
Robust Resource Allocation of Independent Tasks in Heterogeneous Computing

Systems via Probabilistic Task Pruning

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

James A. S. Gentry

Summer 2018

c© James A. S. Gentry

2018

All Rights Reserved

Robust Resource Allocation of Independent Tasks in Heterogeneous Computing

Systems via Probabilistic Task Pruning

James A. S. Gentry

APPROVED:

Mohsen Amini Salehi, Chair
Assistant Professor of Computer Science
The Center for Advanced Computer
Studies

Nian-Feng Tzeng
Professor of Computer Science
The Center for Advanced Computer
Studies

Miao Jin
Associate Professor of Computer Science
The Center for Advanced Computer
Studies

Sheng Chen
Assistant Professor of Computer Science
The Center for Advanced Computer
Studies

Mary Farmer-Kaiser
Dean of the Graduate School

To my parents; to my wife Erin.

Acknowledgments

I sincerely thank my supervisor, Professor Mohsen Amini Salehi, for his constant

encouragement and passion for computer science and, especially, for his guidance and

support. Thanks to my thesis committee, Miao Jin, Nian Feng Tzeng, and Sheng Chen.

Finally, thanks goes to the Center for Advanced Computer Studies and the Graduate

School at the University of Louisiana at Lafayette for their support and guidance.

v

Table of Contents

Dedication . iv

Acknowledgments . v

Chapter 1: Introduction . 1

1.1 Motivations . 2

1.2 Research Problem and Objectives . 3

1.3 Methodology Overview . 5

1.4 Thesis Organization . 6

Chapter 2: Survey of Related Literature . 8

2.1 Overview . 8

2.2 Task Scheduling . 8

2.3 Heterogeneous Computing . 10

2.4 Stochastic Robustness . 11

2.5 Dynamic Resource Allocation . 11

2.6 Task Dropping . 13

2.7 Task Deferring . 14

2.8 Summary . 14

Chapter 3: Background . 16

3.1 Bayesian Statistics for Resource Allocation 16

3.2 System Model Overview . 19

3.3 Benchmark Resource Mapping Heuristics for
Heterogeneous Distributed Systems . 20

3.3.1 Heterogeneous batch mode heuristics. 20

3.3.2 Heterogeneous immediate mode heuristics. 23

3.3.3 Homogeneous computing scheduling heuristics. 23

3.4 Evaluation Setup . 25

3.4.1 Overview. 25

3.4.2 Generating workload to evaluate mapping
heuristics. 25

3.5 Summary . 27

Chapter 4: Probabilistic Deferring and Dropping . 28

4.1 Overview . 28

4.2 Probabilistic Task Dropping . 29

4.3 Pruning-Aware Mapping Method (PAM) 30

vi

4.4 Probabilistic Pruning Performance Evaluation 32

4.4.1 Experimental overview. 32

4.4.2 Impact of varying pruning threshold. 33

4.4.3 Impact of different toggles to engage task
dropping. 35

4.4.4 Impact of dropping without deferring. 39

4.4.5 Impact of deferring without dropping. 40

4.4.6 Impact of level of oversubscription. 40

4.5 Summary . 43

Chapter 5: Applying Probabilistic Pruning to Existing Mapping
Heuristics . 44

5.1 Overview . 44

5.1.1 Experimental overview. 44

5.2 Performance Evaluation of Batch Mode Heuristics 45

5.2.1 Effect of probabilistic deferring on system
robustness. 46

5.2.2 Effect of probabilistic dropping on system
robustness. 46

5.2.3 Effect of probabilistic pruning on system
robustness. 49

5.3 Performance Evaluation of Immediate Mode Heuristics 50

5.4 Performance Evaluation of Mapping Heuristics in
Homogeneous Computing Distributed Systems 52

5.5 Summary . 53

Chapter 6: Advanced Pruning: Decoupling Dropping and Deferring 54

6.1 Experimental Overview . 54

6.2 Decoupled Deferring and Dropping . 55

6.2.1 Performance evaluation of decoupled thresholds. 57

6.3 Dynamic Per-Task Dropping Threshold . 57

6.3.1 Performance evaluation of per-task dynamic
pruning threshold. 58

6.4 Interpreting the Dropping Toggle . 60

6.4.1 Performance evaluation of different dropping toggle
interpretations. 61

6.5 Evaluating Fairness among Task Types . 63

6.5.1 Performance evaluation of fairness technique. 64

6.6 Costs Comparison of PAM and Other Mapping Heuristics 65

6.6.1 Cost evaluation of probabilistic dropping. 65

vii

6.7 Summary . 67

Chapter 7: Conclusion and Future Works . 68

7.1 Discussion . 68

7.2 Future Works . 70

7.2.1 Dynamic per-task dropping threshold via PET and
workload synthesis. 70

7.2.2 Tasks with priority. 71

7.2.3 Preemption of running tasks. 71

7.2.4 Approximate computation. 71

7.2.5 Defer pool for immediate mode heuristics. 71

7.2.6 Optimizing implementation and analyzing overhead
of pruning mechanism. 72

7.2.7 Mitigating convolutional complexity with growing
machine queue sizes. 72

Bibliography . 73

Abstract . 78

Biographical Sketch . 80

viii

Chapter 1: Introduction

Distributed Heterogeneous Computing (HC) systems can be described based on

qualitative and quantitative differences between their machines [1]. Qualitative machine

heterogeneity describes architectural differences between machines (e.g., CPU versus

GPU versus FPGA [2, 3, 4]) whereas quantitative machine heterogeneity describes the

performance differences within a given architecture (e.g., processors with different clock

speeds). For instance, Amazon Cloud (AWS) offers CPU-Optimized,

Memory-Optimized, and Accelerated Computing (GPU and FPGA) Virtual Machine

(VM) types and within each type, they offer various performances with different

prices [5]. In the literature, these are also known as inconsistent machine heterogeneity

and consistent machine heterogeneity [1, 6, 7, 8], respectively.

In addition to machine heterogeneity, diversity can be present in the tasks

arriving to an HC system. As with machine heterogeneity, task heterogeneity can be

categorized as inconsistent versus consistent heterogeneity. In many current HC

systems (e.g., [9, 10, 11]), both types of machine and task inconsistent heterogeneities

exist at the same time [12]. In such a system, each task type can have different

execution times on different machines type of the system. For instance, machine A may

be faster than machine B for task 1 but slower than other machines for task 2. A more

specific example can be a task with graphical demands that runs faster on (i.e.,

matches better with) a GPU whereas another task with numerous memory accesses

runs faster on a CPU.

This mixture of heterogeneities creates uncertainty in execution time of each

1

task type on each machine type [13]. The uncertainty, if not captured, hinders

predictability, and subsequently, efficiency of task scheduling [14]. Robustness is defined

as the degree to which a system can maintain a given level of performance in the face of

uncertainty [14]. The overall goal of this study is to maximize the robustness of an HC

system.

1.1 Motivations

The motivation for this research comes from an inconsistently HC system used

for processing live video streaming services [15] (e.g., Google’s YouTube Live and

Twitch.tv). In these services, video content is initially produced in a source format by

the content creator (camera). To support diverse viewers’ display devices, the video

content has to be processed (i.e., transcoded) to adapt the characteristics of the

viewers’ display devices [16].

In an HC system processing live video streams, the task for converting

compression standard (codec) is categorically different than the task for converting the

video resolution (i.e., inconsistent task heterogeneity) [8]. Within each category of

tasks (termed task type), tasks with different data sizes can be considered as consistent

task heterogeneity. For instance, tasks for converting the codec of different videos are

considered consistently heterogeneous. It has been shown that an HC system should be

deployed to efficiently carry out different types of video processing (e.g., changing

resolution, changing encoding format) and ensure a real-time flow of processed video

streams to the viewers [8]. In such an HC system, there exists inconsistent task

heterogeneity in form of different task-types; and inconsistent machine heterogeneity in

2

form of different machine-types (e.g., CPU-based and GPU-based).

The intensity of tasks arriving to the HC system (known as oversubscription

level) also varies. Managing this oversubscription is a key to ensure the number of tasks

that meet their deadline is maximized (i.e., the system remains robust). As there is no

value in executing tasks that have missed their individual deadlines, they are dropped

from the HC system.

In addition to live video streaming, another motivation can be monitoring and

mitigating an oil spill via edge computing in a smart oilfield: Streams of image data

from cameras in UAVs [17], and from embedded in the platform are monitored for

evidence of anomalies indicating the direction of movement of an oil spill. Sensors in

the drill pipe offer real-time data to be processed to better understand the movement of

fluids underground and on the surface [18]. Both of these tasks require processing of

streams of data with hard and quick deadlines [19] (e.g., hourly or daily). The tasks are

structurally different (i.e., heterogeneous), and benefit from being processed on different

types of (i.e., heterogeneous) machines. Whereas the processing of large volumes of

images is best handled by parallel GPU-based machines [20], the models that predict

flows of oil benefit from FPGA [21]. Putting all of the above together can be demanding

in terms of memory [22]. Essentially this thesis is concerned with any system that

requires liveness in its data, but is also tolerant of portions of the data being dropped.

1.2 Research Problem and Objectives

In this study, as shown in Figure 1.1, arriving tasks are placed in a batch queue

before being mapped to available machines. Each arriving task has a hard individual

3

deadline. That is, there is no value in executing a task that has missed its deadline and

it must be dropped (i.e., discarded) by the system [23, 24, 25]. In the circumstance

that the HC system is heavily loaded, it is impossible for all tasks to complete before

their deadlines, i.e., the system is oversubscribed. The robustness of the HC system is

measured based on the number of tasks meeting their deadlines and consider that as

the performance metric. Therefore, the more specific goal of this work is: maximizing

the number of tasks meeting their deadlines (hereafter, termed task success). This goal

must be met in the presence of uncertainty in task execution time and oversubscription.

Figure 1.1. Arriving tasks are queued. Batches of heterogeneous tasks are mapped to
inconsistent heterogeneous machines.

arriving tasks

batch queue

machine queues

m1

mn

m2
MAPPER

...

To meet this goal, the scheduler (aka mapper) of the HC system, which maps

tasks to machines, must be aware of machine and task heterogeneity [26], and must

harness this awareness to overcome with the unpredictability of the system. In light of

the hard deadline constraint, when a task fails to succeed, the time spent executing it is

wasted. Importantly, the wasted processing time causes delay in execution of tasks

waiting in the queue, increasing the likelihood of them missing their deadlines, hence,

decreasing the system robustness. To prevent this, the system should avoid executing

tasks are not likely to succeed. The question is: what is the probability that makes a

4

task worth executing?

