robustness. Nonetheless, in all of these works,

probabilistic task pruning makes its decisions based on a predefined threshold,

which is not necessarily optimal and requires user intervention. Alternatively, the

dropping mechanism of this study is optimal and autonomous, i.e., it does not

require any predefined threshold and/or user intervention.

2.2 Prior Literature for Fair Energy- and Latency-aware Task Scheduling

in Heterogeneous Computing Systems

ML applications are computationally intensive, and deploying them in

resource-limited HEC systems would raise two critical challenges: (i) latency and

(ii) energy consumption [44, 45, 46]. Prior research efforts have addressed these

challenges in two ways: deploying approximate computing techniques and proposing

efficient resource allocation algorithms.

Approximate computing techniques can be used to improve the latency and

energy consumption of ML applications [47, 48, 49]. Approximate computing, in

particular, improves the latency and energy consumption of computationally

intensive applications by leveraging their error resistance [50]. In hardware-level

approximate computing, the hardware components are modified such that the
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computations are performed with less energy consumption and lower accuracy.

In [49, 51], the researchers implemented approximate adders and multipliers in deep

learning accelerators to improve the performance of the accelerator and save energy.

Quantization is another approximate computing technique that can be used to

reduce the latency and energy consumption of deep learning applications. In integer

quantization, the 32-bit floating-point numbers (e.g., weights) are converted to 8-bit

fixed-point numbers to shrink the model, and consequently reduce the latency[52].

In [53], the authors suggested a quantization approach that allows inference to be

performed using only integer arithmetic. Their proposed quantization technique

could reduce the model size by 4x. In [54], the authors introduce a layer-wise and

per-parameter quantization method that could maintain accuracy while the energy

consumption and model size are decreased.

The optimal scheduling is proven to be an NP-hard problem [55, 56], thereby,

a substantial exploration has been accomplished to propose feasible heuristic-based

or sub-optimal solutions. The majority of the proposed solutions in scheduling

focuses on one or two objectives like energy [57, 58, 59], makespan [60], or QoS [61].

In [62] a bio-inspired approach was proposed to solve the bi-objective optimization

problem for the system makespan and the energy consumption objectives. In [63],

the authors employed linear weighted sum techniques to minimize both energy and

makespan. In [30, 19], the probabilistic approach is used to determine the

probability of on-time completion of tasks on available computing resources. Then,

a task-dropping mechanism is deployed to maximize the system’s robustness. The
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dropping decisions are made such that the overall system performance would

increase.

The optimal scheduling and approximate computing techniques are

complementary solutions. In fact, the synergy between approximate computing and

efficient scheduling can significantly increase the overall system performance. In this

work, we propose an efficient resource allocation algorithm that aims to minimize

the system’s wasted energy due to the unsuccessful completion of tasks while the

performance metric is maintained. Furthermore, the proposed method is developed

first to detect the unfairness across task types, and then it treats the suffered task

types until the fairness criteria are satisfied.

2.3 Prior Literature for Performance-driven Heterogeneity Quantification

Heterogeneous computing systems utilize various computing machines to

perform diverse tasks with different computational requirements. The idea of

exploiting the system heterogeneity to improve the performance of the system

considering different objectives such as energy [64, 65, 66, 67, 68, 17] and

QoS [69, 70, 30, 19] has been extensively explored in the literature. Based on these

works, it is proven that heterogeneity can play a crucial role in enhancing different

system performance metrics, however, these works fall short of providing a concrete

metric that can explain the impact of heterogeneity on system performance.

Moreover, these works commonly try to exploit heterogeneity in favor of optimizing

a performance metric. In contrast, our work takes a different approach such that,

for a desired performance metric, it tries to configure the heterogeneity of the
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system and its impact on the performance metric.

Expected Time to Compute (ETC) Matrix The idea of characterizing

a heterogeneous computing system using the Expected Time to Compute (ETC)

matrix was first explored by Ali et al. [1]. They used the coefficient-of-variation of

expected execution times as a measure of heterogeneity. Then, they suggested an

algorithm that takes the mean and standard deviation of execution times to

generate the ETC matrix of the heterogeneous system. However, their method

neither characterizes the performance of different heterogeneous systems, nor make

them comparable. In contrast, we present a mathematical model to measure the

system heterogeneity such that it can characterize the overall system performance

behavior and make different systems comparable.

Heterogeneity-aware Task Scheduling Several research works have been

undertaken on heterogeneity-aware scheduling algorithms operating based on the

ETC matrix. Panda et al. [65] introduced an energy-efficient task scheduling

algorithm, called ETSA, for heterogeneous cloud computing to minimize energy

consumption and makespan (i.e., the total time to complete a workload). In the

proposed algorithm, the trade-off between minimizing energy consumption and

maximizing the system performance is achieved by minimizing the linear

combination of normalized completion time and total utilization. In their work, the

heterogeneity is represented by the Expected Time to Compute (ETC) matrix

whose entries show the expected execution time of a particular task type on a

specific machine type. Although the proposed scheduling solution has been
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evaluated across different heterogeneous computing systems, the impact of the

heterogeneity on the system performance has not been discussed. In another work,

Panda and Jana [71] presented three scheduling algorithms for heterogeneous

multi-cloud environments while the objectives are minimizing makespan and

maximizing cloud utilization. Here, the heterogeneous cloud environment is also

represented by the ETC matrix. Moreover, Mokhtari et al. [17], leveraged the ETC

matrix to model the performance behavior of heterogeneous computing systems.

They introduced a fair and energy-aware scheduling algorithm, called FELARE, for

latency-sensitive tasks in heterogeneous edge systems. To improve fairness across

task types, FELARE monitors the performance of the heterogeneous system, and

based on the defined fairness metric, it mitigates the suffered tasks by prioritizing

them in the next mapping events.

In [20, 19, 30, 12], the authors followed a probabilistic approach to design a

robust resource allocation algorithm for heterogeneous computing systems. To

capture the uncertainties in the execution times, they introduced the Probabilistic

Execution Time (PET) matrix to maintain the Probability Mass Function (PMF) of

the execution time of different task types on different machine types in the

heterogeneous system. Then, they employed probabilistic convolution techniques to

calculate the probabilistic completion time of tasks and, subsequently, make

scheduling decisions. In these works, a modified version of the ETC matrix that

contains the distribution of execution time for each task type on a machine type was

employed to model the heterogeneity. Narayanan et al. [29] proposed a throughput
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matrix to model the performance behavior of the system. Specifically, each entry

pi, jq of the matrix represents the throughput of job i on machine j. The matrix also

implies the system heterogeneity, hence, they leveraged it to devise a

heterogeneity-aware scheduling method that can be optimized for different

performance metrics.

Heterogeneity-aware Machine Learning Inference Serving Systems

Several research works have been conducted to devise heterogeneity-aware machine

learning inference services considering performance objectives such as cost, QoS, or

throughput. Ribbon [72] exploits the cost and performance trade-off in serving deep

learning inferences on heterogeneous AWS EC2 instances. They considered different

system configurations (different numbers of AWS EC2 instances) as decision

parameters. In their work, they assume that the performance metric (i.e., QoS) of

diverse configurations cannot be described mathematically. Thus, they employed

Bayesian Optimization techniques to find the optimal configuration that minimizes

the cost of serving the inference queries while meeting the QoS constraint. Cocktail

[73] leverages model ensembling of heterogeneous model variants alongside

heterogeneity in the hardware for accuracy improvement and cost optimization.

Kairos [74] is a deep learning inference serving framework that maximizes the

throughput under cost budget and QoS constraint. For that purpose, they proposed

a heterogeneity-aware query distribution mechanism that maximizes the

throughput. The core idea is to distribute queries across machines such that it

maximizes the idle time in the future for all instances. In these works, it is assumed
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that the performance (i.e., throughput) of a heterogeneous system cannot be

mathematically described, however, in our work, we propose an analytical approach

to accurately estimate the throughput of a heterogeneous system. This would help

in finding the optimal configuration that minimizes the cost of service while meeting

the throughput target.

In sum, all these works testify that heterogeneity can be employed to

improve the system’s performance. Nonetheless, there is yet to be a concrete way to

characterize the impact of heterogeneity on the system performance. For that

purpose, we provide a heterogeneity measure that characterizes the impact of

heterogeneity on the performance of heterogeneous systems and can be used to

estimate the performance (i.e., throughput or makespan) of heterogeneous systems

without online evaluations.
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Chapter 3: Admission Control via Proactive Task Dropping Mechanism

3.1 overview

The robustness of a distributed computing system is defined as the ability to

maintain its performance in the presence of uncertain parameters. Uncertainty is a

key problem in heterogeneous (and even homogeneous) distributed computing

systems that perturb system robustness. Notably, the performance of these systems

is perturbed by uncertainty in both task execution time and arrival. Accordingly,

our goal is to make the system robust against these uncertainties. Considering task

execution time as a random variable, we use probabilistic analysis to develop an

autonomous proactive task-dropping mechanism to attain our robustness goal.

Specifically, we provide a mathematical model that identifies the optimality of a

task-dropping decision, so that the system robustness is maximized. Then, we

leverage the mathematical model to develop a task-dropping heuristic that achieves

system robustness within a feasible time complexity. Although the proposed model

is generic and can be applied to any distributed system, we concentrate on

heterogeneous computing (HC) systems that have a higher degree of exposure to

uncertainty than homogeneous systems. Experimental results demonstrate that the

autonomous proactive dropping mechanism can improve the system robustness by

up to 20%.

3.2 Problem Statement

Heterogeneous Computing (HC) systems can be categorized as consistent or

inconsistent [10, 11] heterogeneous systems. Consistent machine heterogeneity
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describes a computing system of multiple machines with the same architecture but

different performance characteristics. In an inconsistent HC system, machines are

also distinguished by their different architectures [75, 76, 77]. In such a system, each

task may have different execution times on different machines of the system.

Formally, an inconsistently heterogeneous system is defined as a computing system

in which machine A may be faster than machine B for task 1 but slower than other

machines for task 2 [12]. As a popular example of an inconsistent HC system, we

can consider Amazon cloud [78] that offers various machine types (e.g.,

CPU-Optimized, Memory-Optimized, and GPU).

In the same way, task requests can be categorized as consistently or

inconsistently heterogeneous. For instance, a system dedicated for video transcoding

[79] receives categorically different tasks (i.e., task types) to change video

resolution, bit rate, or compression formats [10]. Each instance of these task types

can process a video with a different size, which represents consistent heterogeneity

across tasks of the same type. Such variety of tasks are proven to benefit from

utilizing an HC system [10].

Robustness of a system is defined as its ability to maintain its performance in

the face of uncertainty [12, 80]. Two major uncertain parameters that affect the

robustness of a computing system in an inconsistent HC system are, namely task

execution time and task arrival [79]. There is uncertainty in the execution times of

different task types across different machine types. Uncertainty in tasks’ arrival can

lead to oversubscription situation, which is defined as an overloaded system that
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cannot complete all tasks by their deadlines [12].

Co-occurrence of both tasks’ arrival and execution time uncertainties in a

system with inconsistent heterogeneity in their tasks and machines leads to poor

resource allocation decisions and lack of robustness [81, 82]. This is particularly

crucial when resources are not abundant (e.g., in Edge computing [83]) or the

resources cannot be acquired due to budget constraints (e.g., in Cloud environment)

[79, 84]. Accordingly, the problem we investigate in this research is: how to make an

inconsistent HC system robust against uncertainties in tasks’ execution times and

arrival?

3.3 Solution Statement and Contributions

We address the research question in the context of an HC system used for

live video streaming (e.g., [79, 10, 85]). As shown in Figure 4.1, we consider an

online (dynamic) batch scheduling system [38] to allocate tasks to heterogeneous

machines. Each machine has a limited local queue (termed machine queue) to fetch

data for allocated tasks before starting execution. We consider each task in the

system as independent and with an individual hard deadline. Then, we measure the

robustness of the system based on the number of tasks completed on time within a

given time period.

To capture the uncertainty in tasks’ execution times, we model the execution

times using statistical distributions and leverage them to calculate the likelihood of

on-time completion for each task. Also, to capture the uncertainty in tasks’ arrival

rate, we utilize a task-dropping mechanism that proactively drops (i.e., discards)
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Figure 3.1. Overview of a resource allocation system in a heterogeneous edge com-
puting system.
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tasks that are unlikely to be completed on time. Smart dropping of

unlikely-to-succeed tasks not only reduces the incurred cost of using resources but

also increases the chance of success for the remaining tasks and improves the overall

system robustness. However, the challenge is in making appropriate task-dropping

decisions to achieve the robustness goal. To address this challenge, in this work, we

propose a mathematical model that at any mapping event determines the optimal

task-dropping decision, so that the overall system robustness is maximized. Next,

we leverage the mathematical model to develop a proactive task-dropping heuristic

with a feasible time complexity that works along with the mapping heuristic (see

Figure 4.1). Although we target HC systems, the proposed model is generic and can

improve the robustness of homogeneous systems too.

Prior probabilistic task dropping approaches (e.g., [42, 11, 43]) base their

dropping decisions on the chance of completing a task before its deadline (termed

chance of success) and comparing that against a user-defined threshold.

Nonetheless, the dropping threshold is a dynamic parameter depending on
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system-level factors, such as task arrival intensity [11]. Such a fine-grained

parameter cannot be predetermined and statically applied to the HC system.

Alternatively, our proposed dropping mechanism does not rely on any predefined

threshold. It can autonomously make optimal dropping decisions such that the

overall system robustness is maximized.

In summary, the contributions of this chapter are as follows:

• Developing a mathematical model for optimal proactive task dropping in an

HC system.

• Proposing an autonomous proactive task dropping heuristic in HC systems.

• Analyzing the impact of task-dropping mechanism on the robustness of both

heterogeneous and homogeneous systems under varying workload

characteristics.

• Analyzing the cost-benefit of using the proactive task-dropping heuristic.

The rest of the chapter is organized as follows: In Section 3.4, we present an

overview of the system and our approach. Then, in Section 3.5 we describe our

mathematical model and proactive task-dropping heuristic. Next, in Section 3.6,

performance evaluation is elaborated. Lastly, the chapter summary is presented in

Section 3.7.

3.4 System Model

This research is motivated by an inconsistent Heterogeneous Computing

(HC) system used for transcoding live video streaming tasks, such as those explored
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in [79, 86, 85]. In this system, each task has an individual deadline and it has to be

completed before the deadline. There is no value in executing tasks that have

missed their deadlines and such tasks should be dropped to maintain the liveness of

the video streaming. In this HC system, a limited number of task types (e.g.,

transcoding types) are processed. Figure 4.1 shows that arriving tasks are batched

in a queue; then each task is mapped to one of the s heterogeneous machines.

There is uncertainty in the execution time of each task type across different

machine types. Furthermore, there is uncertainty in the execution time of even one

task type on a single machine type, due to factors such as tasks’ data sizes and/or

resource contention in a multi-tenant system [87]. We consider the uncertain

execution time of each task type as a discrete random variable and use a Probability

Mass Function (PMF) to model it. Practically, the execution time PMF of task

type i on machine type j can be learned and estimated from the historic execution

time information of that task type on that machine type. In an HC system, a

matrix, called Probabilistic Execution Time (PET) [12], is employed to store the

execution time PMFs of all task types on all machine types. Since there are a

limited number of known task types and machine types, the PET matrix has a

limited size. It is assumed that the PET matrix is available in the HC system.

A mapping event is triggered by completion or arrival of a task to assign

unmapped tasks from the batch queue. At each mapping event, first, pending tasks

in machine queues that missed their individual deadlines are dropped. Then,

Mapper uses a mapping heuristic to assign unmapped tasks to available slots in
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machine queues. The mapping heuristic creates a temporary queue of machine-task

mappings and the completion time PMF of each unmapped task on heterogeneous

machines is calculated (see Section 3.5.1). Machine queues are to fetch data (e.g.,

video content) for the assigned tasks, prior to their execution. To restrain the

combined effect of execution times uncertainties on a task completion time

uncertainty, the size of machine queues are considered to be limited.

We assume that the mapped tasks cannot be remapped, due to the data

transfer overhead, and machine queues operate in a first come first serve manner.

Similar to [79], tasks are considered to be sequential, independent, and executed in

isolation, with no preemption and no multitasking.

Although our model is generic and can be applied to homogeneous systems,

in this study, we concentrate on HC systems. The reason is that HC systems have a

higher degree of exposure to uncertainty than homogeneous systems. In fact, an

inconsistent HC system is not only exposed to uncertainty in the execution time of

a certain task type on a given machine type but it is also exposed to the uncertainty

of the same task type across different machine types.

3.5 Proactive Task Dropping

Probabilistic task dropping is a double-edged sword for system robustness.

On the one hand, we miss the chance to complete a task, hence, it reduces the

robustness. On the other hand, dropping improves the chance of success for the

tasks behind the dropped task, as they can begin their execution earlier. To attain

the maximum robustness, these two effects should be considered for any dropping
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decision. In this section, we resolve this issue and determine how task-dropping

decision should be made in an HC system so that the robustness is maximized.

In essence, a task should be dropped, if it increases the likelihood of having

more tasks completed on time. Therefore, in this section, firstly, we introduce a

method to calculate the impact of a task dropping on the chance of success for the

remaining tasks. Then, we provide a mathematical model that, at each mapping

event, determines the optimal subset of tasks whose dropping can potentially

maximize the robustness. Lastly, as the provided model is complex, we leverage it

to present a sub-optimal task-dropping heuristic that makes a dropping decision for

each individual task, as opposed to collectively considering all tasks.

3.5.1 Calculating Chance of Success in Reactive Task Dropping

To calculate the chance of success for a task of type i on the local queue of a

machine of type j, we first need to determine the stochastic completion time of the

task. Recall that, the execution time of task type i on machine type j is considered

as a discrete random variable, denoted Eij, which is maintained in the form of a

PMF in the PET matrix. Let eijptq an impulse in the PMF, representing the

probability that task type i on machine type j takes t time units to execute (i.e.,

eijptq “ PpEij “ tq). Similarly, let Cij be a discrete random variable, representing

the completion time of task type i on machine j and its PMF is denoted as cijptq.

As depicted in Figure 3.2, to calculate the completion time PMF of pending

task i on the given machine j, its execution time PMF is convolved with the

completion time PMF of the task ahead of it (i.e., task i ´ 1). Note that, if pending

30



task i cannot begin its execution before its deadline, denoted δi, it is dropped. As

this way of task dropping is performed in reaction to missing a task’s deadline, we

call it reactive task dropping. Equation 3.1 shows the way cijptq is calculated. In this

equation, if the completion time of task i ´ 1 occurs at any time after δi, task i is

reactively dropped, hence, its execution time is considered zero in the convolution

process. In this case, @t ě δi, impulses of cpi´1qjptq are directly added to cijptq.

cijptq “

$

’

’

’

’

&

’

’

’

’

%

ÿ

@kăt

cpi´1qjpkq.eijpt ´ kq, t ă δi

ÿ

@kăδi

cpi´1qjpkq.eijpt ´ kq ` cpi´1qjptq, t ě δi

(3.1)

Figure 3.2. Execution time PMF of pending task i is convolved with the completion
time PMF of task i ´ 1 to obtain the completion time PMF of task i.
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Once we calculate the completion time PMF of task i, its chance of success,

denoted pij, is calculated based on Equation 3.2.

pij “
ÿ

@tăδi

cijptq (3.2)

Although task execution time is an independent random variable, task

completion time is not. As depicted in Figure 3.3, in a machine queue, the

completion time (and subsequently chance of success) of task i not only depends on
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its execution time but also on the completion time of the tasks ahead of it, defined

as dependence zone. Similarly, task i influences the completion time of the tasks

behind it in the machine queue, defined as influence zone. Note that, upon dropping

task i, only its influence zone is affected.

