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CHAPTER 1: Introduction

Video streaming is one of the increasingly popular services in the computing and

networking industry. A wide range of applications is reliant on video streaming. The

examples of such systems are e-learning systems [1], video chat and conferencing

systems [2], natural disaster management, and security systems that operate based on

video surveillance [3], network-based broadcasting channels (e.g., news and other TV

channels) [4], personal broadcasting through social networks, and the movie industry.

Receiving a stream of video content is not a new idea, and it dates back to the

invention of television in the early years of the 20th century. However, the medium

through which people receive and watch video content has dramatically changed over the

past years, from traditional TV systems to streaming on desktops, laptops, and

smartphones through the Internet. Consumer adoption of the new video streaming services

is skyrocketing. Based on the Global Internet Phenomena Report [5], video streaming

currently constitutes approximately 64% of all the U.S. Internet traffic. It is estimated

that streaming traffic will constitute up to 80% of all Internet traffic in coming years.

With different architectural characteristics, viewers stream videos on a variety of devices,

from large screen TVs and desktops to tablets and smartphones. Video contents, either in

the form of Video On Demand (VOD) (e.g., YouTubea or Netflixb) or live-streaming (e.g.,

Livestreamc), need to be converted (i.e., transcoded) based on the characteristics of

viewers’ devices (e.g., in terms of frame rate, resolution, and network bandwidth) [6].

To make the video streams readily available for viewers, video stream providers

commonly carry out the transcoding operation in an offline manner. That is, they

ahttps://www.youtube.com
bhttps://www.netflix.com
chttps://livestreams.com



transcode and store (i.e., pre-transcode) multiple formats of the same video to satisfy the

requirements of viewers with heterogeneous display devices. In practice, video stream

providers such as Netflix have to pre-transcode 40 to 50 formats of a single video [7] and

store them in their repositories.

To overcome the storage and computational demand of transcoding, Video Stream

Providers extensively utilize cloud computing services [8]. Pre-transcoding videos imposes

a significant overhead cost to video stream providers [9], [10]. Video stream providers are

seeking solutions to reduce their overhead incurred cost of using clouds.

1.1.Motivations

Recent studies show that accessing videos of a video stream provider follows a long-tail

distribution [11]. That is, there are few videos that are accessed very frequently (i.e., hot

videos) while there is a huge portion of videos in the repository that are rarely accessed.

Thus, research has been undertaken (e.g., [10]) to alleviate the cost of pre-transcoding by

transcoding rarely-accessed videos in an on-demand (i.e., lazy) manner. In this manner,

one or few formats of a video is stored, and transcoding is performed on-the-fly upon

request to access a version of the video that is not already pre-transcoded. This has

become feasible with the enormous computational capacity clouds offer and is called

re-transcoding video streams.

Re-transcoding induces the computational cost of video stream providers which is

generally more expensive than storage cost [12]. The computational cost is so high

because computation power is generally more expensive than storage services in clouds.

Therefore, the re-transcoding approach would be beneficial to video stream providers, only

if it is applied on the rarely accessed videos. Conversely, if it is applied on frequently
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accessed videos (commonly known as hot videos), it increases the cost overhead even more

significantly as the video stream providers have to pay for every time the video stream is

transcoded. Therefore, to reduce the incurred cost to video stream providers, they have to

apply pre-transcoding on frequently accessed videos and apply re-transcoding on the rest

of video streams.

1.2.Research Problem and Objectives

The question arises is what is a hot video? and how can we quantify the hotness of a video

in a repository? Once we answer the foregoing question, we can decide to pre-transcode

hot videos and re-transcode non-hot videos. We also know that the view rate for all parts

of a video stream is not the same [13]. In fact, previous studies show that even within a

video stream, there is a long-tail access pattern. That is, the beginning part of video

streams are accessed more often than the rest of them. Then, to further reduce the cost,

we propose to partially-transcode videos whose hotness measure is between hot and

non-hot quantities. However, the challenge is how to achieve partial-transcoding? How do

we know which parts of a video should be re-transcoded and which parts pre-transcoded?

To address these challenges, in this dissertation, we propose a method to quantify

the hotness of a video. For videos that are not hot, i.e., do not belong to the set of hot

videos, we propose a method to perform pre-transcoding on a portion of the video.

1.2.1.Objectives

Video stream providers, like YouTube, Netflix, etc., store an enormous number of video

streams in their repositories. Moreover, for each video stream, they keep many versions of

it in order to satisfy the specifications of all users’ devices. Thus, this complicates storage
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and processing all video streams and becomes costly when relying on classical servers.

Therefore, cloud services emerged as an alternative technology which became trustworthy

by video stream providers to process the videos. However, processing video streams in the

cloud still incur high cost relatively. In this dissertation, the objective is to come up with

methods to manage video streams in repositories. Such methods reduce the incurred cost

of using cloud services paid by video stream providers.

1.3.Contributions

In summary, the core contributions of this dissertation are as follows:

• Providing a comprehensive survey on potentials and challenges of employing clouds

for video streaming.

• Analyzing the execution time of the transcoding operation on heterogeneous cloud

VMs and finding out their relationship with the video content type. Also,

understanding influential factors to predict execution time of video streaming tasks.

• Providing a model to identify the degree of suitability of each VM type for a given

GOP.

• Providing a formal definition for hot videos and a method to quantify the hotness of

video streams in the repository of a video stream provider. Also proposing methods

to reduce the incurred cost of using cloud services through pre-transcode,

re-transcode, or partially pre-transcode videos in the repository under long-tail and

non-long-tail access patterns to videos.

• Proposing video streams clustering in a repository such that proposed partial

pre-transcoding methods take minimum time when running on video streams in a
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repository.

1.4.Methodology

We provide a background on video streaming and address the ways to stream videos to

users. We also discuss the challenges when processing video streams and the delivering

methods as well as addressing the storage and security issues. Afterwards, cloud-based

video streaming is introduced as a solution for video stream providers, because cloud

services offer high reliability and scalability of resources. Such resources ease the

processing of video streams on VMs cloud to users with relatively less cost. Accordingly,

we explain generally how the transcoding operations and packing are done in the cloud, in

addition to the means of delivering video streams to users as well as the storage of video

streams in the cloud.

We then perform an analysis of cloud-based video transcoding. First, we conduct

analysis on the heterogeneity of VMs cloud in terms of performance, storage, and costs. In

particular, we analyze the operations of video transcoding on different types of VMs. An

analysis is conducted for different types of video transcoding operations on different VMs.

It is crucial to have such analysis to observe the impact of GOP size in video streams on

transcoding time. The analysis results in an important correlation between transcoding

time and GOP size. This correlation is an essential clue in the next chapter to synthesize

video streams repositories.

The trade-off cost between transcoding and storing video streams in the cloud is

one of the challenges faced by video stream providers. Therefore, we propose methods to

decide when a video stream should be stored or transcoded. For the sake of accuracy and

precise results, we need a massive number of video streams. Thus, based on the
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correlation obtained from the analysis of video transcoding previously conducted, we

synthesize repositories of video streams to evaluate our proposed methods. The synthesis

of video streams has based on the characteristics of real transcoded videos. Each

repository contains 100,0000 synthesized video streams. Based on the number of views, we

model the distribution of video streams in repositories and which follows a long-tail

distribution. We further model the access pattern to the video stream. Then, we apply

the proposed methods on the synthesized videos streams to manage the repositories in the

cloud. We perform analysis on different scenarios of video streams repositories. The

simulation results show, when applying our proposed methods to manage video streams

repositories, the incurred cost of using cloud resources is reduced by up to 72%.

1.5.Dissertation Structure

The core chapters of this dissertation derive from research papers published or submitted

during the course of the PhD candidature. The dissertation chapters are as follows:

• Chapter 2 provides a background on video streaming. It addresses challenges and

issues in video streaming. In particular, this chapter discusses the types of video

streaming, transcoding, and transmuxing. Moreover, it addresses the security that is

involved when streaming a video, in addition to the techniques to store video

streams and the ways to deliver them to overcome the delay. The second part of this

chapter talks about video streaming in the cloud. More specifically, it discusses

video transcoding and transmuxing on the cloud as well as the delivery method for

video streams.

- X. Li, M. Salehi, M. K. Darwich, J. Woodworth, M. Bayoumi. Cloud-Based
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Video Streaming Services: A Survey. Ready for submission to ACM Computing

Surveys, 2017

• Chapter 3 provides a background on the computational complexity of the

transcoding process and the performance of it on different types of computational

resources (Virtual Machines) offered by clouds. Then it presents the analysis of

execution time of different video transcoding operations on various VM types in the

cloud. In this chapter, the affinity of video transcoding operations with

heterogeneous VMs are analyzed. Moreover, the impact of factors such as video

content type, GOP size, and frames on transcoding time is analyzed. On the other

hand, the trade-off between performance and cost of transcoding tasks is modeled

based on heterogeneous cloud virtual machines (VMs).

- X. Li, Y. Joshi, M. K. Darwich, B. Landreneau, M. A. Salehi, and M. Bayoumi.

Performance Analysis and Modeling of Video Transcoding Using Heterogeneous

Cloud Services. Submitted to IEEE Transactions on Parallel and Distributed

Systems (TPDS), 2017

• Chapter 4 addresses the problem of video streams repository management. In this

chapter, we model the system and we quantify the hotness of video streams. After

that, the partial pre-transcoding methods are proposed. Then, the proposed

methods are evaluated and compared to previous methods in the literature.

- M. Darwich, E. Beyazit, M. A. Salehi, M. Bayoumi. Cost Efficient Repository

Management for Cloud-Based On-demand Video Streaming. Proceedings of the 5th

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud), San Francisco, April 2017.
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- M. Darwich, M. A. Salehi, E. Beyazit, M. Bayoumi. Cost Efficient Cloud-Based

Video Streaming Based on Quantifying Video Stream Hotness. Submitted to The

Computer Journal, 2017.

• Chapter 5 shows the clustering method of video streams in the repository to reduce

the execution time of proposed partial pre-transcoding methods when applying on

video streams repositories.

• Chapter 6 concludes this dissertation and shows the direction of future works of this

research.
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CHAPTER 2: Background, Taxonomy, and Context

2.1.Introduction

To achieve video streaming, either in the form of Video On Demand (VOD) (e.g.,

YouTubea or Netflixb) or live-streaming (e.g., Livestreamc), the video content generated

by a camera has to be processed in several steps before being delivered on viewers’ display

devices. The video contents originally generated by cameras are voluminous and cannot

be transferred over the network. Therefore, in the first place, the generated video stream

has to be compressed. However, there are different encoding (i.e., compression) methods,

and the encoded video has to be converted (also known as transcoded) based on the

encoding supported by the viewers’ display device. Once the video stream is transcoded,

it has to be packaged in the format recognized and distribution protocol supported by the

viewer’s device. In practice, and particularly to have a high-level streaming quality, video

contents need to be further transcoded based on the characteristics of the viewers’ devices,

such as frame rate, video codec, and network bandwidth, to match the viewers’ devices [6].

Once the video is processed based on the viewer’s display device, a distribution

network is used to deliver the video stream content to viewers. Although the delivery, in

theory, can be considered as a regular client-server connection over the network, in

practice, it is achieved through large distributed systems known as Content Delivery

Networks (CDN) [14]. Other delivery methods, such as Peer-to-peer [15] also exist for

effective distribution of video streams.

To provide high-quality video streaming with a minimum delay for such diverse

viewers, Streaming Service Providers (SSPs) commonly pre-process (also known as

ahttps://www.youtube.com
bhttps://www.netflix.com
chttps://livestreams.com



pre-transcode) and store several versions of the same video [10]. Given the number and

volume of video repositories in current SSPs, pre-transcoding and storing imply

maintaining massive storage and processing resources. However, recent studies (e.g., [16])

show that the access pattern to video streams in a repository is not uniform and follows a

long-tail pattern. That is, many video streams are rarely accessed by viewers, and only a

small portion of them (generally known as hot video streams) are accessed frequently by

viewers. Therefore, SSPs have become motivated to pre-transcode only hot videos and

transcode the rest of them upon users’ demand. However, this approach requires a large

computational infrastructure (or datacenters) to process video streams in a real-time

fashion.

Provisioning and upgrading built-in infrastructures to meet these demands is

cost-prohibitive and distracts SSPs from their mainstream business, i.e., producing video

content and focusing on viewers’ satisfaction. Therefore, SSPs have become extensively

reliant on cloud providers to provide their services [9]. Cloud providers offer abundant of

reliable computational and storage services to SSPs. Making use of cloud services,

however, has introduced new challenges to SSPs. In particular, their challenge is to

minimize the incurred cost for renting cloud services, while maintaining QoS for their

viewers.

To overcome these challenges, several research works have been undertaken in

estimating the cost of using cloud services when they are used in different steps of video

streaming. In particular, there are studies on video transcoding time [17, 9], video

segmentation models [18, 10], scheduling [19, 17], and resource provisioning

methods [10, 20]. However, these studies generally focus on a portion of the video
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streaming process and how that portion can be performed efficiently on the cloud.

Further studies are required to combine these works in a bigger frame and provide

a higher level vision on the efficient use of cloud services for different steps of video

streaming. This is also important because currently, cloud providers offer various types of

VMs (i.e., heterogeneous VMs). For instance, Amazon EC2 offers General, CPU

Optimized, and GPU VM types with different architectural characteristics and diverse

costs. In such a Heterogeneous Computing (HC) environment, different transcoding tasks

can potentially have various transcoding times (i.e., execution times) on the

heterogeneous VMs. That is, different video transcoding operations may have different

affinities with different VM types. In this study, we term the affinity between cloud VM

types and transcoding tasks as task-machine affinity. Currently, there is no study of this

kind available.

In this chapter, we provide a detailed survey of the research works undertaken on

the use of clouds for video streaming. However, before that, we first explain in detail the

structure of video streams and elaborate on steps that need to be done for video

streaming. Then, we will explain the computational or networking services demanded at

different steps of video streaming. Next, we explain how clouds can fulfill these demands

and the research works undertaken for that purpose. In the end, we discuss emerging

research areas to enable video streaming in future.

2.2.How Do Video Streaming Services Work

To stream a pre-recorded or live video, it has to go through three main modules: video

encoding/transcoding, video transmuxing/packaging, and Delivery Network, as shown in

Figure 2.1 Most devices can take HD or even 4K video contents recently. A raw filmed or
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Figure 2.1. A workflow of video streaming.

recorded video content may need GBs or TBs of storage, which makes it difficult to store,

not to mention streaming it over the Internet. However, the video just continuously shows

a group of pictures at a certain rate. If there are 25 pictures in one second, it must

contain a lot of redundancies. To remove these redundancies, that is why we have to

encode and compress the video to a much smaller space with one of the available

compression standards, e.g., H.274/AVC [21], VP9 [22], and HEVC [23] etc. Based on

these standards (codec), the original videos are encoded to a specific resolution, bit rate

and frame rate that can be played or streamed to devices.

However, considering the large, diverse devices on the market and different

Internet access ability of the viewers, a video with only one specific codec, resolution, bit

rate and frame rate cannot suit for all. To be able to meet such diverse demands, an

encoded video usually has to be transcoded to different versions, to produce multiple

codec, resolution, bit rate and frame rate videos. Video transcoding will be discussed in

Section 2.3.3. in more detail.

With all different transcoded renditions, the video has no problem being played on

viewers’ devices. However, in order to stream the video through the Internet, we have to

obey different streaming protocols, e.g., HTTP [24], RTMP [25], and RTSP [26] etc..
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Therefore, we have to wrap the encoded video content with some container formats, e.g.,

ISO BSMFF or 3GPP TS. Inside these container format headers, it specifies the

supported streaming protocols and the rules to send video chunks. The whole process is

called video transmuxing/packaging, and more details will be discussed in Section 2.3.4.

After transmuxing, a video can be streamed and played whenever it is requested

by viewers. However, due to the limitation of bandwidth, if there are too many incoming

requests for the same videos, it can congest the network and burden to the server. To

reduce the request numbers to the server and also provide fast startup time, a content

delivery network (CDN) [27] is utilized to cache video contents at edge servers near

viewers at different geological locations. Another option is no central servers, but utilizing

each receiver (e.g., viewer’s computer) as a server as well to send video contents to

another receiver, which is called P2P [15]. More details of the delivery network will be

discussed in Section 2.3.5.

With the development of video streaming, other topics like video content security,

analyzing video views and efficient storage become important as well. They will be

discussed in Section 2.3.7., Section 2.3.8. and Section 2.3.6., respectively.

2.3.Challenges and Issues on Video Streaming

2.3.1.Overview

Figure 2.2 presents a taxonomy of the video streaming phases and issues that video

streams go through when they are requested by a user. In this chapter, we discuss video

streaming types (i.e., VOD and live streaming), then we brief the types of video

transcoding and video trunsmuxing. For the distribution layers of video streaming, we

summarize the major protocols. We also explain some technologies that are used to
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stream videos such as CDN and P2P. It is crucial to address security and privacy issues

for video streaming such as encryption, cryptographic, watermark, and CBCD. In

addition, we discuss viewer behaviors and access patterns to videos streams. Last but not

least, we discuss the storge types where video streams are stored such as in-house storage

and cloud storage.
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2.3.2.Video Streaming Types

We consider two main categories of video streaming based on the video origin and time of

recording: video-on-demand (VOD) and live-streaming. Video-on-demand (VOD)

describes a scenario in which an archived video that was previously recorded is streamed

to another computer, while live streaming involves a video that is not archived and is

recorded at the time of streaming. While the end-user experience may be similar for each,

here are several important differences in their implementation.