1.3 Methodology Overview

To address this problem, in this research, a suitable probability to map tasks to

machines is determined, so that the computational time is not wasted to process tasks

with low chance of success. The scheduler needs to calculate the probability of meeting

deadline (success) for a given task, and depending on the probability, decides whether

or not to map the task. While the tasks whose probability of success is greater than the

suitable probability are mapped to machines, the ones whose chance of success is less

than the suitable probability can be pruned in two ways: (A) they can be deferred from

the mapping decision (i.e., their mapping is deferred to the next mapping event); (B)

they can be dropped from the system. Deferring mapping of the task is done with the

hope that in the next mapping event the task gets a higher probability of success (e.g.,

because of mapping to a better matching machine). Dropping, however, is performed to

alleviate the oversubscription, when the HC system is heavily loaded. The rationale for

dropping is that, in an oversubscribed system, sacrificing (dropping) tasks with low

chance of success can increase the likelihood of other waiting tasks succeed, hence,

improving the robustness. Nonetheless, the question arises: in what level of

oversubscription the mapper should become more aggressive, transitioning from only

task deferring to both task deferring and dropping?

Mapping tasks in an HC system has been shown to be an NP complete problem

[27, 28], hence, numerous heuristics have been developed (e.g.,

[29, 7, 14, 30, 31, 13, 32, 33]) to maximize robustness of the HC systems. However,

5

none of these heuristics take task deferring and dropping into consideration. Therefore,

in this research, a new heuristic is proposed that considers task success probabilities,

deferring, and dropping.

To understand the efficacy of the probabilistic deferring and dropping

hypothesis, in this research, a simulation study is conducted. The robustness of the

proposed pruning-aware mapping method is compared against other existing heuristics,

under varying workload conditions. Simulation results approves the hypothesis and

shows that the proposed method increases robustness of the HC system when compared

with other mapping heuristics used in the literature. This happens, particularly, when

the level of oversubscription in the HC system increases.

1.4 Thesis Organization

This thesis is organized into chapters as follows:

• Chapter 2 is a survey of related works in the literature. Research on dynamic

scheduling, modeling uncertainty, heterogeneity, stochastic robustness, the

dropping of tasks, is presented. The major contributions of each will be

presented, as will the relationship to this work, positioning this thesis amongst

the presented research.

• Chapter 3 presents the mathematical model of task-execution uncertainty used in

this work: Calculating robustness of task-mapping, the convolution of discrete

probability mass functions, and convolution in the presence of task-dropping are

detailed. explains the system model used in this work. Each component is

6

detailed, and the connections are explained.

• In Chapter 4, a probabilistic task pruning mechanism is developed that is

responsible for deferring the mapping of tasks, as well as the dropping of queued

and executing tasks that are unlikely to succeed. A scheduling heuristic is

designed that harnesses the pruning mechanism. The results of a series of

experiments are examined.

• Chapter 5 examines the effects of applying the pruning mechanism (in whole and

in part) developed in Chapter 4 to a series of preexisting batch and immediate

mode heuristics.

• Chapter 6 refines the pruning mechanism from Chapter 4 by decoupling the

deferring portion of the pruning mechanism from the dropping portion, as well as

examines the effects of other changes such as a dynamic, per-task, pruning

threshold.

• Chapter 7 concludes the work, discusses results, and notes directions of further

research.

7

Chapter 2: Survey of Related Literature

2.1 Overview

This chapter provides a survey of other research works undertaken in the fields

most related to this work and position the contribution of our works against them. This

thesis builds upon works in the field of task scheduling, heterogeneous computing,

stochastic robustness, dynamic resource allocation, task dropping, and task deferring.

Each of these will be discussed and positioned against below.

2.2 Task Scheduling

At it’s heart, in distributed computing, task scheduling involves mapping tasks

to available machines. Tasks can depend on each other or may be completely

independent in the order of their execution. They sometimes have deadlines, and

sometimes do not. Tasks can be scheduled either off-line or on-line (i.e., statically or

dynamically). In this thesis, the tasks are independent, have hard deadlines, and arrive

and are scheduled dynamically.

Paragon [34] is an immediate mode scheduling system for large-scale

heterogeneous data centers. It uses singular value decomposition to classify incoming

tasks on their heterogeneity, as well as their interference level for co-scheduled tasks.

This is accomplished via the matching of information from historical data, with small

sample runs of the task. These classifications are used in a greedy algorithm to select a

list of candidate resources first based on interference, and from that the best fit based

on heterogeneity [35]. This work is different than ours in that the mapping heuristics

are immediate mode using scalar, as opposed to probabilistic, execution times to make

8

decisions. The performance metrics are also different, as Paragon is concerned with

speedup, as there are no deadlines to miss.

To reduce energy consumption of HC systems, an stochastic task mapping

method for uncertain task execution time is proposed in [30]. Bag of Tasks (BoT) jobs

with a deadline constraint for the whole job are considered. They apply a linear

programming technique to balance the makespan time and the energy consumption of

the BOT job. The proposed mapping method improves the probability that both the

deadline and the energy consumption constraints are fulfilled. Our research is different

in several aspects. Most importantly, we consider individual deadlines and our aim is to

rise the probability of meeting those individual deadlines. In addition, we focus on the

impact discarding tasks in the system.

Tumanov et al., investigate a scheduler that uses available task execution time

information and task affinity to make global decisions about scheduling tasks in an HC

system using mixed integer linear programming [36]. The scheduler, Tetrisched, fits into

a YARN and MapReduce framework to globally make use of this information, both to

plan ahead, and to make adaptations to its plans as tasks are entered into the system.

In contrast, our system uses a similar set of information to make greedy choices about

mapping short-running tasks to machines in batches. Whereas we defer tasks in an

effort to match affinity, and consider dropping tasks to alleviate oversubscription,

Tetrisched attempts to mitigate the uncertainty of the types of incoming tasks by

adapting the tentative scheduling plan, on each new scheduling cycle, in an effort to

match jobs with high affinity resources. The focus is on long-running jobs with strict

9

deadlines, and consider both the total number of tasks meeting their deadlines, as well

as the number of reserved and best-effort tasks meeting their deadlines, whereas in our

study, we consider smaller liveness-oriented tasks with no reservation but with strict

individual deadlines.

2.3 Heterogeneous Computing

Broadly speaking, distributed computing can be divided into to main categories:

homogeneous and heterogeneous. Homogeneous computing involves a number of

identical resources tied together, such that a given task will have the same performance

characteristic on each. Heterogeneous computing on the other hand involves a number

of different resources tied together, such that a given task may perform better or worse,

depending on the machine it is running on.

Khemka et al., investigate resource management in oversubscribed

heterogeneous systems in [23]. A parameterized method of utility function creation

from priority, utility class, and urgency is tested. An ETC matrix with deterministic

execution times is used, whereas we model the times probabilistically. Preemption of

tasks that have been assigned to a machine is not considered. Similar to our work, the

batch mode heuristics in this work places tasks into a virtual queue and dropping tasks

from the system is practiced. However, unlike our approach of probabilistically

determining if a task should be dropped, dropping occurs after a task has reached some

threshold of utility.

In another work [8], Li et al., provide a model to configure and provision an

inconsistently HC system to process an inconsistently heterogeneous set of video

10

streaming tasks. Because they consider Video On Demand, they do not consider task

dropping, however, our motivation in this study is live video streaming tasks that have

hard deadlines that implies task dropping.

2.4 Stochastic Robustness

Robustness is the health of a system. This thesis uses a stochastic robustness

measure to make decisions based on a predictive model of the health of its system based

on the historical data on hand.

In [13], Shestak et al., lay the groundwork for the use of probability density

(PDF) and mass functions (PMF) to model the execution time of tasks. This is in

contrast to the prevalent use of scalar, deterministic estimates of task execution times.

The work in this study shows the use of such in the case of static resource allocation

techniques. The method for convolution of these execution times to form completion

times for a queue of tasks is established. This thesis builds upon the static use of PMFs

and robustness measure, in a dynamic fashion, while adding the conditions of tasks

being dropped probabilistically from executing and pending tasks.

2.5 Dynamic Resource Allocation

This thesis is concerned with online resource allocation for independent tasks.

The problem of dynamic resource management was examined in [37]. Machovec et al.,

create scheduling heuristics designed to maximize the utility earned by an HC. The

monotonically declining utility function for each task is a function of the tasks

completion time, and acts as deadline. When tasks have reached zero possible utility,

they are dropped from the system. The authors consider a system where critical tasks

11

can preempt executing tasks. The preempted task’s is resumed after the critical task

completes its execution. This differs from our work in that we consider a system

wherein the data constraints are such that the overhead of preemption of tasks is too

costly. Machovec et al., use ETC matrix to model execution times, but assume

deterministic, as opposed to stochastic, execution times. This is different than our

Bayesian probability approach on the handling the compound uncertainty of queued

tasks. Another difference in our work is our assumption of hard deadlines and thereby

maximizing the number of tasks completed ontime, as opposed to maximizing

monotonically declining utility functions.

In [38], Malawski et al., evaluate dynamic scheduling of deadline-and-cost

constrained tasks in IaaS clouds. The work is focused on provisioning homogeneous

VMs, whereas we focus on static heterogeneous machines. The goal of the study is

maximizing the high priority workflows completed, within a deadline, while remaining

under budget. Algorithms are introduced that are aware of the workflow, leading to

higher performance, and they drop workflows that would result in a loss of high priority

tasks completing. We use a similar tactic of dropping tasks to maximize the robustness

of our system, however our metrics for success are different, as we consider tasks with

individual deadlines, and all with the same priority.

Scalar estimates of runtime are used, however inaccurate estimation is examined,

as well as uncertain VM provisioning time. The study also investigates static

scheduling, and while it performs very well under ideal conditions, as uncertainty in

execution and VM provisioning times are introduced, the static scheduling is unable to

12

contend with the uncertainty as well as the dynamic algorithms do. Though in a

different domain, this is akin to our attempt to mitigate what turn out to be poor

batch scheduling decisions by dropping tasks that fail to meet our probabilistic

robustness thresholds.

2.6 Task Dropping

In certain scenarios, it is best to stop work on some tasks to use resources to

complete other tasks. When tasks with deadlines overrun their deadlines, they can be

dropped. This is shown in [14], which studies maximizing the robustness of dynamic

resource allocation for tasks with stochastic execution times. Salehi et al., model the

stochastic nature of the heterogeneous task-types on heterogeneous machine-types using

a matrix of probability mass functions (PMFs). A mathematical model for calculating

the completion time of stochastically modeled tasks in the presence of task dropping is

provided. This thesis builds upon the matrix of PMFs, and the completion time

calculations to enable probabilistic dropping, as in this paper, the tasks are only

dropped after their deadlines have passed.

In [15] Li et al., propose a task-scheduling method for a cloud-based live video

stream processing service. Their system is responsible for transcoding the video, in

chunks, to meet user demand and when in an oversubscribed state, they drop

transcoding tasks that have passed their deadline. The work touches on dropping

past-deadline tasks in its scheduling section, there is no attempt to predict which tasks

will fail to meet their deadlines, or to drop those tasks. While this thesis uses some of

the problems faced when live-streaming as a motivation, the robustness-boosting ideas

13

and methods herein can be applied to any system with droppable tasks that have hard

deadlines.