Figure 3.3. Stochastic completion time of task i is dependent on the list of tasks
ahead of it (dependence zone). Task i influences the stochastic completion time of
tasks behind (influence zone).
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3.5.2 Calculating Chance of Success in Proactive Task Dropping

In this part, we investigate how predictively deciding to drop a task, known

as proactive task dropping, can favor the overall system robustness. For that

purpose, we need to measure the potential benefit of task dropping on the system’s

robustness. For a list of q pending tasks in machine queue j, we define

instantaneous robustness, denoted Rj, as the sum of their chances of success and

calculate it based on Equation 3.3. Our hypothesis is that the overall system

robustness is likely to be improved, only if instantaneous robustness is improved at

each individual mapping event.

Rj “

q
ÿ

i“0

pij (3.3)

Because dropping task i only affects the chance of success for tasks in its
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influence zone, dropping task i is considered appropriate, only if it improves the

instantaneous robustness of tasks in the influence zone. For task i in the machine

queue, we need a method to calculate the instantaneous robustness of its influence

zone in two cases: when task i is not dropped versus when it is provisionally

dropped.

Upon provisional dropping of task i, the completion time of task i ´ 1 is

convolved with the execution time of task i` 1 with respect to its deadline (δi`1), as

explained in Equation 3.1. Let c
piq
pi`1qjptq represent the completion time PMF of task

i ` 1 when task i is provisionally dropped. Formally, c
piq
pi`1qjptq is calculated based on

Equation 3.4.

c
piq
pi`1qjptq “

$

’

’

’

’

’

’

’

’

’
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’

’

’

’

%

kăt
ÿ

k“0

cpi´1qjpkq.epi`1qjpt ´ kq, t ă δpi`1q

kăδi`1
ÿ

k“0

cpi´1qjpkq.epi`1qjpt ´ kq

`cpi´1qjptq, t ě δpi`1q

(3.4)

Accordingly, the completion time PMF of the next tasks in the influence

zone of task i, c
piq
nj ptq for @n ě pi ` 2q, is determined using Equation 3.5.

c
piq
nj ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

kăt
ÿ

k“0

c
piq
pn´1qjpkq.enjpt ´ kq, t ă δn

kăδn
ÿ

k“0

c
piq
pn´1qjpkq.enjpt ´ kq ` c

piq
pn´1qjptq, t ě δn

(3.5)

Once we have the completion time PMF for task n in the influence zone, its
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chance of success, denoted p
piq
nj , is calculated based on Equation 3.6.

p
piq
nj “

tăδn
ÿ

t“0

c
piq
nj ptq (3.6)

3.5.3 Optimal Proactive Task Dropping

Recall that dropping a task has two contradictory effects on the system’s

robustness. Although it reduces the number of completed tasks by one, it increases

the chance of success in its influence zone, and therefore, the instantaneous

robustness.

Due to the impact of proactive task dropping on the chance of success of

tasks in its influence zone, proactive dropping is not an independent decision to be

made for a task in isolation. As an example, assume that task n is located in the

influence zone of a large (i.e., compute intensive) task i, such that the chance of

success for n tends to zero (pnj Ñ 0). Therefore, instantaneous robustness does not

gain from dropping n. However, proactively dropping i can affect the chance of

success for n and make it appropriate for dropping. We can conclude that an

optimal proactive task dropping must maintain a collective view of the list of tasks

of a machine queue, as opposed to deciding for each task in isolation. Thus, the

problem of optimal proactive dropping is narrowed down to finding a subset of tasks

whose dropping maximizes the instantaneous robustness.

As the influence zone of the last task in a machine queue is null, its dropping

does not improve instantaneous robustness, hence, it is excluded from the subset of

tasks considered for proactive dropping decisions. Accordingly, in a machine with

queue size q, finding the optimal proactive dropping decision requires 2q´1 subsets
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to be examined for dropping. The subset of tasks whose dropping maximizes the

instantaneous robustness represents the optimal proactive dropping decision.

3.5.4 Proactive Task Dropping Heuristic

As finding the optimal subset of tasks for proactive dropping includes

examining an exponential number of cases, it imposes a considerable overhead at

each mapping event. As such, in this part, we propose a task-dropping heuristic

that provides a sub-optimal solution within a feasible time. The proposed heuristic

does not examine all subsets, instead, it operates on a task-by-task basis and

decides about the proactive dropping of each task. Specifically, the heuristic iterates

each machine queue and only in one pass decides appropriate tasks for proactive

dropping.

The appropriateness of proactively dropping task i can be measured by

comparing the instantaneous robustness of machine j when task i is provisionally

dropped, denoted R
piq
j , versus the circumstance in which task i is not dropped (i.e.,

Rj). Let Qj represent the list of pending tasks on machine queue j, then R
piq
j is

calculated based on Equation 3.7.

R
piq
j “

ÿ

@nPQj´tiu

p
piq
nj (3.7)

In particular, dropping task i is considered appropriate, if R
piq
j is sufficiently

greater than Rj. That is, we should have R
piq
j ą β¨Rj, where β ě 1 is defined as the

robustness improvement factor. In fact, the value of β dictates the aggression level

of proactive task dropping. In spectrum, β Ñ 8 disables proactive task dropping
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whereas β Ñ 1 enacts dropping even for minor improvements in instantaneous

robustness. We study the suitable value for β in the evaluation section of the paper.

Note that, in examining the provisional dropping of task i, only its influence

zone has to be considered and the dependence zone of the task can be excluded

from the calculations. We argue that there is not much gain in exploring the whole

influence zone. Knowing that provisional dropping of task i decreases the

instantaneous robustness by pij. Assuming β “ 1, the gain in the instantaneous

robustness of tasks in the influence zone must be greater than pij, so that proactive

dropping of task i is enacted. Theoretically, the gain can occur due to the

accumulation of negligible improvements across a large number of tasks that

eventually may not increase the system’s robustness. To avoid dropping because of

such misleading gains, in this heuristic, we enact proactive dropping of task i, if the

loss in the instantaneous robustness is compensated only within the first few tasks

of the influence zone.

For proactive task dropping heuristic, we define effective depth, denoted η, as

the number of tasks located immediately after task i in its influence zone. Then,

robustness improvement is only examined for tasks n Pă i ` 1, ..., i ` η ą. In

summary, the proactive dropping of task i on machine j is confirmed by the

heuristic, only if the condition in Equation 3.8 holds.

R
piq
j ą β¨Rj ðñ

i`η
ÿ

n“i`1

p
piq
nj ą β¨

i`η
ÿ

n“i

pnj (3.8)

The algorithm in Figure 3.4 explains the proactive task-dropping heuristic.
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In the first step, the algorithm iterates through all machine queues and performs

reactive task-dropping for those that already missed their deadlines (as noted in

Step 2). Then, in Steps 4—9, for each task i, we examine provisionally dropping it

and compare the instantaneous robustness for the effective depth of task i with the

circumstance that task i is not dropped. In Step 9, task i is proactively dropped if

the condition in Equation 3.8 holds. The mapping heuristic is invoked after the

proactive dropping heuristic.

Figure 3.4. Pseudo-code for Proactive Task Dropping Heuristic.

β Ð Robustness Improvement Factor
η Ð Effective Depth

Upon triggering of a mapping event:

(1) For each queue j of machines tm0,m1, ...,msu:

(2) Drop all pending tasks that missed their deadlines

(3) For each task i in machine queue j:

(4) For each task n in effective depth of task i:

(5) Calculate pnj based on Equation 3.2

(6) Provisionally drop task i

(7) Calculate p
piq
nj based on Equation 3.6

(8) if

i`η
ÿ

n“i`1

p
piq
nj ą β¨

i`η
ÿ

n“i

p
piq
nj

(9) Confirm dropping of task i

(10) Call mapping heuristic

3.5.5 Complexity Analysis of Proactive Task Dropping

The time complexity of proactive task dropping in each mapping event

depends on two factors: (A) the number of convolutions; and (B) the complexity of
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performing each convolution.

As noted earlier, the number of cases that the optimal dropping examines is

2q´1, and for each case, at most q tasks are considered. Hence, in the worst case, the

number of convolutions required (factor A) for the optimal solution is Opq¨ 2q´1
q.

Alternatively, heuristic dropping approximates optimal dropping by iterating the

machine queue from the head to the tail only once, evaluating the impact of

dropping each task on η tasks in its influence zone. Therefore, it requires at most

Opη¨ q) convolutions.

Let N1 and N2 the set of impulses of two given PMFs. In the worst case, we

assume that the PMFs are such that the number of impulses in the convolved PMF

is |N1|¨ |N2|. Then, the time complexity of the convolution operation (factor B) is

OpN2), where N “ maxp|N1|, |N2|q. Accordingly, calculating the completion time of

all tasks in a machine queue with size q has a time complexity of OpN q
q where

N “ maxq
i“1p|Ni|q. As a result, the overall time complexity of the proactive

task-dropping heuristic is Opq¨N q
q. Note that, in practice, the value of q is low and,

based on our observations, the number of impulses generated by a convolution is far

less than |N1|¨ |N2|.

3.6 Performance Evaluation and Analysis

3.6.1 Experimental Setup

To evaluate the task-dropping mechanism, we simulate two scenarios: one

using four video transcoding as task types and four AWS cloud virtual machines

(VM) as the HC system. To study the mechanism further, we simulate a more
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diverse HC system with eight machines and twelve task types from SPECint [88]

benchmarks. We base our analysis on the latter workload because it provides a wide

variety of inconsistent heterogeneous workloads. Then, we use the cloud-based

workload for validation of the findings.

The eight machines in the latter scenario contain eight machinesa. The

function describing the execution time of the tasks on a machine is assumed to be

an unimodal distribution. Gamma distribution was used to generate the

distributions and the mean of the Gamma distribution was determined based on

execution time results of SPECint benchmarks on the aforementioned eight

machines. We sampled 500 execution times for each application on each machine

where the scale parameter of each Gamma distribution was chosen uniformly from

the range [1,20]. Once the sample execution times were generated, we applied a

histogram to discretize the result and produce PMFs. The PMFs of different

benchmarks on the eight heterogeneous machines collectively form the PET matrix.

PET matrix of the eight machines by twelve task types is used throughout

the experiments. Each machine is provided with a machine queue which can store

up to six tasks, including the task that is currently executing. Task dropping

mechanism is engaged each time a system notices a task missing its deadline. All

the experiments are performed on Louisiana Optical Network Infrastructure (LONI)

Queen Bee 2 HPC system [89].

aThe 8 machines are: Dell Precision 380 3 GHz Pentium Extreme, Apple iMac 2 GHz Intel Core
Duo, Apple XServe 2 GHz Intel Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P
AMD Athlon 64 FX-60, IBM System P 570 4.7 GHz, SunFire 3800, and IBM BladeCenter HS21XM.
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Each simulation starts and ends when the system is in an idle state. In a

simulation, each task arrives based on an arrival time and eventually oversubscribes

the system. As we focus on the oversubscribed condition, the first and last 100 tasks

in each workload trial are excluded from the results. For each experiment, 30

workload trials with the same intensity level were examined. Workload intensity

refers to the number of tasks per time unit arrives in the system. For each

experimental result, the mean and 95% confidence interval are reported.

Every workload trial introduces a level of oversubscription to the system,

such that all tasks cannot be completed successfully, due to a shortage of resources.

However, every single task is individually feasible to process on time. The deadline

for any given task i is determined based on δi “ arri ` avgi ` pγ¨ avgallq, where arri

is the arrival time, avgi is the mean execution time for the task type (range from 50

to 200 ms), γ is a coefficient determining the task slack, and avgall is the mean of all

task types execution times. To evaluate the system’s robustness against task arrival

uncertainty, we conduct all experiments with three levels of task arrival intensity,

creating workloads with 20K, 30K, and 40K tasks.

3.6.2 Mapping Heuristics

The dropping mechanism introduced in this paper is generic and independent

from any particular mapping heuristic. In fact, the dropping mechanism can be

considered as a separate component in a resource allocation system that can

cooperate with any mapping heuristic, such as those widely used in heterogeneous

systems (e.g., MinMin [12], MSD [79], and PAM [11]) or homogeneous systems
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(e.g., FCFS, SJF, and EDF), to improve the system robustness.

MinCompletion-MinCompletion (MinMin or MM): MinMin (MM) is

a popular mapping heuristic in heterogeneous computing literature [90, 12]. In the

first phase of this heuristic, for each task in the batch queue, the machine that offers

the minimum expected completion time is found, and a pair is formed. In the

second phase, for each machine with an available slot in its queue, from the

task-machine pairs provisionally mapped to that machine, the pair with the

minimum completion time is assigned to it. The process is repeated until all

machine queues are full, or until the batch queue is depleted.

MinCompletion-Soonest Deadline (MSD): Similar to MinMin, MSD is

also a two-phase mapping heuristic used in several earlier studies (e.g., [42, 12, 11]).

The first phase creates task-machine pairs based on the minimum expected

completion time for each unmapped task. In the second phase, for each machine

with a free slot, the task-machine pair that has the soonest deadline is assigned to

that machine.

Ties are broken by choosing the task that has the minimum expected

completion time. Similar to MM, after assigning tasks to free slots, the operation is

repeated until either there is no unmapped task or there is no free slot in machine

queues.

Pruning-Aware Mapping (PAM): PAM [11] is a state-of-the-art

heuristic function based on the PET matrix and operates based on the chance of

success for tasks. PAM is a two-phase mapping heuristic. In its first phase, for each
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task, it finds the machine provides the highest chance of success. Then, the second

phase finds the task-machine pair with the lowest completion time and maps it to

that machine queue. Ties are broken by assigning the task that has the shortest

expected execution time. PAM performs task dropping (from machine queues) and

task deferring (from the batch queue) at each mapping event. However, because this

study focuses on the dropping operation, for the sake of comparison, we disabled

deferring on PAM.

PAM uses a predetermined threshold for dropping and deferring decisions.

We replace the dropping thresholds of PAM with our proposed proactive dropping

mechanism. Specifically, we consider two separate cases for evaluation: (A)

Combination of PAM with optimal proactive task dropping (shown as

PAM ` Optimal); (B) Combination of PAM with heuristic proactive task dropping

(shown as PAM ` Heuristic).

3.6.3 Analyzing the Impact of Effective Depth

In Section 3.5.4, we described that the proactive task-dropping heuristic does

not need to examine the whole influence zone of a task to decide about its dropping.

In this part, we aim to identify the suitable number of tasks in the influence zone

(i.e., effective depth), whose robustness improvement should compensate for the loss

of robustness resulting from a task dropping. For that purpose, we analyze how the

robustness of an HC system differs by varying the values of effective depth (η). The

result of this analysis is shown in Figure 3.5. The horizontal axis shows different

values of effective depth and the vertical axis shows the system’s robustness in the

42



Figure 3.5. The impact of varying effective depth on the system robustness resulted
from proactive task dropping heuristic with PAM mapping heuristic. The horizontal
axis shows the effective depth (η) and the vertical axis shows the system robustness
in the form of the percentage of tasks completed on time.
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form of the percentage of tasks completed on time. The experiment was conducted

for three oversubscription levels.

As shown in Figure 3.5, there is no significant improvement in the system

robustness for η ą 2. The reasons are twofold: First, considering too many tasks for

effective depth can be misleading to the task-dropping heuristic. This is because the

robustness loss resulting from dropping task i can be potentially amortized across

multiple tasks in the influence zone, causing a slight (but practically ineffective)

improvement in their chances of success. In this circumstance, the task-dropping

heuristic malfunctions by suggesting dropping task i, without necessarily improving
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the number of tasks completed on time. This observation confirms our hypothesis in

Section 3.5.4. Second, from a probabilistic point of view, when we drop task i in an

oversubscribed system, the uncertainty exists in the completion time of tasks

located immediately after task i gradually absorbs the gain of robustness resulting

from dropping task i. We can conclude that, in an oversubscribed system, the

impact of dropping task i fades out quickly, within the first couple of tasks in the

influence zone of task i.

Although the above justification suggests effective depth to be small, in

Figure 3.5, we observe that an effective depth of 1 is not effective. In fact, the case

of η “ 1 can be misleading in certain circumstances. For example, consider task i is

unlikely to succeed (say pij “ 10%), therefore, it is provisionally dropped. However,

task i ` 1 is already likely to succeed (say pij “ 95%) and provisionally dropping i

can improve the chance of task i ` 1 by at most 5%. Because the robustness

improvement cannot compensate for the loss of it (which is 10% by dropping task

i), dropping heuristic decides not to drop task i. However, because η “ 1, the

heuristic neglect considering task i ` 2 in the influence zone that can potentially

gain significantly from dropping task i. According to this analysis, for the rest of

the evaluations, we configure the proactive mapping heuristic to be carried out with

η “ 2.

3.6.4 Analyzing the Impact of Robustness Improvement Factor

As we described in Section 3.5.4, the proactive task-dropping heuristic

decides the appropriateness of a task-dropping based on a Robustness Improvement
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Figure 3.6. The impact of the Robustness Improvement Factor (β in the horizontal
axis) on the system robustness resulted from proactive task dropping heuristic with
PAM mapping heuristic for different oversubscription levels.
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Factor (β). In this part, we experimentally identify the suitable value that should

be considered for β, so that the system robustness gain is maximized. To this end,

as shown in Figure 3.6, we vary the value of β in the range of [1,4] by step 0.5 and,

for each configuration, we measure the system robustness in the form of the

percentage of tasks completed on time. We conducted the experiment for all three

levels of oversubscription.

As we can see in this figure, the system robustness is maximized for β “ 1

and the system robustness declines, as the β value increases. In fact, by increasing

the β value proactive task-dropping heuristic becomes more conservative and is less
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Figure 3.7. Evaluating the impact of applying proactive task dropping heuristic to
different mapping heuristics. Subfigure (a) shows the results for a heterogeneous com-
puting system and Subfigure (b) shows it in a homogeneous computing system. Hor-
izontal axes show different mapping heuristics—each one deployed with a proactive
task dropping heuristic (+Heuristic) and without a proactive task dropping heuristic
(+ReactDrop). In each case, system robustness in the form of the percentage of tasks
completed on time is reported.
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(b) Proactive task dropping in a homoge-
neous system

often engaged in the task-dropping operation. At the end of the spectrum, very

large values for β neutralize the impact of the proactive dropping heuristic.

According to this analysis, for the rest of the evaluations, we configure the proactive

mapping heuristic to be carried out with β “ 1.

3.6.5 Analyzing the Impact of Proactive Task Dropping on Various

Mapping Heuristics

Although the proposed task-dropping mechanism is independent of mapping

heuristics, the two can have a synergy in achieving robustness against compound

uncertainty. To examine both the generality of the dropping mechanism and its

impact on the system robustness, in this experiment, we apply the proactive task

dropping heuristic on widely-used mapping heuristics of both heterogeneous and
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homogeneous systems. Then, for each mapping heuristic, we measure the system

robustness (percentage of tasks completed on time) with the proactive task

dropping heuristic (+Heuristic) and without the proactive task dropping heuristic

involved (+ReactDrop). In this experiment, the oversubscription level of the system

is set on 30K tasks.

The results of this experiment are shown in Figure 3.7. Subfigure 3.7a shows

the percentage of tasks completed on time (vertical axis) and its horizontal axis

shows MSD, MM, and PAM mapping heuristics, each one with and without

proactive task dropping heuristic. In this figure, we observe that when proactive

task dropping is not applied, MSD performs significantly lower than MM and PAM.