Both categories have similar cardinalities, though what the cardinality means can

differ. VOD is primarily done in a one-to-many context, in which the video file is hosted

on a single server and is streamed to many viewers (e.g., YouTube). These systems,

however, incur large costs to the server. This can be remedied using a many-to-many,

peer-to-peer filesharing approach to streaming [28].

Live-streaming is most commonly done through a peer-to-peer framework to cut

out the need for an external server. Different types of live-streaming can be further

categorized by the quantity of streamers and viewers. The simplest case is one-to-one

streaming, which occurs in a two-person video chat (e.g., Skype). Similarly,

many-to-many streaming can occur in group chats consisting of more than two people.

One-to-many streaming occurs when a single camera or source streams to many viewers,

(e.g., live television broadcasts). Finally, many-to-one streaming describes many cameras

streaming to a single device (e.g., a video surveillance system).

The experience of each streaming category is heavily affected by buffer sizes [29].

Because videos-on-demand are archived, and there is typically no desire to keep the time

in sync with another participant, the buffer size can be as large as the viewing hardware
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will allow. This allows high quality frames to be built up and leaves remaining frames if

there is a drop in service on either end. Live-streamed video typically demands the viewer

to keep within a small number of seconds of the streamer, thus demanding a small buffer

size. For one-to-many communication, such as live event broadcasting, several seconds of

delay are often tolerated, as the communication is only going one-way. However, for

streaming that involves two-way communication (individual or group chat), latency must

be reduced to the smallest amount possible to maintain natural human communication

with minimal interruptions. This requires a very small buffer, so that frames are displayed

more quickly, and often necessitates lower quality video.

Another unusual type of video streaming that has recently increased in popularity

is a method we will term asynchronous interactive video streaming. This method is used

for applications such as online games or video processing [30], which may be performed on

machines that are ill-equipped to handle the processing load required by the application

but can receive a video stream. Using this architecture, a client will send their input data

to a cloud server supplied by the service provider, which will perform any necessary input

handling and parsing, update the interactive graphics, and send the video to the client as

a stream. The result, to the client, is similar to an interactive live stream.

In summary, Fig. 2.3 shows a taxonomy of the video streaming types. Each type of

streaming faces its own challenges which are described in the coming sections.

2.3.3.Video Transcoding

A video stream, as shown in Figure 2.4, consists of several sequences. Each sequence is

divided into multiple Group Of Pictures (GOP) with sequence header information in the

beginning of each GOP. A GOP is essentially a sequence of frames beginning with an I
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Figure 2.3. A taxonomy of streaming types considered by this work

Streaming Types 

Live Streaming
Video On Demand 

Single Server 
Hosting

P2P
Individual Chat 

(one-to-one)
Group Chat 

(many-to-many)
Live Broadcast 
(one-to-many)

Video Surveillance 
(many-to-one)

(intra) frame, followed by a number of P (predicted) frames or B (be-directional predicted)

frames. Each frame of the GOP contains several slices that consist of a number of

macroblocks (MB) which is the unit for video encoding and decoding operations.

The video transcoding process can operate at different levels, namely sequence

level, GOP level, frame level, slice level, and macroblock level. However, transcoding is

commonly carried out at the GOP level [18, 31] because each GOP can be processed

independently. Similarly, in this work, we assume that all the transcoding processes

operate at the GOP level.

Video contents are initially captured with a particular format, spatial resolution,

frame rate, and bit rate. Streaming service providers usually have to adjust the original

video based on the client’s network bandwidth, device resolution, frame rate, and video

compression standard (i.e., codec). These conversions are carried out on all GOPs of a

video and are termed video transcoding [6, 32]. Below, we provide more details on the
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Figure 2.4. The structure of a video stream that consists of several sequences. Each sequence

includes several GOPs. Each frame of GOP contains several macroblocks.

nature of processing in different transcoding operations:

Bit Rate Adjustment

To stream high quality video contents, the videos are encoded with a high bit rate.

However, high bit rate also means the video content needs a larger network bandwidth for

transmission. Considering the diversity and fluctuations of network bandwidth on the

viewer’s side, streaming service providers usually need to change the bit rate of video

streams to ensure smooth streaming [33].

Spatial Resolution Reduction

Spatial resolution indicates the dimensional size of a video. The dimensional size of an

original video stream does not necessarily match the screen size of viewers’ devices. Thus,

to avoid losing content, macroblocks of an original video have to be removed or combined

(i.e., downscaled) to produce lower spatial resolution video. There are also circumstances

where the spatial resolution algorithms can be applied to reduce the spatial resolution
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without sacrificing quality [34].

Temporal Resolution Reduction

Temporal resolution reduction happens when the viewer’s device only supports lower

frame rate. In this situation, the streaming service provider has to drop some frames. Due

to the dependency between frames, dropping frames may cause motion vectors (MV) to

become invalid for the incoming frames. Temporal resolution reduction can be achieved

using methods explained in [35].

Video Compression Standard Conversion

There is a wide variety of video compression standards (codec) for video files —from

MPEG2 [36], to H.264 [37], and to the most recent one, HEVC [23]. Without these

compression standards in place, the video size would be too large and cannot be streamed

or even stored using the current network and storage capacities.

Viewers’ devices usually support only one or few compression standards. Hence, if

the video codec is not supported on the viewer’s device, then the video needs to be

transcoded based on the supported codec on the viewer’s device [38].

2.3.4.Video Transmuxing/Packaging

To transmit a pre-encoded video file from server to viewer involves multiple layers of

network protocols [39], namely physical layer, data link layer, network layer, transport

layer, session layer, presentation layer, and application layer.Those protocols define the

syntax of stream file headers, data, authentication and error handling. All streaming

protocols are in the application layer, which means they can use any layer beneath it to

transmit data packets.
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Choosing the right streaming technology involves understanding the benefits and

drawback of the accompanied streaming protocols and file formats. In this chapter, we

will mainly discuss three streaming technologies in the market, namely Progressive

Download, Streaming, and Adaptive Streaming.

Progressive Download

In the past, a video could not be viewed until it was completely downloaded, which means

users usually have to wait minutes or even hours to start watching the video. Progressive

downloading resolves this issue by allowing video to be played as long as the player’s

initial buffer is loaded instead of waiting for the whole video to be downloaded. This

reduces the waiting time down to 3-10 seconds to begin to watch a video [40].

However, due to the downloading feature, progressive downloading may face two

problems. Since the video is downloaded linearly, if the bandwidth is too low, the user

cannot move forward a video too much until that part has been fully downloaded. On the

other hand, if a video file is fully downloaded, but the user stops watching in the middle,

the rest of the video bandwidth is wasted, not to mention the copyright issue since the

whole video is downloaded on the user’s hard drive. Also, progressive downloading is

utilizing HTTP protocol [24] which is commonly used in a web application, sending

HTML text, GIF and JPG graphics, PDF files etc.to remote viewers. HTTP protocol is

based on TCP transport protocol [41], which provides better reliability and error-resilience

than UDP [42], while it also increases the network latency [43] which is essential for live

streaming. These drawbacks of HTTP-based progressive downloading pushed the

development of streaming technology.
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Streaming

Unlike progressive download which delivers video contents through HTTP servers,

streaming technology uses real-time protocol (RTP) [44] and delivers video contents from

a separated streaming server. These streaming servers work with traditional HTTP

servers. Whenever a viewer clicks a link on the HTTP server, it initiates a connection

between the streaming server and the player that persists until the viewer stops watching.

Because of this connection, these protocols are considered stateful, as compared to HTTP,

which is stateless and has no connection between server and player.

Thanks to this connection, streaming protocols allow random access in the video

file, as well as adaptive streaming, where multiple encoded video streams could be

delivered to different players based upon available bandwidth and CPU power. The

streaming server can also monitor outbound flow, so if the viewer stops watching, it stops

sending video packet to the viewer, and little extra bandwidth will be wasted. Video

contents in the streaming server are split into small chunks. Whenever these chunks are

sent to the viewers, they are cached at the local and will be removed after they are played.

This feature enables quickly changing play locations but also protects the copyright of the

video content.

The shortcomings of streaming technology, however, are noteworthy too. A

streaming protocol like RTMP [25], which is used by Adobe flash, utilizes different ports

from HTTP. RTMP packets may be blocked by certain firewalls, though the Adobe Media

Server has workarounds if these problems are experienced. The consistent connection

between the streaming server and viewer players increases more bandwidth cost. The

scalability of the streaming server is limited while there are much more HTTP servers

22



available out there.

These doubts aside, there is a general perception that HTTP-based technologies

are more effective at delivering high-quality streams.

Adaptive Streaming

As mentioned, several innovations in HTTP streaming also addressed previous limits of

the technology. As before, there is no persistent connection between the server and the

player; the video resides on any HTTP server, and the technology remains stateless.

However, now all HTTP-based streams are broken into chunks, either separate files or

segments within a larger file. Rather than retrieving a single large file with a single

request, HTTP-based technologies retrieve consecutive short chunks on as needed basis.

This has multiple benefits. First, there is little waste because the video is delivered

as it is watched. This effectively meters out the video, enabling a single HTTP server to

efficiently serve more streams. Since these technologies are delivered via HTTP, they

sidestep the issues faced by RTMP. HTTP-based technologies are firewall friendly and can

leverage HTTP caching mechanisms. Because no streaming server is required, they are

less expensive to implement and can scale more cheaply and effectively to serve available

users. Seeking is no problem; if the viewer drags the player head forward, the player can

just retrieve the appropriate chunks. These technologies also enable the efficient switching

between streams, so called adaptive streaming.

There are four main adaptive streaming protocols, namely MPEG’s Dynamic

Adaptive Streaming over HTTP (DASH) [45], Adobe’s HTTP Dynamic Streaming

(ADS) [46], Apple’s HTTP Live Streaming (HLS) [47], and Microsofts’ Smooth

Streaming [46].
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DASH defines a Media Presentation Description (MDP) and extensions to the

well-known ISO Base Media File Format (ISOBMFF) [48]. The former is an XML

document providing a manifest/session description which enables the client to request

individual media segments via HTTP. The media segments are compliant with a delivery

format that has been derived from the ISOBMFF [49].

HDS is based on Flash media manifest and F4F file format. The former is an XML

document similar to 3GPPs MPD and the latter are MP4 fragment files, i.e., also based

on ISOBMFF. However, the solution is proprietary and not compliant with 3GPP AHS.

HLS is well known for quite some time and implemented on the apple devices and

nowadays android, too. It utilizes an M3U playlist file which serves as the manifest, and

each media file must be formatted as an MPEG-2 Transport Stream (M2TS) [50].

Smooth Streaming has also existed for a while which utilizes a server manifest file

(i.e., SMIL document) and a client manifest file (i.e., proprietary XML document).

Furthermore, this approach defines a smooth streaming format (ISMV) as an extension of

the ISOBMFF.

Table 2.1. Adaptive Streaming Supported Platforms

Desktop Player Mobile Device Support OTT Support

MPEG-DASH dash.js, dash.as, GPAC Windows, Android Phone Google TV, Roku, Xbox 360

HTTP Dynamic Streaming (HDS) Flash, AIR Android/iOS(via AIR app) None

Apple HTTP Live Streaming (HLS) iOS, Mac OSX, Flash iOS/Android3.0+ Apple TV, Boxee, Google TV, Roku

Smooth Streaming Silverlight Windows Phone Google TV, Roku, Xbox 360
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2.3.5.Delivery Network

Delivery Network

Content Delivery Network (CDN) services: CDN is a technology that reduces the delay to

access different static content types, including video streams, through the Internet. CDN

technology replicates the content (e.g., video content) in different geographical areas to

minimize the network travel time of content to users [51, 52]. Some VSPs turn to CDN to

deliver their videos streams to users with better quality and minimum delay [53, 54].

Netflix uses CDN to stream their movies to end-users with low latency and high quality.

The platform of Netflix employs three CDN providers (Akamai, LimeLight, and Level-3)

to cover all regions of users. The same video and same quality are delivered from the three

CDNs [14].

Moreover, streaming videos through CDNs has been addressed in earlier works

[55, 56, 57], Cranor et al. [56] proposed an architecture (PRISM) for distributing, storing,

and delivering high quality streaming content over IP networks. Their design offers a

framework and architectural components necessary to support video-on-demand streaming

content distribution networks (CDN) services. Wee et al. [57] presented an architecture for

mobile streaming CDN which was designed to fit the requirements of mobility, wireless

and scaling issues.Moreover, CDN can be enhanced by merging with systems to improve

its performance. Apostolopoulos et al. [55] proposed Multiple Description Streaming

system to provide diversity paths between nearby edge servers and clients in order to

reduce latency and deliver high quality streaming.

Live streaming CDN is discussed in [58] in terms of scalability, quality, and

reliability. In addition, several previous works are based on live streaming and P2P
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CDN [59] to present better quality, more scalability, reliability, and low latency.

On the other hand, CDN involving video transcoding consists of a storage cloud

which aims for storing transcoded video streams, a transcoding cloud which includes of a

set of servers to run transcoding tasks, and edge servers to deliver transcoded video

streams to users. Edge servers are deployed in numerous data centers to cover all

geographical regions [60, 61].

Although there are many advantages of using CDN to stream videos, there are still

some disadvantages of using it, for instance, the high cost and less scalability with

maintaining the Quality of service QoS.

Peer to Peer (P2P)

Peer-to-peer (P2P) is a network architecture based on the operations of distributed

computing systems. They enable the direct sharing of computing resources (e.g., CPU

cycles, storage, content, etc.) among peers (nodes) in the network [15]. Peer-to-Peer

(P2P) networking is designed for both clients and servers to act as peers to download the

data from the network and upload the data to other users in the network. P2P aims to

quickly disseminate the data files among users in less time. P2P technology has been

utilized in video streaming services. Several P2P streaming systems have been designed to

support on-demand and live video streaming [62]. P2P streaming is categorized into two

types tree-based and mesh-based. P2P tree-based structure distributes video streams by

sending data from a peer to its children peers. In P2P mesh-based structure, the peers are

not related to a specific topology; this peering structure instead functions based on the

content and bandwidth availability of peers [28]. One drawback of using tree-based

streaming is the vulnerability to peer churn. The disadvantage of deploying mesh-based
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Figure 2.5. Single-tree based streaming

streaming structure are video playback quality degradation ranging from low video bit

rates, long startup delays, to frequent playback freezes. P2P streaming systems attain

immense triumph due to high scalability, low cost and robustness to churn.

In Single Tree-based streaming Figure 2.5, the carrying out of video streaming is

done at the application layer, and the streaming tree is formed by the participating users.

Each user joins the tree at a certain level. It receives the video from its parent peer at the

level above, and forwards the received video to its children peers at the level

below [63, 64].

In multi-tree (mesh-tree) streaming Figure 2.6, the user (peer) establishes peering

relationships with multiple neighboring peers. A peer may download/upload video

from/to multiple neighbors simultaneously. If a peer’s neighbor leaves, the peer can still

download video content from remaining neighbors. At the same time, the peer will find

new neighbors to keep a desired level of connectivity. The high peering degree in

Mesh-based streaming systems makes them extremely robust against peer churn [65, 66].
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Figure 2.6. Mutli-tree based streaming

Tree-based P2P video-on-demand streaming shares the video stream on the

network and achieves fast downloading by swarming. The video stream is divided into a

small data block. The server disperses the data blocks to different users. The users

download from its neighboring peers the blocks that they currently do not have [67]

Guo et al. [68] proposed an architecture that uses a peer-to-peer approach to

cooperatively stream video using patching techniques, while only relying on unicast

connections among peers. Xu et al. [69] proposed a Balanced Binary Tree-based strategy

for Unstructured video-on-demand distribution in P2P networks (BBTU). BBTU assumes

videos can be divided into several segments which can be fetched from different peers.

Yiuet al. [70] propose VMesh, a distributed peer-to-peer video-on-demand (VoD)

streaming scheme which efficiently supports random seeking functionality. In VMesh,

videos are divided into segments and stored at peers’ local storage in a distributed

manner. An overlay mesh is built upon peers to support random forward/backward seek,

pause and restart during playback. Cheng et al. [71] proposed a novel ring-assisted overlay
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topology, called RINDY, to efficiently support VCR functions for VoD services in such

networks. In RINDY, a peer can implement fast relocation of random seeks by

maintaining some near neighbors and remote neighbors in a set of concentric rings with

power-law radii. Xu et al. [72] propose a derivative tree-based overlay management scheme

to support user interactivity in the P2P streaming system. The derivative tree takes

advantage of well-organized buffer overlapping to support asynchronous user requests

while brings high resilience to the impact of VCR-like operations.

The main advantages of P2P are low cost and less flexibility for scalability with the

instability of QoS. Therefore, researchers thought to combine the benefits of both CDN

and P2P to be in one system. Thus, this leads to a hybrid system that combines P2P and

CDN for content streaming. Several works have addressed hybrid P2P and CDN networks,

Gamerhi et al. [73] proposed a novel replication strategy which enables traditional CDNs

to offer Hybrid CDN-P2P streaming content delivery services. The proposed solution

relies on the economic model of the Hybrid CDN and employs a dynamic mechanism to

optimize the number and places of replicas for P2P service. Xu et al. [74] proposed a novel

hybrid architecture for that combines both CDN and P2P based streaming media

distribution. The design is highly cost-effective: it significantly lowers the cost of CDN

capacity reservation, without compromising the media quality delivered.