2.7 Task Deferring

Sometimes, the best course of action is no action. In [39], Li et al., investigate

static list-scheduling strategies that take deferring tasks until a higher affinity machine

opens up into consideration. The authors of [40] explore the tactic of delaying the

scheduling of tasks to achieve better locality in clusters, minimizing delay.

In [41] Malone et al., implement a distributed scheduling system where processes

bid on resources in a market: ’Enterprise’. Among their results, they find that ’lazy

assignment’, or deferring task scheduling as long as possible, yields the best results.

The performance versus ’eager assignment’ increases as error in task-length estimation

increases, and the performance increase is larger in heterogeneous environments than in

homogeneous environments. This increase in performance from ’lazy assignment’, where

the task is assigned to a resource only when that resource is capable of immediate

computation, forms the foundation for the idea of deferring tasks based on a necessary

probability of successful completion.

2.8 Summary

Though task scheduling has been extensively studied in the past, both in terms

of homogeneous and heterogeneous computing scenarios, less attention has been given

to studying the effects of dropping and deferring tasks, and as far as can be determined,

probabilistically dropping and deferring tasks in an effort to increase system robustness

has not been studied, therefore this thesis is dedicated to investigating the impact of

14

probabilistic pruning (task dropping and deferring), particularly, in heterogeneous

environments. Before detailing the probabilistic pruning mechanism in Chapter 4, the

next chapter explains the theoretical backgroundneeded for the rest of this thesis.

15

Chapter 3: Background

3.1 Bayesian Statistics for Resource Allocation

In the literature, the expected execution times of different task-types on different

machine-types are maintained in an Expected Time to Compute (ETC) matrix [6].

These ETC matrices generally contain the mean execution time, and do not account for

consistent task heterogeneity (e.g., those arising from data-size differences across

different tasks, environmental factors such as neighboring loads, task switching

overhead, etc). The stochastic nature of the execution time of tasks that arises from

these factors is modeled via Probability Mass Functions (PMF) called a Probabilistic

Execution Time (PET) [14]. In an inconsistently HC system, a PET matrix is

maintained to describe probabilistic execution time of each task-type on each

machine-type. The PET matrix is used by the task mapper to optimally map the tasks

to machine. In practice, these PMFs can be obtained from historic execution time

information of task-types on each machine in an HC system and modeling them via a

histogram [42]. The PET matrix is assumed to be available in our HC system.

Each entry (i, j) of PET is a PMF represents the “execution time” of task-type i

on a machine-type j. When a task i is given a start time on idle machine j, the

execution time PMF in PET (i, j) becomes a “completion time” PMF of task i on

machine j, denoted Probabilistic Completion Time PCT (i, j) [14].

In case machine j is not idle (i.e., it has tasks already executing or pending) and

task i arrives, the PCT of the last task in machine j and PET (i, j) are convolved to

form PCT (i, j) [43]. This new PMF accounts for all of the execution times of the tasks

16

ahead of task i in the machine j queue. For example, in Figure 3.1 a task is added to a

machine, and its PET is convolved with the PCT of the last task on that machine to

form the PCT of the arrived tasks on that machine.

In order to calculate the completion time distribution (CTD) to evaluate

possible task-machine mapping decisions, the following is a formalization of the

probabilistic task completion time convolution model from [14]. For any CTD

generation, the presence of task dropping needs to be taken into account, and if

present, the type of task dropping must also be accounted for.

Figure 3.1. Probabilistic Execution Time (PET) of an arriving task is convolved with
the Probabilistic Completion Time (PCT) of the last task on a machine to form the PCT
for the arriving task on the assigned machine

1 2

.25

.75

execution time PMF of task i

.17

.33
.50

completion time PMF
of last task in machine j

5 6

.0425

.21

74 5 6

.3725

8

.375

convolution gives completion time PMF
of task i assigned to machine j

* =

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

time

As shown in Equation 3.1, when task dropping is not permitted, i.e., when all

mapped tasks must execute to completion, the formula for calculating the CTD of the

entire queue is a simple convolution of the two distributions.

Ci(x) =
k<x∑
k=1

[pi(k) ∗ Ci−1(x− k)] (3.1)

17

When dropping of pending tasks is allowed, the formulation becomes slightly

more involved. Equation 3.2 is used by Equation 3.3. Each impulse that is past the

deadline for each task becomes zero.

f(x, k) =

{
0, ∀(x− k) ≥ δ

pi(k)× Ci−1(x− k), ∀(x− k) < δ
(3.2)

Cpend
i (x) =


k<x∑
k=1

f(x, k) + Ci−1(x), ∀x ≥ δ

k<x∑
k=1

f(x, k), ∀x < δ

(3.3)

Equation 3.4 is similar to the previous, but allows for the impulses of tasks who

are currently executing to be zero as well, when the deadline passes.

Cevict
i (x) =



y<∞∑
y=x

Cpend
i (y) + Ci−1(x), ∀x = δ

Cpend
i (x), ∀x > δ

k<x∑
k=1

f(x, k), ∀x < δ

(3.4)

Equation 3.5 shows how the robustness for a given task on a given machine is

calculated.

pi(δi) =

k<δi∑
k=1

Ci(x) (3.5)

18

3.2 System Model Overview

In the system, heterogeneous tasks arrive with individual deadlines, and are

entered into a batch queue of unmapped tasks. A task’s robustness is defined as its

probability of completing before its deadline. That is, for task i with deadline δi and

machine j, robustness(i, j) = P(PCT (i, j) ≤ δi).

A mapping event occurs upon arrival of a new task to the system or when a task

gets completed. Before the mapping event, tasks which have missed their deadlines are

dropped (i.e., removed) from the system. The mapper creates a temporary (virtual)

queue of machine-task mappings by using the PET and convolving it with the PTC

from the currently assigned tasks to machine’s queue. These mapping events attempt

to map batches of tasks from the batch queue. This happens until either the machine

queues are full, or there are no more unmapped tasks. The machines use limited-size

First Come First Serve (FCFS) local queues to process the assigned tasks. It is

assumed that once a task is mapped to a machine, its data is transferred to that

machine and it cannot be remapped due to data transfer overhead [14]. It is assumed

that the execution time of each task is independent, relies only on its own data and

does not communicate with any other task, meaning that each task executes in

isolation on a machine, with no preemption and no multitasking [44, 45, 46].

19

Figure 3.2. Batch mode operates on batches of tasks. Immediate mode operates on a
single task immediately.

arriving tasks

batch queue

machine queues

m1

mn

m2
MAPPER

...

arriving tasks

machine queues

m1

mn

m2
MAPPER

...

3.3 Benchmark Resource Mapping Heuristics for Heterogeneous Distributed

Systems

This section describes the implemented heuristics used to map arriving tasks to

heterogeneous machines. Both homogeneous and heterogeneous scheduling heuristics

are described. In general, mapping methods in a system with dynamic task arrival can

operate in immediate (on-line) or batch modes [14]. However, it has been proven that

batch mode mapping heuristics offer a better performance and improve robustness in

compare with immediate mode heuristics [14, 25]. Accordingly, batch mode heuristics

are studied for the majority of this study and the proposed method is compared against

them.

3.3.1 Heterogeneous batch mode heuristics. Four benchmark batch mode

mapping heuristics are examined in this work. These mapping heuristics operate on

batches of tasks, as shown in Figure 3.2. Each of these heuristics is a two-phase process,

where unmapped tasks are copied into a virtual queue, a first phase finds the best

machine for each task, by virtue of a per-heuristic objective. In the second phase, from

task-machine pairs obtained in the first phase, each heuristic attempts to choose the

20

best machine-task pairs for each available machine queue slot. After all slots are filled,

or when the unmapped queue is emptied, the virtual mappings are pushed (assigned) to

the machine queues, and the mapping method is complete.

3.3.1.1 MinCompletion-MinCompletion (MM). This heuristic has seen

much use and examination in the literature [47, 48, 49, 14], and serves as a baseline for

the tests. The PET matrix is used to calculate expected completion times. In the first

phase of this two-stage heuristic, the virtual queue is traversed, and for each task in

that queue, the machine with the minimum expected completion time is found, and a

pair is made. In the second phase, for each machine with a slot in its machine queue,

the provisional mapping pairs are examined to find the machine-task pair with the

minimum completion time, and the assignment is made to the virtual machine queues.

The process repeats itself until all virtual machine queues are full, or until the

temporary batch queue is exhausted.

3.3.1.2 MinCompletion-Soonest Deadline (MSD). This heuristic is a

two-phase process, first selecting the machine which provides the minimum expected

completion time (using the PET matrix) for each task under consideration. From this

list of possible machine-task pairs, the tasks for each machine with the soonest deadline

are chosen, and in the event of a tie, the task with the minimum expected completion

time breaks the tie. As with MM, after each machine with an available virtual queue

slot receives a task from the provisional mapping in phase two, the process is repeated

until either the virtual machine queues are full, or the temporary unmapped task queue

is empty.

21

3.3.1.3 MinCompletion-MaxUrgency (MMU). MMU is a two-phase

process, the second of which is focused on urgency. Urgency for task i on machine j is

defined as the inverse of the difference between the task deadline (δi) and the expected

completion time of the task on machine j (E[C(tij)]). Equation 3.6 formally shows the

urgency definition.

Uij =
1

δi − E[C(tij)]
(3.6)

As with the previous heuristics, phase one finds the minimum expected

completion time machine (using PET matrix) for each task and makes a task-machine

pair. Using the urgency equation, phase two selects the task-machine pair that has the

greatest urgency, and adds that mapping to the virtual queue. The process is repeated

until either the temporary batch queue is empty, or until the virtual machine queues

are full.

3.3.1.4 Max On-time Completions (MOC). The MOC heuristic is based

on the algorithm proposed in [14] and uses the PET matrix to calculate completion

times. It is also a two-phase heuristic, with a culling step in between, based on finding

the robustness of task-machine mappings. The first mapping phase finds, for each task,

it finds the machine offering the highest robustness value. The culling phase clears the

virtual queue of any tasks that fail to meet a given robustness threshold α. In [14], α is

set to 30%. The last phase finds the three virtual mappings with the highest robustness

and permutes them to find the task-machine pair that maximizes the overall robustness

and maps it to that machine’s virtual queue. The process repeats until either all tasks

in the temporary batch queue are mapped or dropped, or until the virtual machine

22

queues are full.

3.3.2 Heterogeneous immediate mode heuristics. Five immediate mode

mapping heuristics are used in this study. These mapping heuristics map tasks to

machines as they arrive, as shown in Figure 3.2.

3.3.2.1 First Come First Served (FCFS). In FCFS the task is assigned

to the first available machine. Machine 0 is checked, then Machine 1, etc... all the way

to Machine n.

3.3.2.2 Min Execution Time (MET). In MET the task is assigned to the

machine which offers the minimum expected execution time (i.e., the average of the

PET[i,j] PMF for task i on machine j)

3.3.2.3 Min Completion Time (MCT). In MCT the task is assigned to

the machine which offers the minimum expected completion time by convolving the

distributions of all the tasks on a given machine using the expected execution time

(i.e., the average of the PET[i,j] PMF for task i on machine j).