This is because in an oversubscribed system, mapping tasks based on their deadline

intensity implies allocating tasks with a low chance of success and postponing tasks

that have a high chance of success to a later time. However, we observe that when

proactive task dropping is in place, all three mapping heuristics provide almost the

same robustness. This is because proactive task-dropping prunes tasks whose

chance of success is low from machine queues. Interestingly, the results show that, if

we put a reasonable dropping mechanism in place, we do not have to deploy a

complex mapping heuristic. In this case, simple mapping heuristics can be forgiven

for their poor mapping decisions and ultimately provide competitive robustness.

The result of this experiment for homogeneous mapping heuristics is shown

in Figure 3.7b. In this experiment, we employed three mapping heuristics that are

popular in homogeneous systems, namely FCFS, SJF, and EDF (earliest deadline
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first), and a prior work’s mapping heuristic named PAM. The figure testifies that

the dropping mechanism can significantly improve the robustness of homogeneous

systems. We observe that, without dropping, FCFS and EDF provide the lowest

robustness. The reason that SJF and PAM provide better robustness is that SJF

always maps the shortest tasks and, hence, can increase the number of completed

tasks. Also, PAM always maps the ones with the highest chance which leads to

completing tasks on time. Similar to heterogeneous systems, we observe that

proactive dropping heuristics can compensate for poor decisions made by mapping

heuristics and increasing their robustness to almost the same magnitude. The

improvement in robustness is less significant for FCFS. This is because, unlike SJF,

in FCFS, executing a compute-intensive task can diminish the chance of success for

several pending tasks, such that even by proactively dropping them the chance of

success for remaining tasks does not improve significantly.

3.6.6 Analyzing the Impact of Proactive Task Dropping on the System

Robustness

In this experiment, our goal is to evaluate how proactive dropping can

enhance the system’s robustness against compound uncertainty in both task

execution times and arrival. Based on the previous experiment, we pick PAM as the

mapping heuristic for this study and apply the following four variations of task

dropping on it: (A) using optimal proactive dropping (termed PAM+Optimal); (B)

using proactive dropping heuristic (termed PAM+Heuristic); and (C) using a

threshold based approach (termed PAM+Threshold). Case (C) was developed in
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[11] and in that the system user needs to be aware of dropping and initially set its

threshold. Then, the predetermined threshold is adjusted at each mapping event.

Figure 3.8 shows the result of evaluating variations of task dropping across

three oversubscription levels, represented by the number of arriving tasks (as shown

in the horizontal axis). In each case, we measure the system robustness in the form

of the percentage of tasks completed on time (vertical axis).

Figure 3.8. Comparing the impact of proactive task dropping against other forms
of task dropping in terms of system robustness, measured by the percentage of tasks
completed on time (vertical axis). The experiment is conducted for various oversub-
scription levels (horizontal axis).
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The experiment results demonstrate that as the systems become more

oversubscribed, the system robustness declines. However, we observe that both

PAM+Optimal and PAM+Heuristic outperform PAM+Threshold. Specifically,

when the system is under 40K task arrival, both PAM+Optimal and

PAM+Heuristic outperform PAM+Threshold by around 8%. The results indicate
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the efficacy of the proactive dropping approaches. This improvement is particularly

remarkable when considering that proactive dropping is also less complicated than

PAM+Threshold and it does not require any user involvement in adjusting the

dropping threshold.

Further analysis between PAM+Optimal and PAM+Heuristic reveals that,

regardless of the oversubscription level, there is no statistically and practically

significant difference between these two approaches. Considering the simplicity and

competitive performance of PAM+heuristic, we can conclude that it can replace

PAM+Optimal without any major loss in robustness.

To analyze the impact of proactive task dropping on the observed robustness,

we need to know the percentage of tasks dropped reactively (upon missing the

deadline) and proactively. Our analysis shows that after applying the proactive

task-dropping mechanism, only around 7% of the task droppings happen reactively.

This indicates that proactive task dropping is remarkably effective in avoiding

resource wastage and allocates tasks to machines, only if they can complete on time.

Proactively dropping tasks with a low chance of success offers a higher chance and

certainty of success to the remaining tasks, hence, improving the system robustness.

3.6.7 Analysis of the Incurred Cost of using Resources

While the focus of this paper is to maximize the system robustness in an HC

system, there are other metrics of success to consider; one of these is cost. Time

consumed for computing tasks that eventually fail to be completed on time is a

resource wastage that for certain scenarios, such as cloud computing, has associated
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costs. As such, the aim of this experiment is to analyze the impact of the proactive

task-dropping heuristic on the incurred cost of using such resources. For that

purpose, pricing from Amazon cloud [78] was mapped to the simulation machines.

To create a normalized view of the incurred costs, the price incurred to process the

tasks is divided by the percentage of tasks completed on time. We conduct this

experiment for various oversubscription levels.

Figure 3.9 shows that in an oversubscribed system, both PAM+Threshold

and PAM+Heuristic incur a significantly (»50%) lower cost per completed task

than MM. In particular, the reason for the improvement in PAM+Heuristic is

prioritizing tasks that are most likely to succeed. The significance of this

experiment is showing the fact that PAM+Heuristic not only outperforms other

dropping-based methods in terms of robustness, but it also performs that with a

lower incurred cost, because of not processing tasks needlessly.

3.6.8 Validating Robustness for Video Transcoding Workload

To validate our earlier observations, we utilize video transcoding workload

traces to measure the impact of the proactive dropping heuristic on the system

robustness. The video workload includes four video transcoding (task) types on four

heterogeneous machine types (two machines for each type). Execution time variation

across different task types is high (i.e., certain task type takes significantly shorter

time to execute than the others across all machine types). These video workload

traces also have a lower arrival rate and the system is moderately oversubscribed.

The results, shown in Figure 3.10, confirm our earlier observations that
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Figure 3.9. The impact of the proactive task dropping on incurred costs of using
resources. The horizontal axis shows the oversubscription level.
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applying the proactive task-dropping heuristic improves the system’s robustness,

regardless of the mapping heuristic deployed in the system. Further, we observe

that when proactive task dropping is plugged into the system, all mapping

heuristics exhibit almost the same robustness, which again validates our

observations in the earlier experiments.

3.7 Summary

In this chapter, we investigated the robustness of HC systems against the

compound uncertainty resulting from both uncertain task execution times and

uncertain task arrivals. To attain the robustness goal, we proposed an autonomous

dropping mechanism that captures the compound uncertainty and proactively drops

tasks whose chance of success is low, to increase the chance of success for the

remaining tasks, hence, maximizing the overall system robustness. The dropping
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Figure 3.10. The impact of proactive task dropping applied on the video transcoding
workload using different mapping heuristics. The oversubscription level is 20k tasks.
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mechanism uses a mathematical model to determine the optimal task-dropping

decisions in a dynamic resource allocation system. We then utilized the

mathematical model and proposed a sub-optimal task-dropping heuristic that

provides nearly the same robustness as the optimal one. Experimental results show

that the proactive task-dropping heuristic not only improves the system robustness

in both heterogeneous and homogeneous systems by around 20%, but also reduces

the incurred cost of using resources. In compare to earlier task-dropping works, the

proposed proactive task-dropping mechanism provides the following advantages: (A)

It is dynamic and does not require user intervention to configure any predetermined

threshold; (B) Architecturally, it is less complicated and can cooperate with any

mapping heuristic in a resource allocation system; (C) It provides a higher system

robustness.

53



Chapter 4: Fair Scheduling of Machine Learning Tasks on
Heterogeneous Systems

4.1 Overview

Edge computing enables smart IoT-based systems via concurrent and

continuous execution of latency-sensitive machine learning (ML) applications. These

edge-based machine learning systems are often battery-powered (i.e.,

energy-limited). They use heterogeneous resources with diverse computing

performance (e.g., CPU, GPU, and/or FPGA) to fulfill the latency constraints of

ML applications. The challenge is to allocate user requests for different ML

applications on the Heterogeneous Edge Computing Systems (HEC) with respect to

both the energy and latency constraints of these systems. To this end, we study and

analyze resource allocation solutions that can increase the on-time task completion

rate while considering the energy constraint. Importantly, we investigate

edge-friendly (lightweight) multi-objective mapping heuristics that do not become

biased toward a particular application type to achieve the objectives; instead, the

heuristics consider “fairness” across the concurrent ML applications in their

mapping decisions. Performance evaluations demonstrate that the proposed

heuristic outperforms widely-used heuristics in heterogeneous systems in terms of

the latency and energy objectives, particularly, at low to moderate request arrival

rates. We observed 8.9% improvement in on-time task completion rate and 12.6% in

energy-saving without imposing any significant overhead on the edge system.
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4.2 Motivation

IoT-based systems commonly rely on edge computing to process Machine

Learning (ML) applications in the user’s proximity, thereby, offering low-latency

smart services. However, the edge systems are often battery-powered and have a

limited energy supply. In many use cases, the IoT-based systems offer multiple

smart services to their users (e.g., object detection and motion capture [91]).

Therefore, the corresponding edge system needs to handle multiple

compute-intensive ML applications simultaneously (i.e., concurrently) and

continuously on its limited resources. These limitations justify making use of

inconsistently Heterogeneous Edge Computing (HEC ) systems [12, 30] where

processors are architecturally diverse and offer different compute performance and

energy consumption for distinct application types.

An exemplar use case of such an IoT-based system is SmartSight [92] (see

Figure 4.1), whose aim is to offer ambient perception to the blind and visually

impaired people. The system operates based on a pair of smart glasses and a

companion edge system that takes advantage of inconsistently heterogeneous

processing units [12] (a.k.a. machines) in which each machine type has a different

energy consumption and is optimized for fast execution of certain task types. For

instance, the HEC system can take advantage of both ESP32 (with IVP-EP 32-way

SIMD imaging/video data plane processor) [93] and ARC EM9D/EM11D

processors [94] that are optimized for image/video processing tasks (e.g., object

detection inference), and audio processing tasks (e.g., speech recognition),
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respectively. In this system, the companion edge system has to concurrently and

continuously execute multiple ML applications and serve the user’s requests within

a short latency (in less than 100 milliseconds), thereby, offering services such as

object detection to identify obstacles, motion detection to identify approaching

objects, face recognition, text recognition, and speech recognition to respond the

user’s commands. Both energy-efficiency and low-latency are critical metrics for the

usability and dependability of this system and the day-to-day life of the disabled

user. As such, any platform for this system must aim at maximizing the

energy-efficiency and minimizing the latency for all the offered services.

4.3 Problem Statement

An overview of the HEC system that we consider in this study is shown in

Figure 4.1. Multi-modal data (e.g., image, video, voice) are streamed from the

sensors of an IoT device and form different types of task requests that dynamically

arrive at the HEC system. Subsequently, the mapper module is triggered and

allocates the tasks to a set of inconsistently heterogeneous machines. Before

executing a task, its data is fetched to the local queue of the machine. Note that the

local queues of the machines are limited. The tasks are independent and

latency-sensitive, with individual hard deadlines.

In the HEC system, efficiently allocating tasks to the limited resources is

decisive on the latency and energy objectives. Intuitively, resource allocation

decisions can minimize energy consumption by mapping user requests to the

machine with minimum energy usage (and computing performance). However, such
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allocations can potentially undermine the latency objective. In contrast, allocating

user requests to the fastest machine (with higher energy consumption) depletes the

battery quickly and makes the system unusable. In a system like SmartSight, such

an unusability can potentially threaten the user’s safety. These extreme cases

demonstrate the importance of efficient resource allocation to increase the up-time

and usability of an energy-limited HEC system.

The resource allocation decisions must also be fair across the concurrent

services. That is, the aforementioned objectives cannot be fulfilled by making the

system biased toward specific task requests. For instance, to make the system

energy-efficient and last for a longer time, a resource allocation method cannot

consistently ignore (i.e., drop) the motion detection tasks (that have long execution

times) in favor of the object detection ones (that have shorter execution times). In

the case of SmartSight, such a biased system makes the blind person incapable of

detecting approaching objects, which again undermines its usability. As such,

fairness across request types is the third objective that has to be considered by the

resource allocation of such systems. In sum, the problem we investigate in this

chapter can be stated as follows: how to design a fair resource allocation method for

tasks (i.e., requests to concurrent ML applications), such that the on-time task

completion rate is maximized within the energy constraint of the HEC system? It is

noteworthy that in such a resource-limited computing system, the resource

allocation method solution should be lightweight, and its incurred overhead should

not worsen the system performance.
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Figure 4.1. Overview of an Edge-based system that offers multiple ML services (e.g.,
Object detection, speech recognition, and face recognition) concurrently using an
energy- and resource-limited Heterogeneous Edge Computing (HEC) system. Sensors
of the system capture multi-modal input (e.g., video, image, and voice) and form
latency-sensitive task requests.
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Resource allocation problem for heterogeneous systems has been widely

studied with the objective of either maximizing the on-time task completion [30] or

minimizing the energy consumption [95]. Nonetheless, in a usable IoT-based system,

both of these objectives in addition to the fairness are desired on a resource- and

energy-constraint system.

4.4 Solution Statement and Contributions

In addressing the multi-objective problem, we noticed that often improving

the latency objective comes with the cost of energy-inefficiency and vice versa.

Hence, we investigate how to efficiently strike a trade-off between the energy and

latency objectives. Such a multi-objective resource allocation problem is known to

be NP-complete [55]; thus, we develop a spectrum of heuristic solutions that range

from latency-aware to energy-aware ones. We note that, in the described HEC
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system, executing a task that is unlikely to meet its deadline wastes the available

energy for its unsuccessful execution and delays the following tasks, reducing their

chance of on-time completion, hence, degrading the system’s usability. To mitigate

this, prior to the mapping, the mapper should proactively drop tasks that are most

probably unable to meet their deadline.

The performance metric for the latency objective is the number of tasks

successfully that are completed on-time (i.e., within the latency constraint), and for

the energy objective is the amount of energy consumed to execute task requests.

Then, we show that using the proposed lightweight mapping heuristic, called

ELARE, we can meet both the energy and latency objectives that can dominate the

widely-used resource allocation heuristics. In the next step, we explore the fairness

aspect. For that purpose, we first formally define a measure to quantify the fairness

in a HEC system. Next, we leverage the measure to propose a Fair Energy- and

Latency-Aware Resource allocation on heterogeneous Edge systems, called

FELARE, that can maintain fairness across task types while the energy and latency

objectives are satisfied. FELARE aims at minimizing the energy consumption for

the mapping decisions that are expected to result in successful task completion (i.e.,

feasible scheduling decisions). FELARE also identifies the suffered task types (i.e.,

those with the low fairness value) and dynamically adjusts its decisions to mitigate

the unfairness.

To evaluate the efficacy of the ELARE and FELARE heuristics, we
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conducted a simulation studya and noticed that these methods could improve the

on-time task completion by 8.9% and reduce the wasted energy due to inefficient

task scheduling by 12.6%. These heuristics could also achieve fairness while fulfilling

the energy and latency objectives. In sum, the main contributions of this chapter

are as follows:

• Developing a measure to quantify the scheduling fairness across different task

types in a computing system.

• Performing a multi-objective analysis of the resource allocation in the HEC

system.

• Leveraging the multi-objective analysis to develop fair latency- and

energy-aware heuristics for concurrent ML applications in the HEC systems.

• Investigating the energy consumption, latency, and fairness resulting from the

proposed heuristics against widely used scheduling heuristics in the HEC

systems.

Although we conduct this research in the context of machine learning tasks and

edge computing, our analysis and findings are not limited to this context and can be

adapted to similar contexts where a set of pre-known independent task types are

deployed on energy-limited heterogeneous machines.

The rest of this chapter is organized as follows: In Section 4.5, we provide an

overview of the system. Then, in Section 4.6, we describe our latency- and

ahttps://github.com/hpcclab/E2C-Sim.git
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energy-aware heuristic. In Section 4.7, we propose a measure to quantify fairness

and fair resource allocation. Next, in Sections 4.8 and 4.9, the performance

evaluation of the methods is described. Lastly, we present the chapter summary in

Section 4.10.

4.5 System Model

This chapter encompasses scenarios where a single-user HEC system is

employed to host multiple ML applications, such as SmartSight [92] and those

explored in[96, 97, 98]. In these scenarios, ML applications are latency-sensitive and

have to process the user’s requests in a real-time manner. As an example, a request

to an obstacle detection application in SmartSight has to detect the objects

(obstacles) for a disabled user within a short hard deadline. There is no use in

completing a task after the deadline has passed and doing so makes the solution

unusable for the disabled user. Moreover, these HEC systems host only a limited

and pre-known ML applications (a.k.a. task types) with different data modalities

(e.g., video, image, or voice) that are assumed to have the same priority. As shown

in Figure 4.1, tasks with various modalities are queued upon arrival. Then, the

resource allocator (a.k.a. scheduler) uses a mapping heuristic to make one of the

following decisions for each queued task: (A) mapping it to an available slot in the

local queue of a machine; (B) discarding it, via dropping it or deferring its mapping

to a later time. A mapping could happen in two situations: (i) completion of an

executing task or (ii) arrival of a new task. The local queue on each machine is to

fetch the required data (e.g., image, audio, or video) and prepare the assigned tasks
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for execution. Due to uncertainty in the execution time of tasks and its compound

impact on the mapping decisions, the local queues are considered to have a limited

size, and they are equal across different machines in the system [11, 99].

Furthermore, task requests dynamically arrive to the system and the order of arrival

is unknown.

We categorize the arriving tasks based on the ML application they belong to,

and call them task types. Similarly, heterogeneous machines in the HEC systems are

distinguished by their performance characteristics and architectures and are

considered as different machine types. Profiling the execution time of task types on

the machines provides information about the execution time of task type i on

machine type j. Then, the expected values of the execution times for all task types

on different machine types are utilized to form a matrix, called Expected Execution

Time (EET) matrix [12]. The number of task types and the number of machine

types in the HEC system determine the number of rows and columns of the EET

matrix. In this work, we assume that the EET matrix is available via leveraging

task profiling data of the HEC system.

To determine the energy consumption of the system, we use the idle and

dynamic powers of each machine. Specifically, the amount of energy used by a

machine of type j to process a task of type i is determined by multiplying the

expected execution time of task type i by the dynamic power of that machine j. For

an idle machine, the amount of energy used is determined by multiplying the idle

time by its idle power. Due to the data transfer overhead and latency constraint of
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the tasks, we assume that a mapped task cannot be remapped or preempted.

Machine queues are also served in a first come, first served manner.

4.6 ELARE: Energy- and Latency-aware Task Scheduling in HEC Systems

In the HEC systems, the energy consumption due to processing a

latency-sensitive task is wasted in two ways: (i) unsuccessful task completion; and

(ii) inefficient resource allocation. The former is caused by mapping a task to a

machine where the task misses its deadline (i.e., the expected completion time of

the task on that machine is greater than its deadline). The latter explains the extra

energy consumed (wasted) by a machine to successfully complete a task that could

be otherwise successfully completed on another machine with less consumed energy.

To mitigate energy wastage, we propose a two-phase Latency- and

Energy-aware resource allocation method called ELARE, to map tasks in the HEC

system. To tackle the wasted energy due to unsuccessful task completion, in the

first phase, the mapper identifies the unlikely-to-succeed tasks in the arriving queue

and defers their assignment to the next mapping events with the hope that a better

matching machine would be available at that time. However, it is possible that the

task deferral continues in the following mapping events until the task’s deadline is

violated. In this case, the task is dropped and the system would not further process

that task. To mitigate the wasted energy due to inefficient resource allocation, the

mapper minimizes the energy consumption in its mapping decisions for the feasible

tasks in the arriving queue. Algorithm 1 provides the pseudo-code of the ELARE

heuristic. In the following sections, we elaborate on the details of each phase of this
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heuristic.