2.3.6.Storage

Storage challenges

Many challenging issues face storage system design for multimedia, high throughput, large

capacity, and fault tolerance. When the video is stored on one disk, the concurrent

accesses to that video are limited by the throughput of the disk; this limits the number of
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viewers to the video at the same time. Shenoy et al. [75] proposed data stripping where a

video is segmented and saved across multiple storage disks. This extends the throughput

of storage disk and overcomes the limitations of viewers at the same time.

Videos streams are segmented into blocks when storing on disk. The blocks can be

stored one after another (contiguously) or scattered over the storage disks. Contiguous

storage method is simple, but it comes with problems of fragmentation and imposes

copying overhead during insertions and deletions. The scattered method eliminates

fragmentations problems and copying overheads. Considering video streams storage on one

single disk has throughput limitation. However, multiple disks storage are used to increase

the throughput at the cost of additional storage spaces. Video streams are scattered across

the various disks and can be implemented by data striping and data interleaving[76]

Video streaming storage becomes also challenging with the diversity of users

devices. Many versions of a single video should be stored to meet the user’s specifications.

Therefore, storing all those video versions requires large-scale storage space and imposes

constraints to store all video versions. Previous studies addressed techniques to overcome

storage issues of video streaming. Miao et al. [77] proposed algorithms to store some

frames of video on proxy cache because the proxy cache is space limited. Their proposed

algorithms on proxy cache contribute to reduce the network bandwidth costs and to

increase the robustness of streaming video poor network conditions happens such as delay,

congestion, and loss.
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2.3.7.Security

Privacy

Privacy, in the context of video streaming, is primarily a concern when considering video

surveillance. The widespread increase in the use of video surveillance has led to a rise in

concerns about the privacy of those being watched, on both personal and legislative levels.

Because video surveillance is necessarily invasive, the challenge becomes how to balance

the public privacy of individuals with the needs of the surveillance system. An ideal

solution would be let protected data (e.g., faces) remain in the video feed while obscuring

personally identifying features.

The majority of solutions to the privacy problems utilize computer vision to

eliminate privacy revealing information. For example, a Sony patent [78] provides a

solution that detects a person in frame’s skin tone and replaces it to obscure racially

identifying information. Another solution by Senior et al. [79] presented an architecture

for a system that would encode and encrypt incoming video streams at different levels of

privacy protection for different levels of user clearance. For example, a low-clearance-level

user may only see a person in the stream as a rough outline. Techniques using a layered

access approach are conventional, as high-level users will still need to see identifying

information if, e.g., crime is committed. Other solutions still use warping techniques to

eliminate privacy-revealing information on watched persons’ faces [80].

2.3.8.Analysis

Impact of quality on viewer behavior

Previous studies in [81] showed that the quality of video stream has an impact on viewers

behavior regarding abandonment the video. When a video stream starts up with delay,
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the viewers abandon watching the videos. With incrementing the startup delay, the

percentage of views who abandon video watching increases. Interruptions during video

playing reduces the number of viewers who access the site of video streaming providers.

Low-quality videos have fewer revenues for video streams providers.

Florin et al. [82] addressed the impact of video quality on user engagement. They

claimed that The percentage of time spent in buffering (buffering ratio) has the most

significant impact on the user engagement across all types of content and the live stream

is most impacted when the number of buffering in a video increase. The average bitrate of

live streaming has a significant impact on user abandonment of watching the video.

Startup latency and the number of buffering during video playing reduce the engagement

of users. These quality issues reduce the revenues to video streams providers. Therefore,

video streaming providers attempt to maximize user engagement by minimizing the

buffering time and rate and increase the average bitrate.

Access Pattern to Repository of Video Streams

In a repository of video streams provider, the distribution of videos follows the long tail

distribution. The popular videos are accumulated at the beginning of the curve; those

videos are very accessed by viewers while the nonpopular videos are located in the long

tail of the curve, and they are rarely accessed.

Viewers are more interested in recently posted videos. Thus, the recent videos

posted in a period are requested more than old videos. Moreover, the probability to

predict the popularity of new videos in the near future are greater than the probability to

predict the popularity of old videos. The significance of popularity distribution shift

depends on the age of videos. For new videos, the popularity distribution is significant
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while the popularity of old videos does not shift too much [83]

Access Pattern to Video Streams

Video access rate indicates the number of times a video is requested, however, it does not

determine if the requested video stream is watched to end of it or not. In fact, recent

studies reveal that, in a video stream, the beginning GOPs are watched more frequently

than the rest of the video stream. Miranda et al. [13] show that the distribution of the

views within most of the video streams in a video stream provider follows a long tail

distribution. More specifically, they show that the distribution of accesses to GOPs of a

video stream can be expressed by the Power-law [84] model.

Although GOP access rate for most of the video streams in a repository follow a

long tail pattern, there are video streams whose GOPs’ access rate do not support this

pattern. In these video streams, some scenes that can be in the middle or end of the video

stream is accessed more frequently than other scenes. An example of scenes with

tremendously higher access rate can be found in a soccer match where a player scores a

goal. We define this type of videos as those with called non-long-tail access pattern [85].

2.4.Cloud-based Video Streaming

2.4.1.Overview

Video streaming has widely utilized cloud services for a different purpose. Due to the

scalability of cloud cluster, raw video contents are encoded, transcoded and then

transmuxed (packaged) on cloud virtual machines (VMs) (e.g., AWS EC2). Packaged

video files are stored in cloud storage (e.g., AWS S3) with very low cost. To reduce the

network latency and reduce the burden of a request for the server, video contents are also

cached in the CDN (e.g., CloudFront) where geographically close to viewers. When a
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viewer requests a video, a request is sent to a web server which also in the cloud cluster. If

the requested video has been cached in the CDN, the web server will send back a manifest

file with the location of the video files or segments in CDN, so that viewer can send

another request to CDN and download videos from there. However, if the requested video

is not in the CDN, web server has to copy the content from cloud storage to CDN, and

then send back the manifest with the new video file location in CDN. A workflow of the

whole request until download video process is shown in Figure 2.7. The rest of this section,

we will discuss how does cloud services impact on different layers video streaming.

Figure 2.7. The workflow of video streaming

2.4.2.Cloud-based Video Transcoding

Video transcoding is an expensive and time-consuming operation. Techniques,

architectures, and the challenges of video transcoding were investigated by Ahmad

et al. [6] and Vetro et al. [32]. With the rise of cloud computing, SSPs realize a more

cost-efficient way to transcode videos by utilizing cloud services.

A taxonomy of the studies undertaken on cloud-based video transcoding is

illustrated in Figure 2.8. Challenges of cloud-based transcoding for VOD was studied

in [20, 19]. Studies have been concentrated on both pre-transcoding [86, 18, 87, 20, 19],
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on-demand transcoding [10, 88, 89] and live streaming [9, 90, 91].

Figure 2.8. A taxonomy of researches undertaken on video transcoding using cloud services.
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For pre-transcoding, the research focus are mainly on video segmentation [86, 18],

load balance [87, 19], and resource provisioning [87, 20] etc., while quality of service (QoS)

is not a concern because different versions of the same video will be ready before releasing

to viewers. However, transcoding the whole repository videos into multiple versions and

storing all the versions causes massive storage cost for SSPs.

To reduce the storage cost while remaining QoS, on-demand video transcoding has

been proposed in [10, 88, 89]. Li et al. [10] propose a CVSS architecture with a startup

queue which prioritizes the beginning part of each video to proceed to the transcoding

servers. With proper scheduling and resource provisioning policy, it provides low startup

delay and playback jitter. Li et al. [89] present a Cloud Transcoder which utilizes an
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intermediate cloud platform to bridge the format/resolution gap for mobile devices in

real-time. It only requires the user to upload a video request with specified transcoding

parameters rather than the video content. Cloud Transcoder transcodes downloads and

transcodes the original video on the user’s demand and deliver the transcoded version the

user.

Transcoding video in an on-demand way does reduce the storage cost, whereas it

incurs computing costing, how to balance these two costs becomes another challenge.

Jokhio et al. [92] presents a computation and storage trade-off strategy for cost-efficient

video transcoding in the cloud. The trade-off is based on the computation cost versus the

storage cost of the video streams. They determine how long a video should be stored or

how frequently it should be re-transcoded from a given source video. Zhao et al. [93] take

the popularity, computation cost, and storage cost of each version of a video stream into

account to determine versions of a video stream that should be stored or transcoded.

Also, Zhao et al. [94] extended his earlier work and implemented his model on segments

within a video. Compared with other methods, his extended work reduces additionally the

total incurred cost. Darwich et al. [95] proposed a method to partially pre-transcode a

video stream with long access. Our method finding the first GOP (e.g., GOP threshold)

that has its cost ratio greater than 1, GOPs which are located before GOP threshold are

pre-transcoded, and GOPs which are located after GOP threshold are re-transcoded.

Thus, GOP threshold method reduces the cost of video transcoding using clouds services.

Our method is efficient for a repository that contains video streams with long tail access.

Krishnappa et al. [61] proposed transcoding policies that transcode video segments that

are requested by users. To maintain the quality of videos regarding startup delay ( or
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playtime delay) when applying online policies on video, they proposed a method to

predict the next video segment that is requested by a user. They implemented their

prediction model by using Markov theory. Their proposed method shows a high reduction

in the cost of using cloud storage with high accuracy.

The idea of cloud-based video transcoding has also has been applied to live video

streaming [9, 90]. Timmereret al. [96] present a live transcoding and

streaming-as-a-service architecture utilizing cloud infrastructure taking the live video

streams as input and output multiple stream versions according to the MPEG-DASH [91]

standard. Lai et al. [90] design a cloud-assisted real-time transcoding mechanism based on

HLS protocol, implement the bandwidth recorder, segment transrater, and segment

redirector on the server, instantly analyzes the online quality between client and server

without changing the HLS server architecture and provides the optimum media quality.

With the trend of video transcoding using cloud service, better understanding the

performance of different video transcoding operation on different VM type will be helpful.

Transcoding time estimation plays an important role in both efficient scheduling and

resource provisioning. Deneke et al. [17] utilize machine learning based on the video

characteristics (e.g., resolution, frame rate, bit rate etc.) to predict the transcoding time

which results in better load balance for transcoding jobs. Seo et al. [97] focus more on the

transcoding process details to estimate transcoding time, such as discrete cosine transform

(DCT), inverse DCT (iDCT), quantization (Q), inverse Q (iQ), motion estimation/motion

compensation (ME/MC), variable length coding (VLC), variable length decoding (VLD).

While both [17, 97] do not consider the diversity of heterogeneous environment of cloud

services. Our work provides a deeper performance analysis and transcoding time
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estimation for different transcoding operations on different VM types, which will be

beneficial for later video transcoding scheduling and resource provisioning by utilizing

heterogeneous cloud services.

Several studies explored the performance analysis of heterogeneous cloud

services [98, 99, 100, 101, 102]. Iosup et al. [98] and Jackson et al. [100] studied

application oriented performance analysis using heterogeneous cloud services. The results

show that although cloud services have their drawbacks in terms of communication and

processing, utilizing cloud services is a viable solution for processing big scientific data

workloads, especially those need resources instantly and temporarily. Also, they show that

the overall performance drops for applications with long communication requirements. Lee

et al. [99] further investigated the task-machine affinity in heterogeneous clusters. They

propose a shared metric in the heterogeneous cluster to provide a scheduling method that

considers fairness. However, there is no study in the literature that focuses on executing

video transcoding tasks on heterogeneous VM types in clouds.

2.4.3.Cloud-based Video Transmuxing/Packaging

Video Transmuxing (Packaging) is much less complex than video transcoding, therefore it

does not take too much to process on the servers. For VOD service, video content is

usually transcoded different renditions, and then each rendition will be packaged to

different versions to meet different streaming protocol requirements (e.g., DASH, HLS,

Smooth). This results in too many copies of the original video have to be stored in the

repository which raises the cost.

With the flexibility to choose a different type of VMs, as well as the scalability to

scale up and scale down VM numbers, cloud service has made it possible for dynamic video
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transmuxing [103]. Instead of statically package a transcoded video into different protocol

renditions and storing in the repository, dynamic video transmuxing detects viewer’s

player and its supported protocol and generate a transcoded video with this protocol and

directly deliver to that client. The whole process only takes milliseconds [104], which

viewers will barely notice, but saves a lot store cost for video streaming providers.

2.4.4.Cloud-based Delivery Network

CDN-Based Video Streaming

Content delivery networks (CDNs) using storage clouds have recently emerged to further

reduce the delivering time of video streams to users, and it is known as cloud CDN.

Compared to traditional CDNs, storage cloud-based CDNs have the advantage of

cost-effectively offering hosting services to Web content providers without owning

infrastructure. However, as the only cost for cloud CDNs is the bandwidth and storage

cost [105]. Hu et al. [106] present a social video replication and user request dispatching

mechanism in the cloud content delivery network architecture to reduce the system

operational cost while guaranteeing the averaged service latency. Based on viewing

behavior measurement, Hu et al. [107] investigated the community-driven sharing video

distribution problem under cloud CDN, and they proposed a dynamic algorithm to make

a trade-off between monetary cost and QoS, their results came with less operational cost

while satisfying the QoS requirement.

Jin et al. [108] proposed content delivery-as-a-service (CoDaaS), an innovative idea

to enable on-demand virtual content delivery service (vCDS) overlays for user-generated

content (UGC) providers to deliver their contents to a group of designated consumers.

The proposed CoDaaS solution is built on a hybrid media cloud and offers elastic private
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virtual content delivery service with an agreed Quality of Service (QoS) to UGC providers.

Li et al. [109] proposed partial migration of VoD services into the hybrid

cloud-assisted deployment, where the user requests are partly served by the self-owned

servers and partly served by the cloud. Proposed migration strategies (active, reactive and

smart strategies) can make the hybrid cloud-assisted VoD deployment save up to 30%

bandwidth expense compared with the Clients/Server mode. Some researchers from

Microsoft conducted a CDN experiment in Microsoft public cloud, Windows Azure, to

demonstrate the benefits of CDN integration with the cloud. The results show a

significant gain in large data download by utilizing CDN in Cloud Computing [110].

2.4.5.Cloud Storage

With rapid spreading out videos on mobiles devices, this requires large-scale systems for

storage. For this reason, the current storage servers face scalability and reliability

problems in addition to the high cost of storage hardware. This also imposes maintenance

needs and requires expertise people to deploy and configure the storage servers. The cloud

storage comes as solution for scalability, reliability, and fault tolerance [111] Gao

et al. [112] proposed a scheme that partially transcodes video contents in the Cloud. Their

approach aims to store the first segments of video contents which are more frequently

viewed, while transcode the remaining video contents online when requested, resulting in

storage and transcoding computation cost efficiency. Their system model is based on a

partial transcoding of video segments and a dynamic storage system that is adapted to

the video access rate change. They designed online algorithm to optimize the performance

of their scheme. They stated that the viewers play 20% of the video duration. They

adopted the video access pattern by implementing the truncated exponential distribution
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to represent the video view rate. They demonstrated that their method reduces 30% of

operational cost by compared to storing the whole video.

Zhao et al. [113] proposed an approach to do a trade-off between computation and

storage costs and to minimize the cost of multi-version videos. They utilized the

transcoding weight graph which is the transcoding relationships among versions of a

video, along with the popularity of those different versions of the video. Based on the

popularity and transcoding relationships among different video versions, their method

decides which versions of a video should be stored in the repository or re-transcoded on

demand. Their results show reduction in the cost when compared to storing all versions.

Also, Zhao et al. [94] extended his earlier work and implemented his model on segments

within a video. Compared with other methods, his extended work reduces additionally the

total incurred cost.

Jokhio et al. [92] developed a strategy to strike a trade-off between the

computation and storage costs of a video. They estimated the computation cost, the

storage cost, and the video popularity information of individual transcoded videos and

then utilized this information to make decisions on how long a video should be stored or

how frequently it should be re-transcoded from a given source video. They compared their

proposal to semisynthetic and realistic load patterns. Their results indicated that their

strategy is more cost-efficient than the two intuitive strategies.

In our earlier work [95], we proposed a method to partially pre-transcode a video

stream with long access. Our method finding the first GOP (e.g., GOP thresh-old) that

has its cost ratio greater than 1, GOPs which are located before GOP threshold are

pre-transcoded, and GOPs which are located after GOP threshold are re-transcoded.
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Table 2.2. Comparison of different technologies for storing video stream

Accessibility Capacity Scalability Reliability Cost QoS

In House Storage limited large no no high high

Cloud Storage (Outsourcing high large yes yes low low

Content Delivery Network high small no yes high high

Peer 2 Peer high large yes yes low low

Hybrid CDN-P2P high small yes yes low high

Thus, GOP threshold method reduces the cost of video transcoding using clouds services.

Our method is efficient for the repository that contains video streams with long tail access.

Krishnappa et al. [61] proposed transcoding policies that transcode video segments

that are requested by users. To maintain the quality of videos in terms of startup delay (

or playtime delay) when applying online policies on video, the propose a method to

predict the next video segment that is requested by a user. They implemented their

prediction model by using Markov theory. Their proposed method shows a high reduction

in the cost of using cloud storage with high accuracy.