3.3.2.4 K-Percent Best (KPB). KPB is an optimization of MCT that only

considers the MCT of the K percent of machines with the best expected execution

times (i.e., the average of the PET[i,j] PMF for task i on machine j) for a given task.

3.3.2.5 Max Robust (MR). MR is a heuristic proposed in [14] that uses the

full potential of the PET to calculate the machine-task pairs with the best robustness

from the k-percent machines with the best expected execution times(i.e., the average of

the PET[i,j] PMF for task i on machine j).

23

3.3.3 Homogeneous computing scheduling heuristics. Three heuristics

are used to study homogeneous computing environments. With the exception of First

Come First Served, they operate on batches of tasks, as shown in Figure 3.2.

3.3.3.1 First Come First Served (FCFS). In FCFS the task is assigned

to the first available machine. Machine 0 is checked, then Machine 1, etc... all the way

to Machine n.

3.3.3.2 Earliest Deadline First (EDF). EDF is functionally similar to

MSD from the heterogeneous batch mode heuristics. Though all machines are

homogeneous in performance, the queues of each machine will have a different

completion time during a mapping event. The first phase of this heuristic finds the

task-machine mappings offering the minimum completion time. The second phase finds

the mapping pair with the soonest deadline, and maps the pair’s task to the pair’s

machine.

3.3.3.3 Shortest Job First (SJF). SJF is functionally similar to MM from

the heterogeneous batch mode heuristics. Though all machines are homogeneous in

performance, the queues of each machine will have a difference completion time during

a mapping event. Instead of the traditional understanding of a ’job’ being the execution

time of the task, the job is considered to be the completion time of the task when

mapped to a queue. The first phase of this heuristic finds the task-machine mappings

offering the minimum completion time. The second phase finds the mapping pair with

the minimum completion time, and maps the pair’s task to the pair’s machine.

24

3.4 Evaluation Setup

3.4.1 Overview. In this study, to reduce simulation execution times, the

number of machines comprising the distributed systems is constrained, but the

proposed methods are scalable to any number of machines. For the experiments in this

paper, the number of machines is eight (i.e., M = 8). The eight machines comprise an

inconsistently heterogeneous system where a given machine A can exhibit higher

performance for certain task types than machine B, yet machine B may exhibit higher

performance on other task types [7].

To generate the probabilistic execution time PMFs (PET), the mean execution

time results from twelve SPECint benchmarks on a set of eight machines was

determined [14]. These mean execution times for each benchmark on each system

formed the mean values for the task-machine execution times. The function describing

execution time of the tasks on a machine is assumed to be a unimodal distribution;

from a gamma distribution using the task-machine mean execution time, and with a

shape randomly picked from the range [1:20], 500 execution times were sampled. From

these times, a histogram was generated to produce a discrete probability mass function

(PMF) analogue to the original probability density function. This was repeated for

each task type on each machine, and the resultant eight machine by twelve task-type

matrix of PMFs was stored as the PET. The PET matrix is constant across all of the

experiments.

3.4.2 Generating workload to evaluate mapping heuristics. The

simulation is of a finite span of time units, starting and ending in a state where the

25

system is idle. As the system comes on-line, and tasks begin to accumulate in the

queue, the system is not in the desired state of oversubscription. The same is true of

the end of the simulation, when the last tasks are finishing, and no more are arriving to

maintain the oversubscribed state. In an effort to minimize the effects of the

non-oversubscribed portion of the simulation from the data, the first and last hundred

(100) tasks to complete are removed from the results. Only the remaining tasks from

the oversubscribed portion of the simulation are used in the analysis.

Based on previous workload investigations [14, 25, 23], a gamma distribution is

created with a mean arrival rate for all task types that is synthesized by dividing the

total number of arriving tasks by the number of task types. The variance of this

distribution is 10% of the mean. Each task type’s mean arrival rate is generated by

dividing the number of time units by the estimated number of tasks of that type. A list

of tasks with attendant types, arrivals times, and deadlines is generated by sampling

each task type’s distribution.

The task types each have a mean duration, from which the PET described above

is derived. This mean duration is used in generating the deadlines for the tasks that

arrive in the system. For a given task, as noted in Equation 3.7, the deadline is

calculated by adding the mean duration for that task type (avgi) to the arrival time

(arri), and then adding in a slack period based on the mean of all task type’s duration

multiplied by a tuning parameter (β· avgall). This slack allows for the tasks to have a

chance of completion in an oversubscribed system.

δi = arri + avgi + (β· avgall) (3.7)

26

3.5 Summary

The system uses a queue of unmapped tasks and a mapping agent to map

incoming tasks to the queues of available computing resources. These tasks have hard

deadlines. The system is inconsistently heterogeneous (i.e., some tasks perform better

on some machines, others worse), and the system has more tasks than it can handle

(i.e., is oversubscribed). To maximize the number of tasks meeting their deadlines, the

next chapter will introduce the Probabilistic Task Pruner.

27

Chapter 4: Probabilistic Deferring and Dropping

4.1 Overview

In this chapter, a probabilistic task pruning mechanism (i.e., Pruner) is

developed and tested. As shown in Figure 4.1, this mechanism is used in conjunction

with the mapping method to increase robustness of the system, either through deferring

or dropping of tasks with low chance of success.

At each mapping event, before the mapping method is invoked, if the system is

sufficiently oversubscribed, the Pruner comes to play and drops from machines the tasks

with low chance of success. Then, the mapping method is invoked and determines the

best mapping for tasks in the batch queue. Prior to assigning the tasks to machines,

the tasks with low chance of success are deferred (i.e., not assigned to machines) and

returned to the batch queue to be considered during the next mapping events.

Figure 4.1. In each mapping event, the Pruner drops or defers tasks based on the tasks’
probability of success.

PRUNER...

m1

m2

mn

PET matrix

~ ~

arriving tasks

batch queue

machine queues

m1

mn

m2
MAPPER

...

28

4.2 Probabilistic Task Dropping

In an attempt to maximize the robustness of the system, the aggression of task

pruning is dynamically adjusted in reaction to the level of oversubscription.

As the task arrival rate increases and the system becomes more oversubscribed,

the probability of tasks missing their deadlines increases. As such, the number of tasks

missed their deadlines since the past mapping event is used by the Pruner as an

indicator to identify the level of oversubscription in the system. The identified level of

oversubscription is used as a “toggle” that transitions the HC system to task dropping

mode.

In the beginning of the mapping event, as shown in Algorithm 1, if the the

system is identified as oversubscribed (step 1), the Pruner examines the machine

queues: Beginning at the executing task (queue head), for each task in a queue, the

success probability (i.e., robustness) is calculated (step 4) based on its completion time

PMF. Tasks whose robustness is less than or equal to the pruning threshold are

dropped from the system. The proper values for toggle and pruning threshold is

elaborated on in Section 4.4.

In a given machine queue, as the Pruner drops tasks, the completion time PMF

of those tasks behind the dropped tasks is improved. The way the completion time

PMF of remaining tasks are changed as a result of dropping is explained in [14].

Intuitively, each task in queue compounds the uncertainty in the completion time of the

tasks behind it in the queue. Dropping a task exclude its PET from the convolution

process, hence, reduce the compound uncertainty. In addition to reduced uncertainty,

29

Algorithm 1: Algorithm for probabilistic task dropping.

Data: M is a set of machine queues m1,m2, . . . ,mq

T is a set of tasks t1, t2, . . . , tn
d the oversubscription level indicator
P(ti) is the success Probabilistic of task i
TOGGLE is the dropping toggle
THRESHOLD is the pruning threshold
Result: Algorithm to engage dropping

1 if d ≥ TOGGLE then
2 foreach machine queue mj do
3 foreach task ti on mj do
4 if P(ti) ≤THRESHOLD then
5 Drop ti;

dropping tasks with low chance of success enables the tasks behind it to begin execution

sooner, thus, increasing the overall robustness. As a matter of implementation, to

reduce bottlenecks in PMF convolution calculation, it is likely that the pruning of

machine queues would happen per machine, or perhaps per some subset of machines.

4.3 Pruning-Aware Mapping Method (PAM)

In each mapping event, after checking for probabilistic dropping, the mapping

method is started. The main responsibility of mapping method is to find and assign

tasks in the batch queue to the best available machine so that the overall robustness of

the HC system is improved. In addition, the mapping method takes care of the

“deferring” part of the pruning mechanism. Therefore, the mapping method is

pruning-aware that means it makes use of pruning to improve the overall robustness of

the HC system.

The basis for PAM comes from MOC, developed in [14]. The pseudo-code of

PAM is shown in Algorithm 2. To find the best mapping, the mapper creates a

30

temporary virtual queue for all machines to perform its calculations. The virtual queue

consists of tasks currently assigned to each machine and the tasks in batch queue. In

the virtual queue, PAM drops all the tasks that have already missed their deadlines

(steps 1 – 3 in Algorithm 2).

Much like MOC, in the first phase, the proposed mapping method (called PAM)

consults with PET matrix and virtual queue (as explained in Chapter 3) to calculate

completion time PMF (i.e., PCT) for all tasks in the batch queue. Based on the

obtained PCTs, for each task, the method can recognize the best probability of success

(i.e., task robustness) across all machines. This is shown as step 4 and 5 in Algorithm 2.

Differing from MOC, in the second phase, pruning occurs and defers mapping of

tasks whose probability of success is lower than the pruning threshold (see steps 6 – 8).

Essentially, this pruning ensures that no tasks will be scheduled that would be

immediately dropped, in the case probabilistic dropping is triggered in the next

mapping event. It is noteworthy that the pruned tasks are merely deferred, meaning

that they are not considered in the current mapping event but remain in the unmapped

queue to be considered in the next mapping event. Due to both inconsistent

heterogeneity of HC systems and task dropping, it is likely that in the next mapping

event, a deferred task can get a higher probability of success. This happens because

those machines that provide a better performance for the deferred task can potentially

become available by the next mapping event.

To manage the compound uncertainty, resulting from convolution of several

tasks assigned to the same machine, the size of local machine queues in the HC system

31

is limited. Therefore, in the third phase of PAM, for each machine with room in its

machine queue, from the remaining task mappings in the virtual queue, the task with

the minimum completion time is selected and is assigned to the paired machine (see

steps 9 – 12). The task is removed from the system batch queue, and the process

repeats, until either the virtual queue is empty, or the machine queues are full.