Algorithm 1: ELARE Heuristic

Input: ArrivingQueue: tT0, T1, ¨ ¨ ¨ , Tpu

Machines: tM0, M1, ¨ ¨ ¨ , Mmu

EET: Expected Execution Time Matrix
Output: Mapping Pairs: A list of [task, machine]

1 Function EE(ArrivingQueue, Machines, EET)

2 Call Phase-I with the ArrivingQueue, Machines & EET as inputs to
generate feasible task-machine pairs,

3 and the set of infeasible tasks
4 for each task P infeasible tasks do
5 if task.deadline ă current time then
6 defer(task)
7 else
8 drop(task)

9 Call Phase-II with feasible task-machine pairs & Machines as inputs
10 return set of task-machine pairs for mapping

4.6.1 Phase-I: Latency- and Energy-Awareness

Recall that the Phase-I of ELARE is responsible for recognizing the

infeasible tasks in the arriving queue. A rtask,machines pair is deemed as feasible

pair if the machine can successfully complete the task. A task that appears in at

least one feasible rtask,machines pair is identified as a feasible task. To determine

the feasibility of a rtask,machines pair, the expected completion time of the task on

the machine is required. Let task i with deadline δi map to slot q of machine j and

is given a start time, denoted by sijpqq , when the machine is being idle. The

expected execution time of processing task i on machine j is eij time units, which is

extracted from the EET matrix. Thus, the expected completion time of task i when

it is mapped to the queue slot q of machine j, denoted by cijpqq , is calculated based
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on Equation 4.1:

cijpqq “

$

’

&

’

%

sijpqq ` eij, sijpqq ` eij ă δi

δi, sijpqq ` eij ą δi and sijpqq ă δi

sijpqq , sijpqq ě δi

(4.1)

In Equation 4.1, the first row belongs to feasible pairs while two other rows

belong to infeasible pairs. In case of missing the deadline, the completion time of

the task could be either its deadline (i.e., task is dropped during execution

immediately when it passes its deadline) or the start time (i.e., the task is dropped

before execution started because the task has already passed its deadline).

In Phase-I, to prevent inefficient scheduling, for each task in the arriving

queue, the feasible rtask,machines pair that incurs minimum energy usage is

singled out and considered as the feasible and efficient pair for that task. To that

end, the expected energy consumption for executing task i when it is mapped to

queue slot q of machine j is determined as follows:

ecij “

$

’

&

’

%

pdynj ¨ pδi ´ sijpqqq, cijpqq ą δi and sijpqq ă δi

pdynj ¨ eij, cijpqq ă δi

0, sijpqq ě δi

(4.2)

In Equation 4.2, the first row describes the wasted energy due to the

unsuccessful completion of the task. In the case of successful task completion, the

middle term of Equation 4.2 gives the amount of energy consumed by the machine.

However, this energy consumption is not always the optimal value for completing

the task. In other words, a scheduler that makes an inefficient scheduling decision

would result in higher energy consumption, thus, wasting energy. In the case that a

feasible task appears in multiple rtask,machines pairs, all the pairs except the one
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with the minimum energy consumption are considered as “inefficient pairs” that

acting upon them increase the energy consumption, thus, reducing the usability of

the HEC system. To avoid this energy wastage, for each task, its feasible pair with

minimum expected energy consumption (efficient feasible pair) is selected in Phase-I.

The pseudo-code for Phase-I is shown in Algorithm 2. Lines 6-11 generate a

list of feasible machines for each task in the arriving queue and their corresponding

Expected Energy Consumption. In Line 13, the feasible machine with minimum

expected energy consumption (EEC), ecij, is selected. Then, in Line 14, task Ti and

its matching machine with minimum EEC (i.e., efficient and feasible machine for

completing the task) create a pair, and it is appended to the list of feasible efficient

pairs. In Line 16, a task that has no chance of being completed by any available

machines is considered an infeasible task and stored in the list with the same name.

4.6.2 Phase–II: Minimizing the Energy Consumption

Recall that the output of Phase-I is the set of feasible and efficient

rTask,Machines pairs. It is possible that multiple tasks become feasible for a

machine in the system. To avoid wasting energy due to inefficient resource

allocation, Phase-II of the ELARE heuristic is responsible for mapping the feasible

pair that incurs the minimum expected energy consumption.

Algorithm 3 shows the pseudo-code for the Phase-II of the ELARE heuristic.

In Line 6, all tasks that match Machine j are retrieved. Then, in Line 7, the most

efficient task (i.e., with minimum energy consumption) is selected, and appended to

the mapping pairs in Line 8. Next, the mapping pairs are returned to the main
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Algorithm 2: Phase-I of ELARE Heuristic

Input: ArrivingQueue: tT0, T1, ¨ ¨ ¨ , Tpu

Machines: tM0, M1, ¨ ¨ ¨ , Mnu

EET: Expected Execution Time Matrix
Output: Feasible Efficient Pairs, Infeasible Tasks

1 Function Phase-I(ArrivingQueue, Machines, EET)

2 for each Ti P ArrivingQueue do
3 for each Mj P Machines do
4 Calculate cij using Equation 4.1
5 if cij ď δi then
6 Calculate ecij using Equation 4.2
7 Append rMj, ecijs to FeasibleMachines

8 if FeasibleMachines ‰ NULL then
9 Meff = Select machine with min ecij in FeasibleMachines

10 Append [Ti , Meff ] to Feasible Efficient Pairs

11 else
12 Apppend Ti to Infeasible Tasks

13 return Feasible Efficient Pairs, InfeasibleTasks

Algorithm 3: Phase-II of the ELARE Heuristic

Input: Machines: tM0, M1, ¨ ¨ ¨ , Mnu,
Feasible Efficient Pairs: A list of rTi,Mj, EECijs

Output: Mapping Pairs: A list of [task, machine]
1 Function Phase-II(Machines, Feasible Efficient Pairs)

2 for each Mj P Machines do
3 Nomineesj Ð Call Get Nominees(Feasible Efficient Pairs, Mj)
4 Ti Ð Select the task with min ecij from Nomineesj
5 Append rTi,Mjs to the list of Mapping Pairs

6 return Mapping Pairs

67



ELARE heuristic.

4.7 Fairness in Completing Task Types

A resource allocation method is deemed fair if it is unbiased in allocating

resources to the tasks of the same priority. That is, the resource allocation should

not prioritize task types based on their execution time or any other system-level

metric other than those explicitly defined by the user. Recall that we assumed no

precedence across task types in HEC. Therefore, we can use the successful

completion rate of different task types as the metric to measure the fairness across

all task types. The completion rate of task type i, denoted cri, represents the

portion of the tasks of type i that are successfully completed within a given time

interval. In other words, task type completion rate is the ratio of the number of

completed tasks on-time for a certain task type to the total number of tasks of that

type arrived to the system. In an ideal and fair resource allocation, the completion

rate of all task types is one (@i cri “ 1). However, due to non-optimal resource

allocation or shortage of resources, some tasks may not meet their deadlines, thus,

their task type completion rate decreases with missing each task. To quantify

fairness, we continuously monitor the task types’ completion rates. An observed

completion rate distribution could lie in one of the following categories: (i)

Co-existence of high and low values for task type completion rates; (ii) Similar but

low completion rate values for all task types; or (iii) Similar and high completion

rate for all the task types. The first observation describes the situation where the

mapping method favors certain task types (with high completion rates) over others
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Figure 4.2. Illustration of the fairness limit method at different mapping events.
The completion rate variance is diminishing from left to right, as a result of FELARE
mapping heuristic. Suffered task types (T1 and T3) are gradually treated by FELARE
heuristic.
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(with low completion rates). In contrast, the third one represents a mapping

heuristic that exhibits fairness across all the task types. Accordingly, improving the

fairness in a biased mapping system is translated as moving from category (i) to (iii).

Algorithm 4: Suffered Task Types

Input: TaskTypes: tTT0, TT2, ¨ ¨ ¨ , TTsu

Output: Suffered Task Types
1 Function Suffered(TaskTypes)

2 Calculate µ and σ of the task type completion rates
3 Calculate fairness limit, ϵ using Equation 4.3
4 for each TTi P TaskTypes do
5 cri: completion rate of TTi

6 if cri ď ϵ then
7 Append TTi to Suffered Task Types

8 return Suffered Task Types

In the case of co-existing high and low completion rates, the task types with

low completion rates are the suffered task types. To identify the suffered task types,

we define a fairness limit, denoted ϵ, such that any task type whose completion rate

is lower than this limit is considered as suffered task type. To calculate this limit,

we introduce the fairness factor, denoted f , that represents the aggressiveness of the

fairness method. Let µ and σ, respectively, represent the mean and standard
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deviation of the completion rates across all task types. Then, the fairness limit is

calculated based on Equation 4.3. A higher value for the fairness factor results in a

less aggressive fairness method. In the extreme case where f is enough large, the

fairness limit approaches zero, thus, does not identify any suffered task types (i.e.,

the fairness method is disabled).

ϵ “ µ ´ f ¨ σ where 0 ď f ď
µ

σ
(4.3)

Upon calculating the fairness limit, any task type whose completion rate is

below the limit is identified as a member in the set of suffered task types, i.e.,

cri ă ϵ ðñ i P suffered task types . Figure 4.2 further clarifies the way to identify

the suffered task types using the fairness limit method. In subfigure (a), the

completion rate for task types tT1, T2, T3, T4u is 20%, 60%, 15%, and 45%,

respectively. To identify the suffered task types, the mean and standard deviation of

the completion rates across all task types is calculated; we have µ “ 35 and

σ “ 18.4. Assuming the fairness factor be one (i.e., f “ 1), based on Equation 4.3,

the value of the fairness limit becomes ϵ “ 16.6. Because the completion rate of T3

is less than the fairness limit (cr3 “ 15%), it is identified as a suffered task type. In

the next mapping events, the FELARE method gives T3 a higher priority, thus, its

completion rate increases (cr3 “ 25%). From subfigure (b) to (b), Although the

mean of the completion rates does not change (µ “ 35), the standard deviation

(σ “ 11.4) decreases as a result of applying FELARE mapping heuristic. Therefore,

the fairness limit is shrinking and T1 is identified as a suffered task type

(cr1 “ 23 ă 23.6), thus, higher priority is given to T1 in the next mapping events.
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Eventually, the standard deviation converges to zero and the the gap between the

mean and fairness limit diminishes, as depicted in subfigure (c).

Algorithm 4 explains the pseudo-code to identify suffered task types. In Line

4, the mean and standard deviation of the task type completion rates are calculated.

Then, in Line 5, the Equation 4.3 is used to determine the fairness limit.

Eventually, in Lines 6-9, the completion rate of each task type, cri is compared

against the fairness limit to identify the suffered task types.

Once we know the suffered task types, we leverage it to make the system fair.

For that purpose, we extend the ELARE heuristic and propose a new heuristic,

called Fair Energy- and Latency-aware Resource Allocation (FELARE). It follows

the following approaches to address fairness:

• Prioritizing the suffered tasks in the mapping events.

• Leveraging task dropping for non-suffered tasks in favor of infeasible suffered

tasks to make them feasible.

Using FELARE, in each mapping event, the suffered task types are

prioritized in allocation. Moreover, for a suffered task that is infeasible, the pending

tasks in the local queue of the fastest (i.e., best-matching) machine are dropped

one-at-a-time, until the suffered task becomes feasible on that machine. These two

strategies ultimately enhance the completion rate for the suffered tasks and

gradually diminish the dispersion in the completion rates of the task types. It is

noteworthy that, once the completion rate of task type i becomes greater than the
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fairness limit, it is removed from the list of suffered task types. To prioritize the

suffered task types in mapping events, we introduce high-priority pairs that include

the feasible efficient pairs of suffered task types. To construct the high-priority

pairs, we first generate the feasible efficient pairs as explained in Phase-I of ELARE.

Next, each pair with a task not identified as suffered is removed from the list. The

resultant list contains high-priority pairs.

The high-priority pairs are passed to Phase-II of FELARE, which is the same

as Phase-II of ELARE, to make the mapping decisions.

4.8 Experimental Setup

To evaluate the performance of the proposed heuristics, we examine two

scenarios: (i) using two deep learning applications (namely, face recognition [100]

and speech recognition [101]) as the task types running on two AWS Virtual

Machines (VMs) (t2.xlarge and g3s.xlarge)b) as the machine types; and (ii)

simulating the HEC system with four machine types and four task types with

synthesized expected execution time (EET) matrix.

In the first scenario, the T2 instances of AWS are general-purpose machines

that can be used for various workloads. They utilize Intel Xeon processors (Haswell

E5-2676 v3 or Broadwell E5-2686 v4). The t2.xlarge instance has 4 vCPUs and 16

GB memory. The G3 instances are best-matched for applications with intensive

graphic and equipped with NVIDIA Tesla M60 GPUs. The Thermal Design Power

(TDP) of Haswell E5-2676 v3 and NVIDIA Tesla M60 is 120 W and 300W,

bhttps://aws.amazon.com/ec2/instance-types/z#Intel
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respectively.

To perform the face recognition, we first use MTCNN model [102] to detect

the faces, then FaceNet model [100] is used to extract the embeddings. Eventually,

Support Vector Machine (SVM) is used to classify the face embeddings. The input

images consist of 30 images sampled from the LFW dataset [103]. Each AWS

instance is used to process all input images. In addition, the experiment is repeated

30 times, and eventually, we collected the end-to-end latency for 900 inferences. For

speech recognition, we used the DeepSpeech model [101]. The test dataset consists

of 900 recorded audio which sums up to 118.9 hours of speech. Lastly, we use the

collected execution times to construct the EET matrix.

To study the mapping heuristics behavior, we simulate an HEC system with

four machine types and four task types. The four machines ({m1, m2, m3, m4})

have dynamic power consumption of t1.6 ¨ p, 3.0 ¨ p, 1.8 ¨ p, 1.5 ¨ pu and idle powers of

0.05 ¨ p where p represents the unit power. The four heterogeneous task types are

tT1, T2, T3, T4u. To model the heterogeneity of the HEC systems, we use the

Coefficient-of-Variation-Based (CVB) technique[1] to populate the Expected

Execution Time (EET) matrix. In the CVB method, the Coefficient of Variation

(CV) of execution time values is used to measure the heterogeneity. Then, based on

the task and machine CVs, two Gamma distributions are utilized to generate the

expected execution times. The EET matrix is shown in Table 4.1. Next, the

expected values in EET matrix are used to sample the execution time for each

individual task from a Gamma distribution. For each task type, we calculate the
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average of expected execution times on machine types, denoted ēi. Then, we take

the average of ēi for all task types, denoted ē, as the average of the collective

expected execution time of all task types on all machine types. Finally, we determine

the deadline of the task k of type i, δipkq, that arrives at arrk by adding task type

and collective mean values to the task’s arrival time, as shown in Equation 4.4.

δipkq “ arrk ` ēi ` ē (4.4)

We assume the inter-arrival between tasks follows the Poisson distribution

[104].

Table 4.1. Expected Execution Time (EET) matrix. Each entry pi, jq represents
the expected execution time of task type i on machine type j. The CVB technique[1]
was used to generate the EET matrix.

Tasks
Machines

m1 m2 m3 m4

T1 2.238 1.696 4.359 0.736
T2 2.256 1.828 4.377 0.868
T3 2.076 1.531 5.096 0.865
T4 2.092 1.622 4.388 0.913

4.8.1 Baseline Mapping Heuristics

Two-phase mapping heuristics have been extensively studied in

heterogeneous systems [12, 105]. Here, we focus on Minimum Completion

Time-Minimum Completion Time (MM), Minimum Completion Time-Soonest

Deadline (MSD), and Minimum Completion Time-Maximum Urgency (MMU) as

baseline heuristics. The first phase of MM, MSD, and MMU are similar. The

mapper selects a [task, machine] pair with a minimum expected completion time in

74



the first phase. Then, the list of [task, machine] pairs are used in the second phase

to select an individual task for each of the available machines. The methods are

distinguished based on the second phase of the algorithms. In MM, in the second

phase, if there exist multiple tasks for a machine, the [task, machine] pair that offers

minimum expected completion time is chosen, and then the task is allocated to the

local queue of that machine. In MSD, it chooses the pair based on the soonest

deadline. That is, for each available machine, it explores all the pairs generated in

the first phase, and then it chooses the task with the earliest deadline. In case of the

same deadline for multiple tasks, the task with the minimum expected completion

time is selected and assigned to the queue of the machine. In MMU, it uses the

urgency metric for selecting a task. The urgency of task k of type i is defined as

1{pδipkq ´ eijq. So, the task with maximum urgency is selected and assigned to the

local queue of the machine.

4.9 Performance Evaluation

4.9.1 Energy and Latency Trade-off

Recall that energy- and latency make the resource allocation problem of

HEC systems a bi-objective optimization problem. Minimizing the energy

consumption conflicts with maximizing the completion rate and/or minimizing the

deadline miss rate of tasks. As a result, there is not a single optimal solution,

instead, there could be a set of solutions that dominate other solutions. Figure 4.3

shows the energy consumption and deadline miss rate for the mapping heuristics at

different arrival rates. Moving from right to left on each curve increases the arrival
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Figure 4.3. The trade-off between energy consumption and latency across ELARE,
FELARE, and other baseline heuristics. Each curve belongs to one mapping heuristic
at different arrival rates. The gray zone describes the solutions that were dominated
by the Pareto-front curve. Both ELARE and FELARE are non-dominated solutions
that form the Pareto-front.
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rate. We can observe that at an extremely high arrival rate (e.g., 100 tasks per

second), all methods exhibit similar performance (high miss rate with low energy

consumption). In fact, at a very high arrival rate, a resource-limited system is

highly oversubscribed and tasks are missed regardless of the applied mapping

heuristic. However, the proposed heuristics, ELARE and FELARE, dominate other

heuristics at lower arrival rates. In other words, we can say that ELARE and

FELARE at low to moderate arrival rates belong to the set of non-dominated

solutions or the Pareto-front. This analysis recommends us to employ ELARE and

FELARE, particularly, at low to moderate arrival rates.

4.9.2 Analyzing the Wasted Energy

This experiment is to examine the performance of ELARE and FELARE on
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minimizing the energy wasted due to processing infeasible tasks. To this end, we

used 30 synthesized workload traces with different arrival rates where each workload

trace included 2,000 tasks. We also measure the wasted energy as the percentage of

energy consumed by machines to process the missed tasks with respect to the initial

available energy of the HEC system.

Figure 4.4 shows the results of the wasted energy analysis. We observe that

the wasted energy for ELARE and FELARE at low to moderate arrival rates is

much less than the other heuristics. Specifically, deploying ELARE shows 12.6% less

wasted energy at an arrival rate of 4 tasks per second than the MM heuristic.

However, for the high arrival rates, all the heuristics converge to a low energy

wastage. The reason is that, at the high arrival rates, most of the tasks become

infeasible and there is no chance to make them feasible. Hence, they miss their

deadline before even being assigned, regardless of the mapping heuristic being used.

A similar trend is observed in Figure 4.5 where the deep learning applications are

executed on the AWS instances.

These observations can be explained by considering how the energy is

consumed in each one of the heuristics. We explore this granular behavior of

heuristics in the next paragraph. However, the observed results confirm that

ELARE and FELARE methods definitely waste less energy than others for the low

to medium arrival rates.

Figure 4.6 shows the percentage of unsuccessful tasks, due to missing

deadline or cancellation (dropping) before the assignment, for both MM and
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Figure 4.4. The wasted energy due to deadline miss at different arrival rates for
different mapping heuristics
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ELARE at different arrival rates. We observe that ELARE outperforms MM for the

lower arrival rates. Specifically, ELARE reduces the unsuccessful tasks by 8.9% for

the arrival rate of 3. We see that ELARE proactively cancels most of the

unsuccessful tasks, whereas, the majority of the unsuccessful tasks for MM are due

to missing deadlines, which implies energy wastage. That is why the wastage for

MM is remarkably higher than ELARE in low to moderate arrival rates. However,

the canceled-to-missed ratio for MM gradually increases, because the system

becomes oversubscribed and the arriving tasks cannot be allocated and they are

eventually dropped from the arriving queue.