In summary, the following table 2.2 briefs video streams storage technologies in

terms of accessibility of viewers to the same video stream, capacity, scalability, reliability,

cost, and quality of service QoS.

2.4.6.Cloud-Supplemented Video Streaming

The recent vast increase in computational power required to perform tasks on videos (e.g.,

decoding incoming video, compressing video, editing video, etc...) has inspired researchers

to move some of the work to the cloud. Additionally, certain industries are reluctant to

give up local legacy servers in favor of a more scalable, but less cost-effective, full-cloud
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solution [114]. As a result, several types of research have focused on supplementing

existing solutions with the cloud.

One standard manner of using the cloud as a supplement is to use traditional local

cluster architecture to deliver content and offload any additional work incurred by high

traffic demand to an on-demand cloud system. Zhang et al. proposed solutions that

would intercept user demands and use statistical analysis to direct the workload to a local

or public cloud machine, thus reducing the cloud cost for the service provider [115][114].

If a provider prefers to use a P2P architecture to deliver their content (for reasons

of, e.g., lowering infrastructure costs), research has also devised methods for combining

cloud with that architecture. For example, Trajkovska et al. [116] proposed an

architecture with a hierarchy of users, in which primary users would pay more to receive a

higher quality stream directly from the cloud. Secondary users would then pay less to

receive the stream in a P2P manner from those primary users. Zhao et al. [117] further

used the cloud to enhance a similar type of P2P network by using the cloud to determine

the locality of peers, reducing the incurred inter-ISP traffic.

2.4.7.Container

Scalable cloud servers (VMs) provide the flexibility of video streaming demands while

starting a new VM usually takes a few minutes which potentially can impact on the

overall quality of service. Researchers and industries usually take a step ahead to predict

the demands and begin to launch the VMs earlier.

With the growing of microservices and container technology. Docker container has

been widely used in the video streaming workflow. Barais et al. [118] propose a

microservice architecture to transcode video at lower cost, they treat each module (e.g.,
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splitting, scheduling, transcoding, merging etc.) of transcoding as a separated service and

runs them on different docker. Dockers scale up and scale down much faster than VMs,

which gives it a big advantage on handling variable streaming demands. Also, docker has

been used in video transmuxing/packaging, web service to handle video requests, the

advertisement inserting between streams etc.

2.5.Summary

In this chapter, first, we explained the workflow and all the technologies involved in

streaming a video over the Internet. We provided a birds-eye-view of how these

technologies interact with each other to achieve a high quality of experience for viewers.

Second, we provided details on each of those technologies and challenges the video

streaming researchers and practitioners are encountering in each of those areas. Third, we

reviewed the ways various cloud services can be leveraged to cope with the demands of

video streaming services.

In the next chapter, our focus is directed toward video streaming using cloud

services. Particularly, we explore the computational complexity of transcoding operation

and conduct simulations to measure the transcoding performance on different types of

VMs in the cloud. Then, we analyze the execution time of different transcoding processes

on heterogenous VMs. Furthermore, we carry out analysis on video content type, GOP

size, frames, and transcoding time. We also come up with a model to trade-off between

performance and cost of transcoding tasks in the cloud.
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CHAPTER 3: Analysis of Cloud-Based Video Transcoding

3.1.Introduction

To minimize the video streaming delay for such diverse viewers, Streaming Service

Providers (SSPs) commonly pre-transcode videos, i.e., they store several versions of the

same video [95]. Given the volume of videos that needs to be transcoded and stored, this

approach requires massive storage and processing resources. Provisioning and upgrading

built-in infrastructures to meet these demands is cost-prohibitive and distracts SSPs from

their mainstream business, which is producing video content and focusing on viewers’

satisfaction. Therefore, SSPs have become extensively reliant on cloud providers to

provide their services [10].

Cloud providers offer an abundance of reliable computational and storage services

to SSPs. Making use of cloud services, however, poses new challenges to SSPs. One main

challenge is to minimize the incurred cost for using cloud services while maintaining QoS

(in terms of uninterrupted streaming experience) for their viewers. To overcome this

challenge, several research works have been undertaken in estimating video transcoding

time [17, 9], video segmentation models [18, 10], scheduling [19, 17], and resource

provisioning methods [10, 20]. However, these studies generally focus on the elasticity

aspect of cloud VMs. That is, how VMs can be allocated or deallocated to maximize the

QoS satisfaction and minimize the incurred cost of SSPs.

Cloud providers offer a wide variety of VM types (i.e., heterogeneous VMs) with

diverse prices. For instance, Amazon EC2 offers VM types, such as General-Purpose,

CPU-Optimized, and GPU that have different architectural characteristics and remarkably

diverse costs. In such a heterogeneous environment, different transcoding operations (also



termed transcoding task) can potentially have various transcoding times (i.e., execution

times) on the heterogeneous VMs. The reason for the various execution times is the

affinity of different transcoding operations with different VM types. For instance,

particular transcoding tasks can be CPU-intensive and execute faster on CPU-Optimized

VMs whereas some other transcoding tasks can be memory-intensive. More importantly,

some transcoding tasks can have similar transcoding times on heterogeneous VMs while

their incurred costs vary significantly.

Understanding the affinity between transcoding tasks and heterogeneous VMs is

critical in scheduling and VM provisioning decisions of SSPs. Such decisions should rely

on accurate performance information of transcoding tasks and their incurred costs on

heterogeneous VMs. Hence, a deep understanding and analysis of the affinity of

transcoding tasks with heterogeneous cloud VMs are required. Currently, there is no

study of this kind available.

Expected Time to Compute (ETC) [119, 120] and Estimated Computation Speed

(ECS) [121, 122] matrices are commonly used to model and explain the affinity of tasks on

heterogeneous machines. However, the definition of both ETC and ECS considers only the

execution time as the performance metric and ignores the cost difference across different

VM types. The question that arises how we can have a model that captures both the

execution time and cost differences of heterogeneous cloud VMs? Answering this question

can be useful for resource (VM) provisioning methods to allocate appropriate type of VMs

for incoming transcoding tasks.

In summary, the research questions we address in this research are:

• How can we recognize the affinity of different transcoding tasks with heterogeneous
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cloud VMs?

• How can we model the trade-off between performance and cost of heterogeneous

VMs for different transcoding tasks?

To answer the first question, we identify if video transcoding tasks have different

affinities with heterogeneous cloud VMs. Then, we need to recognize how the affinity is

defined. That is, finding an appropriate factor in video transcoding tasks to determine the

affinity of transcoding tasks on heterogeneous VMs. In particular, we investigate two

factors that can determine the affinity of transcoding tasks with heterogeneous VMs,

namely type of transcoding operation and video content type.

For that purpose, we analyze the affinity of transcoding tasks on heterogeneous

cloud VMs when the tasks are categorized based on the type of their transcoding

operation and when they are categorized based on their content types. The result of these

analyses shows that video content type is a stronger factor to determine the affinity of

video transcoding tasks on heterogeneous VMs rather than the type of transcoding

operation. However, it is difficult to categorize video transcoding tasks based on their

content type because the content type is not known before the execution of the tasks.

Hence, in the next step, we find factors that indicate the video content type and, as such,

can be used for categorizing video transcoding tasks.

To answer the second research question, we present a model to quantify the

suitability of heterogeneous VMs for a given transcoding task. The model encompasses

both the execution time of the task on a VM type and the incurred cost of using it.

In summary, the key contributions of this chapter are:

• Analyzing the performance of different transcoding operations on heterogeneous
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cloud VMs.

• Analyzing the performance of video content types on the on heterogeneous cloud

VMs.

• Determining influential factors on the execution time of the transcoding operation.

• Providing a model to capture (and quantify) the cost and performance trade-off of

heterogeneous VMs for video transcoding tasks.

3.2.Heterogeneous Computing in Cloud

Cloud service providers offer heterogeneous computational services (VMs) to satisfy

various types and levels of computational requirements of their clients. Heterogeneity of

these VMs is based on both underlying hardware characteristics and their hourly cost.

Such heterogeneity enables cloud users to build a Heterogeneous Computing (HC)

environment (i.e., a cluster of heterogeneous VMs) to efficiently process high-performance

computations in the cloud environment.

HC environments are categorized as consistent and inconsistent [121]

heterogeneous environments. The former refers to an HC environments in which some

machines (VMs) are consistently faster than others whereas the latter explains an

environment in which tasks have diverse execution times on heterogeneous machines. For

instance, machine A may be faster than machine B for task 1 but slower than other

machines for task 2 [123]. We also say that machine A has a higher affinity with task 1. In

fact, cloud providers offer several categories of VMs that are inconsistently heterogeneous.

Nevertheless, there is a consistent heterogeneity within VMs in each one of those
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categories. In this study, our goal is to study the affinity of different transcoding tasks on

heterogeneous VMs. Thus, we consider a cloud as an inconsistently HC environments.

In the case of Amazon EC2 clouda, six categories of VM types are offered that are

described below:

• General-Purpose VMs: This VM type has a fair amount of CPU, memory, and

networks for many applications, such as web servers and small- or mid-size database

servers. General-purpose VMs is the least expensive one and have lower computing

power in comparison with other VM types. To process a large set of tasks, either

many or few of these VMs should be allocated for a long time [99].

• CPU-Optimized VMs: This VM type offers a higher processing power in

comparison with other VM types, which makes them ideal for compute-intensive

tasks. They are currently mostly applied to high-traffic web application servers,

batch processing, video encoding, and high-performance computing applications

(e.g., genome analysis and high-energy physics) [100].

• Memory-Optimized VMs: Memory-Optimized VM type is designed for

processing tasks with large memory demand. The VM type has the lowest cost per

GB of memory (RAM) compared to other types. Applications such as

high-performance databases, distributed cache, and memory analytics [124] usually

demand Memory-Optimized VMs.

• GPU-Optimized VMs: The GPU-Optimized VMs are applied for

compute-intensive tasks (i.e., tasks that involve huge mathematical operations).

ahttps://aws.amazon.com/ec2/
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Many large-scale simulations, such as computational chemistry, rendering, and

financial analysis are conducted on GPU-Optimized VMs [125].

• Storage-Optimized VMs: Storage-Optimized VMs are utilized in cases where low

storage cost and high data density is necessary. This VM type is designed for large

(big) data requirements such as Hadoop clusters and data warehousing

applications [126].

• Dense-Storage VMs: These VMs provide large Hard Disk Drive (HDD) storage

with low price per disk throughput performance. This VM type benefits applications

such as data warehousing, and Hadoop-based applications [127].

We perform this research by using VM types offered by the Amazon cloud

provider. The reason we chose Amazon is that it provides reliable and heterogeneous VM

types. Also, currently, Amazon is the mainstream cloud provider and many video SSPs

utilize its services [14]. However, we would like to note that the analysis provided in this

work is general and can be applied to any HC environment.

3.3.Performance Analysis of Video Transcoding Operations on Heterogeneous Cloud VMs

3.3.1.Overview

To keep the generality and to avoid limiting the research to the details of VM types

offered by Amazon EC2, we select one VM type from different VM categories in Amazon

EC2 that represents the characteristics of that category (see Section 3.2.).

In particular, for the General-Purpose, CPU-Optimized, Memory-Optimized, and

GPU VM types we choose m4.large, c4.xlarge, r3.xlarge, and g2.2xlarge,

respectively. We did not consider any of the Storage-Optimized and Dense-Storage VM
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types in our evaluations as we observed that IO and storage are not influential factors for

video transcoding tasks. The characteristics and the cost of the chosen VM types are

illustrated in Table 3.1. In this table, vCPU represents virtual CPU. Amazon uses what it

calls “EC2 Compute Units” or ECUs, as a measure of virtual CPU power. It defines one

ECU as the equivalent of a 2007 Intel Xeon or AMD Opteron CPU running at 1 GHz to

1.2 GHz clock rate. More details about the characteristics of the VM types can be found

at Amazon EC2 websiteb.

Table 3.1. Cost of heterogeneous VMs in Amazon EC2 cloud.

VM Type
General

(m4.large)
CPU Opt.

(c4.xlarge)
Mem. Opt.

(r3.xlarge)
GPU

(g2.xlarge)

vCPU 2 4 4 8

Memory (GB) 8 7.5 30.5 15

Hourly Cost ($) 0.15 0.20 0.33 0.65

3.3.2.Analyzing the Execution Time of Different Video Transcoding Operations

The first question we need to answer is whether or not a certain transcoding operation has

more affinity to a particular type of VM in the cloud?

To answer this question, we compared the transcoding time (execution time) of

various transcoding operations using different VM types. In particular, we measured the

transcoding time of the first nine GOPs in all videos in the benchmark on different VM

types and reported and the mean of their transcoding times. The reason we choose nine

GOPs is that the shortest video exists in the benchmark has nine GOPs.

Figure 3.1 shows the transcoding time of different transcoding operations on

bhttps://aws.amazon.com/ec2/instance-types/
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heterogeneous VMs. We can observe that the execution times of different transcoding

operations are not the same, however, regardless of the VM type, they follow the same

pattern.

Sub-figures 3.1a, 3.1b, 3.1c, and 3.1d demonstrate that although the execution time

of each transcoding operation varies on different VM instances, in general, transcoding

time has the same pattern across General, CPU Opt., Mem. Opt. and GPU VM types.

The results confirm that, regardless of the VM type utilized, converting video

codec always takes more time than other transcoding operations. This is because changing

codec implies the whole original encoded video be decoded and then re-encoded with new

one codec. These conversions make the transcoding time longer.

We also observe that changing resolution has the least transcoding time regardless

of the VM type. The reason is that the transcoding is achieved by utilizing filtering and

subsampling [128, 129] which works directly in the compressed domain and avoids the

computationally expensive steps of converting to the pixel domain. Therefore, it takes less

time than other transcoding operations.

To analyze the transcoding time, we utilized a set of benchmark videos. The

benchmarking videos are publicly available for reproducibility purposesc. Videos in the

benchmark diverse both in terms of the content types and length. The benchmark

includes a combination of slow, fast, and mixed motion video content types. The length of

the videos in the benchmark varies in the range of [10, 600] Seconds.

We used FFmpegd, which is an open source utility, to transcode the videos. For

each one of the benchmarking videos, four different transcoding operations, namely codec

cThe videos can be downloaded from: https://goo.gl/TE5iJ5
dhttps://ffmpeg.org
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Figure 3.1. Mean transcoding time (in Seconds) on GOPs of benchmark videos on distinct

VM types. (a) mean transcoding time of different transcoding operations on General VM.

(b), (c), and (d) show mean transcoding time of different transcoding operations using CPU

Opt., Mem. Opt., and GPU, respectively.

(a) Time taken by different transcoding

operations on General VMs

(b) Time taken by different transcoding

operations on CPU Opt. VMs

(c) Time taken by different transcoding

operations on Mem. Opt. VMs

(d) Time taken by different transcoding

operations on GPU VMs
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conversion, resolution reduction, bit rate adjustment, and frame rate reduction were

carried out on heterogeneous VMs.

Each transcoding operation has been repeated for 30 times on each video to

remove any randomness (e.g., due to VM malfunctioning or other temporal issues)e. The

mean transcoding time on each VM for a given GOP is considered for comparison and

analysis of this chapter.

3.3.3.Analyzing the Affinity of Video Transcoding Operations with Heterogeneous Cloud

VMs

Figure 3.2. Execution time of codec transcoding for a video in the benchmark on different

VM types.

As mentioned in Section 3.2., cloud providers offer VMs that are heterogeneous

both in terms of performance and cost. An important question for video stream providers

to reduce their cost and improve their Quality of Service (QoS) is: what is the affinity of

video transcoding operations with heterogeneous cloud VMs?

As we noticed in Section 3.3.2., although execution times of various video

eThe generated workload traces are available publicly from: https://goo.gl/B6T5aj
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transcoding operations were different, codec transcoding constantly has the highest

execution time and changing spatial resolution generally has the lowest execution time.

Considering the pattern in transcoding execution time, to study the affinity of video

transcoding on heterogeneous VMs, we only need to consider one transcoding operation

(e.g., codec transcoding) on heterogeneous VMs. Hence, we measure the codec

transcoding time of benchmark videos on heterogeneous VM types.

Figure 3.2 expresses the analysis for one videof in the benchmark. Graph of the

same evaluation is illustrated in APPENDIX A for other videos of the benchmark. In this

figure, we can observe that, in general, GPU VM provides a better execution time in

comparison with other VM types. This is because transcoding operations include

substantial mathematical operations and GPU VM types are well suited for such kind of

operations. General VM provides the lowest performance as it includes less powerful

processing units (see Table 3.1).

Figure 3.3. Performance ratio of transcoding on different VM types with respect to GPU VM.

Horizontal axis shows the performance ratio and the vertical axis shows the frequency of

the performance ratio for all GOPs of videos in the benchmark. (a) Shows the performance

ratio of General VM with respect to GPU. (b) Shows the performance ratio of CPU Opt.

VM with respect to GPU VM. (c) Shows the performance of Mem. Opt. VM with respect

to GPU VM.

(a) Performance ratio of

General to GPU.

(b) Performance ratio of

CPU-Opt. to GPU.

(c) Performance ratio of

Mem-Opt. to GPU.

fThis is big buck bunny 720p h264 02tolibx264 video in the benchmark.
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More importantly, in Figure 3.2, we observe that the transcoding times of different

GOPs are significantly varying on the four VM types. For some GOPs, the GPU VM

remarkably outperforms other VMs (e.g., GOP 6, 7, and 8) whereas for some other GOPs

(e.g., GOP 9, 12, and 13) the difference in transcoding times is negligible.