Algorithm 2: Pseudo-code for Pruning-Aware Mapping Method (PAM)

Data: Tasks in batch queue are copied to a virtual queue
δi represents the deadline of task ti
THRESHOLD is the pruning threshold

1 foreach task ti in virtual queue do
2 if δi < current time then
3 Drop ti;

4 Find mj offers the highest success probability;
5 Add ti to candidate tasks list for mj as tij;

6 foreach task-machine pair tij ∈ list do
7 if P(tij) ≤THRESHOLD then
8 Defer tij (return it to batch queue);

9 foreach machine mj ∈ m do
10 if mj < maximum queue size then
11 Find ti from list with minimum completion time on mj;
12 Assign ti to mj;

4.4 Probabilistic Pruning Performance Evaluation

4.4.1 Experimental overview. A series of job simulations were run using the

Louisiana Optical Network Infrastructure (LONI) Queen Bee 2 HPC system [10]. For

each set of tests, for each examined parameter, 30 workload trials are performed using

different task arrival times built from the same arrival rate and pattern, and the mean

and 95% confidence interval of the results is examined.

PAM, and four baseline batch mode mapping heuristics are evaluated against

32

each workload trial to study how they behave when the parameters of the system vary.

In particular, study focuses on the impact of varying: (A) pruning threshold (i.e., the

probability, under which a task is pruned); (B) the dropping toggle (i.e., the

oversubscription level, after which the system transitions to a more aggressive mode

and engages probabilistic dropping of tasks); (C) the level of oversubscription (the task

arrival rate). In addition to evaluating the influence of these parameters, the impact of

the awareness of the pruning threshold during task mapping is studied. That is, the

performance of PAM when stripped of awareness of the pruning threshold is studied, as

well as the performance MOC when given awareness. The isolated impact of both parts

of the pruning mechanism are also tested (deferring and dropping tasks).

Each experiment is a set of 30 workload trials, consisting of 800 tasks per trial.

Each of the experiments investigates heavy levels of oversubscription (an arrival rate of

19k tasks per period) where very few tasks complete successfully using scalar

expectation-based heuristics, such as MM, MMU, and MSD. Each machine in the HC

system has a machine-queue size of six (6), counting the executing task. For each of the

five mapping heuristics examined, the overall robustness of the system is calculated,

which is the percentage of tasks completed before their deadline (the vertical axis in the

figures of this section).

4.4.2 Impact of varying pruning threshold. To examine the impact of the

pruning threshold in oversubscribed systems, performance is evaluated at 5%

increments (from 0% to 100%), and confidence intervals are shown at 95%. In this

experiment, the dropping toggle is set to a value of 1 missed task.

33

Figure 4.2. Percentage of tasks completed on-time (vertical axis) examining the effects
of different pruning thresholds (horizontal axis) for pruning and dropping tasks. Dropping
toggle is set to 1 missed task. 95% confidence intervals are shown.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Task Pruning Robustness Threshold

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

e
Be

fo
re

 D
ea

dl
in

e
(%

) PAM

Figure 4.2 shows that the worst performance comes when tasks with 100%

chance of success are dropped, meaning that once the pruner is engaged to drop tasks,

all tasks are flushed from the system. This is no surprise. The second worst

performance comes at a pruning threshold of 0%, which is when there is no

probabilistic dropping, and tasks are only dropped after their deadlines have passed.

Between these two extremes, the number of tasks meeting their deadline steadily

increases as the dropping threshold increases. This is because of the extreme level of

oversubscription in the system, and the nature of the task-machine PMFs, which result

in tasks that possess either high or low probabilities of success, but with few

probabilities that lie in between.

Based on these observations, it can be concluded that, in an oversubscribed HC

system tasks should be mapped (scheduled) to machines, only if there is a high

34

confidence (75%) about the success chance of the tasks. As stated in the introduction,

one of the goals in this thesis is to know a suitable probability of pruning threshold.

While the mean of the results are different between 75% and 95%, the result is not

statistically significant with the sample size tested. Because of this, 75% is chosen as a

suitable probability, and PAM is configured with the a pruning threshold of 75% for the

rest of experiments.

4.4.3 Impact of different toggles to engage task dropping. As stated in

the introduction, to maximize the overall robustness of the HC system, a suitable

oversubscription level under which the pruning should transition from only task

deferring to a more aggressive mode, task dropping must be found. This suitable

oversubscription level is called a “toggle”. The value of the toggle shows how

conservative the pruning mechanism should be in dropping tasks. That is, a lower

toggle value of indicates that task dropping should be engaged as soon as a task is

observed missing its deadline, whereas a higher toggle value means that the task

dropping should not be engaged, unless a sufficient number of tasks are observed

missing their deadlines (i.e., higher level of oversubscription).

Accordingly this experiment examines the impact of engaging the task dropping

mechanism at different toggle values and find the toggle value that maximizes the

robustness of the HC system in an oversubscribed scenario.

The result of this experiment is shown in Figure 4.3. The horizontal axis shows

the different toggle values evaluated. A toggle value of 0 means the Pruner engages task

dropping always, regardless of the system being oversubscribed. The next values of

35

toggle indicate engaging task dropping in a more conservative manner. Specifically, the

right-most toggle indicates never engaging probabilistic dropping (concisely labeled

“None” in Figure 4.3). The vertical axis shows the robustness of the HC system via the

percentage of tasks meeting their deadlines. In this experiment, the pruning threshold

is 75%, and the total number of tasks in the trials is 800.

Figure 4.3. Percentage of tasks completed on-time (vertical axis) examining the effects
of different dropping toggles (horizontal axis) to engage task dropping. Pruning threshold
is set to 75%, and the arrival rate is 19k.

0 1 2 3 4 5 None
Dropping Toggle in Intra-Mapping Event Missed Deadlines

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

e
Be

fo
re

 D
ea

dl
in

e
(%

) PAM

In Figure 4.3, there is a steady increase in performance between no probabilistic

dropping, and a toggle of 0 (the least conservative dropping strategy). As the pruning

aggression increases, as the toggle moves toward zero, PAM perform better, from 34%

tasks completed on time to 43%. This increase in performance is because the dropping

of unlikely to succeed tasks (less than 75% probability of success) frees up processing

resources, allowing them to be more effectively allocated to tasks with better affinity.

PAM, in particular, benefits from knowledge of the pruning threshold and does

36

not schedule tasks that are guaranteed to be dropped during the next mapping event.

Whereas, when faced with oversubscription sufficient to engage dropping, the MOC

heuristic can potentially map tasks that are guaranteed to be dropped during the next

mapping event.

4.4.3.1 Impact of pruning threshold awareness. In the previous part, a

suitable pruning threshold has been identified. In this experiment, the intention is to

analyze the impact of the scheduler’s awareness of the dropping threshold. The goal is

to separate the robustness-based logic of PAM from its awareness of the dropping

threshold when making the decision to defer or map tasks. Accordingly, the analysis has

two parts: first, comparing the PAM logic against another robustness based mapping

heuristic; second, comparing PAM with a variation of itself that is unaware of pruning.

For the first part, PAM is evaluated against MOC which is the other

robustness-based batch-mode mapping heuristic implemented in this study. To

concentrate the analysis on the logic of the heuristic, MOC is made aware of the

suitable dropping threshold. That is, because the dropping threshold is 75%, tasks

which are less likely than that to succeed will not be scheduled. This aware version of

MOC will be called MOCA. For the second part, since the pruning mechanism of PAM

depends on two uses of probabilities, namely deferring threshold and dropping

threshold. To evaluate the impact of these parts, a variation of PAM that is unaware of

the deferring threshold is created, which uses a predefined value of 30% (the same as

MOC). This unaware version of PAM is known as Pruning Unaware Mapping (PUM).

The result of this experiment is illustrated in Figure 4.4. The horizontal axis of

37

the experiment shows the four mapping methods evaluated and the vertical axis shows

the robustness of the HC system in form of percentage of tasks meeting their deadlines.

The rest of experimental set up is similar to Section 4.4.2.

Figure 4.4. Percentage of tasks meeting their deadlines (vertical axis) analyzing the
impact of pruning threshold awareness on robustness-based mapping heuristics. The
pruning dropping toggle is set to 1 missed task.

MOC PUM MOCA PAM0

10

20

30

40

50

60
Ta

sk
s C

om
pl

et
e

Be
fo

re
 D

ea
dl

in
e

(%
)

Figure 4.4 shows that integrating awareness of the pruning threshold with the

mapping heuristics allows MOCA to reach parity with PAM, and to map more tasks

that meet their deadlines than MOC. As for MOC, even as it is a more complicated

heuristic that calculates many permutations of task-machine pairs to find the most

robust mapping, the benefits of awareness of the pruning threshold are significant. For

PAM, which is simpler in its calculations than MOC, the benefits of awareness of the

dropping threshold are even more pronounced, as PUM results in slightly fewer

successful tasks than MOC in the trials. This means that in some cases of extreme

oversubscription, simpler heuristics can outperform more complicated ones when there

38

is an awareness of the conditions required for a task’s success in the system.

4.4.4 Impact of dropping without deferring. To examine the impact of the

pruning threshold in oversubscribed systems, performance is evaluated with deferring at

75% required robustness, and without deferring, and confidence intervals are shown at

95%. In this experiment, when dropping, the dropping toggle is set to a value of 1

missed task. A high (19k) and an extreme (34k) level of oversubscription are tested.

Figure 4.5. Percentage of tasks completed on-time (vertical axis) examining the effects
probabilistically dropping tasks, isolated from deferring. The horizontal axis is the level
of oversubscription in tasks per period. Dropping toggle is set to 1 missed task, when
enabled. 95% confidence intervals are shown.

19k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

dropping no dropping

Figure 4.5 shows that probabilistically dropping tasks will, alone, be effective in

39

increasing the robustness of HC systems under heavy oversubscription. There is about

a fourfold increase in the percentage of tasks completing before their deadlines. This

holds true even at extreme levels of oversubscription, with only a slight reduction in

overall performance. This is attributable to the ability to recover from poor mapping

decisions that probabilistic task dropping offers to a system. Once a mapping has

proven insufficient, it is dropped, allowing resources to be used by other tasks, thereby

increasing system robustness.

4.4.5 Impact of deferring without dropping. To examine the impact of the

isolated deferring portion of the pruning mechanism in oversubscribed systems,

performance is evaluated with deferring and without, and confidence intervals are

shown at 95%. A high (19k) and an extreme (34k) level of oversubscription are tested.

Figure 4.6 shows that probabilistically deferring tasks has nearly double the

impact on system robustness than probabilistically dropping. Nearly 40% of tasks

complete on time at heavy levels of oversubscription while deferring, compared to

nearly 6% without. This makes sense, as deferring allows the system to await resources

that are likely to successfully complete tasks on time, as opposed to prematurely

scheduling the best available fit. The performance of deferring compared to dropping

suggests that it is of greatest benefit to prevent bad mappings, but when unavoidable,

or when circumstances change, responding to bad mappings will also help maximize

system robustness.

4.4.6 Impact of level of oversubscription. As a suitable pruning threshold

and the proper toggle value have been found in the previous experiments, it remains

40

Figure 4.6. Percentage of tasks completed on-time (vertical axis) examining the effects
of probabilistic deferring isolated from task dropping. The horizontal axis is the level of
oversubscription in tasks per period. PAMND has no dropping enabled. 95% confidence
intervals are shown.