4.9.3 Analyzing Fairness Across Task Types

Although ELARE considers both the energy consumption and deadline

constraints, it is biased towards certain task types. To address this problem, we

proposed the FELARE heuristic to improve fairness across task types. In this part,

we conduct an experiment to compare the fairness of FELARE against other
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Figure 4.5. The wasted energy due to deadline miss of face recognition and speech
recognition applications on AWS instances at different arrival rates for MM and EE
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Figure 4.6. The percentage of unsuccessful tasks at different arrival rates for MM
and ELARE. Unsuccessful tasks are those that are either cancelled (not assigned to
the machines) or dropped due to missing deadlines.
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Figure 4.7. The fairness across task types TT1 to TT4 for FELARE, ELARE, MM,
MMU, and MSD heuristics. Also, the right-side vertical axis and red data points
represent the collective completion rate resulting from each heuristic.
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heuristics. To this end, we utilize 30 synthesized workload traces with an arrival

rate of 5.0 tasks per second where each workload contains 2000 tasks. The task

types and machines are characterized as described in Section 4.8.

Figure 4.7 shows the results of this experiment. The x-axis represents the

heuristics. The left and right y-axes also represent the task type and collective

completion rates, respectively. Here, the collective completion rate represents the

ratio of the successfully completed tasks to the total number of tasks that have

arrived in the system. We observe that ELARE is biased towards T3 and MM

towards T1 and T3. However, FELARE could considerably improve the fairness with

negligible degradation in the total completion rate. In the case of AWS workload

trace, Figure 4.8 shows the fairness of mapping heuristics across face and speech

recognition applications at an arrival rate of 2 tasks per second. The results are in

agreement with the previous experiment on the synthesized workload, where the
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Figure 4.8. The figure shows the fairness across task types, face recognition, and
speech recognition on AWS instances for FELARE, ELARE, MM, MMU, and MSD.
Also, the right y-axis and red curve represent the collective completion rate for each
heuristic.
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FELARE method exhibits substantially higher fairness than the other heuristics.

4.10 Summary

In this chapter, we investigated the fair and energy-efficient allocation of

concurrent and latency-sensitive ML applications in Heterogeneous Edge Computing

(HEC) systems. We proposed a two-phase heuristics, called ELARE, to address

both energy and latency objectives. This heuristic proactively drops tasks that are

unlikely to meet their deadlines, thereby, avoiding wasting energy. In the

experiments, we showed that ELARE could considerably reduce the wasted energy

via proactively dropping infeasible tasks and choosing the machines with the

minimum energy usage for each task. To address the bias to certain task types in

ELARE, we extended it and proposed the FELARE heuristics that treats all task

types fairly. FELARE measures the completion rate per task type to determine the

suffered task types. Then, it prioritizes the suffered task types in each mapping
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event. Moreover, in the case of observing infeasible suffered task types in a mapping

event, FELARE drops tasks from the non-suffered task types to make the infeasible

suffered tasks, feasible. The evaluation results showed that devising customized

mapping heuristics for the HEC systems can noticeably improve fairness and energy

consumption.
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Chapter 5: Performance-driven Quantification of Heterogeneity in
Distributed Computing Systems

5.1 Introduction

We define a heterogeneous computing system as a set of architecturally

diverse machines that work together to complete a set of requests (a.k.a. tasks) with

different computational requirements. We categorize the tasks arriving to a system

based on the type of operation they perform and call them task types. For instance,

in a system that assists blind and visually impaired people [17, 18], the task types

can be obstacle detection, face recognition, and speech recognition. Moreover, we

classify machines of a computing system based on their architectural and

performance characteristics and call each one a machine type. For instance, a cloud

solution architect can form a virtual compute cluster using ARM, x86-based, and

GPU machine types. In this work, we consider the system heterogeneity that

emanates from the diversity in machine types and computational requirements of

task types. In other words, system heterogeneity has two dimensions: (i) machine

heterogeneity and (ii) task heterogeneity. Profiling various task types on

heterogeneous machine types can describe their execution time behavior. Variations

in the performance (a.k.a. execution time) of a given task type across all the

machine types are defined as machine heterogeneity, whereas, variations in the

execution time of different task types on a given machine type are defined as task

heterogeneity. Then, the system heterogeneity is defined as the compounded

heterogeneity of these two dimensions.
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To quantify the heterogeneity of such computing systems in a manner that

can describe the system performance behavior in terms of makespan and

throughput, we need to address the following research questions: (i) How to find a

measure that can quantify the heterogeneity of any given computing system? (ii)

How to exploit the heterogeneity measure to predict the performance behavior of a

computing system?

We define Expected Execution Time (EET) as a matrix to store the expected

execution time of each task type on each machine type. In this manner, entry

EET ri, js (denoted eij) represents the expected execution time of task type i on

machine type j. It is needless to say that, for systems with multiple instances of the

same machine type, the corresponding columns of those machines in the EET

matrix are identical. The EET matrix, as a whole, represents the expected

performance of the entire system in terms of the tasks’ execution times. As such,

the matrix can be leveraged as a guide to understand the throughput that the

system can potentially achieve. We propose a mathematical model to measure the

task heterogeneity and machine heterogeneity levels separately as two dimensions

describing the system heterogeneity level. Then, we devise a mathematical model to

determine the overall system heterogeneity based on these dimensions. For that

purpose, we examine various measures of central tendency, namely arithmetic,

geometric, and harmonic means, and propose a single measure, called Homogeneous

Equivalent Execution Time (HEET ), that, for a given EET matrix and workload,

describes the expected execution time of a hypothetical homogeneous system whose
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throughput is similar to the heterogeneous system represented by EET matrix.

Subsequently, we employ HEET measure to determine the throughput of the

heterogeneous computing system. We evaluate the HEET measure for various

heterogeneous systems and workloads and show that it can precisely describe the

impact of heterogeneity level on the desired throughput. In summary, the specific

contributions of my research work in this chapter are as follows:

• Providing a measure to quantify the system heterogeneity such that it can be

used to determine the throughput of the system for a given workload.

• Proposing a systematic approach to analyzing heterogeneity of a computing

system by means of decoupling the heterogeneity into machine and task

heterogeneity dimensions, and characterizing each dimension separately by

making use of a custom-defined speedup metric.

• Proving the appropriateness of arithmetic mean and harmonic mean to

measure the central tendency of speedup values due to machine heterogeneity

and task heterogeneity, respectively.

• Validating how the system performance (makespan and throughput) can be

derived as a function of the proposed heterogeneity measure.

The rest of this chapter is organized as follows: In Section 5.2, we describe

the mathematical model to quantify the system heterogeneity based on the overall

speedup a system obtains by employing the heterogeneity. Section 5.3 provides an

overview of the real-world implementation we have developed to validate the
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accuracy of HEET measure. Section 5.4, examine the proposed heterogeneity

measure. The chapter summary is presented in Section 5.5.

5.2 Analyzing Performance Characteristics of Heterogeneous Systems

System heterogeneity is the result of the synergy between machine

heterogeneity and task heterogeneity dimensions. Accordingly, our approach for

quantifying system heterogeneity is to measure the heterogeneity of each dimension

individually and then fuse them to quantify the overall system heterogeneity. To

this end, we base our analysis on the notion of EET matrix that is representative of

the system performance. Considering that each row of EET represents a task type

and each column represents a machine type, the row-wise variations illustrate the

machine heterogeneity, and similarly, column-wise variations express the task

heterogeneity. Note that, in the event that some machines in the system are

homogeneous, their corresponding columns in the EET matrix are repeated.

We exploit the notion of speedup to characterize the impact of heterogeneity

on the system execution time behavior. The gained “speedup due to machine

heterogeneity” can be described by the row-wise analysis of the EET matrix. We

represent this speedup by a row vector, denoted α⃗piq, that has the same dimension

as ith row of EET matrix. Each entry α
piq
j denotes the speedup that the system can

achieve when machine type j executes task type i as opposed to executing it on the

slowest machine type. Accordingly, given the EET matrix of size m ˆ n, the value of
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α
piq
j is determined based on Equation 5.1.

α
piq
j “

n
max
j“1

eij

eij
(5.1)

In the above equation, α
piq
j “ 1, if and only if machine type j is the same as

the slowest machine for task type i.

Similarly, we define “speedup due to task heterogeneity”, denoted β⃗pjq, as a

column vector with the same dimension of jth column of the EET matrix. Entry βi
pjq

indicates the speedup achieved by executing a task of type i on machine type j, as

opposed to executing the slowest task type on that machine. Formally, βi
pjq is

calculated based on Equation 5.2.

βi
pjq “

m
max
i“1

eij

eij
(5.2)

The value of βi
pjq is one, if and only if task type i is the slowest task type on

machine type j.

Given the speedup vectors due to machine heterogeneity and task

heterogeneity, we need to represent each speedup vector in the form of a scalar

value. This scalar value for α⃗i (β⃗pjq) accurately describes how much all machine

types (task types) together can gain speedup because of heterogeneity in the

machines (tasks). Based on the mean-field method [106, 107], the interaction of

variables in a complex stochastic system can be replaced by the average interactions

between those variables. As such, we can use mean to represent the speedup

behavior of all ptask,machineq pairs in both α⃗piq and β⃗pjq. For that purpose, we
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employ statistical measures of central tendency (arithmetic, geometric, and

harmonic mean) to accurately represent α⃗piq and β⃗pjq. However, the challenge is that

there is no consensus on the appropriateness of these measures to capture the

central tendency of a specific use case [108, 109] and it has to be investigated on a

case-by-case basis. An appropriate mean speedup value derived from the EET

matrix must precisely depict the “real speedup”, a.k.a. true speedup (denoted Γ),

that the heterogeneous system can achieve for a given workload. We exploit the

notion of makespan (i.e., the total time of executing workload) to calculate the true

speedup. According to Equation 5.3, the true speedup is determined based on the

makespan of executing the workload on the heterogeneous system with respect to its

slowest “counterpart homogeneous system”, as the base system (a.k.a. baseline).

Γ “
homogeneous system makespan

heterogeneous system makespan
(5.3)

Note that the counterpart homogeneous system is represented by an EET

matrix whose entries are all equal to the maximum value of the EET matrix of the

heterogeneous system. We use ΓM and ΓT to represent true speedup with respect to

the machine heterogeneity and task heterogeneity, respectively.

Once we know the true speedup for a given workload, we can compare it

against the calculated mean speedup to know how accurate the calculated one is.

We provide three lemmas to introduce appropriate central tendency measures that

can represent speedup due to machine heterogeneity and task heterogeneity.

In the first step, to quantify the system heterogeneity, for each machine type,
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we utilize the EET matrix to generate the speedup vectors due to task heterogeneity

using Equation 5.2. These speedup column vectors construct a speedup matrix due

to task heterogeneity, denoted by ST . In the second step, we represent each speedup

vector due to task heterogeneity by its mean value. Note that, in this step, we fuse

all task types into a single hypothetical equivalent task type that can describe the

execution time behavior of all task types. Taking into account that we consider the

execution time of the slowest task type as the baseline, in the third step, for each

machine type, we utilize the mean speedup values due to task heterogeneity and the

baseline execution time to determine the execution time behavior of the hypothetical

equivalent task type. We repeat this step for all machine types to construct a row

vector depicting the execution times of the hypothetical equivalent task type on the

machine types. In step four, based on the row vector generated in the last step (as

the EET of the representative task type), we generate the speedup vector due to

machine heterogeneity based on Equation 5.1. Eventually, we reduce the speedup

vector due to machine heterogeneity for the hypothetical equivalent task type into a

single scalar value. We use this mean speedup value and the execution time of the

slowest machine for the hypothetical task type to determine a single-value execution

time that represents the execution time behavior of the entire system. We use this

representative execution time of the hypothetical equivalent task type on the

hypothetical equivalent machine type to define a heterogeneity measure.

Provided that heterogeneity affects the system performance by means of the

execution time (reflected in the EET matrix), we define a measure based on the
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execution time behavior, called Homogeneous Equivalent Execution Time (HEET),

to estimate the impact of the system heterogeneity on throughput. In fact, HEET

represents how fast the heterogeneous machines of the system are to process

heterogeneous tasks. Our hypothesis is that systems with the same HEET measure

expose comparable execution time behavior, thus, for a given workload, they exhibit

similar makespan and throughput. Therefore, the HEET score is able to properly

characterize the system heterogeneity with respect to the throughput it can offer

without running the workload against the heterogeneous system. In the rest of this

section, we elaborate on characterizing the machine heterogeneity and task

heterogeneity dimensions. Then, we discuss how to fuse these dimensions to

characterize the system heterogeneity.

5.2.1 Characterizing Machine Heterogeneity

For task type i, we process row i of the EET matrix with respect to the

slowest machine for that task type to form a row speedup vector, denoted α⃗ppiq,

representing the speedup values due to machine heterogeneity. For task type i, we

use the central tendency measure (mean) of the row speedup vector components,

denoted sαpiq, to aggregate the speedup behavior of all machine types.

According to [110], in the circumstances where the performance is expressed

as a rate (e.g., flops), generally, harmonic mean can accurately express the central

tendency. Also, the central tendency can be usually represented by the arithmetic

mean when the performance is of a time nature (e.g., makespan or total execution

time of a benchmark). Lastly, they suggest avoiding using geometric mean when the
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performance is of the time or rate nature. In another study [109], the speedup is

considered as the performance metric to compare an enhanced system against a

baseline one. To that end, they used a benchmark suite to evaluate the performance

of each system. Then, based on the makespan of each individual benchmark in the

benchmark suite, the speedup for the enhanced system is calculated. Next, the

authors discussed different measures of central tendency (i.e., arithmetic, harmonic,

and geometric mean) to summarize the speedup results of benchmarks into a single

number such that it appropriately describes the overall speedup for the entire

benchmark suite. To validate the appropriateness of the mean speedup measure,

they compared it against the speedup achieved by considering the makespan of the

entire benchmark suite on both systems.

In this research, we also follow the same approach as [109] to validate the

accuracy of the central tendency measure of the speedup matrix. Particularly, we

use the notion of true speedup (Γ) to verify that the central tendency measure

accurately represents the row speedup vector. In addition, the intensity of task

arrival to the system impacts machines’ utilization that, in turn, affects the true

speedup. In Lemma 5.1, we study an extreme case when the task arrival rate is

large enough such that all machines in the system have a task for execution at all

times. We show that for such a system, arithmetic mean can appropriately

summarize α⃗ppiq and represent the mean speedup due to machine heterogeneity. For

the other side of the spectrum, where the task arrival rate is low such that only one

machine in the system is executing a task at a time, we present Lemma 5.3 to prove
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that the harmonic mean should be used to accurately summarize α⃗ppiq and represent

the mean speedup due to machine heterogeneity. In these lemmas, we assume that

there is a single unbounded FCFS queue of tasks that are all available for execution

(like bag-of-tasks [38]). Whenever a machine becomes free, it takes the next task

from the queue to execute it.

Lemma 5.1. Let EET “ reijs (1 ď j ď n) denote EET vector of a heterogeneous

computing system consisting of a set of machine types, M “ tM1,M2, ...,Mnu, and a

workload with c ą n tasks of type Ti that are all available for execution (like

bag-of-tasks [38]). Tasks are queued upon arrival into a single unbounded FCFS

queue. Whenever a machine becomes free, it takes a task from the queue and

executes it. Then, the true speedup is calculated as follows:

ΓM “ sαpiqpAq (5.4)

where

sαpiqpAq
“

1

n
¨

n
ÿ

j“1

α
piq
j (5.5)

Proof. We assume that machine type k is the slowest for task type Ti, that is, we

have
n

max
j“1

eij “ eik. Then, the baseline system consists of n machines with the

expected execution time of eik. For a single FCFS queue, c tasks are equally

distributed across n homogeneous machines. Hence, each machine has to handle
c

n

tasks where the expected execution time of each task is eik. This means that the
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total time to complete those c tasks on the homogeneous system is r
c

n
s ˆ eik. We

know that 0 ď r
c

n
s ´

c

n
ă 1. If we replace r

c

n
s with

c

n
, the error in calculating total

time is at most pr
c

n
s ´

c

n
q{r

c

n
s, which is negligible for large number of tasks (c " n).

Thus, for the sake of simplicity, we assume that the makespan of completing c tasks

on the counterpart homogeneous system is
c

n
ˆ eik.

In the heterogeneous system, however, the proportions of the tasks handled

by different machine type are not equal, because faster machines can execute more

tasks. Specifically, machine type j that has eij ď eik executes eik{eij tasks while

machine type k executes only one task. As a result, the proportion of the total

number of tasks executed by the slowest machine type to the total number of tasks,

denoted by pk, is calculated as follows:

pk “

S

c
n
ř

j“1

eik
eij

W

, c ě n (5.6)

Then, the makespan of executing c tasks on the heterogeneous system is

pk ˆ eik. In Equation 5.6, we know that eik{eij “ α
piq
j , therefore, the speedup of the

heterogeneous system is calculated as follows:

ΓM “
1

n
¨

c
Q

c
n
ř

j“1
α

piq

j

U (5.7)

Assuming that
c

n
ř

j“1

α
piq
j

P Z, we have

S

c
n
ř

j“1

eik
eij

W

“
c

n
ř

j“1

eik
eij

and Equation 5.7 can

be represented as follows:
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ΓM “
1

n
¨

c
c

n
ř

j“1
α

piq

j

“
1

n
¨

n
ÿ

j“1

α
piq
j “ sαpiqpAq (5.8)

Note that sαpiqpAq is the arithmetic mean of α⃗piq components. However, if

c
n
ř

j“1

α
piq
j

R Z, the true speedup is not exactly the arithmetic mean of the row speedup

vector components (sαpiqpAq
‰ ΓM), and the corresponding error, denoted ϵpiq, is

determined as follows:

ϵpiq
“

sαpiqpAq ´ ΓM

ΓM

ă

n
ř

j“1

α
piq
j

c
(5.9)

It is also noteworthy that, for a large number of tasks (c ąą

n
ÿ

j“1

α
piq
j ), we

have ϵpiq
« 0

In Lemma 5.1, we made the assumption that tasks are queued into a single

unbounded FCFS queue. Whenever a machine becomes available, it selects a task

from the queue and processes it. In support of this scheduling approach, we

introduce Lemma 5.2, demonstrating that it yields the minimum makespan for

bag-of-tasks on heterogeneous computing systems.

Lemma 5.2. Let EET “ reijs (1 ď j ď n) denote EET vector of a heterogeneous

computing system consisting of a set of machine types, M “ tM1,M2, ...,Mnu, and a

workload with c tasks of type Ti that are all available for execution (i.e.,

bag-of-tasks). Then, the minimum makespan (total time to complete the workload) is
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obtained by using a Round-Robin load balancer across available machines. That is,

whenever a machine becomes free, it takes a task from the queue and executes it.