To better understand the performance variations in transcoding different GOPs,

we compared the performance of these four VM types for all videos in the benchmark in

detail. Although GPU takes the least time to perform a transcoding operation, we are

interested to know the significance of the outperformance of the GPU across different

GOPs. Thus, we define performance ratio for GOP i as its transcoding time on a VM

type to the transcoding time on GPU. The result of this analysis is shown in Figure 3.3. In

all sub-figures of Figure 3.3, the horizontal axis shows the performance ratio and the

vertical access shows the frequency of that ratio across all GOPs in a video. According to

Figure 3.3, we observe that:

• In Sub-figure 3.3a, performance ratio of General VM lies within the range

2.781± 1.524.

• In Sub-figure 3.3b, performance ratio of CPU Opt. VM lies within the range

1.263± 0.508.

• In Sub-figure 3.3c, performance ratio of Mem. Opt. VM lies within the range

1.608± 0.652.

We also measured the percentage of GOPs transcoded on VMs other than GPU

with performance ratio < 1.0. That is, the percentage of GOPs that their transcoding

time is less than the transcoding time on the GPU. The results are shown in Table 3.2.
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Table 3.2. Performance ratio of different VM types with respect to GPU VM, for all GOPs of

the videos in the benchmark. Each entry shows the percentage of GOPs with performance

ratio < 1.0.

Codec Frame Rate Bit Rate Resolution

General 0% 2.4% 2.7% 2.4%

CPU Opt. 2.2 % 24.8% 28.0% 3.9%

Mem. Opt. 0.6% 2.8% 4.2% 2.5%

Table 3.3. Performance ratio of different VM types with respect to GPU VM, for all GOPs of

the videos in the benchmark. Each entry shows the percentage of GOPs with performance

ratio ≤ 1.2.

Codec Frame Rate Bit Rate Resolution

General 0% 2.72% 2.87% 2.72%

CPU Opt. 12.28% 33.33% 63.93% 22.28%

Mem. Opt. 1.36% 23.78% 23.63% 3.49%

Entries of this table express the percentage of GOPs that have transcoding time strictly

lower than the GPU for different transcoding operations. In addition, to see the percentage

of transcoding tasks that have close execution time to the GPU, in Table 3.3, the

percentage of tasks that have performance ratio lower than 1.2 are reported.

We can summarize our observations in this part as follows:

• We observe that in cases that transcoding time of other VM types are lower than

GPU, the transcoding time differences are low (less than 0.24 seconds).

• In all cases that other VM types outperform the GPU VM, the transcoding time on

the GPU was low (less than 2.1 seconds). That is, when the GPU takes a low time to

transcode a GOP, other VM types may outperform it.
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• According to Figure 3.3, none of the transcoding types need extensive memory space

(i.e., transcoding is not a memory intensive operation). Therefore, video stream

providers would not benefit from instantiating memory-optimized VM types.

3.3.4.Analyzing the Impact of Video Content Type on Transcoding Time

Figure 3.4. Transcoding time (in Seconds) of video streams on different cloud VMs for

various video content types. (a), (b), and (c) demonstrate the transcoding time obtained

from different VM types when applied on slow motion, fast motion and mixed motion video

content types, respectively.

(a) Transcoding time of slow

motion video.

(b) Transcoding time of fast mo-

tion video.

(c) Transcoding time of mixed

motion video.

As we observed in the previous section, the transcoding time of a GOP can vary

significantly on different VM types (see Figure 3.2). For instance, transcoding time

difference between GPU and CPU Opt. VM types for GOP 8 in Figure 3.2 is ' 7 seconds

while the difference for GOP 13 is less than a half second. What is this performance

difference attributed to? Answering this question enables us to allocate the appropriate

VM types depending on the GOP type, hence, reducing the transcoding time and its

incurred cost.

Our investigation revealed that the reason for the transcoding time variations is

the content type of the GOPs. To further investigate the impact of video content type on

the transcoding performance, we performed codec transcoding on each video content type
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on different VM types. Results of the investigation are reported in Figure 3.4.

Figure 3.4a shows that the transcoding time of the slow motion videos is distinct

from each other across different VM types. In particular, GPU and General VM types,

respectively, provide the best and worst performance for this type of video content.

In contrast, Figure 3.4b shows that the outperformance of GPU VM is not

statistically and practically significant when transcoding fast motion videos. Although GPU

still provides a slightly faster transcoding time than other VM types, the difference is

negligible. For some GOPs (e.g., 4, 5, 13, 16, and 31) the transcoding time on GPU is

almost the same as other VM types.

To confirm this finding, we performed the transcoding operation on a mixed

motion video and the result is depicted in Figure 3.4c. As we can see in this sub-figure,

GPU outperforms others VMs significantly for some GOPs (e.g., . GOP 30 to 37) while

provides almost same transcoding time for other GOPs. We noticed that the difference in

transcoding time is remarkable for GOPs of the video that contains slow motion content

and it is negligible for fast motion GOPs.

The reason for the performance variations on different video content types is that,

in fast motion videos, due to the high frequency of changing scenes, the number of frames

in a GOP and, therefore, the GOP size is small. In contrast, slow-motion GOPs include

more frames, and they are larger. When we transcode a large number of small size GOPs

(i.e., the case for fast motion videos), there is little computation to be performed for each

GOP and the performance of the VM is dominated by the overhead of switching between

different GOPs. On the contrary, when in transcoding slow motion videos we deal with

few number of GOPs that are large (i.e., they are compute intensive). Transcoding such
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videos can take advantage of compute-heavy (e.g., GPU) VMs.

In the next section, we will further investigate the impact of GOP size and number

of frames in a GOP for video transcoding.

3.3.5.Analyzing the Impact of GOP Size and Number of Frames on Transcoding Time

In Section 3.3.4., we concluded that the transcoding time of GOPs varies significantly on

different VMs depending on the video content types. However, automatic categorization of

GOPs based on their video content type is a difficult task. We need an intuitive factor to

categorize GOPs on different VM types (i.e., to identify the affinity of GOPs with

heterogeneous VMs). In this section, we investigate further the factors that influence

GOP transcoding time on different VM types.

As we noticed in Section 3.3.4., a GOP with slow motion content type benefits

more from a computationally powerful VM. Such a GOP has a large size and includes

many frames. Therefore, we need to analyze the impact of GOP size and number of

frames on the transcoding time of each GOP on different VM types.

We use a regression analysis to study the impact of GOP size and number of

frames on the GOP transcoding time. We consider the transcoding time of GOPs in all

benchmark videos of the benchmark that is a mixture of slow, fast, and mixed motion

video contents. Due to a large amount of data, the second-degree regression is used for the

analysis. The horizontal axis shows The GOP size (in MB) and number of frames for all

GOPs in Figures 3.5 and 3.6, respectively. The vertical axis in both figures shows the

transcoding times of GOPs (in seconds).

In both figures, we observe that, regardless of the VM type, transcoding times

increase by increasing both the GOP size and the GOP number of frames. Table 3.4
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Figure 3.5. Second degree regression to study the influence of GOP size on the transcoding

time.
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demonstrates the coefficient of determination (R2) for the regression analyses. As we can

see in this table, both GOP size and number of frames show the high confidence of

relationship to transcoding time, while the number of frames in a GOP shows a higher R2

value for all VM types. Therefore, many frames provide a stronger regression with

transcoding time.

In Figure 3.6, we also observe that when the number of frames in a GOP is small,

the performance of GPU is very close to other VM types whereas for a larger number of

frames, the performance gap between GPU and others VM types rises. This implies that

GOPs with few number of frames are better to be assigned to cost-efficient VM types

whereas GOPs with a large number of frames can benefit from computationally powerful

VM types.
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Figure 3.6. Second degree regression to study the influence of number of frames in a GOP

on the transcoding time.
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Table 3.4. Coefficient of determination (R2) for regression analysis of GOP size and number

of frames with transcoding time.

General
(m4.large)

CPU Opt.
(c4.xlarge)

Mem. Opt.
(r3.xlarge)

GPU
(g2.xlarge)

GOP Size 69.68% 68.76% 69.11% 67.56%

Number of Frames 77.15% 78.16% 77.31% 78.17%

3.4.Modeling performance Cost Trade-Off of transcoding Tasks on Heterogeneous Cloud

VMs

VM types offered by cloud providers are heterogeneous both in terms of performance and

cost [130]. Hence, allocating VMs that are cost- and performance-efficient for transcoding

tasks is challenging.

As we discussed in Section 3.3.3., computationally-powerful VMs do not always

provide the best performance for transcoding tasks. This is particularly important when

we consider the significant cost difference between the VM types. We also discussed that

the transcoding time has a correlation with the GOP size and number frames in GOPs. In
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particular, when the GOP size or number of frame is small, the performance difference of

heterogeneous VMs is negligible.

Alternatively, the performance difference of using heterogeneous VMs to transcode

large size GOPs is significant. Thus, it may be worthwhile to allocate a powerful and

costly VM to transcode such GOPs.

To cope with the appropriate VM type allocation challenge, we require a construct

to identify the appropriateness of various VM types for different GOPs. Such a construct

can be helpful in allocation and mapping (i.e., scheduling) of GOPs to the appropriate

VMs for transcoding.

In this section, we present a construct termed GOP Suitability Matrix that

maintains the suitability value of each VM type for each GOP task in a video stream.

Such a matrix can be used by video stream providers to allocate VMs that offer the best

performance and cost trade-off for video transcoding.

Recall from Table 3.1 that GPU VM type, in general, provides the best performance

while having the highest cost. Also, General VM type provides the lowest transcoding

performance and is the least expensive one when compared to other VMs.

We define performance gap, denoted ∆i, as the performance difference VM type i

and GPU. For a given GOP, a large value of ∆i indicates that VM type i remarkably

performs worse than GPU, hence, GPU should be assigned a higher suitability value than

VM i.

Determination of the trade-off between performance and cost of utilizing

heterogeneous VMs, in the first place, depends on the business policy of the streaming

service provider (here, we call it user). That is, a user should determine how important is
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the performance, denoted p, and incurred the cost, denoted c, for the system. As these

parameters complement each other (i.e., p+ c = 1), the user only needs to provide one of

these parameters. For instance, a user can provide p = 0.6 (that implies c = 0.4) to

indicate a higher performance preference.

We define performance threshold gap, denoted ∆th, as the threshold of the

performance gap between GPU and other VM types. The value of ∆th is determined based

on the user preference of p and c. As user cost and performance preferences are not crisp

values, we can model them based on fuzzy membership functions [131]. As shown in

Figure 3.7, we define two membership functions for the cost and performance preferences.

According to this figure, the membership value of one preference (e.g., performance)

decreases when the other preference (e.g., cost) increases.

Value of the user’s performance (or cost) preference is considered as the

membership value of the fuzzy membership function (vertical axis in Figure 3.7) and is

used to obtain the performance threshold gap (horizontal axis in Figure 3.7). More

specifically, by using the performance preference (p), we can obtain ∆th based on

Equation (3.1)g.

∆th =
ln p

1−p
α

+ β (3.1)

Where α is the inflection point in the membership function and β is the slope at α.

In Figure 3.7, we experimentally obtained the values of α and β equal to 5 and 0.7,

respectively.

Based on the value of ∆th, we can determine the trade-off between performance

gSimilarly, the value of ∆th can be obtained from the cost preference value: ∆th =
ln c

1−c

α
− β
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Figure 3.7. Membership functions for performance and cost preferences. The user-provided

values for the cost or performance are considered as the membership value (vertical axis).

Then, the corresponding value on the horizontal axis is considered as ∆th

and cost for transcoding a given GOP. For that purpose, we define weight of the VM type

i, denoted Wi, to transcode a given GOP based on Equation 3.2 that encompasses both

the performance and cost factors.

The first part, in Equation 3.2, considers the performance factor and calculates the

difference of performance gap from ∆th. Performance gaps greater than the threshold

(∆th) cause a low (negative) weight value which implies higher Suitability for

performance-oriented VM types. In this part, the denominator determines the sum of

performance gaps for all N VM types. The second part, in Equation 3.2, considers the

cost factor. This part functions based on the cost of transcoding a given GOP on VM type

i, denoted ϕi. The cost of transcoding a GOP on VM i is obtained from the transcoding

time of the GOP on VM i and the hourly cost of VM type i in the cloud. This part of the

equation favors VM types that incur a lower cost for transcoding a given GOP.

Wi =
∆th −∆i

N∑
n=1

∆n

· (1− ϕi
N∑
n=1

ϕn

) (3.2)

To normalize the value of Wi and determine the final suitability values, denoted
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Si, between [0, 1] we use Equation (3.3) as follows:

Si =
Wi −max

i
(Wi)

max
i

(Wi)−min
i

(Wi)
(3.3)

where maxi and mini are the largest and smallest values among Wis, respectively.

In transcoding a video stream, each GOP has different suitability values on different VM

types. These suitability values construct a Suitability Matrix for each video stream.

To have a better understanding of the Suitability Matrix construct, we compare

four suitability matrices with different performance and cost preference values provided by

the user.

Table 3.5a shows the Suitability Matrix for a given video when the user has a

performance-oriented preference—p = 0.98. As we can see, in this case, the Suitability

value of GPU and CPU Opt. VMs is higher than the other VM types. We observe that the

Suitability values for (General) VM are mostly 0.

When user’s performance preference drops to 0.5 (and cost raises to 0.5), as

demonstrated in Table 3.5b, the Suitability value of GPU decreases while the General VM

gets higher Suitability values. By further decreasing the user performance preference and

increasing the cost preference, the Suitability value of the GPU drops to almost 0 while the

Suitability values of cost-efficient VMs (General) are increased (see Tables 3.5c and 3.5d).

It is noteworthy that CPU Opt. VM type mostly maintains a high Suitability value

regardless of ∆th value. This is because the CPU Opt. VMs has a high performance and

its cost is relatively low.
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3.5.Summary

In this chapter, we provided a detailed study and analysis of different transcoding

operations on heterogeneous VMs in terms of execution time, performance, and cost of

using cloud resources. As a result, we modeled a trade-off between performance and the

cost of using cloud resources. More importantly, we came up with a significant correlation

between transcoding time and GOP size in a video stream.

In the next chapter, we employ this correlation in synthesizing video streams

repositories. And thus we propose methods to trade-off between pre-transcoding,

re-transcoding and partial pre-transcoding of video streams in repositories, to reduce the

cost of using cloud resources.
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Table 3.5. Suitability Matrices for different values of performance and cost preferences.

Tables (a) to (d), show that as the performance preference p decrease (and cost-preference

c increases), the value of ∆th grows. Accordingly, the maximum Suitability value changes

from GPU (performance-oriented VM) in Table 3.5a to General type (cost-oriented VM) in

Table 3.5d.

VM Type General CPU Opt. Mem. Opt. GPU

GOP1 0.00 1.00 0.78 0.98

GOP2 0.00 1.00 0.68 0.26

GOP3 0.00 1.00 0.67 0.30

GOP4 0.00 1.00 0.61 0.01

GOP5 0.00 1.00 0.71 0.60

GOP6 0.00 1.00 0.80 0.89

GOP7 0.00 0.91 0.74 1.00

GOP8 0.00 0.88 0.72 1.00

GOP9 0.00 0.87 0.72 1.00

GOP10 0.00 0.86 0.71 1.00

...
...

...
...

...

(a) Suitability Matrix, when p = 0.98%, c =

0.2%, and ∆th = 1

VM Type General CPU Opt. Mem. Opt. GPU

GOP1 0.00 1.00 0.63 0.03

GOP2 0.69 1.00 0.78 0.00

GOP3 0.67 1.00 0.78 0.00

GOP4 0.75 1.00 0.78 0.00

GOP5 0.57 1.00 0.74 0.00

GOP6 0.26 1.00 0.71 0.00

GOP7 0.00 1.00 0.72 0.54

GOP8 0.00 1.00 0.75 0.70

GOP9 0.00 1.00 0.77 0.77

GOP10 0.00 1.00 0.77 0.77

...
...

...
...

...

(b) Suitability Matrix, when p= 0.5%, c= 0.5%,

and ∆th = 5

VM Type General CPU Opt. Mem. Opt. GPU

GOP1 0.48 1.00 0.73 0.00

GOP2 0.79 1.00 0.80 0.00

GOP3 0.79 1.00 0.80 0.00

GOP4 0.83 1.00 0.80 0.00

GOP5 0.74 1.00 0.78 0.00

GOP6 0.59 1.00 0.77 0.00

GOP7 0.06 1.00 0.65 0.00

GOP8 0.00 1.00 0.68 0.20

GOP9 0.00 1.00 0.71 0.35

GOP10 0.00 1.00 0.70 0.32

...
...

...
...

...

(c) Suitability Matrix, when p = 0.5%, c = 0.5%,

and ∆th = 10

VM Type General CPU Opt. Mem. Opt. GPU

GOP1 0.63 1.00 0.76 0.00

GOP2 0.82 1.00 0.81 0.00

GOP3 0.83 1.00 0.81 0.00

GOP4 0.85 1.00 0.81 0.00

GOP5 0.79 1.00 0.80 0.00

GOP6 0.69 1.00 0.79 0.00

GOP7 0.37 1.00 0.72 0.00

GOP8 0.19 1.00 0.69 0.00

GOP9 0.04 1.00 0.66 0.00

GOP10 0.08 1.00 0.67 0.00

...
...