19k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

PAM PAMND

necessary to verify the performance of PAM (using those identified configurations)

under varying oversubscription levels. An additional goal is to learn how PAM performs

with respect to other mapping heuristics under lighter and heavier oversubscription

levels. Accordingly, this experiment examines the effect of oversubscription level on

system robustness when different mapping heuristics are in place. For this experiment,

the pruning threshold is set to 75%, and the dropping toggle is set to 1.

In this experiment, shown in Figure 4.7, the horizontal axis shows the arrival

41

rate of tasks. Higher arrival rates indicate higher level of oversubscription. As 19k was

the oversubscription level of other experiments, a lower level of oversubscription (9k

and 14k) and two higher oversubscription levels (24k, 29k, and 34k) are evaluated

herein. The lower bound of 9k is chosen because of the nearly 100% of on-time

completions. The vertical axis shows the robustness of the system in terms of number

of tasks meeting their deadlines within a time-frame. This is different than the previous

use of completion percentage, as the number of tasks better shows the effects of

heuristics under varying workloads.

Figure 4.7. Number of tasks meeting their deadlines (vertical axis) examining the
impact of different task arrival rates. Dropping toggle is set to 1 missed task. Pruning
threshold is set to 75%. The horizontal axis is the level of oversubscription in tasks per
period.

9k 14k 19k 24k 29k 34k
Task Arrival Rate (oversubscription level)

0

50

100

150

200

250

300

350

400

Ta
sk

s C
om

pl
et

e
Be

fo
re

 D
ea

dl
in

e

MOC MM MMU MSD PAM

Figure 4.7 shows that when there is little-to-no oversubscription, while PAM

does perform better than the other tested heuristics, the difference is not that great. As

the level of oversubscription increases, heuristics that attempt to minimize deadline

42

misses (MSD and MMU) begin to perform drastically worse, whereas heuristics that

attempt to maximize on-time completions or minimize completion time (PAM, MOC,

and MM) do not suffer the same fate of zero on-time completions at high levels of

oversubscription. As the oversubscription rises, MM, MOC, and PAM each find their

steady state of on-time completions, and their performance is in that order. PAM

outperforms MOC by 75%, and doubles the performance of MM. This is due to PAMs

ability to defer mapping tasks that are likely to be dropped when faced with higher

levels of oversubscription, coupled with aggressively dropping tasks that are unlikely to

succeed, allowing for those tasks, most likely to succeed, to execute, resulting in a

maximized system robustness.

4.5 Summary

This chapter shows that for a given oversubscribed heterogeneous system there

is a probability at which a task is not worth executing. It shows that by deferring the

mapping of tasks who are estimated to be below that threshold, or by dropping queued

or executing tasks that have dropped below that threshold, the overall number of tasks

to successfully complete in a system goes up. It shows this by creating and testing a

Pruning Aware Mapper (PAM), and shown its effectiveness versus other benchmark

heuristics at a variety of levels of oversubscription. In the next chapter, the benefits of

applying the deferring and dropping mechanisms from the Pruner to existing batch and

immediate mode heuristics are examined.

43

Chapter 5: Applying Probabilistic Pruning to Existing Mapping Heuristics

In the previous chapter, a Pruning Aware Mechanism PAM is developed and

tested to show the effectiveness of probabilistic pruning in increasing the robustness of

heterogeneous computing systems. The focus of this chapter is examining the

effectiveness of pruning as a plug-in addition to existing scheduling heuristics. The first

experiments are concerned with the batch mode heuristics used in Chapter 4. The final

experiment examines the effect of probabilistic dropping on simpler immediate mode

heuristics.

5.1 Overview

Probabilistic pruning has, as yet, been tested in the guise of PAM, the Pruning

Aware Mapper. While new and improved mapping methods are important, perhaps the

idea of replacing the scheduling heart of an HC system completely is an idea that will

fail to gain traction. To that end, the components that make up PAM, the deferring

and the dropping portions of the probabilistic task pruner should be proven effective in

improving the robustness of a variety of currently used mapping heuristics. Most of

these systems use batch mode heuristics (described in Section 3.3.1). Some, however use

immediate mode heuristics (described in Section 3.3.1), and these shall also be examined.

As a final point in this chapter, a series of tests are run on homogeneous distributed

computing scheduling heuristics to investigate the benefits of probabilistic pruning

therein. The heuristics are described in 3.3.3.

5.1.1 Experimental overview. A series of job simulations were run using the

Louisiana Optical Network Infrastructure (LONI) Queen Bee 2 HPC system [10]. For

44

each set of tests, for each examined parameter, 30 workload trials are performed using

different task arrival times built from the same arrival rate and pattern, and the mean

and 95% confidence interval of the results is examined.

Three conventional baseline batch mode mapping heuristics are evaluated

against each workload trial to study how they behave when equipped with part of, or

all of, probabilistic pruning. When equipped with deferring, the heuristic is noted with

a “-D”, when equipped with all of pruning, it is noted with a “-P”. Of particular

interest is the impact of: (A) probabilistic deferring only; (B) probabilistic dropping

only; (C) both dropping and deferring tasks probabilistically. Each of these experiments

is tested at different levels of oversubscription (the task arrival rate).

Each experiment is a set of 30 workload trials, consisting of 800 tasks per trial.

Each of the experiments investigates extreme levels of oversubscription (an arrival rate

of 19k tasks per period) where very few tasks complete successfully using scalar

expectation-based heuristics without pruning, such as MM, MMU, and MSD. Each

machine in the HC system has a machine-queue size of six (6), counting the executing

task. For each of the mapping heuristics examined, the overall system robustness is

calculated, which is the percentage of tasks completed before their deadline (the

vertical axis in the figures of this section).

5.2 Performance Evaluation of Batch Mode Heuristics

As in the previous chapter, at each mapping event, before the mapping heuristic

is invoked, if the system is sufficiently oversubscribed, the Pruner comes to play and

drops from machines the tasks with low chance of success. Then, the heuristic is

45

invoked and determines the best mapping for tasks in the batch queue. Prior to

assigning the tasks to machines, the tasks with low chance of success are deferred (i.e.,

not assigned to machines) and returned to the batch queue to be considered during the

next mapping events. The heuristics used are explained in Section 3.3.1.

5.2.1 Effect of probabilistic deferring on system robustness. This

experiment examines the effect of adding probabilistic deferring to batch mode

heuristics on system robustness at varying oversubscription levels. For this experiment

there is no probabilistic dropping, only deferring, or not.

The vertical axis shows the robustness of the system in terms of percentage of

tasks meeting their deadlines.

Figure 5.1 shows that at high levels of oversubscription (the left collection of

bars), deferring increasing the robustness of systems using MM, MSD, and MMU from

single digits to more than 20%. These same heuristics at extreme levels of

oversubscription (the right collection of bars) are unable to map any tasks to

completion, but when deferring is added, are able to attain nearly 20% robustness in

the face of such oversubscription. This is accountable to system deferring tasks until

machines with high enough affinity become available to complete a task. By preventing

the use of machines for tasks they are unsuited to, they are kept ready to execute tasks

that they are suited to, thereby increasing the robustness of the system as a whole.

5.2.2 Effect of probabilistic dropping on system robustness. This

experiment examines the effect of adding probabilistic dropping to batch mode

heuristics on system robustness at varying oversubscription levels. For this experiment,

46

Figure 5.1. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of deferring tasks. The horizontal axis is the level of oversubscription in tasks per
period.

19k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

MM
MM-D

MSD
MSD-D

MMU
MMU-D

the pruning threshold is set to 75%, and the dropping toggle is set to 1.

The vertical axis shows the robustness of the system in terms of percentage of

tasks meeting their deadlines.

Figure 5.2 shows an increase in the number of tasks completing before their

deadline when using probabilistic task dropping. To engage dropping after a single

dropped task results in more than quadrupling the robustness of the system in

conventional task mapping heuristics such as MM, MSD, and MMU. Giving a system

the ability to adjust to changing circumstances results in powerful increases in

47

Figure 5.2. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of dropping tasks. Pruning threshold is set to 75%. Horizontal axis shows the
dropping toggle in terms of the number of tasks missing their deadline between mapping
events needed to engage pruning.

0 1 no dropping
Dropping Toggle

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

MM MSD MMU

robustness. Finally, when engaging the dropping system at every mapping event, the

overall system robustness increases even more, compared to only engaging after a task

misses its deadline. This is accountable to the effective forgiveness for low-affinity

mappings that task-dropping provides, by removing low-probability tasks from the

queues and processors, allowing more likely tasks access to resources, increasing their

chance of success.

48

5.2.3 Effect of probabilistic pruning on system robustness. This

experiment examines the effect of adding both probabilistic deferring and dropping to

batch mode heuristics on system robustness at varying oversubscription levels. For this

experiment, the pruning threshold is set to 75%, and the dropping toggle is set to 1.

The vertical axis shows the robustness of the system in terms of percentage of

tasks meeting their deadlines.

Figure 5.3. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of task pruning (deferring and dropping). Dropping toggle is set to 1 missed task.
Pruning threshold is set to 75%. Horizontal axis shows the dropping toggle in terms of
the number of tasks missing their deadline between mapping events needed to engage
pruning.

0 1 no drop
Dropping Toggle

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

MM
MM-D

MSD
MSD-D

MMU
MMU-D

Figure 5.3 shows that when applying both probabilistic dropping and deferring

49

to existing heuristics, the best results in this oversubscribed system happen with using

any of the heuristics with deferring and dropping at a toggle of 0 missed tasks. For all

heuristics, both dropping and deferring together result in more successful tasks then

applying either one, or the other, or none. This is a result of both waiting for machines

that offer a high probability of success, and then reacting to the changing situation as

the effects of oversubscription and compound uncertainty play out. The largest impact

for heuristics such as MSD and MMU, however, comes from deferring tasks, as these

heuristics attempt to map the tasks with the least slack between mapping time and the

task’s deadline, tending to a string of unlikely-to-succeed tasks being mapped. By

ensuring a strict threshold, these tasks are not mapped, raising the overall system

robustness.

5.3 Performance Evaluation of Immediate Mode Heuristics

In the literature, batch mode mapping heuristics are preferred due to the

increased robustness of the mappings they make, however there do exist scenarios where

immediate mode heuristics are used [6]. To improve the robustness of these systems, a

dropping mechanism can be added. For each of the tested immediate mode heuristics,

as tasks arrive they are immediately mapped to a machine in the system. The machine

queues are essentially infinite. The heuristics used are explained in Section 3.3.2.

Figure 5.4 shows that applying probabilistic dropping to immediate mode

heuristics results in increased system robustness. When dropping is engaged at every

mapping event, with such a high probability required for dropping, FCFS suffers

because the mapping it produces is of too low a robustness to survive the pruning. The

50

Figure 5.4. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of task dropping on immediate mode heuristics. Dropping toggle is set to 1 missed
task. Dropping threshold is set to 75%. Horizontal axis shows the dropping toggle in
terms of the number of tasks missing their deadline between mapping events needed to
engage pruning.