Proof. Based on the Round-Robin load balancer for available machines, whenever

a machine becomes free, it takes a task from the queue and executes it. Let

ek “
n

max
j“1

eij, representing the slowest machine type for task Ti. Based on the proof

in Lemma 5.1, the number of tasks completed on each machine is as follows:

nj “
ek
eij

¨
c

n
ř

j“1

ek
eij

“
c

eij
n
ř

j“1

1
eij

(5.10)

These fractions have the following characteristics:

n
ÿ

j“1

nj “

n
ÿ

j“1

c

eij
n
ř

j“1

1
eij

“ c (5.11)

Also, based on Lemma 5.1, the makespan, denoted τ˚, is determined as

follows:

@j nj ¨ eij “
c

n
ř

j“1

ek
eij

¨ ek “ τ˚ (5.12)

We assume that there are other fractions of tasks completed on machines,

denoted n1
j (1 ď j ď n), such that the resultant makespan, denoted τ 1, is less than

τ˚. Thus, for each machine, n1
j must be less than nj. If there exists a machine with

n1
j ą nj, then the corresponding makespan of the tasks completed on that machine

will be τ 1
“ n1

j ¨ eij ą nj ¨ eij “ τ˚, which is in contradiction with primary

assumption, τ 1
ă τ˚. Thus, we have:
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n1
j ă nj 1 ď j ď n (5.13)

Based on Equation 5.13, for the total number of tasks completed on

machines, we have:

n
ÿ

j“1

n1
j ă

n
ÿ

j“1

nj (5.14)

Based on Equation 5.11,
n

ÿ

j“1

nj “ c. As a result,

n
ÿ

j“1

n1
j ă c (5.15)

Thus, we cannot obtain a makespan less than τ˚ with the same number of

tasks. This proves that assigning tasks that are all available for execution on

available machines in a Round-Robin manner results in a minimum makespan.

In Lemma 5.1, we studied the case where the tasks are available for execution

a priori so that the impact of task arrival is abstracted. On the other side of the

spectrum, we can consider a system with sparse task arrival (i.e., large inter-arrival

times between tasks) where some machines may become idle while others are busy.

In an extreme case with a very low arrival rate, the entire system can potentially

become idle. Under certain (threshold) arrival rates, in between the two extremes,

only one machine in the system is busy and the rest are idle during the workload
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processing. Any arrival rate lower than the threshold leads to system idling,

whereas, any higher arrival rates lead to more than one busy machine at a time.

Lemma 5.3. Let EET “ reijs (1 ď j ď n) denote EET vector of a heterogeneous

computing system consisting of a set of machine types, M “ tM1,M2, ...,Mnu, and a

workload with c ą n tasks of type Ti. The arrival rate is such that the number of

busy machines is exactly one throughout the processing of the workload. Tasks are

queued upon arrival into a single unbounded FCFS queue. Whenever a machine

becomes free, it takes a task from the queue and executes it. In this case, the mean

speedup of using a heterogeneous system for task type Ti is the “harmonic mean” of

the α⃗ components, denoted by sαpiqpHq, and it is calculated as follows:

ΓM “ sαpiqpHq
“

n
m
ř

j“1

1

α
piq

j

(5.16)

Proof. Let k be the slowest machine type in the heterogeneous system that

executes task type Ti with the expected execution time of eik. We consider a baseline

homogeneous system counterpart with n machines of type k and with the FCFS

scheduler. Recall that, we assume the task arrival is such that only one machine is

busy at any given time. Hence, the makespan is the sum of execution times for all

tasks, and for c tasks the makespan is c ˆ eik and each machine executes
c

n
tasks.

Also, makespan for the heterogeneous system is
c

n
¨

m
ÿ

j“1

eij. Considering these, the

speedup of using a heterogeneous computing system is calculated as follows:
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ΓM “
c¨ ei,k

c
n

¨
m
ř

j“1

eij

“
n

m
ř

j“1

1

α
piq

j

“ sαpiqpHq (5.17)

As we can see, the speedup of using a machine heterogeneous system that has only

one machine busy at any given time aligns with the harmonic mean formula.

5.2.2 Characterizing Task Heterogeneity

In Section 5.2.1, we considered the row speedup vector to characterize

machine heterogeneity for a given task type. Likewise, to characterize task

heterogeneity, for machine type j, we define column speedup vector, denoted β⃗pjq.

Then, we summarize the column speedup vector into a representative mean value,

denoted sβH
pjq.

In Lemmas 5.1 and 5.3, based on the true speedup, we proved that

arithmetic mean (for high task arrival rate) and harmonic mean (for low task arrival

rate) are representative measures for central tendency of the row speedup vector due

to machine heterogeneity. Next, in Lemma 5.4, we shift our attention to the

dimension of task heterogeneity and prove that harmonic mean is an accurate

measure for central tendency of β⃗pjq.

Lemma 5.4. Let EET “ reijs (1 ď i ď m) denote the expected execution time

(EET) vector of a set of task types, T “ tT1, T2, ..., Tmu on machine type Mj. A

workload trace of c tasks (c ą m) of type Ti P T arrive to the system. Tasks are

queued upon arrival into a single unbounded FCFS queue and executed by machine
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Mj. Then, the true speedup is determined as follows:

ΓT “
1

m
ř

i“1

ωi

βi
pjq

“ sβH
pjq (5.18)

Proof. Assume that kth task type is the largest task type. That is, ekj is the

maximum value in the jth column of EET . Then, for a homogeneous workload that

contains only task type Tk, the total time consumed by machine Mj to execute

those tasks is c ˆ ekj. However, for a heterogeneous workload with ωi as the

proportion of each task type to the total number of tasks, the total time required to

execute each task type by machine Mj is c ˆ ωi ˆ eij. Thus, the total time

consumed to process all tasks is
m
ÿ

i“1

c¨ωi¨ eij. Then, the speedup of executing the

heterogeneous workload, as opposed to the homogeneous workload of type Tk, is

determined based on Equation 5.19.

ΓT “
c¨ ekj

m
ř

i“1

c¨ωi¨ eij

“
1

m
ř

i“1

ωi¨
eij
ekj

(5.19)

Based on Equation 5.2, we know that βi
pjq “

ekj
eij

. In addition, the weighted

harmonic mean of the column speedup vector due to task heterogeneity, denoted by

sβH
pjq, is calculated based on Equation 5.20.

sβH
pjq “

1
m
ř

i“1

wi
1

βi
pjq

(5.20)

Finally, based on Equations 5.19 and 5.20, we prove that true speedup due to
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task heterogeneity is the weighted harmonic mean of β⃗j as noted in Equation 5.21.

ΓT “
1

m
ř

i“1

ωi¨
1

βi
pjq

“ sβH
pjq (5.21)

5.2.3 Homogeneous Equivalent Execution Time (HEET) Measure

From Lemmas 5.1 and 5.3, we learn that, for a high arrival rate, arithmetic

mean represents the mean speedup (sαpiqpAq), whereas, for a low arrival rate,

harmonic mean (sαpiqpHq) is representative. However, we are typically interested in

studying system efficiency under high arrival rates. That is why, in the rest of this

paper, we use arithmetic mean to represent speedup due to machine heterogeneity.

Moreover, Lemma 5.4, proves that the weighted harmonic mean represents the mean

speedup due to task heterogeneity. Taking these into account, as shown in the

example of Figure 5.1, we can reduce each column vector β⃗pjq to its mean value sβH
pjq

to construct a row vector, denoted sβH
“ rsβH

p1q,
sβH

p2q, ...,
sβH

pnqs, whose contents

summarize the execution time behavior of all task types into an equivalent

hypothetical task type (denoted T ˚). We use Equation 5.21 to determine sβH
pjq for

machine type j. Note that, the mean speedup due to task heterogeneity for machine

type j is calculated with respect to the slowest task type for machine type j

(homogeneous counterpart). Thus, to determine the expected execution time of T ˚

on machine type j, we consider that T ˚ is sβH
pjq times faster than the slowest task

type on machine type j. The resultant row vector of the expected execution time of

T ˚ on machine types describes the machine heterogeneity. In a similar approach, we

100



can aggregate machine types into a single hypothetical machine type (denoted M˚)

whose execution time behavior is representative of the entire set of machine types in

the heterogeneous system. To that end, we construct the speedup vector due to

machine heterogeneity for T ˚, denoted by α⃗p˚q, based on Equation 5.22.

α
p˚q

j “

m
max
i“1

eij

sβH
pjq

(5.22)

Then, we use the arithmetic mean of α⃗p˚q to determine the mean speedup

due to machine heterogeneity, denoted by sαp˚qpAq for T ˚. In fact, sαp˚qpAq represents

how much M˚ is faster than the slowest machine type for the hypothetical

equivalent task type (T ˚). As a result, we can represent the execution time behavior

of the heterogeneous computing system with Homogeneous Equivalent Execution

Time, HEET, using the expected execution time of T ˚ on M˚ as follows:

HEET “

n
max
j“1

α
p˚q

j

sαp˚qpAq
(5.23)

For the sake of clarification, we use Figure 5.1 to illustrate the derivation of

HEET by means of an example. In Stage (a) of the figure, an EET matrix is

considered. Then, in Stage (b), the EET matrix is used to derive the speedup

matrix due to task heterogeneity based on Equation 5.2. Column j of this matrix

demonstrates the speedup due to task heterogeneity for machine type j, denoted by

β⃗pjq. Next, in Stage (c), we employ harmonic mean (Equation 5.20) to represent

each column vector β⃗pjq in the form of a scalar value. In this way, the set of speedup

vectors due to task heterogeneity (that constructs a matrix) are reduced to a single
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row speedup vector. In Stage (d), we calculate the expected execution time of T ˚ on

machines by using the execution time of the slowest task type and sβH
pjq. In Stage (e)

we determine the speedup vector due to machine heterogeneity for T ˚, based on

Equations 5.1. In stage (f), we use the arithmetic mean to determine the mean

speedup due to machine heterogeneity for T ˚. Lastly, in stage (g), we calculate the

HEET measure by considering the speedup value obtained in stage (f) considering

the slowest machine type for T ˚ (M1 in stage (d)) as the baseline.

While HEET is able to accurately characterize the system heterogeneity, our

hypothesis is that, for a given workload, systems with similar HEET scores exhibit

similar makespan too. For a given workload trace with T task types, system A with

the set of heterogeneous machine types MA offers a bigger makespan than

heterogeneous system B with machine types MB (|MA| “ |MB|), if and only if

HEETA ą HEETB.

5.2.4 HEET: Space Mapping From Heterogeneity to Homogeneity

As shown in Figure 5.1, the mathematical approach employed to obtain

HEET is actually transforming the EET matrix representing the heterogeneous

system (stage(a)) to a homogeneous EET matrix whose elements are HEET values

(stage(g)). In other words, we proposed a mathematical formulation that transforms

a heterogeneous computing system to a hypothetical homogeneous system such that

both perform similarly in terms of performance metrics such as makespan.

Recall that HEET metric is the expected execution time of the hypothetical

equivalent task type (T ˚) on the hypothetical equivalent machine type (M˚).
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Figure 5.1. An example illustrating the stages to calculate the heterogeneity mea-
sure (HEET). (a) The EET matrix representing a heterogeneous system. (b) The
speedup matrix due to task heterogeneity is derived from EET matrix based on
Equations 5.2. (c) Based on Equation 5.20, we consolidate each column into a mean
value via harmonic mean. (d) Calculate the expected execution time of T ˚ on ma-

chines using the execution time of the slowest task type and β
H

j . (e) The speedup
vector due to machine heterogeneity for T ˚, based on Equations 5.1. (f) we employ
Equation 5.5 on the resultant speedup vectors to determine the mean speedup value
due to machine heterogeneity. (g) HEET score represents the execution behavior of
the heterogeneous system.
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Replacing the machine types with M˚ and task types with T ˚, results in a

homogeneous EET matrix, denoted by EET ˚, whose elements are HEET values.

Lemmas 5.1 and 5.4 prove that the homogeneous system represented by the EET ˚

matrix exhibits a similar makespan as the heterogeneous system represented by the

EET matrix. Given a workload of c tasks, its makespan, denoted by τ , on a

heterogeneous computing system can be estimated by the makespan of the same
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workload on the homogeneous equivalent system represented by EET ˚. For a

homogeneous system of n machines (M˚), the expected makespan of executing c

tasks of the same type (T ˚) is the number of tasks distributed on each machine (
c

n
)

multiplied by the expected execution time of that task type on the machine type

(i.e., HEET value). As a result, the makespan is determined as follows:

τ “
c

n
¨ HEET (5.24)

Similarly, we can use the HEET score to estimate the throughput of the

system. To that end, we estimate the throughput metric, denoted by θ, as the ratio

of the number of tasks to the makespan of completing those tasks on the machines.

Thus, the throughput is determined as follows:

θ “
n

HEET
(5.25)

5.3 System Design

In this section, we present an overview of the components we have designed

to evaluate the HEET metric. Our implementation includes a real-world end-to-end

“inference system”, tailored to match real-world production scenarios [111].

Throughout our experimentation, we employed AWS EC2 instances as machines. It

should be noted that, with slight modifications, the system can be readily deployed

on alternative cloud platforms as well. The primary objective of our system is to

validate the accuracy of the estimated makespan based on Equation 5.24 by

comparing them against the actual makespan across various system configurations.
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Figure 5.2 illustrates the overview architecture of the system. The components of

the system are explained in the following paragraphs:

Model Loader To encompass a diverse range of model types, we utilized the

extensive model repository offered by HuggingFace [112]. We used four different

models in our experiment: (1) Image classification: Resnet50 [113], (2) Object

detection: Yolov5 [114], (3) Question answering: DistilBERT [115], and (4) Speech

recognition: Wav2vec2 [116]. Given the variety of deep learning frameworks from

which these models were sourced, we sought consistency in our experiments. To

achieve this, we converted all models to the ONNX (Open Neural Network

Exchange) format [117] using the PyTorch ONNX converter [118]. Utilizing ONNX

grants us the advantage of a unified model server setup, applicable across all model

types.

Model Server Each of the models used during the experiments should be deployed

as a machine learning service. We have leveraged the multi-model serving capability

of modern inference systems [119] to encapsulate multiple models into a single

inference service. Each of the services is backed by an AWS EC2 instance. In each

machine, we spin up a containerized version of NVIDIA Triton Inference Server

[120] and load all the model variants on top of it. Communications to the model

servers are implemented using gRPC [121] due to its superior performance

compared to other transfer protocols [122].

Workload We synthesized the workload traces assuming that the inter-arrival time

between tasks in the workload traces follows an exponential distribution with the
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Figure 5.2. Performance comparison of the same set of scheduling methods with
the same workload across two computing systems, A and B, with different levels
of heterogeneity (horizontal axis). The vertical axis shows the percentage of tasks
completed on time.
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mean arrival rate as its parameter [123]. In accordance with the bag-of-task [17]

assumption, we have also designed a workload of tasks that are all available for

execution from the beginning (i.e., arrival time is zero). Tasks are sent

asynchronously to the machines hosting the ML services based on their arrival times.

Monitoring The monitoring component in each of the EC2 instances is equipped

with Prometheus [124], a highly-available time-series database. It records the
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inference time of all the model servers during experiments and stored them in the

database for later analysis. To construct the EET matrix, the Profiler benchmarks

each task type on the machine types and employs Prometheus to obtain the

expected inference times.

Instance Manager During the experiments, it is needed to reconfigure the

heterogeneous computing systems with a different number of instances of each type.

To support this, we have automated the process of reconfiguring the system in a

central instance manager. The process of transitioning between two instance

configurations includes (1) removing the current instances and cleaning the cluster

(2) setting up the new sets of machines with required dependencies (3) bringing up

the Triton container on top of the EC2 instances (4) and finally load the models to

the Triton inference server. We have automated all the 1-4 steps through AWS

Python SDK [125]. In addition, the EC2 instance types we used during our

experiments are (1) t2.large, (2) c5.2xlarge, and (3) g4dn.xlarge. These instance

types are resembling slow, medium, and fast machines in inferring the selected

machine learning tasks.

Load Balancer Tasks are queued in a single unbounded FCFS queue upon arrival.

Then, the load balancer assigns tasks to available machines in a Round Robin

manner. Mapping events are triggered by either the completion or arrival of a task.

In case a task arrives to the system while there is not any available machine, the

load balancer defers the mapping event until a machine becomes free.
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5.4 Experimental Validation

5.4.1 Experimental Setup

To validate the developed heterogeneity measure, in this section, we execute

a workload of four deep learning applications on various combinations of three

Amazon EC2 instance (machine) types to verify HEET score under real-world

settings. Specifically, we used four different application/models in our experiment:

(1) Image classification implemented using Resnet50 [113] model, (2) Object

detection implemented according to Yolov5 [114] model, (3) Question answering

based on DistilBERT [115] model, and (4) Speech recognition using Wav2vec2 [116]

model. For machine types, we utilize GPU-based (g4dn.xlarge),

compute-optimized (c5.2xlarge), and general-purpose CPU-based (t2.large)

Virtual Machines offered by AWS EC2 services. To obtain the expected execution

time of the image classification task on these machines, we processed 1000 sample

images on each instance type. We repeat the experiment 10 times, and finally, we

use the expected value of these 10,000 inference operations in the EET matrix.

Similarly, for the object recognition task, we ran the object recognition task for

1000 sample images 10 times to determine the expected execution time of the object

recognition task. For the speech recognition task type, we execute recorded audio of

length 4 seconds on the machine types. Then, the average value of the inference

times is used to fill the EET matrix. For question answering, we provide a sample

context and question as the input of the inference task and run the inference task

1000 times. We aggregate the inference times and determine the expected execution
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time for use in EET matrix. Upon the paper’s acceptance, we will make all the

datasets and the simulation source codes publicly available for reproducibility

purposes.

To synthesize the workload trace, we assume that the inter-arrival time

between tasks in the workload traces follows an exponential distribution with the

mean arrival rate as its parameter [123]. For the bag-of-tasks, we assume that all

tasks are available for execution from the beginning (arrival time is zero). Tasks are

queued in a single unbounded FCFS arrival queue upon arrival, and assigned to the

available machines in the Round Robin manner. Tasks are considered to be

latency-sensitive with hard deadlines. The performance metric (makespan) is

defined as the length of time the system requires to complete all tasks in the

workload trace.

Recall that we employed hybrid central tendency measures (column-wise

harmonic mean and row-wise arithmetic mean) to obtain a meaningful

representative of the execution time behavior of heterogeneous computing systems.

To illustrate the effectiveness of our method, we compare the experimental results

with the following baselines as representatives of the execution time behavior of

heterogeneous systems: (1) Arithmetic mean, (2) Harmonic mean, and (3)

Geometric mean of the EET matrix elements. To that end, we determine three

different heterogeneity measures based on the mean value of expected execution

times of task types on machine types using different techniques as follows:
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5.4.2 Validating HEET as a Performance-Driven Heterogeneity Measure

In this experiment, our goal is to assess the ability of the HEET score to

estimate true throughput and true makespan of the heterogeneous computing

systems using Equations 5.25 and 5.24, respectively. To study the behavior of the

heterogeneous systems upon varying HEET scores, we simulate a variety of

heterogeneous systems with three machine types and four task types. To that end,

we generate 228 distinct system configurations with a different number of instances

of each type (i.e., t2.large, c5.2xlarge, and g4dn.xlarge). Then, for each

system configuration, we feed it with a bag of 1000 tasks of four types (i.e., image

classification, object detection, question answering, and speech recognition).

Eventually, we average the makespan and throughput over different system

configurations of the same HEET score.

Figure 5.3 shows the results of the true and estimated makespan and

throughput with varying S-HEET score which is HEET score scaled with the

number of machines (i.e.,
HEET

n
). Each (makespan, S-HEET)/(throughput,
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Figure 5.3. The system performance in terms of the makespan (left) and throughput
(right) (vertical axis) upon varying S-HEET scores (horizontal axis) for workloads
1000 tasks. Each individual point represents the average result of multiple computing
systems with the same S-HEET score. In addition, the colored area illustrates the
95% confidence interval of the results.
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S-HEET) point shows the average makespan/throughput over different system

configurations with the same S-HEET value. The colored area illustrates the 95%

confidence interval of the results. As shown in Figure 5.3, we can observe that the

systems with lower S-HEET scores generally perform better (i.e., lead to a smaller

makespan or higher throughput) than those with the higher HEET scores values.