...
...

...

(d) Suitability Matrix, when p = 0.01%, c =

0.99%, and ∆th = 15
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CHAPTER 4: Video Streaming Repository Management

4.1.Introduction

To make the video streams readily available for viewers, video streams providers

commonly carry out the transcoding operation in an offline manner. That is, they

transcode and store (termed pre-transcode) multiple formats of the same video stream to

satisfy the requirements of viewers with heterogeneous display devices. In practice, video

stream providers such as Netflix have to pre-transcode 40 to 50 formats of a single video

stream [7] and store them in their repositories. To overcome the storage and

computational demands of transcoding, video stream providers extensively utilize cloud

services [8]. Making use of cloud services imposes a significant cost overhead to video

stream providers [9, 10], hence, they are actively seeking solutions to reduce their incurred

cost of using cloud services [132].

To reduce the incurred cost, video stream providers need to be aware of access

patterns to their video streams. Recent studies show that accessing video streams in a

repository follows a long-tail distribution [11]. That is, there are few video streams that

are accessed very frequently (known as hot videos) while there is a huge portion of video

streams in the repository that is rarely accessed. Several research works have been

undertaken (e.g., [10, 9]) to alleviate the cost overhead of pre-transcoding by transcoding

rarely-accessed videos in an on-demand (i.e., lazy) manner. In this manner, one or few

formats of a video is pre-transcoded, and transcoding is performed on-the-fly upon request

to access a version of a video that is not already pre-transcoded. This approach has

become feasible with the enormous computational capacity clouds offer and is known as

re-transcoding.



Re-transcoding induces a computational cost that is more expensive than the

storage cost [12]. Therefore, the re-transcoding approach would be beneficial for video

stream providers, only if it is applied on rarely accessed videos (also termed non-hot or

cold video streams). To decide whether or not to pre-transcode or re-transcode a video

stream, we need to know if the video stream is hot or not. However, the question that

arises is what is a hot video stream? Currently, there is no formal way to determine if a

video stream is hot or, more precisely, there is no formal way to measure the hotness of a

video stream. Therefore, the research problem in this research is how can we quantify the

hotness of a given video in a repository?

Once we answer this question, we can decide to pre-transcode hot video streams

and re-transcode non-hot ones. Besides, we can partially pre-transcode video streams

whose their hotness measure is between hot and non-hot. The challenge, however, is how

to achieve partial pre-transcoding? That is, which parts of a video stream should be

re-transcoded and which parts should be pre-transcoded? To address this challenge, in

this chapter, we propose video stream repository management methods (also termed

repository management) to perform pre-transcoding based on the hotness of the video

streams. We also propose a management method of video stream repository that operates

at a finer granularity level and can accurately specify the parts of the video streams to be

pre-transcoded.

The repository management methods that we propose in this chapter must be

applied to all video streams in a repository. However, in a large video stream repository,

the repository management methods impose a large overhead time to execute. We require

a way to alleviate the overhead time of executing the repository management methods. To
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address this challenge, in this research, we propose a method that partitions hot, non-hot,

and partially hot video streams into separate clusters. The clustering can help to

proactively apply repository management methods only on one or few clusters, and hence,

reduce the execution time overhead of repository management methods.

In summary, the contributions of this chapter are as follows:

• Providing a formal definition for hot videos and a method to measure the hotness of

video streams in the repository.

• Proposing the management methods of video stream repository to reduce the

incurred cost of video stream providers in using cloud services. The methods choose

either pre-transcode, re-transcode, or partially pre-transcode video streams in a

repository.

• Proposing video streams clustering methods to minimize the overhead time of

executing of the management methods video stream repository.

• Analyzing the impact of the management methods of video stream repository on

video streams with different access patterns.

Experimental results demonstrate that our proposed the management methods of video

stream repository can reduce the incurred cost of using cloud services significantly. Thus,

the research outcome of this chapter can help video stream providers to reduce their

incurred cost without losing the quality of streaming service they provided.

Our work differs from the previous work [95] in that we develop methods that

minimize the incurred cost of cloud services for video streaming by quantifying the

hotness of video streams. We also propose videos streams clustering in the repository to
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Figure 4.1. different shapes of non-long access for different video streams
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minimize the execution time of our methods.

4.2.System Model

For the sake of clarity, the symbols that are used in this chapter are summarized in

Table 4.1.

4.2.1.Access Pattern to a Video Stream

Performing pre-transcoding or re-transcoding on a video stream depends on the access

pattern to the stream. Therefore, it is crucial to understand the access pattern to video

streams. We define video access rate as the number of times the video stream is requested

by the viewer within a period. However, it does not determine if the requested video

stream is watched to the end of it or not. In fact, recent studies (e.g., [13]) reveal that, in

a video stream, the beginning GOPs are watched more frequently than the rest of the

video stream. Miranda et al. [13] show that the distribution of views within a video stream

provider generally follows a long-tail distribution. More specifically, they show that the
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distribution of accesses to GOPs of a video stream can be expressed by the Power-law [84]

model. Based on this model, for a video stream with video access rate υi, we can estimate

the access rate to the GOPs of the video stream. Let Gij the jth GOP in video stream i.

Then, the estimated GOP access rate for Gij , denoted εij , is calculated based on

Equation 4.1. In this equation, α is called the power coefficient, and its value is 0.1.

εij = υi · j−α (4.1)

Although the GOP access rate for most of the video streams in a repository

follows a long-tail pattern, there are video streams whose GOPs’ access rate do not follow

this pattern [83]. In these video streams, some scenes (GOPs), located in the middle or

end of the video stream, are accessed more frequently than other scenes. An example of

scenes with tremendously higher access rate can be found in a soccer match where a

player scores a goal. We define this type of video streams as non-long-tail access pattern.

Figure 4.1 represents the difference in GOP access rate of a video stream with a

long-tail access pattern versus a video with non-long-tail access pattern. In

Sub-figure 4.1a, we notice that the GOP access rate consistently decreases for GOPs later

in the stream whereas, Sub-figure 4.1b demonstrates that GOP access rate can be

significantly different regardless of the position of the GOP in the video stream.

4.2.2.Repository of Video Streams

Video stream providers keep enormous repositories of video streams [133]. For instance,

the size of the repository of YouTube is estimated to reach over one billion GB [134]. In

fact, storing video repositories in the cloud has become one of the main costs of video

stream providers [135]. One main reason to maintain a large repository is to store several
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Table 4.1. Symbols used in proposed methods

Symbols Description

mi Total number of GOPs in video i

Gij GOP number j of video i

υi Number of views for video i

εij Estimated number of views for Gij

ψij Real number of views for Gij

PS Price of storing data in cloud (per GB)

PT Price of using VM for (per hour)

CSi Cost of storing video stream i

CTi Cost of transcoding video stream i

τi Transcoding time of video stream i

τij Transcoding time of Gij

CSij Cost of storing Gij

CTij Cost of transcoding Gij

Rij Storage to transcoding cost ratio of Gij

Hi Hotness of video i

hij Hotness of GOP Gij
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formats (pre-transcoding) of the same videos.

However, recent studies show that access patterns to videos in a video repository

follow a long-tail distribution [13]. This means that few video streams in the repository

are watched very frequently (these videos are known as hot videos), while the rest of the

video streams are rarely watched. It has been reported that in the case of YouTube, only

5% of videos are frequently accessed and the rest are rarely watched [136].

Considering the long-tail access pattern to video streams in a repository, we do

not need to pre-transcode all formats for all videos in the repository. Ideally, we should

only pre-transcode frequently accessed (hot) video streams and the rest of the streams

need to be re-transcoded upon requesting them by viewers. However, currently, there is

not any method to precisely identify hot videos or to measure the degree of hotness in a

repository. In particular, a method is required to measure (quantify) the hotness for a

video stream. Then, based on the hotness measure, we can make an appropriate decision

either to pre-transcode or re-transcode the video stream.

4.3.Quantifying Hotness of Video Streams

4.3.1.Overview

Our proposed method for quantifying hotness of a video stream relies on the cost of

performing pre-transcoding and re-transcoding of the video stream. Thus, in this section,

we first introduce methods to calculate these costs in the cloud. Then, we introduce our

method to quantify video stream hotness in Sub-section 4.3.4.

4.3.2.Cost of Pre-transcoding

The cost of a pre-transcoding an existing format of a video stream is the cost of storing

that format of the video stream. Once the video stream is pre-transcoded and stored, the
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number of accesses (views) to the video stream does not change the incurred cost.

In cloud-based video streaming, storage cloud services (e.g., S3 in Amazon

Cloud a) are used for storing video streams. Let Si the size of video i in GB and PS the

price of storing one GB of data in the cloud storage. Then, the cost of pre-transcoding for

video i, denoted CSi , is calculated based on Equation 4.2.

CSi = Si · PS (4.2)

Another cloud service that is commonly used for storing and delivering video

streams is CDN (e.g., CloudFront in Amazon Cloud b). Video stream providers utilize

CDN to minimize the delay in streaming videos. In this case, the cost of pre-transcoding a

video stream is dependent on the cost of using storage and CDN, denoted PCDN , and is

calculated based on Equation 4.3.

CSi = Si · (PS + PCDN ) (4.3)

4.3.3.Estimated Cost of Re-transcoding

The incurred cost of re-transcoding a video stream depends on the cost of computational

services (often, in form of VM) offered by cloud providers. It also depends on the time

span of utilizing those VMs, which is generally in an hourly basis. Let PT the cost of using

a VM for an hour, and τi the estimated transcoding time of video stream i in the same

time unit. Then, the cost of re-transcoding video stream i, denoted CTi , is obtained using

Equation 4.4.

CTi = PT · τi (4.4)

ahttps://aws.amazon.com/s3/
bhttps://aws.amazon.com/cloudfront/
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It is noteworthy that Equation 4.4 determines the cost for one time re-transcoding

of a video. However, if video i is re-transcoded γ times, the total incurred cost is γ·CT .

Estimation of transcoding execution time for video i (τi in Equation 4.4) can be

achieved based on the pastc execution information of the same video stream. In particular,

the estimated transcoding time of video i with m GOPs is the sum of transcoding times of

all the GOPs in that video, i.e., τi =
m∑
j=1

τij , where τij is the transcoding time of Gij .

4.3.4.Measuring Hotness of a Video Stream

The way we quantify hotness of a video stream is based on the hotness of its GOPs. Thus,

we first define the hotness in the GOP level and then extend that to the video stream level.

Formally, we define a hot GOP as a GOP whose estimated cost of re-transcoding is

more than the cost of pre-transcoding. To calculate the pre-transcoding and

re-transcoding costs at the GOP level, we extend Equations 4.2 and 4.4. Let Sij the size

of GOP Gij , then the pre-transcoding cost of Gij is calculated based on Equation 4.5.

CSij = Sij · PS (4.5)

Similarly, the estimated cost of re-transcoding Gij , denoted CTij , is calculated based on

Equation 4.6.

CTij = PT · τij (4.6)

Using these concepts, we can introduce the GOP transcoding cost ratio, denoted

Rij , based on Equation 4.7.

Rij =
CSij

εij · CTij
(4.7)

cAs we are dealing with VOD, we expect that videos have been viewed, thus, transcoded before. However,

this is not the case when we deal with live stream videos. In that case, such historic execution information

is not available.
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Where εij is the number of times Gij is viewed. In video streams with long-tail

access pattern, the value of εij can be estimated based on Equation 4.1. However, for

video streams with non-long-tail access pattern, the video stream provider needs to

maintain the number of views to each GOP of a video stream.

GOP Gij has to be pre-transcoded, if the cost of re-transcoding is more than

pre-transcoding (i.e., Rij ≤ 1). In this case, Gij is called a hot GOP and the value of its

hotness, denoted hij , can be determined based on Equation 4.8.

hij =

1 Rij ≤ 1

0 Rij > 1
(4.8)

We define a hot video stream as a video stream that needs all of its GOPs be

pre-transcoded. However, considering the long-tail access pattern to the GOPs of a video

stream (see section 4.2.1.), for many video streams, just a portion of that stream can be

hot. That is, a video stream can be partially hot and only some GOPs of it need to be

pre-transcoded. Hence, we extend the GOP hotness definition to define the hotness value

for the whole video stream. Formally, the hotness of video stream i with m GOP denoted

Hi is defined based on Equation 4.9.

Hi =

∑m
j=1 hij

m
(4.9)

Based on Equation 4.9, the value of hotness Hi is 0 ≤ Hi ≤ 1. That means for

Hi = 0 the video stream i does not include any hot GOP and needs to be completely

re-transcoded. Alternatively, Hi = 1 indicates that all GOPs are hot. Hence, the whole

video is hot and must be pre-transcoded.
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4.4.Video Stream Repository Management Methods

4.4.1.Partial Pre-Transconding Methods Based on Long-Tail Access Pattern

Video Level Method

The goal of this algorithm is to minimize the incurred cost of using cloud services for

VOD transcoding. For that goal, the algorithm is executed for each video in the VSP

repository periodically (e.g., monthly). The pseudo code for this algorithm is presented in

Algorithm 1. It receives the video size, estimated video transcoding time, storage unit

price, transcoding unit price, and some views of the video in the last period (e.g., last

month) as input values. The output of the algorithm is whether to pre-transcode the

whole video or re-transcode it upon request.

The algorithm calculates the cost of storage and transcoding according to what

was discussed in Equation 4.2 and 4.4 ( see steps 1 and 2 Algorithm 1). We calculate the

ratio of video storage cost to video transcoding cost in step 6 (called cost ratio). When

the ratio is less than or equal 1, it means that the cost of pre-transcoding is less than or

equal the re-transcoding cost, thus, we store that video format. Otherwise, we call

Algorithm 2 to decide about partial pre-transcoding of the video. It is worth noting that

for a new video V = 0, thus, we postpone its transcoding to when it is requested.

GOP Based Threshold Method

When the cost ratio for a video is greater than 1, Algorithm 2 is called to possibly

pre-transcode a portion of the video (termed partially pre-transcoded video). It is proven

that the access pattern of GOPs within a video stream follows a long tail distribution [13].

That is, the first GOPs of a video stream are watched more often than the rest. Thus, the

cost ratio of GOPs constantly increases for the later GOPs in the video stream.
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Algorithm 1: Fully pre-transcode or fully re-transcode a video

Input :

Size of video v: Sv

Transcoding time of video v: τv

Transcoding unit price: PT

Storage unit price: PS

Number of views in the last time period: V

Output: fully pre-transcoding or fully re-transcode a video

1 Calculate cost of transcoding of v: CT ←
PT · τv
3600

2 Calculate cost of storage of v: CS ←
Sv · PS

210

3 if V = 0 then

4 Re-transcode the whole video v

5 end

6 if
CS

V · CT
≤ 1 then

7 pre-transcode video v

8 else

9 Perform partial pre-transcoding using Algorithm 2

10 end

Figure 4.2. Long tail distribution of GOPs views in video stream and partial pre-transcoding

a video stream based on GOP threshold
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Accordingly, it is possible to find a boundary GOP so that all GOPs before it needs to be

pre-transcoded and all GOPs after that re-transcoded. We call this dividing point as GOP

threshold (GOPth). Formally, GOPth is defined as the first GOP of a video stream that

has its cost ratio greater than one.

Algorithm 2 receives GOPs of a video stream, GOP size, estimated transcoding

time of GOP, storage unit price, transcoding unit price and some requests for the video

stream in the last period as input values.

Algorithm 2 searches for the GOP threshold by calculating the cost ratio of each

GOP sequentially, starting from the first GOP in the video stream (step 1 to 5 in

Algorithm 2). After finding the GOP threshold, Algorithm 2 pre-transcodes the GOPs

before GOPthreshold and re-transcodes the GOPs after it as shown in Algorimth 2

Fig. 4.2 illustrates how Algorithm 2 functions based on the long tail access pattern

to GOPs within a video stream. Once we find the GOP threshold, all the GOPs with cost

ratio less than 1 (i.e., Ri < 1) are pre-transcoded, and the rest of GOP are re-transcoded.

4.4.2.Partial Pre-Transcoding Methods Based on Generic Access Patterns

Overview

Based on the hotness measure concept discussed in the previous section, we propose

methods that for each video in the video stream repository determine which part or parts

should be pre-transcoded so that the incurred cost of using cloud services is minimized.

These methods are periodically executed on videos in the video stream

providers repository (e.g., on a monthly basis) and are called partial

pre-transcoding methods .

The methods receive view statistics and other meta-data of video streams in the
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Algorithm 2: Partial pre-transcoding a video

Input :

video v with m GOP

Size of GOPi: Si

Transcoding time of video GOPi: τi

Transcoding unit price: PT

Storage unit price: PS

Views number in the last time period : V

Output: Partial pre-transcoding a video

1 For each GOPi in video stream v

2 Estimated number of views for GOPi: Pi ← V ·GOP−α
i

3 Calculate cost of transcoding of GOPi: CTi ←
PT · τi
3600

4 Calculate cost of storage of GOPi: CSi ←
Si · PS

210

5 Calculate cost ratio of GOPi: Ri ←
CSi

Pi · CTi
6 if Ri > 1 then

7 GOPth ← GOPi

8 Break;

9 else

10 Continue;

11 end

12 Pre-transcode GOP1 to GOPth−1

13 Re-transcode GOPth to GOPm
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repository, such as GOP size and estimated transcoding time of the GOPs, as input

values. The methods are also aware of cloud storage and cloud VM unit prices. In

particular, one of the proposed methods (explained in Section 4.4.2.) operates at the video

stream level whereas the other one (explained in Section 11) is more granular and operates

at the GOP level.