0 1 no dropping
Dropping Toggle

0

10

20

30

40

50

60

70

80

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

FCFS
KPB

MCT
MET

MR

more intelligent mapping methods (MR, KPB) showed the most benefit, as they were

less likely to perform low-probability task-machine mappings, resulting in a higher

percentage of tasks completing before their deadline. This suggests that mapping

mechanism with high confidence can benefit from a high pruning threshold, and lower

confidence mapping methods can benefit from a looser threshold.

51

5.4 Performance Evaluation of Mapping Heuristics in Homogeneous Com-

puting Distributed Systems

The focus of this thesis is heterogeneous distributed computing systems, however

many homogeneous distributed systems are in use, and it bears investigating the

impact of probabilistic pruning on them. In an attempt to improve the robustness of

these systems, both a deferring and a dropping mechanism can be added. The

heuristics used are explained in Section 3.3.3.

Figure 5.5. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of task pruning on homogeneous computing scheduling heuristics. Dropping tog-
gle is set to 1 missed task. Dropping threshold is set to 75%. The horizontal axis is the
level of oversubscription in tasks per period.

9k 14k 19k 24k 29k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

FCFS
FCFS-P

SJF
SJF-P

EDF
EDF-P

52

Figure 5.5 shows that applying probabilistic dropping to homogeneous systems

results in increased system robustness at all levels of oversubscription. As the level of

oversubscription increases, the gap in performance increases. At extreme levels of

oversubscription, where EDF produces no on-time completions and SJF produces 14%,

adding pruning can result in 18% and 20% on-time completions, respectively. This is

because, as in heterogeneous systems, the pruning mechanism allows the system to

recover from mapping tasks are are unlikely to successfully complete on time.

5.5 Summary

In this section the pruning mechanism developed in the previous chapter was

applied, in pieces and in whole, to existing batch mode heuristics. Immediate mode

heuristics were also tested with probabilistic dropping, showing an increase in system

robustness. The benefits of probabilistic deferring and dropping can be bolted on to

existing heuristics, thereby maximizing the number of successful tasks in the

oversubscribed system as a whole. In the next chapter, ways to increase the

effectiveness of PAM are developed, such as decoupling the dropping and deferring

thresholds in the pruner, and other options and facets of the system are explored, such

as fairness amongst task types and cost considerations.

53

Chapter 6: Advanced Pruning: Decoupling Dropping and Deferring

While the performance of probabilistic pruning has been shown to be effective,

the method operates in a static, system-wide fashion. For every task in the system, in

each case, the same probability is used to make decisions. Whether it is to defer a task

from mapping, or to drop a currently running, or queued task, one probability is used

for comparison.

The conditions to engage dropping (i.e., passing a certain discreet threshold of

dropped tasks between mapping events) is only one possible method. In this chapter, a

schmitt-trigger like mechanism for engaging task-dropping is explored, as is the effect of

changing the weight of missed-deadline history in engaging the dropping mechanism.

The following are examined:

• Decouple the probability used to defer mapping tasks from that used to drop

tasks.

• Test the effectiveness of a per-task, dynamic, pruning threshold.

• Examine less-sensitive ways to engage the Pruner.

• Attempt to mitigate unfairness to task-types caused by the Pruner.

• Explore the costs of using PAM vs other heuristics

6.1 Experimental Overview

A series of job simulations were run using the Louisiana Optical Network

Infrastructure (LONI) Queen Bee 2 HPC system [10]. For each set of tests, for each

54

examined parameter, 30 workload trials are performed using different task arrival times

built from the same arrival rate and pattern, and the mean and 95% confidence interval

of the results is examined.

Each experiment is a set of 30 workload trials, consisting of 800 tasks per trial.

Each of the experiments investigates extreme levels of oversubscription where very few

tasks complete successfully using conventional scalar expectation-based heuristics, such

as MM, MMU, and MSD. Each machine in the HC system has a machine-queue size of

six (6), counting the executing task. For each of the experiments, unless otherwise

noted, the performance metric is the overall robustness of the system, which is the

percentage of tasks completed before their deadline (the vertical axis in the figures of

this section).

6.2 Decoupled Deferring and Dropping

For the Pruner introduced in Chapter 4, a single threshold is used to decide

whether to map a task with a system, or to defer, as well as to decide whether to drop

a mapped task from its machine (i.e., deferring and dropping). Mapping a task with a

robustness lower than the threshold required to prevent dropping means that unless a

task is dropped ahead of that mapped task, it will be dropped during the next

engagement of the task dropper. As shown in the section on Pruning Threshold

Awareness in Chapter 4, this leads to poor performance. This leads directly to the idea

that requiring a higher threshold to map tasks than to drop tasks will be beneficial to

the robustness of the system, as the Pruner will wait for more robust mapping pairs,

and will have some level of slack between the requirements to map a task, and the

55

threshold required to prevent dropping a task.

Figure 6.1. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of different deferring and dropping thresholds. Dropping toggle is set to 1 missed
task. Horizontal axis shows the deferring threshold. Dropping threshold is denoted by
line color

40 60 80 100
Defer Threshold

20

25

30

35

40

45

50

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

25% 50% 75%

A small constant is added to the dropping threshold when considering whether

to defer a task (e.g., a dropping threshold of 50% would require 55% robustness to map

a task to a machine). To test this, three dropping thresholds (25%, 50%, and 75%) are

examined in an experiment increasing the modifier on each by 5% until the deferring

threshold becomes 90%. This is done at an extreme level of oversubscription.

56

6.2.1 Performance evaluation of decoupled thresholds. Figure 6.1 shows

that using a higher deferring threshold than dropping threshold leads to better system

robustness, up to a point. For the case of a 25% dropping threshold, there is an

inflection point after which increasing the deferring threshold leads to a decrease in

robustness. The results are difficult to judge between differnt dropping thresholds, as

the difference in results lack statistical significance at 30 trials. The inflection point of

the lower dropping threshold suggests that while decoupling the two thresholds can be

beneficial, too much decoupling with a low dropping threshold can cause negative

consequences, as this can allow tasks to continue using resources past the point when

they would best be dropped. The data points to using a 50% or 75% dropping

threshold and a 75%-90% deferring threshold under this level of extreme

oversubscription, but more trials need to be run in order to see significant difference

within the confidence of the mean.

6.3 Dynamic Per-Task Dropping Threshold

When it is time to consider whether a task should be probabilistically dropped,

the Pruner discussed in Chapter 4 treats all tasks the same. The probability of

completion on time is calculated, checked against the pruning threshold, and then

dropped or not, accordingly. However, not all tasks have the same effects on the

probability of on-time completion for the tasks behind them in queue. This can be

taken into account to make the best decision about which tasks get to stay and which

are dropped. When convolving the PMFs of tasks, aside from the probability of on-time

completion, the two task-level characteristics that impact the effect of a given task on

57

the probability of those tasks behind it are the position of the task in queue, and the

shape of its PMF.

The closer a task is to execution, the more tasks are affected by its completion

time. With a queue size of six, an executing task affects the completion time of five

tasks, where the execution time of a task at the end of the queue affects no tasks. The

closer a task is to execution, the more tasks affected by the completion time of a task,

the higher the robustness threshold for dropping.

Using the skewness and queue position, the system can adjust the probability

threshold for dropping a task dynamically, for each task. Ideally this will allow more

tasks to complete before their deadline, leading to a higher HC system robustness.

−s× β
j + 1

Calculating the normalized skewness of a task is performed by the formula:

S =

√
N(N − 1)

N − 2
×

∑n
i=1 (Yi − Ȳ)3/N

σ3

This dynamic adjustment of the required probability is done only in the

dropping stage of the Pruner. When it comes to deferring tasks, the position of the task

is always the same (i.e., the tail of the queue), and it is too early to consider the shape

of the tasks PMF, as there are, as yet, no tasks behind it in queue.

6.3.1 Performance evaluation of per-task dynamic pruning threshold.

Figure 6.3 shows that with this task arrival list, in this system, for these trials,

the per-time thresholds result in no statistical difference in robustness. The machines

and tasks in this thesis come from benchmarks, which coupled with the arrival rates

58

Figure 6.2. A demonstration of three types of skews’ effects on CTD convolutions

2 43

.0625

.375
.25

65

.0625

.25

1 32

.25 .25

.50

1 32

.25 .25

.50

.6875 robust.75 robust

* =
(a) No Skew

1 32

.60

.15
.25

2 43

.0375

.400

.225

65

.0625

.275

1 32

.25 .25

.50

.6625 robust.75 robust

* =
(b) Left Skew

2 31

.25 .25

.50

2 43

.125

.3125.3125

65

.0625

.1875

1 32

.25 .25

.50

.75 robust.75 robust

* =
(c) Right Skew

59

Figure 6.3. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of a per-task dropping threshold. Each bar shows a different β value (the weight
of the dynamic threshold). Dropping toggle is set to 1 missed task. Pruning threshold is
set to 75%. The horizontal axis is the level of oversubscription in tasks per period.

19k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

.05

.1

.15

.2

.25

.3

.35

.4

.45

.5

and patterns used, result in PMFs for task-machine mappings with performance

characteristics that hide the potential effectiveness of such a system. To more deeply

analyze the potential benefits of a per-task dropping threshold, further research needs

to be done using carefully crafted tasks/machines/arrival patterns.

6.4 Interpreting the Dropping Toggle

Under certain circumstances, it is conceivable that a system reaching the

dropping-toggle value only signals an acute spike in task-arrival, and not an ongoing

60

state of oversubscription. To test this, a Pruner is developed that does not react to

temporary spikes in deadline misses, but only to sustained oversubscription. By using a

weighted average of deadline misses, the Pruner will be slower to engage, and slower to

disengage.

To judge the oversubscription state in the system, the Pruner operates based on

moving weighted average number of tasks that missed their deadlines during the past

mapping events. Let dτ denote the oversubscription level of the HC system at mapping

event τ ; and mτ denote the number of tasks missing their deadline since the past

mapping event. Parameter λ is tunable and is determined based on the relative weight

assigned to the past events.

dτ = mτ × λ+ dτ−1 × (1− λ)

Another potential concern is minor fluctuations about the toggle switching the

dropping off and then back on. To prevent minor fluctuations around a threshold to

affect the state of a switch or toggle, circuit designers use employ a Schmitt Trigger to

smooth things out. The mechanical details of such a physical device are outside the

scope of this thesis, but the concept of requiring different values as a trigger based on

trigger state is tested in this section.

The default toggle is tested against a schmitt-style toggle, and the results are

compared at different arrival rates.

6.4.1 Performance evaluation of different dropping toggle

interpretations. Figure 6.4 shows that, for the effect of λ on robustness, as more

weight is given to the history of tasks missing their deadline, the number of tasks in the

61

Figure 6.4. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of toggle-history and minor fluctuations about the toggle. Dropping toggle is set
to 1 missed task. Pruning threshold is set to 75%. Horizontal axis shows the λ value
(weight of current vs. historical data). λ of NULL means no history is used.