This statement itself means that the S-HEET score can be effectively used as a

measure to “compare different heterogeneous computing systems” in terms of

makespan or throughput. Moreover, we can observe that the results exhibit a

narrow confidence interval, that is, systems with the same S-HEET score will

perform similarly in terms of makespan and throughput. The number of different

configurations with S-HEET scores equals to 9, 10, or 11 is small (less than 9), thus,

we observe a wider confidence interval for these S-HEET scores in the results.
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Moreover, the results show that the estimated values (makespan and

throughput) using HEET score based on Equations 5.25 and 5.24, respectively, can

predict the true values with an average accuracy of 84%. Note that we use the

expected values of execution times to determine the HEET score. As a result, the

accuracy of the estimation depends on the degrees of uncertainty that exist in the

execution times. Accordingly, we run a simulation with zero uncertainty in the

expected execution times to demonstrate the root cause of the error in estimating

makespan and throughput using the HEET score. The results show that the

makespan calculated using HEET score accurately estimates the makespan of the

simulation. Thus, we can say that in heterogeneous systems with low levels of

uncertainty in execution times, estimating makespan using HEET score is an

accurate method.

Given a user-defined throughput threshold, we can determine the

corresponding HEET score and use it to configure a heterogeneous system that can

fulfill that desired throughput. For a desired throughput, the HEET score enables

solution architects to proactively configure a heterogeneous system that can fulfill

that objective (instead of try and error) with minimum cost.

In sum, the result of this experiment validates the applicability of the HEET

score for real-world scenarios. In particular, when the HEET score is applied across

systems, it can accurately compare different heterogeneous systems with respect to

their performance metrics (makespan and throughput) without examining the

workload on these systems.
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5.4.3 Evaluating arithmetic, harmonic, and geometric means as

heterogeneity measures

In this experiment, we investigate the effectiveness of arithmetic, harmonic,

and geometric mean of expected execution times of task types on machine types as

heterogeneity measures representing the execution behavior of heterogeneous

systems. To that end, we conducted a similar experiment as Section 5.4.2 to study

the performance (in terms of makespan) of 228 heterogeneous computing systems.

An appropriate heterogeneity measure should be able to identify similarity and

superiority in terms of performance metrics (e.g., makespan or throughput) across

heterogeneous systems.

Figure 5.4 shows the results of the makespan for different heterogeneous

systems with varying mean expected execution times calculated based on

Equations 5.26, 5.28, and 5.27. In Figure 5.4a, the results show that the estimated

makespan using Ďeetarithmetic is unable to follow the true makespan and is

considerably inaccurate. Similarly, we observe that harmonic mean and geometric

mean heterogeneity measures are also inaccurate.

In sum, comparing the results for the baseline heterogeneity measures, as

shown in Figure 5.4, with the results for HEET score, as shown in Figure 5.3,

verifies that heterogeneous systems are well characterized with HEET measure, and

can be used for estimating the performance of heterogeneous systems accurately.

5.4.4 Analyzing the behavior of the True Speedup due to Heterogeneity

upon changes in the task arrival rates
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Figure 5.4. The system performance in terms of the makespan (vertical axis) upon
the varying mean of EET matrix (horizontal axis) for a workload of 1000 tasks.
In (a)–(c), eetarithmetic, eetharmonic, and eetgeometric are the arithmetic, harmonic, and
geometric mean of the expected execution times of task types on machines types as
represented in EET matrix. Each individual point represents the average result of
multiple computing systems with the same mean EET value. In addition, the colored
area illustrates the 95% confidence interval of the results.
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In Lemmas 5.1 and 5.4, we assume a high task arrival rate such that all tasks

are available for execution. We showed that the mean speedup due to machine

heterogeneity and task heterogeneity can be calculated using arithmetic mean and

harmonic mean, respectively. In this experiment, our goal is to relax this
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assumption and examine the impact of arrival rate on the system speedup and

compare the true speedup against the calculated speedup due to system

heterogeneity using HEET measure. For that purpose, we synthesized workload

traces with different arrival rates where each workload trace includes 1,000 tasks of

10 types. Then, for each workload, we experimentally determine the makespan of

processing that workload on an example heterogeneous system with four machine

types and the EET matrix shown in Table 5.1. Based on the table, the system

includes one fast machine (M1) and three slower ones (M2, M3, and M4). The

estimated speedup due to heterogeneity for this EET matrix is 3.25. We repeat the

simulation on a counterpart homogeneous system where the values of all entries in

the EET matrix are replaced with the maximum expected execution time in the

heterogeneous EET matrix (50.0). Then, we define the true speedup as the ratio of

makespan on the homogeneous system to the one on the heterogeneous system.

Table 5.1. EET matrix of the heterogeneous computing system used in the exper-
iment 5.4.4. The matrix represents a heterogeneous system with tM1,M2,M3,M4u as
its machine types and tT1, T2, ..., T10u as the task types arriving to the system.

Tasks
Machines

M1 M2 M3 M4

T1 4.028 28.187 28.187 28.187
T2 4.418 30.919 30.919 30.919
T3 4.544 31.797 31.797 31.797
T4 5.010 35.061 35.061 35.061
T5 5.116 35.803 35.803 35.803
T6 5.305 37.122 37.122 37.122
T7 5.893 41.240 41.240 41.240
T8 6.738 47.153 47.153 47.153
T9 6.759 47.303 47.303 47.303
T10 7.145 50.0 50.0 50.0
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Figure 5.5. (a) The true speedup across different mean task arrival rates for the
system represented by EET matrix shown in Table 5.1. We can see that for very
low arrival rates, the speedup is negligible. By increasing the task arrival rates,
heterogeneity is involved, and the speedup is increasing. (b) Makespan and idle
times (vertical axes) for processing workloads with different mean task arrival rates
on a heterogeneous computing system and its homogeneous counterpart. The idle
time determines the total time that all machines are idle and no task is available for
execution. For very low arrival rates, the makespan is dominated by idle time, hence,
the impact of heterogeneity is negligible. However, upon increasing the task arrival
rates, the makespan of heterogeneous systems decreases.
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Figure 5.5a shows the true speedup upon changing the mean task arrival

rates. We observe that, for very low arrival rates (red points in the figure), the

speedup due to heterogeneity is one and it is not changing significantly. Figure 5.5b

explains this phenomenon. It shows that, at low arrival rates, the makespan is

dominated by idle times, which is because of high inter-arrival times between the

tasks. We can conclude that, for underloaded systems, the matter of homogeneity

and heterogeneity is unimportant. In Figure 5.5a, however, we observe that the

speedup due to heterogeneity gradually increases at an arrival rate of 0.09. In fact,

from this point onwards, the makespan is not dominated by idle time anymore.

Although idle time is decreasing in the blue region, it is still considerable.

Nonetheless, the starting point of the green region illustrates the task arrival rate

where the idle time becomes negligible. We realized that in the green region, there

are still some idle times in the system, therefore, the system is not fully utilizing its

heterogeneous machines at all times. In fact, the start point of the green region

demonstrates the situation where Lemma 5.3 is held to calculate the speedup due to

machine heterogeneity. The value of estimated speedup due to heterogeneity,

calculated using harmonic mean row- and column-wise, is 1.65, which is the same as

the true speedup shown in Figure 5.5a for arrival rate 0.15. Upon increasing the

arrival rate more than 0.15, the system makes use of more machines at all times, so

that there is no idle machine in the system at any time. Ultimately, at arrival rate

0.4, in Figure 5.5a, we can see that the speedup converges to the calculated speedup

using Lemmas 5.1 and 5.4 and its value is 3.25. In sum, we observe that the
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proposed mathematical model can accurately describe the true speedup due to

system heterogeneity. More specifically, we can use Lemma 5.1 under high task

arrival rates and Lemma 5.3 under low task arrival rates to accurately determine

the mean speedup due to machine heterogeneity, and Lemma 5.4 to represent the

mean speedup due to task heterogeneity. Then, we utilize Equation 5.24 to calculate

the makespan of the heterogeneous system. Finally, the overall speedup due to

system heterogeneity is determined as the ratio of the largest expected execution

time in the EET matrix (as the homogeneous baseline) to the HEET value.

5.5 Summary

Numerous system-level solutions (e.g., load balancer, scheduler, etc.) have

been developed to harness the heterogeneity and boost the performance of

computing systems. However, the performance of such solutions across systems with

different levels of heterogeneity is often unknown, because there is no concrete way

to measure the system heterogeneity. As such, we provided a measure to quantify

the system heterogeneity with respect to the performance metric (makespan or

throughput) of the system and for a given set of task types. We characterized the

system heterogeneity by decoupling the heterogeneity into machine and task

dimensions. To quantify the performance impact of each heterogeneity dimension,

we devised a speedup vector due to machine heterogeneity and task heterogeneity.

We proved that the mean speedup due to machine heterogeneity under high

workload arrival is measured by arithmetic mean. We also proved that harmonic

mean can measure the mean speedup due to task heterogeneity. Then, we leveraged
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the mean speedup due to task heterogeneity to reduce all task types in a

hypothetical equivalent task type that can characterize the execution time behavior

of the set of task types. Next, we employ the mean speedup due to machine

heterogeneity to characterize the set of machine types into a single hypothetical

equivalent machine type. Eventually, we introduce the Homogeneous Equivalent

Execution Time (HEET) score as a heterogeneity measure representing how fast a

heterogeneous system is for a given set of task types. In this way, we transform a

heterogeneous system into a hypothetical equivalent homogeneous system with

similar makespan. HEET can be used to globally compare the performance of

different heterogeneous systems. We observed that the HEET score is effective and

can approximate the makespan with an average and minimum accuracy of 84% and

80.0%, respectively. For a desired throughput objective, the HEET score enables

solution architects to proactively configure a heterogeneous system (instead of trial

and error) that can fulfill that objective.
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Chapter 6: E2C – A Visual Simulator to Reinforce Education of
Heterogeneous Computing Systems

6.1 Introduction

harnessing system heterogeneity has been a longstanding challenge in

distributed systems (e.g., [30, 126, 11]), and educating it to Computer

Science/Engineering (and more broadly STEM) students, and researchers has

become necessary. Making use of real infrastructure (such as those offered by the

public cloud providers) for benchmarking the performance of heterogeneous

systems, for different applications, with respect to different objectives, and under

various workload intensities is cost- and time-prohibitive. As an example, consider

an IoT-based system that offers multiple smart applications to its users (e.g., object

detection, face recognition, speech recognition, etc.); there exists a wide range of

machine types with different architectures (such as x-86 or ARM-based multi-core

CPUs, different types of GPUs, FPGAs, and ASICs) that can process these services.

To find an optimal configuration, a student must examine all permutations of these

configurations. Moreover, there can be multiple workload intensities and scheduling

policies that can affect performance of the system and the student must examine

them too. Last but not least, learning about the energy consumption of the

heterogeneous computing system in question adds another dimension to the

evaluation process that needs to be conducted by the student.

To avoid the burden of examining all cases, we need simulation tools that

can help the students and researchers to study the performance of various system
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configurations and effectively learn about impacts of heterogeneity in a distributed

system. To that end, in this chapter, we introduce E2C that is an open-source

discrete event simulator that simulate any type of heterogeneous (and

homogeneous) computing system. By using E2C, the students can easily examine

their system-level solutions (scheduling, load balancing, scalability, etc.) in a

controlled environment within a short time and at no cost. In particular, E2C offers

the following features: (i) defining user-defined workload generation scenarios with

various number of applications (a.k.a. task types) and arrival intensities; (ii)

simulating a heterogeneous computing system; (iii) implementing a newly developed

scheduling method and plugging it into the system, (iv) measuring power and other

output-related things, and (v) visual aspects to ease the learning curve for students.

These features help students who study resource allocation solutions in distributed

systems to test and evaluate their solutions easier and faster. Moreover, the

graphical user interface would help students to gain a deeper knowledge of resource

allocation procedures in distributed computing systems.

We used E2C as an assignment in our Distributed and Cloud Computing

class to examine various types of scheduling methods for heterogeneous (and

homogeneous) systems under various workload intensities. We conducted a survey

on the learning outcomes of the simulator and its usability aspects. Analysis of the

survey results showed that the students on average rated E2C with the score of 8.7

out of 10 for its usefulness in comprehending scheduling methods for heterogeneous

and homogeneous computing systems under different workload intensities.
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Table 6.1. Positioning of E2C with respect to other simulation tools for distributed
systems.

Simulator Prog.
Language

GUI supporting
heterogeneous
computing

workload
generator

CloudSim Java ✗ ✗ limited
iFogSim Java ✗ ✗ limited
EdgeCloudSim Java ✗ ✗ ✓
iCanCloud C++ ✓ ✗ ✗

TeachCloud Java ✓ ✗ limited

E2C Python ✓ ✓ ✓

Moreover, based on the survey results, students assessed that E2C is easy to use

with the average score of 8.3 out of 10, and they evaluated their willingness for

recommending E2C to others with the average score of 8.3 out of 10.

In the rest of this chapter, in Section 6.2, we first position E2C with respect

to other existing simulators. Next, we elaborate on the features of E2C in more

detail in Section 6.3. Then, in Section 6.4, we describe our experience of using E2C

as a class assignment for Computer Science and Engineering students. In

Section 6.5, the evaluation of E2C and the results we obtained are discussed.

6.2 Positioning E2C with respect to other existing simulators

There are several existing cloud simulators that have been developed to

provide researchers and developers with a platform to simulate and test cloud

computing environments. Some of the popular cloud simulators include

CloudSim [127], EdgeCloudSim [128], iFogSim [129], iCanCloud [130], and

TeachCloud [131]. Table 6.1 provides a quick positioning of E2C with respect to

these simulation tools.
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CloudSim is a popular open-source framework used for modeling and

simulating cloud computing environments and applications. With its modular and

extensible architecture, CloudSim allows users to customize and configure different

aspects of the simulation, such as virtual machine management, workload

scheduling, and resource allocation policies, to suit their research needs. However,

as a Java-based framework, it needs the user-input in the form of Java lines of the

code within the back-end for configuring and customizing the environment. As a

results, the users (e.g. students) should already have background experience and

knowledge of Java and object-oriented programming (OOP). While this can provide

its own kind of learning experience, it is not necessarily helpful for teaching about

cloud computing and distributed systems, and may only slow down education

concentrated in that area. EdgeCloudSim is another simulation platform that is

tailored to Edge computing systems. EdgeCloudSim is based on the CloudSim with

more functionalities in network modeling and load generator. iFogSim is another

CloudSim-based simulation tool that is utilized for modelling and simulation of Fog

computing environments, and evaluating the efficiency of different resource

management policies in terms of latency (timeliness), energy consumption, network

congestion and operational costs. iCanCloud is a cloud computing simulation

framework for generating and customizing a large distributed computing system

written in C++. iCanCloud comes with a user-friendly GUI which is useful in

managing pre-configured virtual cloud systems and generating graphical reports.

Although iCanCloud supports consistent heterogeneity in terms of configuring VMs
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with varying number of CPU cores, it does not support inconsistent heterogeneity by

having VMs with accelerators (e.g. GPUs and FPGAs). Jararweh et al. developed a

simulation toolkit, called TeachCloud [131], for cloud computing environment

equipped with a GUI that allow students easily create the main components in the

cloud system. However, TeachCloud lacks supporting the heterogeneous computing

systems. In general, these simulators provide valuable insights into the performance

Figure 6.1. Overview of the E2C Simulator that includes major components, being
the source workload, a batch queue of arriving tasks, scheduler (a.k.a. load balancer),
and a set of heterogeneous machines, represented with different colors. Each machine
has a “machine queue” where the assigned tasks are queued for the execution.

and efficiency of cloud computing systems, enabling researchers and developers to

make informed decisions when designing and implementing cloud-based solutions.

However, there are limitations in using these simulators as an educational tool for

teaching heterogeneous distributed computing systems. As per limitations of

existing simulators, they lack either a user-friendly graphical interface to make use
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of the simulator easy and intuitive for the students or supporting heterogeneous

computing systems. To overcome these limitations, we developed E2C, a simulator

explicitly designed for heterogeneous computing systems with an intuitive graphical

user interface (GUI). E2C is intended to facilitate the study of heterogeneous

computing systems for students by enabling them to simulate and explore the

characteristics of this type of computing systems through a user-friendly interface.

E2C comes with a GUI, that requires no programming input from the user.

All inputs can be done directly from the GUI. In addition, the GUI displays

simulations in live time, making it well suited for education, as many students

perform better through visual learning. E2C also aims to be granular, allowing the

user to configure the system in many specific ways. This is also important for

researchers, given that a simulated system should be highly configurable in order to

handle a wide variety of workloads.

6.3 Simulating a Heterogeneous Computing System via E2C

Figure 6.1 shows an overview of the E2C simulator that includes the

following major components: (i) workload, (ii) batch queue, (iii) scheduler, (iv)

machine queue, and (v) a set of (homogeneous or heterogeneous) machines. In

addition, there are two more components that contain canceled and dropped tasks.

This is to support circumstances where tasks have hard deadlines and there is no

value in executing them beyond their deadline.

A workload is defined as a large group of tasks where each task is a request

for an application (task type). In the real world, a heterogeneous computing system
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can be configured to execute several task types. For instance, a heterogeneous

system processing satellite images should support task types for object detection,

noise removal, and image enhancements to be performed on the received images.

E2C enables us to define the task types, arrival distribution for each task type, and

their arrival duration. Each task in the generated workload of E2C has an arrival

time and deadline as well.

The machines in the distributed system can be identical (homogeneous) or

non-identical (heterogeneous). Note that the heterogeneity of the system is modeled

by a matrix, called the Expected Execution Time (EET) matrix [1, 65, 71]. This

matrix defines the expected execution time of each task type on each machine. This

is to model a real world heterogeneous system, where any given task type (e.g.,

object detection, noise removal, etc.) is expected to have a differing execution time

across heterogeneous machines. The opposite holds true for a homogeneous system

where any given task type has identical execution time across all machines. As

shown in Figure 6.2, the user has access to the EET matrix by selecting the

workload component. Users can either modify the EET matrix manually or load the

desired one as a CSV file.

As shown in Figure 6.2, the user can load the desired workload trace as a

CSV file in this section. The user must keep in mind that the workload trace must

conform to the EET matrix. That is, there can be no task type within the workload

that is not defined within the EET. Upon the arrival of a task, the simulator

transfers the task to the batch queue. The batch queue is where tasks are held
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before being scheduled. Next, based on the selected scheduling method, the

scheduler selects a task from the arrival queue.

Figure 6.3 shows the scheduler options. The user can choose between

immediate scheduling or batch scheduling [132]. Immediate scheduling is when

incoming tasks are immediately scheduled to a machine upon arrival, whereas, with

batch scheduling, tasks are buffered in the batch queue so the scheduler can make a

more informed decision. Typically, immediate mode scheduling methods impose a

lower overhead and generally load balancers use this type of scheduling [132]. The

following immediate policies are currently implemented into E2C as options:

FirstCome-FirstServe (FCFS), Min-Expected-Completion-Time (MECT), and

Min-Expected-Execution-Time (MEET). For batch policies, E2C currently

implements: ELARE, FELARE, MinCompletion-MinCompletion (MM),

MinCompletion-MaxUrgency (MMU), and MinCompletion-SoonestDeadline (MSD).

An explanation of these methods can be found in [30].