Video-Based Partial Pre-Transcoding Method

The method operates based on the video hotness measure and iterates through all video

streams in a repository. For each video, it assumes a long-tail access pattern to GOPs of

the video streams in the repository. Hence, the method can estimate the number of views

of each GOP by knowing the number access requests of a video stream. The pseudo-code

of the method is presented in Algorithm 3.

This method calculates pre-transcoding and re-transcoding costs for each GOP of

a video stream based Equations 4.5 and 4.6 (steps 3 and 4). To calculate Rij (in step 6),

we need to estimate the number of views of Gij (that is in step 5) based on the number of

requests made to video Vi and the long-tail access pattern to GOPs of Vi. Then, the

hotness value of each GOP Gij is calculated in step 8. The hotness value for the whole

video Vi is calculated based on Equation 4.9 (step 9).

Once hotness value for video stream Vi is calculated, we can determine the portion

of the video stream that has to be pre-transcoded. As we assume long-tail access pattern

to the video, the portion for pre-transcoding is chosen from the beginning of the video

stream Vi. Let Hi the hotness value for video stream Vi with m GOPs, then χi ← dHi ·me

determines the number of GOPs that needs to be pre-transcoded (step 10 in Algorithm 3).
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Algorithm 3: Video-Based partial pre-transcoding method.

Input :

A repository of videos, each video shown as Vi with m GOPs

Storage size of Gij : Sij

Transcoding time of Gij : τij

re-transcoding unit price: PT

Storage unit price: PS

Number of requests to view Vi : υi

Output: Partially pre-transcoded version for each video Vi

1 For each video Vi ∈ repository

2 For each GOP Gij ∈ Vi
3 Calculate pre-transcoding cost: CSij ← Sij · PS
4 Calculate re-transcoding cost: CTij ← τij · PT
5 Estimated No. of views for Gij : εij ← υi ·G−α

ij

6 Calculate cost ratio for Gij : Rij ←
CSij

ε · CTij
7 if Rij ≤ 1 then

8 hij ← 1

9 Hotness measure for Vi: Hi ←
∑m

j=1 hij

m
10 No. of GOPs for pre-transcoding: χi ← dHi ·me
11 Pre-transcode GOPi1 to GOPiχ of Vi
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GOP-Based Partial Pre-transcoding Method

The idea of this method is to identify hot GOPs within a video stream and pre-transcode

only those GOPs. The rest of non-hot (cold) GOPs are re-transcoded upon viewer’s

request. In this method, we need to know the number of times each GOP has been viewed

during the last period. The method does not have any assumption on the access pattern

to GOPs in a video stream. Hence, it can cover video streams whose access pattern do not

follow long-tail access pattern. Similar to Algorithm 3, the method has to be performed

for all video streams in the repository.

The pseudo-code for this method is shown in Algorithm 4. In this method, the

transcoding cost-ratio for each GOP Gij is calculated based on Equation 4.7 (steps 3 to

5). If the value of cost-ratio for a GOP is less than or equal to one, it implies that the

storage (pre-transcoding) cost for the GOP is less than processing (re-transcoding) it and

the GOP need to be pre-transcoded. Otherwise, Gij is re-transcoded.

It is worth noting that, in Algorithm 3, video stream providers does not need to

keep track of all view information (i.e., meta-data) for each GOP of the video streams in

the repository. In fact, in Algorithm 3, because we assume viewing GOPs of a video

stream follows a long-tail distribution, we just need to keep the number of times the video

stream is requested. Then, the view information for each GOP can be estimated.

However, Algorithm 4 requires views information for each GOP and we need to maintain

meta-data information for all GOPs for each video stream in the repository.
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Algorithm 4: GOP-Based partial pre-transcoding

Input :

A repository with videos, each video shown as Vi with m GOPs

Storage size of Gij : Sij

Transcoding time of Gij : τij

re-transcoding unit price: PT

Storage unit price: PS

Real number of views for Gij : ψij

Output: Partially pre-transcoded version for each video Vi

1 For each video Vi ∈ repository

2 For each GOP Gij ∈ Vi
3 Calculate pre-transcoding cost: CSij ← Sij · PS
4 Calculate re-transcoding cost:CTij ← PT · τij

5 Calculate cost ratio: Rii ←
CSij

ψij · CTij
6 if Rij ≤ 1 then

7 hij = 1

8 pre-transcode Gij

9 else

10 hij = 0

11 re-transcode Gij
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4.5.Experimental Setup

4.5.1.Synthesizing Video Streams

A video stream providers generally has a large video stream repositoryd. However, we do

not have access to such repositories for our evaluations. Therefore, in this work, we

synthesized a large repository from a set of benchmark videos that we have in our local

repository. Our local repository includes 40 videos with various content types and is

available publiclye.

To accurately synthesize video streams, we need to know the distribution and

characteristics of video streams in terms of GOP size, GOP transcoding time, and number

of GOPs in each video. In order to extract this meta-data, we transcoded the video

streams on Amazon EC2f and analyzed them.

The result of our analysis, shown in Figure 4.3a and 4.3b, demonstrates that GOP

size and number of GOPs follow a Gaussian distribution. The means and standard

deviations of the Gaussian distributions are listed in Table 4.2. We also conducted a

regression analysis on GOP size and its transcoding time and observed that there is a

linear relationship between them (see Figure 4.4). As such, we can derive a linear equation

to estimate transcoding time of a GOP based on its size.

Based on the analyses, we generated the meta-data for 100,000 videos that form

our synthesized repository.

dYouTube repository is estimated to be one billion GB [134].
eThe videos can be downloaded from: https://goo.gl/TE5iJ5
fhttps://aws.amazon.com/ec2
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Table 4.2. Meta-data of GOP size and number of GOPs extracted from video streams of

our repository.

GOP size (Kbytes) number of GOPs

Mean 655.08 1262.79

Standard Deviation 201.44 271.46

Total no. of GOPs 124593 130068

Min. GOP size 1.91 580

Max. GOP size 2192.65 2018

Figure 4.3. Distribution of GOP size and numbers of GOPs in video streams of our reposi-

tory.
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Figure 4.4. Linear regression analysis of GOP size and its transcoding time.
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4.5.2.Synthesizing View Information for Video Streams

As mentioned earlier, the access pattern to video streams in a repository follows a

long-tail pattern. Thus, similar to Sharma et al. [11], we use Weibull distribution to

generate the long-tail access pattern to the video streams of our repository. As the

percentage of Frequently Accessed Video Streams in a repository is an important

parameter in our evaluations, we change it in our synthesized repository by modifying the

Shape (α) and Scale (β) parameters in the Weibull distribution. For that purpose, we

vary the value of α in the experiment is between [0.4, 2.4], while β = 1. Figure 4.1a shows

an instance of a video stream with long-tail access pattern.

To model video streams that do not follow a long-tail access pattern in the

repository, we modify the long-tail access pattern for a portion of the video streams. We

determine the number of peak views for a video stream by generating a random number

between [1, 5]. Each peak view in the video stream has a height and a length that

represent the magnitude of view and the width of the peak view, respectively. For

instance, Figure 4.1b depicts a video stream with four peak views; each one has a different
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Table 4.3. Incurred cost of computation, storage, and CDN in AWS cloud. All costs are in

US dollar.

Transcoding Storage CDN

t2-small S3 CloudFront

$0.026 /hour $0.03 GB/month $0.085 GB/month

height and length.

We determine the height of each peak views point by choosing a random number

between minimum and maximum access values of that video. The length of each peak

view represents the number of GOPs that are accessed within that peak view. To generate

the length of each peak view, we used a Normal distribution of (300, 100).

4.5.3.Cost of Cloud Services

All experiments of this research are modeled after Amazon Web Service (AWS) cloud.

The costs of AWS cloud storage, CDN, and computational services (i.e., Virtual

Machines) used in the experiments are shown in Table 4.3.

4.5.4.Baseline Methods for Comparison

To evaluate our proposed methods, we compare and analyze them against four other

methods. These methods are either baseline methods, practically used by video stream

providers, or those presented in related research work in the literature. For the sake

accuracy of our evaluations, all experiments in this chapter are conducted 50 times, and

the mean and 95% of their confidence intervals are reported.

Fully Pre-Transcoding (FPT): This method pre-transcodes all video streams and

stores them in the repository before being requested. Currently, this method is widely
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used by video stream providers to support different display devices.

Fully Re-Transcoding (FRT): This method re-transcodes video streams each time

they are requested by viewers. To the best of our knowledge, video stream providers do

not use this method. However, we consider it in our experiment for comparison purposes.

Video-Level Transcoding (VLT): To reduce the incurred cost of using cloud

services, Jokhio et al. [92] propose a method to either pre-transcode the whole video or

re-transcode it. The method works based on the number of views for each video stream.

This method is explained in more details in Section 2.4.

GOP-Based Threshold (GBTh): We proposed this method in our earlier work [95].

The method partially pre-transcodes a video stream by finding the first GOP in the video

stream (termed threshold GOP) that has its cost ratio greater than 1. GOPs that are

located before the threshold GOP are pre-transcoded, and those after the threshold GOP

are re-transcoded.

4.6.Performance Evaluations

4.6.1.Impact of Percentage of Frequently Accessed Video Streams in a Repository

In this experiment, the goal is to evaluate the performance of our proposed methods under

different access patterns for video streams in the repository. In particular, we are

interested to see the impact of different methods on the incurred costs when repositories

have different percentages of Frequently Accessed Video Streams .

For that purpose, we generate several video stream repositories with different

percentage of Frequently Accessed Video Streams in each repository. Each repository

includes 100,000 video streams of out which 30% have non-long-tail access pattern. To

vary the percentage of Frequently Accessed Video Streams in each of the synthesized
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Table 4.4. Percentage of Frequently Accessed Video Streams (FAVs) in the synthesized

repositories by varying the Shape parameter (α) in the Weibull distribution.

β = 1

α FAVs

0.4 30%

0.6 25%

1 20%

1.4 15%

1.8 10%

2.4 5%

repositories, we change the Shape parameter (α) in the Weibull distribution. The

percentage of frequently accessed videos, in each repository, based on the values of α and

β are shown in Table 4.4. The average number of views in all synthesized repositories is

1.99.

Figure 4.5a shows the total cost incurred by different methods, explained in

Subsection 4.5.4. Vertical axis, in Figure 4.5a, shows the total cost incurred to the stream

provider in US Dollar. The total cost, in this figure, includes the cost for

pre-transcoding and re-transcoding. The horizontal axis shows repositories with different

percentage of Frequently Accessed Video Streams .

Because the difference of Fully Pre-Transcoding (FPT) and Fully Re-Transcoding

FRT methods with other methods is significant, for the sake of better presentation, we do

not include them in the figure. In summary, GBH reduces the incurred cost by 3.76X and

10X when compared with FRT and FPT, respectively. Interested readers can refer to the

B appendix to see a detailed comparison with these methods.

In Figure 4.5a, we observe that as the percentage of Frequently Accessed Video
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Figure 4.5. (a) Incurred costs of different partial pre-transcoding methods (in US Dollar)

when the percentage of Frequently Accessed Video Streams varies in the repository. (b)

Incurred costs of different partial pre-transcoding methods when cloud storage and cloud

CDN is used (in US Dollar). Horizontal axis shows the percentage of Frequently Accessed

Video Streams .
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Streams rises, the overall incurred cost increases. In this figure, we can also observe that

GBH method outperforms all other methods. The reason is that GBH checks the hotness

for every single GOP of the video streams. GBH outperforms the VLT method [92] by up

to 13% when 5% of the video streams in the repository are frequently accessed. However,

the difference between GBH and other methods decreases, as the percentage of Frequently

Accessed Video Streams in the repository increases. In particular, the outperformance of

GBH over VLT reduces to 6% when 30% of video streams in the repository are frequently

accessed. This is because when a repository contains a high percentage of Frequently

Accessed Video Streams , most of the Frequently Accessed Video Streams are

pre-transcoded and partial pre-transcoding methods is applied on few video streams,

hence, reducing its impact.

As we can see in Figure 4.5a, GBTh method slightly outperforms VBH. This is

because GBTh locates the GOP threshold for pre-transcodes more precisely than the

VBH method.

In a similar experiment, we consider the case that the video stream providers uses

cloud-based CDN to distribute video streams to the viewers. Figure 4.5b shows the results

of the same experiment when the cost of cloud CDN is included in the total incurred cost

of the provider. We observe that, in general, the incurred cost has increased due to using

CDN. Specifically, methods, such as VBH, that tend to pre-transcode more video streams

lead to a remarkably higher incurred cost (between approximately 87% to 100%). In this

experiment, again, GBH incurs the minimum cost when compared with other methods. In

particular, when 5% of the repository is Frequently Accessed Video Streams , GBH

reduces the total incurred a cost by up to 10% and 15%, when compared with GBTh and
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VLT, respectively. This shows two to four percent more saving in comparison with other

methods when the video stream providers stream their videos through CDN.

4.6.2.Impact of Increasing Variance of Number of Views in a Repository

As mentioned earlier, the pattern of accessing video streams in a repository follows a

long-tail distribution. However, the intensity of the long-tail distribution can vary in

different repositories and can impact the incurred cost resulted from various partial

pre-transcoding methods. Therefore, in this experiment, we aim to evaluate the behavior

of the proposed partial pre-transcoding methods under different long-tail patterns. For

that purpose, we alter the variance of a number of views to video streams in the

repository. Higher values of variance express a repository in which few videos are viewed

very frequently while the rest of video streams are barely viewed. Alternatively, lower

values of variance express a repository in which the difference between a number of views

of cold and hot videos is low. We alter the values of variance from 1.16× 107 to

10.37× 107 and create multiple repositories. Then, for each repository, we estimate the

total incurred cost when different partial pre-transcoding methods are used. In all

repositories, 20% of videos are considered as hot videos. Also, in all of them, 30% of video

streams have non-long-tail access pattern.

Figure 4.6 shows the results of the experiment. In this figure, the horizontal axis

shows the variance of a number of views in different repositories and the vertical axis

shows the total incurred cost (in US Dollar) when different partial

pre-transcoding methods are applied.

In general, we can observe that, in all methods, the total incurred cost decreases as

the variance of views increases. The reason is that when the variance is high video stream
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Figure 4.6. Incurred costs of different partial pre-transcoding methods when the variance

of number of views for video streams increases (in US Dollar).
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is either hot or cold. Therefore, they are either fully pre-transcoded or re-transcoded. In

other words, when the variance of views in a repository is high, there is not much scope

for partial pre-transcoding methods to function.

We also observe that GBH incurs the minimum cost when compared to other

methods. However, the difference is more significant when the variance is lower. In

particular, when the variance is 1.16× 107 GBH saves 67% and 21% in the total costs

when compared with VBH, and GBTh, respectively. Alternatively, we observe that when

the variance is 10.37× 107, GBH saves 44% when compared with VBH and incurs

approximately the same cost when compared with GBTh. The reason for more

remarkable cost-saving, when the variance is low, is that a large part of the repository has

the potential for partial pre-transcoding. In addition, GBH evaluates each GOP to see the

effectiveness of pre-transcoding or re-transcoding. Therefore, it can save more cost than

the other methods.
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4.6.3.Impact of Percentage of Video streams with Non-Long-Tail Access Pattern in the

Repository

As mentioned earlier, the distribution of views within some video streams does not follow

the long-tail pattern. That is, there are portions of the video streams that are not

necessarily at the beginning of it but receive a large number of views in comparison with

the rest of the video stream (see Section 4.2.1.). The percentage of video streams with the

non-long-tail access pattern, however, can impact the performance of the partial

pre-transcoding methods. Hence, we are interested to see how different methods perform

when the percentage of video streams with non-long-tail access pattern increases.

In this experiment, we synthesized repositories that include different percentages

of video streams with non-long-tail access pattern (see Section 4.5.2.) and measured the

incurred costs resulted from different partial pre-transcoding methods. Figure 4.7 shows

results of the experiment. The horizontal axis, in this figure, shows the percentage of

video streams with non-long-tail access pattern and the vertical axis shows the overall

incurred cost (in US Dollar).

According to the results, shown in Figure 4.7, the amount of incurred cost, in

general, rises as the percentage of video streams with non-long-tail access pattern

increases in the repository. However, the rise of the VBH method is more significant than

others, from $606 when there is no video stream with non-long-tail pattern to $1,576

when all video streams have non-long-tail pattern. The reason for the remarkable increase

is that VBH assumes non-long-tail access pattern for videos and pre-transcodes from the

beginning of the streams. For the same reason, when less than 30% of video streams have

non-long-tail access pattern, VBH performs similarly to other methods.
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Figure 4.7. Incurred costs of different partial pre-transcoding methods (in US Dollar) when

the percentage of video streams with non-long-tail access pattern varies in the repository.
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In this experiment, we can also observe that GBH has the least increase in the

incurred cost (from $606 to $874) when compared with other methods. The reason is that

GBH does not assume any pattern for the distribution of a number of views within video

streams and sweeps all GOPs within the streams to figure out if they should be

pre-transcoded or re-transcoded. In particular, the cost-efficiency of GBH is more

remarkable in repositories that have a high percentage of video streams with the

non-long-tail access pattern. It saves approximately 8% to 10% in the incurred cost, when

compared with GBTh, for repositories with more than 70% video stream that has a

non-long-tail access pattern. We can conclude that when the percentage of video streams

with a non-long-tail access pattern is high and dominates the whole repository, it is

worthwhile to investigate the cost-efficiency for each GOP.
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4.7.Summary

In this chapter, we proposed partial pre-transcoding methods to efficiently store video

streams in repositories in such a way to reduce the cost of using cloud resources. Firstly,

we defined what a hot video is and then came up with a method to quantify its hotness.

Afterwards, we applied the concept of hotness on video streams to pre-transcode the hot

part while re-transcode the remaining part. We evaluated the proposed in different

scenarios based on the percentage of frequently accessed video streams in the repositories

and on their access.

In the next chapter, we propose a method to cluster the synthesized video streams

in repositories, the clustering concept is based on video stream hotness. The clustering

method aims to reduce the execution time overhead of the partial pre-transcoding

methods.
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CHAPTER 5: Low Overhead Partial Pre-transcoding for Video Streaming

Repository Management

5.1.Introduction

The partial pre-transcoding methods mentioned in the previous chapter are executed

periodically on a video stream repository. However, for a large video stream repository,

the methods can take a long time to execute. Thus, the video stream providers have to

execute them infrequently. However, as accessing video streams varies over time, the

hotness of the video streams changes frequently and partial pre-transcoding methods need

to be deployed more often to cope with the variations. Therefore, we need a mechanism to

apply partial pre-transcoding methods more efficiently by reducing their execution times.

In this section, we propose a mechanism that reduces the execution time of the partial

pre-transcoding methods without any major impact on their performance.

Partial pre-transcoding methods impact only video streams that are partially hot.

Therefore, if we can exclude partially hot video streams and apply the partial

pre-transcoding methods only on them, then the overall execution time is reduced.

5.2.Clustering Video Streaming Repository Based on Hotness

Our proposed mechanism works based on clustering of the video streams according to

their number of views. The goal of clustering is to separate hot videos and cold videos

from the rest of video streams in the repository.

We use the number of views of a video stream as a clustering parameter. We utilize

Jenks Natural Breaks Optimization algorithm [137], which is a one-dimensional clustering

(grouping) method, to group video streams that require a similar kind of re-transcoding or

pre-transcoding operation. Jenks Natural Breaks is an iterative algorithm that aims to



maximize the Goodness Of Variance (GOV) fit and is defined based on Equation 5.1.

GOV =
SDV − SDC

SDV
(5.1)

Where SDV is defined as the sum of squared deviations of views of video streams

in a repository and is calculated based on Equation 5.2. To maximize GOV, we only need

to minimize the sum of squared deviations for each cluster.

SDV =

N∑
i=1

(υi − υi)2 (5.2)

where υi is the number of views of video stream i; also, N is the total number of

video streams in a repository; and υi =

∑N
i=1 υi
N

. SDC is defined as the sum of squared

deviations of video stream views across clusters and is calculated based on Equation 5.3.

SDC =

c∑
κ=1

(Vκ − Vκ)2 (5.3)

where c is the number of clusters that are chosen initially.

Accordingly, the algorithm starts with a random clustering and iteratively

calculates the mean and squared deviation for each cluster. At the end of each iteration,

the algorithm relocates the elements in the cluster with the maximum squared deviation

to the cluster with the minimum squared deviation. Then, for convergence (i.e.,

termination), the algorithm checks if the total squared deviation (SDV ) for the whole set

is minimized.

Depending on the distribution of views in a given video stream repository, Jenks

Natural Breaks algorithm splits the repository into a different numbers of clusters.

However, we need to reorganize the generated clusters into three groups (i.e., cold, hot,

and partially hot video streams). For that purpose, we iteratively merge neighboring
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Figure 5.1. Execution time overhead of partial pre-transcoding methods (in hours) with

and without clustering video streams in the repository.
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clusters (i.e., clusters with succeeding means) generated by Jenks Natural Breaks and

configure them into three clusters. Then, for each configuration, we estimate the total

incurred cost of pre-transcoding and re-transcoding. The configuration with the minimum

cost is chosen as the final clustering for the video streams in the repository.

5.3.Evaluating the Impact of Clustering on Partial Pre-Transcoding Method

Although GBH, in general, outperforms other partial pre-transcoding methods that were

studied in the previous subsections, it imposes the highest execution time overhead. The

reason for its high overhead is processing each GOP for each video stream in the

repository. Therefore, our goal, in this experiment, is to measure the effectiveness of the

clustering method (presented in Section 5.2.) on reducing the execution time overhead of

the GBH method.

To measure the effectiveness of the clustering method, we conduct an experiment

by generating repositories with varying percentage of Frequently Accessed Video Streams

in them. For each repository, we measure the execution time overhead of the GBH

method in two scenarios: (A) when the clustering method is applied and (B) without the
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clustering method.

Figure 5.1 shows the results of the experiment. The horizontal axis, in this figure,

represents the percentage of Frequently Accessed Video Streams in the repository and the

vertical axis represents the execution time overhead of the GBH method. As we expected,

when the clustering method is not applied, the execution time overhead of GBH does not

change for different percentages of Frequently Accessed Video Streams. This is because

the method is carried out on the GOPs of each video stream, regardless of its hotness. We

observe that the execution time of GBH decreases substantially when the clustering

method is applied. In particular, for 5% and 30% of Frequently Accessed Video Streams ,

the execution time overhead is reduced by 72% and 59%, respectively. As we move to

repositories with a higher percentage of Frequently Accessed Video Streams, we observe a

slight increase in the execution time overhead, when the clustering method is applied. The

reason for the increase is that in repositories with a higher percentage of Frequently

Accessed Video Streams, the cluster of video streams that GBH should be applied on

becomes bigger, hence, its execution time overhead increases.

5.4.Summary

In this chapter, we proposed a method to cluster videos streams in the repository so that

the partial pre-transcoding methods are applied only on video streams that are partially

hot. When applying the proposed clustering method on video streams in the repository

and then applying GOP-based hotness method on the clustered repository, the

experimental results show that the execution time overhead of GOP-based hotness

method is reduced by up to 72%.

In the next chapter, we conclude the works of this dissertation and then discuss
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the research future of video streaming in the cloud.
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CHAPTER 6: Conclusion and Future Works

6.1.Conclusion

In this dissertation, we spotlighted the technology of video streaming, including its

challenges and advantages, were addressed. Moreover, cloud-based video streaming

provides innovative solutions to stream videos, particularly, cloud resources become the

feasible solution for video streams providers to process their videos in a less costly and

more time-efficient manner.

Using cloud services, we analyzed video transcoding in terms of quality of service

and cost. More specifically, we came up with a model called performance cost trade-off.

Based on criteria and requirements of users, the model assigns optimally the transcoding

tasks of video streams to the heterogeneous cloud VMs. Furthermore, we observed a

correlation between transcoding time and GOP size, which is the essential clue to

synthesize video streams repositories.

Since the video streams repositories contain an enormous number of videos, they

incur a high cost of maintenance. Thus, we proposed management methods to reduce the

incurred cost of cloud-based video streaming through pre-transcoding, re-transcoding, or

partially pre-transcoding of video streams. For that purpose, we needed to measure the

hotness of the video streams. Accordingly, in this dissertation, we proposed a method to

quantify the hotness of video streams. The hotness measure was then used to develop

repository management methods that are executed periodically and determined either to

pre-transcode, re-transcode, or partially pre-transcode video streams.

We analyzed the impact of our proposed methods by synthesizing different

repositories with various characteristics. Experiment results demonstrated that as the



percentage of Frequently Accessed Video Streams increases in a repository, the GBH

method reduces the total incurred cost (approximately 12%) when compared to previous

works in the area. Furthermore, when the variance in a number of views of video streams

increases, the GBH method reduces the total incurred cost by up to 10%. We conclude

that GBH is specifically effective when the repository includes a high percentage of videos

with a non-long-tail access pattern. Although partial pre-transcoding methods are

executed periodically, their execution time overhead for large repositories is high.

Therefore, in this research, we also presented a method to cluster video streams based on

their hotness values. Then, a repository management method is only applied on a small

subset of video streams in the repository. We observed that the clustering method reduces

the execution time overhead of the repository management methods by up to 71.5%.

6.2.Future of Cloud-based Video Streaming Research

Although cloud services have been useful in obviating many technical challenges of video

streaming, there are still areas that require further exploration by researchers and

practitioners. In particular, we believe that addressing the following areas will be

impactful in the cloud-based video streaming industry:

• Interactive video streaming using clouds. Interactive video streaming is

defined as to provide the ability for video stream providers to offer any form of

processing, enabled by video stream providers, on the videos being

streamed [138, 139]. For instance, a video stream provider may need to offer video

stream summarization service for its viewers. Another example can be providing a

service that enables viewers to choose subtitles of their languages. Although some of
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these interactions are currently provided by video stream providersa, there is still

not a generic video streaming engine that can be extended with new streaming

services by the video provider.

Since there is a wide variety of possible interactions with video streams, it is not

possible to pre-process and store video streams; instead, they have to be processed

upon viewers’ request and in a real-time manner. It is also not possible to process

the video streams on viewers’ thin-clients (e.g., smart-phones), due to energy and

compute limitations [140]. Providing such a streaming engine entails answering

several research and implementation problems including:

– How to come up with a system for the video streaming engine that is pluggable

and a high-level language for users to extend the engine with their desired

services and without any major programming effort?

– How does the streaming engine accommodate a new service? That implies

asking how the streaming engine can learn the execution time distribution of

tasks for user-defined interactions? How can the streaming engine provision

cloud VMs and schedule video streaming tasks on the allocated VMs so that

the Quality of Service (QoS) for viewers is guaranteed and the minimum cost is

incurred by the video stream provider?

• Harnessing heterogeneity in cloud services for video stream processing.

Current cloud-based video stream providers utilize homogeneous cloud VMs for

video stream processing [10, 9]. However, cloud providers offer heterogeneity for

each cloud service [141]. For instance, they provide heterogeneous VM types, such as

aFor instance, YouTube allows viewers to choose their preferred spatial resolution
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GPU, CPU-Optimized, Memory-Optimized, and IO-Optimized in Amazon

cloud [141]. The same is with heterogeneous storage services (e.g., SSD and HDD

storages).

The question that arises how we can harness cloud services to offer video streaming

with QoS considerations and with the minimum incurred cost for the video stream

provider? How can we learn the affinity of a user-defined interaction with the

heterogeneous services? How can we strike a trade-off between the performance

offered and incurred cost of heterogeneous cloud services?

• Supporting live-streaming and VOD. Live-streams and VODs are structurally

similar and also have similar computational demands. However, processing them is

not entirely the same. In particular, live-streaming tasks have a hard deadline and

have to be dropped if they miss their deadline [9] whereas VOD tasks have a soft

deadline and can tolerate deadline misses. In addition, there is no historic

computational information for live-streaming tasks to estimate the execution time of

new tasks. This is not the case for VOD tasks.

Based on these differences, video stream providers utilize different video streaming

engines to provide both services [88, 9]. The question is how we can have an

integrated streaming engine that can accommodate both of the streaming types

simultaneously? How will this affect the scheduling and processing time estimation

of the streaming engine?

• Prediction of Number of Views for Video Stream. The number of views of a

video stream is one of the major factors that play a role in determining the hotness

of a video stream. However, predicting or estimating the number of views can help
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video streams providers to anticipate the video streams that should be stored and

those that should be transcoded upon request. The prediction of a number of views

can be done using machine learning techniques on previous views of the video

streams.

• Cloud-Based Video Caching for Cost-Efficient Repository Management.

Cloud resources offer a diversity of storages with different prices for video streaming.

For instance, AWS cloud provides S3, EC2, and EBS storages, in addition to

CloudFront (CDN). These storages have different latencies. Video streams can be

pre-transcoded in hierarchical storage and a cost-efficient manner. That is, the high

accessed video streams could be pre-transcoded in the storage which has low latency,

and the video streams with different rates of access should be pre-transcoded into

storages with different latencies. The questions that arise: under which cloud, and

which type of service (i.e., storage and CDN) should a video stream be

pre-transcoded? Thus, the goal is to stream videos to users with minimum delay and

with effective cost.

• Cloud-Based Video Summarization. The number of users for video streaming

has increased tremendously. Consequently, the processing servers are limited when

all users concurrently request the same video stream for watching. As a result, the

users’ requests make the system oversubscribed. In such case, the requested video is

streamed with time delay, and the user may stop watching the video stream. The

question is how we can overcome oversubscription without expending more money?

The goal of this research is to determine how to maintain user satisfaction in a

cost-efficient manner.
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One of the solutions can be by providing a ready version (i.e., summarized version)

of the video stream for the users in case of network oversubscription. This version

should represent an overall idea about the original version of the video stream.

When the network is oversubscribed, the system stops processing the requests of

users whose memberships are free and thus provides them with the summarized

version, and thus the oversubscription is mitigated. While the users who have a

premium membership can watch the video stream in real time.
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APPENDIX A: Execution Time of Codec Videos Transcoding

The following figures show the execution time of codec transcoding for all video in the

benchmark on different VM types. We can observe that, in general, GPU VM provides a

better execution time in comparison with other VM types. General VM provides the

lowest performance as it includes less powerful processing units.
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APPENDIX B: Comparison of all Methods

The following tables show a comparison of the incurred costs of using cloud

resources when applying proposed partial methods and baseline methods on video streams

in repository. Particularly, we show a comparison of the incurred cost of using cloud

resources when applying two methods (Full Pre-Transcoding and Full Pre-Transcoding),

which we didn’t include in previous bar charts figures, because applying these two methods

incurs very high costs compared to other methods, and the comparison becomes unclear.



Table B.1. Incurred costs of different partial pre-transcoding methods (in US Dollar) when

the percentage of Frequently Accessed Video Streams varies in the repository.

% FAVs FPT FRT VLT GBH VBH GBTh

5% 3199 5136 2093 739 930 791

10% 3199 5157 2290 727 903 775

15% 3199 5290 2735 719 879 764

20% 3199 5810 3130 719 852 757

25% 3199 8735 5592 764 853 792

30% 3199 19040 13155 850 910 870

Table B.2. Incurred costs of different partial pre-transcoding methods when cloud storage

and cloud CDN is used (in US Dollar)

% FAVs FPT FRT VLT GBH VBH GBTh

5% 12261 5047 2735 1147 1653 1259

10% 12261 5157 2725 1137 1633 1239

15% 12261 5290 1230 1130 1610 1230

20% 12261 5810 1243 1148 1600 1247

25% 12261 8735 1395 1312 1690 1403

30% 12261 19040 13157 1680 1951 1753

Table B.3. Incurred costs of different partial pre-transcoding methods when the variance of

number of views for video streams increases (in US Dollar).

Variance FPT FRT VLT GBH VBH GBTh

1.16× 107 3199 67236 2356 1721 4035 2172

2.59× 107 3199 96303 1701 1410 2825 1565

4.61× 107 3199 126280 1374 1203 2234 1261

7.2× 107 3199 156621 1178 1056 1891 1079

10.37× 107 3199 187144 1047 945 1672 958
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Table B.4. Incurred costs of different partial pre-transcoding methods (in US Dollar) when

the percentage of video streams with non-long-tail access pattern varies in the repository.

% videos with non-long tail access FPT FRT VLT GBH VBH GBTh

0% 3199 2338 1323 613 606 611

10% 3199 5363 2780 642 655 649

20% 3199 5618 2959 675 732 697

30% 3199 5810 3129 719 852 757

40% 3199 6082 3775 751 1033 802

50% 3199 6245 4163 774 1184 835

60% 3199 6323 4238 799 1258 871

70% 3199 6492 4441 823 1413 903

80% 3199 6548 4489 841 1468 928

90% 3199 6618 4528 856 1530 948

100% 3199 6661 4579 874 1576 973
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ABSTRACT

Video streaming has become ubiquitous and pervasive in usage of the electronic

displaying devices. Streaming becomes more challenging when dealing with an enormous

number of video streams. Particularly, the challenges lie in streaming types, video

transcoding, video storing, and video delivering to users with high satisfaction and low

cost for video streaming providers. In this dissertation, we address the challenges and

issues encountered in video streaming and cloud-based video streaming. Specifically, we

study the impact factors on video transcoding in the cloud, and then we develop a model

to trade-off between performance and cost of cloud. On the other hand, video streaming

providers generally have to store several formats of the same video and stream the

appropriate format based on the characteristics of the viewer’s device. This approach,

called pre-transcoding, incurs a significant cost to the stream providers that rely on cloud

services. Furthermore, pre-transcoding is proven to be inefficient due to the long-tail

access pattern to video streams. To reduce the incurred cost, we propose to pre-transcode

only frequently-accessed videos (called hot videos) and partially pre-transcode others,

depending on their hotness degree. Therefore, we need to measure video stream hotness.

Accordingly, we first provide a model to measure the hotness of video streams. Then, we

develop methods that operate based on the hotness measure and determine how to

pre-transcode videos to minimize the cost of stream providers. The partial



pre-transcoding methods operate at different granularity levels to capture different

patterns in accessing videos. Particularly, one of the methods operates faster but cannot

partially pre-transcode videos with the non-long-tail access pattern. Experimental results

show the efficacy of our proposed methods, specifically, when a video stream repository

includes a high percentage of Frequently Accessed Video Streams and a high percentage of

videos with the non-long-tail accesses pattern.
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