There exist two options for the scheduled tasks: (i) it might be canceled

because of missing its deadline before assignment; or (ii) it might be mapped to one

of the available machines. The status of a canceled task is set to “canceled” and no

more process is needed. The canceled tasks component shows the number of tasks

have been canceled so far. In the case of mapping decisions, the task is appended to

the local queue of the assigned machine until the machine queue is saturated. Tasks

are executed on the assigned machine in a sequential manner by default. If a task

missed its deadline while executing on the machine, it is dropped from the machine.
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Figure 6.2. Workload component. Here, the user can load EET and Workload CSV
files. The user can also modify the EET matrix and arrival times of the task with the
“Edit” button. Upon loading new CSV files or editing values, the user must press
the “Submit” button. EET and Workload files must be compatible. T1, T2, T3

represent different task types in this simulation.
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Figure 6.3. Scheduler component. Here the user may select between the various im-
mediate or batch scheduling policies, along with setting the machine queue size. The
machine queue size is limited to infinite for immediate policies, but can be changed
for batch policies.

Figure 6.4. Missed Tasks component shows the task ID that missed its deadline,
along with its task type, assigned machine, arrival time, start time, and the time
when it missed.

As shown in Figure 6.4, the Missed Tasks component shows the tasks that missed

their deadline.

Importantly, E2C is designed to be modular, hence, providing the ability for

the user to modify the existing scheduling methods or adding their own

custom-designed scheduling methods. This feature is particularly helpful for

researchers to examine new methods under various conditions and configurations.

After the user selects and submits the EET and workload, they will press the

“Play” button near the bottom-middle of the GUI. This will begin the animation of
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tasks flowing from the incoming workload to scheduler to machines, along with the

“Current Time” which will update continuously during simulation. If you press the

“Play” button again during the simulation run-time, the simulation will be paused.

The button right of the play button is the “Increment” button, which when pressed

while the simulation is paused will perform the next individual step that would

performed (i.e. a task being submitted to a machine by the scheduler, or a task’s

execution being completed by a machine, etc.). This can be helpful if you wish to

analyze each specific action of the simulation. To the left of the “Play” button is

the “Reset” button, which can be used either during a pause or after completion of

a simulation. This will allow you to begin a new simulation, also allowing you load

in a new EET and/or workload should you choose. Along with these three options,

during the simulation run-time, you can choose to alter the speed at which the

simulation runs by using the speed dial located at the bottom right. This can be

useful for either getting quicker results or for better visibility of the animated

simulation.

Upon completion of a simulation within E2C, the user may view a report,

and optionally, save the report as a CSV file. There is an option for a “Full

Report,” “Task Report,” “Machine Report,” and “Summary Report.” The Full

Report displays the majority of relevant information regarding the simulation - this

is the option to view all data related to each task and and how each machine

performed on it. The Task Report displays information that is more centric to the

individual tasks of the workload, whereas the Machine Report displays data more
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relevant to the machines of the system. Lastly, the Summary Report displays a

summary of the workload data without the specifics of each individual task.

The E2C simulator can be implemented as a learning tool for undergraduate

and graduate students, and also serve practical solutions for researchers and

practitioners. Through E2C, students can gain the ability to analyze, design,

implement, and test distributed computer systems and components. They can

deeply investigate scheduling methods, how they work, and gain insights into their

advantages and disadvantages. Along with this, they can develop their own

scheduling method(s) and use E2C as a means to implement it. Students can also

learn how heterogeneity can improve the performance of the system through

defining machines that have better performance for executing specific task types.

Moreover, they can study the energy consumption of the system once a certain

scheduling method is applied, allowing them to learn about resource management.

So far, we have used the E2C simulator for students in “Distributed and Cloud

Computing” courses to examine the impact of different scheduling policies on

homogeneous and heterogeneous systems with various workload intensities.

Similarly, the simulator can be used for the “Operating Systems” and “Computer

Networks” courses at the undergraduate and graduate levels to teach students

about the impact of scheduling at different levels.

Researchers in the resource allocation area and cloud solution architects can

employ the E2C simulator to test their solution prior to implementation. Being

highly customizable, they can configure E2C to represent its real world counterpart.
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Through this, they may test the outcome of a heterogeneous system with different

scheduling methods without spending real resources, saving both money and time.

The outcome to be tested can be things such as QoS through task completion

percentage (versus missed and cancelled tasks), energy consumption of machines

(resource management), and how different scheduling methods perform on any given

system. This way, researchers can apply practical use of E2C in order to help design

and compare their own real world distributed systems or clusters. As an example, in

[133], we have used E2C to examine energy efficiency and fairness of scheduling

methods on a heterogeneous edge. Also, in [134], we extended E2C to simulate the

memory allocation policies of multi-tenant applications on a homogeneous edge

computing system.

6.4 Class Assignment for Computer Science and Engineering Students

The E2C was used, and will continue to be used, by undergraduate and

graduate students of the University of Lafayette’s Distributed Cloud Computing

course. Before E2C was implemented as an assignment for the students, there were

no assignments for evaluating the students’ understanding of heterogeneous systems

and scheduling methods through simulation. Now, with the addition of E2C,

students have a means to learn these subjects through coursework. In this

assignment, E2C was used to teach students about the impact of various scheduling

methods in heterogeneous and homogeneous computing systems operating under

various workload intensities. It also asked the graduate students to develop and

implement their own scheduling policies and compare it with the existing solutions.
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The installation and graphical user-interface of E2C is user friendly and works on

any operating system, which makes it easy to pick up and use for projects or

assignments. We have created a web-based documentationa where all the features of

the simulator—from installation to reporting—are explained.

In this assignment, students were to read and learn about the basic

components of E2C, being task types, machines, EET matrix, workload trace, and

task deadlines. The students would then use the simulator to evaluate the different

scheduling methods currently implemented by E2C on both a homogeneous and a

heterogeneous system. For the homogeneous system, students were to use three

workload traces with arrival intensities ranging from low, medium, to high to

stress the system at different levels. For each arrival intensity level, they ran the

simulation and saved the CSV output files, provided by E2C, summarizing all the

data related to the simulation for three different immediate scheduling methods,

namely FirstCome-FirstServe (FCFS), Minimum-Expected-Completion-Time

(MECT), and Minimum-Expected-Execution-Time (MEET). Students then created

a bar graphs to depict the percentage of completed tasks that each scheduling

method results under each intensity level. The expected results is that higher

intensity workloads lead to a lower completion rate (i.e., more tasks missing their

deadlines). In addition to observing this behavior, the students had to analyze and

report the behavior of different scheduling methods.

For the next part of the assignment, they would do similarly but with a

aE2C documentation can be accessed at: https://hpcclab.github.io/E2C-Sim-docs/
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Figure 6.5. A bar graph with completion % for immediate scheduling methods on
a homogeneous system, showing results for varying intensities using FCFS, MECT,
and MEET policies.

heterogeneous system instead. For this part, in addition to the immediate

scheduling policies, they would also be testing the batch mode policies:

MinCompletion-MinCompletion (MM), MinCompletion-MaxUrgency (MMU), and

MinCompletion-SoonestDeadline (MSD). Required by the graduate students and

optional to undergraduates as a bonus, the third part of this assignment was to

create and implement their own scheduling method for the heterogeneous system

that enabled fairness across various task types in the system. After these

simulations and implementations were complete, students were to perform an

analysis of their findings on both the homogeneous system and heterogeneous

system, and answer questions that show what they have learned about scheduling

and its related methods.

The creation of graphs to evaluate their findings is straightforward due to the
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Figure 6.6. A bar graph with completion % for immediate scheduling methods on
a heterogeneous system, showing results for varying intensities using FCFS, MECT,
and MEET policies.

way saving data from simulations is within E2C. Once a simulation is complete, all

students needed to do is go to the reports menu and save the report as a CSV file.

For the bar graphs that the students create for both their findings on

homogeneous and heterogeneous systems, they plot the completion percentage

(completed tasks/total tasks in workload) for each scheduling method. Some

examples of their findings show a bar graph depicting completion percentage for

immediate scheduling policies on a homogeneous system (Figure 6.5), immediate

scheduling policies on a heterogeneous system (Figure 6.6), and batch scheduling

policies on a heterogeneous system (Figure 6.7).

The learning outcomes of this assignment was to understand the impact of

different scheduling methods in face of homogeneous and heterogeneous systems,

and to analyze the advantages and disadvantages of each. For instance, they
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Figure 6.7. A bar graph with completion% for batch scheduling methods on a
heterogeneous system, showing results for varying intensities using MMU, MSD, and
MMU policies.

analyzed why Minimum-Expected-Completion-Time (MECT) performs better than

FirstCome-FirstServe (FCFS) method, and why the batch policies outperform

immediate scheduling policies for heterogeneous systems.

6.5 evaluating learning outcomes of E2C

As mentioned in Section 6.4, E2C have been examined as an assignment in

the Distributed and Cloud computing course. After the assignment, we conducted a

survey across the students to evaluate the impact of E2C on their learning. 23

students (14 undergraduate students and 9 graduate students) participated in this

survey study. The demography of the 23 students are as follows: (i) Gender: 73.9%

students were male and 26.1% of them were female; (ii) Degree level: 60.9%

students enrolled in Bachelor’s degree (undergraduate) and 39.1% were pursuing

higher level of education including master and doctoral degree (graduate); (iii)
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Figure 6.8. Illustration of the survey on the students’ experience in accomplishing
their distributed systems assignment via E2C (a) This subfigure demonstrate the
HCI experience of the students with E2C (b) This subfigure shows how much E2C
simulator could help students in understanding the characteristics of task scheduling
policies in the homogeneous and heterogeneous configurations.
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(b) Evaluation of learning objectives

Programming experience: The mean and median values of the students’

programming experience are 3.8 and 3 years, respectively; and (iv) Passed

Operating System (OS) course: 43.5% of the students have already completed the

OS course and 56.5% of them have not previously passed that course. The questions

of the surveyb were in two categories: (i) Those related to the user interactions

(experience) with the E2C simulator that is shown in Figure 6.8a; and (ii) Those

focuses on the specific learning outcomes, i.e., how much the knowledge of students

was improved as a result of doing this assignment. The result of this category is

shown in Figure 6.8b. All students were asked to rate E2C with respect to each

evaluation metric in the scale of 10.

The user experience part studies the user-friendliness of the E2C interface

and how it makes technical concepts intuitive. Installing E2C is the first experience

bThe complete survey can be retrieved from https://drive.google.com/file/d/1iW3pHFb7Uic-
nmlUf6xIASZIXf7PoD4{view?usp “ sharinghere.
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of such nature. Figure 6.8a shows that students on average evaluated that the

installation part is an easy and straightforward procedure with the score of 8.3, that

is applicable for any operating system. The intuitive Graphical User Interface (GUI)

of E2C is another metric of the user experience. The overall average score of 8.35

for this metric shows that the students has had no difficulty in dealing with the E2C

through its GUI. As per gender assessment, female students assessed the GUI

intuitive and easy to use with the average score of 9.3 while male students rated it

as 8. Moreover, the average score of 8.3 (female average score:9.3, male average

score: 7.9) for ease-of-use metric demonstrate that students assess the overall

technical part of E2C is intuitive and easy to understand. However, the students

assessed the report section with the average score of 5.7 (female average score:4.8,

male average score: 5.9). Although the reports are comprehensive, we realized that

the structure of the GUI for the report section is not intuitive, therefore, the

students could not find their required reports easily. To address this issue, we are

rearranging the report section in the GUI and make different reports and their fields

more informative. In case of developing a custom scheduling in E2C, the graduate

students responded that E2C was useful, with the average score of 8.3 (female

average score:9.2, male average score: 7.4), in implementing and evaluating their

custom scheduling policy. In general, the students evaluated their willingness for

recommending E2C to others with the average score of 8.3 (female average score:

9.7, male average score: 7.8), as shown in Figure 6.8a.

Figure 6.8b summarizes the students’ responses in terms of their learning
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outcomes. The results show that they found E2C helpful in understanding the

impact of scheduling methods in heterogeneous and homogeneous systems with the

median score of 8.7 (female average score:9.8, male average score: 8.2) and 8 (female

average score:9.5, male average score: 8.4), respectively. In addition, as explained in

Section 6.4, they utilized three workload traces with varying arrival intensities to

learn about the impact of arrival rate on the system performance in terms of on-time

completion rate. As shown in Figure 6.8b, they responded that E2C could help

them in understanding the impact of arrival rate on the system performance with

the average score of 8.6 (female average score:9.7, male average score: 8.2). Overall,

based on the survey results, shown in Figure 6.8b, students assessed E2C is useful in

developing their knowledge in the distributed systems course with the median score

of 8.8 (female average score:9.5, male average score: 8.6). More specifically, as

shown in the results, female students assessed E2C as a an easy-to-use and useful

learning tool with higher median score than male students. In other words, the

gender-based results show that E2C is more effective for female students.

We asked students similar scheduling questions in the form of two quizzes,

taken before and after using E2C as a course assignment. The quizzes asked the

students to map three arriving tasks to four heterogeneous machines via the

following scheduling methods: MEET, MECT, MM, and MSD. The average score of

students has improved from 7.6 (out 12 points) in the first quiz to 8.94 in the second

quiz. The results imply that E2C could improve the students’ learning of scheduling

methods in heterogeneous computing systems by 17.6%.
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At the end of the survey study, we asked them to write us their feelings and

suggestions that they would like to see in the next version of the E2C simulator.

Here, is the main suggestions we received from them: “The simulator clarified the

working of different scheduling methods well with its visual animation.” “The

application was intuitive when it comes to the context of this course and it was

relatively easy to use.” “I must commend the great work done by the everyone at

the HPCC lab that contributed to the E2C simulator. This is a wonderful

software.” As for the suggestions, students reported several bugs that we already

fixed. Some others had suggestions to make the GUI more intuitive, e.g., by

changing the mouse pointer when it is hovered on various components; also there

were suggestions to enable drag and drop feature to the simulation scenario.

6.6 Summary

E2C provides a free (open-source) learning tool for students enrolled in

courses like Distributed Systems, Operating Systems, and Computer Networks as

well as researchers by delivering an intuitive way to simulate heterogeneous and

homogeneous systems. It particularly helps the students to gain insight into the

performance of different scheduling methods upon various heterogeneous systems

and under various workload intensities without the need to use and expend for real

infrastructure. As such E2C is a step towards reducing the widening educational

gap nationally, and even at the global scale. The users of this system can employ

several existing scheduling methods built into the simulator, but also have the

ability to develop and test their own custom method. As we experienced it in our
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Distributed and Cloud Computing class, it is an effective accompaniment that can

remarkably improve the knowledge of students in the area of heterogeneous

computing and scheduling. E2C comes with user friendly GUI for quick usage by

beginners, but is also configurable enough to meet the needs of researchers and

practitioners in the field. Based on the feedback we received from our students, we

plan to extend E2C with several other features, including various communication

paradigms and the ability to drag and drop components into the simulator.
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Chapter 7: Conclusion and Future Research Directions

This chapter summarizes the research and major findings of this dissertation.

Additionally, research topics that have surfaced during this research but have not

been covered in this dissertation are brought up and discussed. These potential

pathways for the future can be investigated further by other researchers working in

this field.

7.1 Discussion

In this dissertation, our main objective was to take a holistic approach to

heterogeneity and harness it as a result of multiple cooperation between middleware

solutions. Our approach to harness heterogeneity can be categorized into three

sections: (i) Maintain the robustness of the heterogeneous computing systems

against uncertainties in tasks’ execution time and arrival time, (ii) Devise fair

energy- and latency-aware scheduling in heterogeneous computing systems, and (iii)

quantify the impact of the heterogeneity on the system performance (i.e., QoS).

In Chapter 3, we studied the robustness of distributed computing systems

against uncertainties in tasks’ execution time and arrival time. In this chapter, we

considered task execution time as a random variable and used probabilistic analysis

to develop an autonomous proactive task-dropping mechanism to attain our

robustness goal. Experimental results demonstrated that the autonomous proactive

dropping mechanism could improve the system robustness by up to 20%.

In Chapter 4, we explored fairness in the scheduling of latency-sensitive and

concurrent Machine Learning (ML) applications on battery-powered heterogeneous
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Edge systems. To that end, we investigated edge-friendly (lightweight)

multi-objective mapping heuristics that did not become biased toward a particular

application type to achieve the objectives; instead, the heuristics considered

“fairness” across the concurrent ML applications in their mapping decisions.

Moreover, we studied and analyzed resource allocation solutions that can increase

the on-time task completion rate while considering the energy constraint.

Performance evaluations demonstrated that the proposed heuristic outperforms

widely used heuristics in heterogeneous systems in terms of latency and energy

objectives.

In Chapter 5, we studied developing a “performance-driven heterogeneity

measure” that can characterize the impact of the heterogeneity level of a system on

its performance behavior (a.k.a. QoS) in terms of makespan. Performance

evaluations across various simulated and real-world heterogeneous systems

demonstrated that our proposed mathematical model can accurately characterize

the performance behavior of these systems. Particularly, the results show that our

proposed heterogeneity measure is able to predict the true makespan of

heterogeneous systems without online evaluations with an average accuracy of 84%.

This heterogeneity measure is instrumental for solution architects to configure their

systems proactively to be sufficiently heterogeneous to meet their desired

performance objectives. In particular, for a large heterogeneous configuration space,

such as those offered by public clouds, HEET can be instrumental in configuring a

system (instead of trial-and-error) with respect to the desired throughput and
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without examining the workload.

7.2 Future Research Direction

Based on our findings during the exploration of natively-heterogeneous

design of distributed computing systems, there are several points where the work

could be expanded upon that were not covered in this dissertation.

7.2.1 Cost- and QoS-aware Heterogeneous System Configuration

We can utilize the proposed measure of heterogeneity to compare the QoS of

different heterogeneous computing systems. Thus, a scaling manager can be devised

to use HEET score for recommending new system configuration such that the cost is

minimized with a user-defined QoS constraint. In practice, the scaling manager uses

HEET score to make recommendations for adjustments to the heterogeneous

computing system. These adjustments may involve altering the configuration by

replacement, addition or removal of specific machines from the user-defined pool of

available machine types.

7.2.2 Probabilistic Heterogeneity Measure

Note that HEET score calculation is based on the expected values of the

execution time of tasks on various machines. The presence of variance within the

execution time distribution can introduce uncertainty into the HEET score,

potentially undermining its ability to accurately predict the QoS in a heterogeneous

computing system. To mitigate this issue, an enhancement can be introduced by

integrating the stochastic nature of execution times into the HEET score calculation.

In this context, we can employ a probabilistic approach wherein the elements
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of the EET matrix are replaced with the Probability Mass Function (PMF) of

execution times associated with a particular task type on a given machine type.

Consequently, the HEET score reflects the execution time PMF of the hypothetical

equivalent task type on the equivalent machine type. This adjustment not only

considers the mean execution time but also encapsulates the inherent variability,

resulting in a more robust heterogeneity measure.

7.2.3 Energy-aware Heterogeneity Measure

The dimensions of system heterogeneity extend beyond task and machine

diversities. Another critical facet of heterogeneity pertains to variations in energy

consumption among different machine types. Hence, the scope of heterogeneity

dimensions can be broadened to encompass three key elements by integrating

machine power heterogeneity into HEET score calculations.

By adopting this three-dimensional approach, the HEET score transforms

into a two-dimensional (2D) metric. It now encapsulates not only the homogeneous

equivalent execution time of a hypothetical equivalent task type on the equivalent

machine type but also incorporates the corresponding expected energy consumption.

This enhanced HEET score thus furnishes a comprehensive representation of system

behavior. Subsequently, the 2D HEET measure can be harnessed to develop system

configurations that are cost- and energy-aware, all while adhering to QoS constraints

set by the user. In essence, this multi-dimensional approach offers a more holistic

approach in the natively-heterogeneous design of distributed computing systems.
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