.1 .2 .3 .4 .5 .6 .7 .8 .9 NULL
0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
)

PAM PAMS

system completing on time is decreased. The highest percentage of successful tasks

occurs when the least weight is given to the history of deadline misses, when the

current number of missed tasks, alone, is used to decide whether to engage the dropping

mechanism. This is due in part to the steady nature of task-arrival in the system, such

that when one task fails to meet its deadline, there is a high chance that more

unsuitable tasks remain in the machine queues and executing on the machines,

necessitating dropping.

62

The mean of the results also show that having a lower threshold to turn dropping

off, once engaged, also results in more tasks successfully completing overall for each

value of λ used, though the difference at some λ values is of no statistical significance at

this number of trials. This shows that under high levels of oversubscription, the best

results come from taking immediate action when tasks miss their deadline, and then a

steady application of dropping tasks probabilistically until the situation is decidedly

controlled (i.e., until the lower bound of the the schmitt-trigger is reached).

6.5 Evaluating Fairness among Task Types

When probabilistically dropping tasks, it is possible, and in some situations

likely, for the system to favor smaller tasks, as those shorter tasks usually have a higher

probability of completion within their deadline. In some systems (such as live video

streaming) it is reasonable that dropping all long tasks of a certain type would be

detrimental to the system (such as if all resizing happened, but conversion between

encoding formats was deemed to risky to be executed).

As an initial investigation into engendering fairness amongst the types of tasks

completed by the system, a method to track the dropping of task types, and to adjust

the required probability for tasks is described. A modifying value is tracked for each

task type in a system. Each time a task is dropped, the corresponding value is

increased, and each time a task completes, its corresponding value is decreased. By

subtracting this value from the threshold for pruning (both in deferring and dropping),

the pruning mechanism attempts to create a more fair distribution of completed tasks

by allowing certain tasks to be mapped or to be protected from dropping.

63

For this experiment, the percentage of each task type completing on time is

tracked. The objective is to minimize the variance among these. The overall robustness

of the system is also tracked for each, to understand the cost in robustness that fairness

requires in these circumstances.

Figure 6.5. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of different levels of task-fairness adjustment. Dropping toggle is set to 1 missed
task. Pruning threshold is set to 75%. Horizontal axis shows percentage added to the
tracked per-task pruning threshold when tasks of that type fail to complete on time.
Each bar is labeled with the system robustness under that fairness implementation.

0.0 5.0 10.0 15.0 20.0 25.0
Fairness Factor

0

2

4

6

8

10

Va
ria

nc
e

Be
tw

ee
n

Ta
sk

 T
yp

es
 C

om
pl

et
ed

 (%
) 43.19

33.89
32.79
32.62

31.68
31.53

6.5.1 Performance evaluation of fairness technique. Figure 6.5 shows

that while some tiny measure toward fairness can be attained, the result is fewer tasks

completed overall. Using the most conservative system implemented (a 5% modifier)

64

resulted in a 25% reduction in overall system robustness (from 40% to 30%), while

reducing variance in completed tasks from 5% to 2%. This resultant reduction in

robustness is because, as deferring tasks is the most significant contributor to the

success of the system, deferring fewer tasks in an attempt at fairness results in fewer

tasks successfully reaching their deadline overall. Further increasing the amount of the

fairness modifier results in a significant increase in fairness while resulting in much

smaller reductions in overall robustness.

6.6 Costs Comparison of PAM and Other Mapping Heuristics

The focus of this thesis is maximizing on-time completions of tasks in a

heterogeneous distributed computing system, however there are other metrics of success

to consider; one of these is cost. Time spent computing tasks that fail to successfully

complete is a waste of computing resources that, in addition to leading to compounding

deadline misses, leads to wasted use of resources which have costs associated (e.g.,

electricity and cooling). For certain scenarios (i.e., cloud computing) this can be

counted in dollars (or your currency of choice).

To investigate this, pricing from Amazon Web Services VMs has been mapped

to the machines in the simulation. Each machine’s usage time is tracked. The price

incurred to process the tasks is divided by the percentage of on-time tasks completed to

give a normalized view of other costs of the system.

6.6.1 Cost evaluation of probabilistic dropping. Figure 6.6 shows that

PAM incurs a smaller cost per completed task than other heuristics when in an

oversubscribed state. When the arrival rate is at 9k, PAM performs a little worse, as in

65

Figure 6.6. Percentage of tasks meeting their deadlines (vertical axis) examining the
impact of probabilistic pruning on costs in an HC cloud system at differing levels of
oversubscription. Dropping toggle is set to 1 missed task. Pruning threshold is set to
75%. The horizontal axis is the level of oversubscription in tasks per period.

9k 14k 19k 24k 30k 33k
Task Arrival Rate (oversubscription level)

0

500

1000

1500

2000

2500

3000

Co
st

 /
Pe

rc
en

t T
as

ks
 C

om
pl

et
ed

 O
n

Ti
m

e

MOC
MM

MSD
MMU

PAM

an effort to ensure the highest success rate, the best machines are always chosen (i.e.,

often the most expensive machines), resulting in the same number of tasks completed

for a higher cost. However, as the arrival rate increases, the relative cost of PAM

decreases. At extreme levels of oversubscription, the difference between heuristics such

as MMU and MSD and PAM become unchartable, as MSD and MMU both prioritize

tasks least likely to succeed, whereas PAM prioritizes those most likely to succeed. In

the highest tested levels of oversubscription, MMU performed so poorly that zero tasks

66

completed in any trial, resulting in a cost of zero. While previous tests have shown

PAM to be outperforming other heuristics in terms of robustness in the face of

oversubscription, these results show that in most levels of oversubscription, the benefits

are realized in dollar cost as well, due to not processing tasks needlessly.

6.7 Summary

In this chapter, decoupling the deferring and dropping threshold is shown to

have a significant positive effect on the number of successfully completed tasks. In this

study, toggling task dropping on and off works best when done decisively. While

moving toward fairness amongst task types, in regards to dropping tasks, is possible,

doing so comes at the drastic reduction in tasks completing on time overall. Results

show that while there is some slight variation in system robustness with the dynamic

per-task threshold, it is not statistically significant. Finally, the cost-benefit of using

the Pruning Aware Mapper become more pronounced as the level of oversubscription

increases. The next chapter, the last, will offer conclusions and future work.

67

Chapter 7: Conclusion and Future Works

This chapter summarizes the research and findings of this thesis. Additionally,

those further research topics that emerged during the course of this research but were

not discussed in this thesis are discussed. The goal of this research was to evaluate the

impact of pruning tasks with low probability of success on the robustness of an HC

system.

7.1 Discussion

In chapter 4, a probability was determined that can be used by mapping

heuristics in oversubscribed HC systems to either map or defer a task. It was also

determined how pruned tasks should be treated based on oversubscription level of the

system. Specifically, it was shown that tasks with low chance of success should be

deferred (be given another chance for more favorable mapping in the next scheduling

event). Alternatively, when the system is sufficiently oversubscribed, the tasks with low

chance of success must be dropped to alleviate the oversubscription and increase the

probability of other tasks succeed. Finally, a mapping method was developed that

operates based on the probabilistic pruning of the tasks. Evaluation results revealed

that PAM, the pruning-aware mapper was successful in increasing the number of tasks

meeting their deadline in a simulated oversubscribed system with probabilistic task

dropping. Even with no probabilistic dropping in the system, the ability to defer tasks

during the mapping event led to a 40% increase in robustness compared to the baseline

heuristics. Results also show that, probabilistically dropping tasks can allow an

oversubscribed system to recover from otherwise-poor mapping events made by

68

heuristics with no awareness of the pruning mechanism, and increases the number of

tasks that meet their deadline in a system. This success becomes especially pronounced

in more extreme levels of oversubscription.

In chapter 5, probabilistic deferring and dropping mechanisms from chapter 4

were applied to mapping other dynamic mapping heuristics. It was shown that both

forms of pruning are beneficial as modules that can be added to an existing system.

Evaluation results show that immediate-mode heuristics can benefit from probabilistic

dropping, as it allows them the ability to recover from quick mapping decisions that

turn out to not be very robust. It was also shown that when using a single pass,

immediate mode, heuristic based on robustness (MaxRobust), adding a pruner to the

machine queues can enable it to perform on par with batch mode heuristics such as

MinMin, even under extreme levels of oversubscription.

In chapter 6, further refinements were made to the pruning mechanism: the

deferring and dropping thresholds were decoupled. This allowed tasks to be deferred

requiring a higher probability to schedule, and a lower to drop, resulting in more tasks

completing on-time in the system. Additionally, a method for dynamically adjusting

the robustness threshold for dropping tasks based on per-task characteristics was

designed and tested(e.g., place in machine queue, and shape of CTD). Initial results did

not result in any statistically significant increase in the successful completion of tasks,

and further work must be done. In an attempt to prevent certain task types to be

starved from the system, a fairness-enabling mechanism was proposed and investigated.

By allowing task types that were dropped from the system to have leniency when it

69

comes to dropping and deferring tasks did result in a more uniform distribution of task

types completing. Though effective in reducing the variance among the types of tasks

completing on time, that fairness came at the cost of greatly reduced tasks completing

on time in the system as a whole. A schmitt-trigger like toggle was created to smooth

out the engagement of the task-dropping mechanism, as well as using a moving average

as a representation of the level of oversubscription. The schmitt-trigger approach to

toggling led to an increase in system robustness, however incorporating the history of

tasks meeting their deadline in any fashion resulted in decreased system robustness.

Finally, the cost-benefits of using the Pruning Aware Mapping system were examined

by comparing the costs / percent of tasks completed on time against other benchmark

heuristics. While pruning tasks can result in higher costs when undersubscribed, the

cost benefits become apparent and grow as the oversubscription level rises.

7.2 Future Works

7.2.1 Dynamic per-task dropping threshold via PET and workload

synthesis. Though the results of dynamic per-task dropping thresholds did not show

statistically significant differences from a system-wide threshold, there is much room for

exploration in this area. Carefully crafting a variety of PET matrix PMFs to explore

different types of inconsistently heterogeneous systems is the first step. Another factor

to consider is the pattern of task arrival. An HC system whose tasks arrive in a

low-varying rate will respond to dropped tasks differently than an HC system whose

tasks arrive in discrete bursts. Understanding the effects of a dynamic per-task

probabilistic task dropping threshold will require examination of these and other

70

characteristics of the system.

7.2.2 Tasks with priority. In this thesis, all tasks are droppable, and each

task is exactly as important as any other task in the system. In many HC systems, this

is not the case. A mechanism to account for and weigh this priority will need to be

developed. A future study will be necessary to investigate the effect of probabilistic

task dropping on HC systems which implement a task priority system, in which the

completion of some tasks are more valuable than others, and some tasks must complete

(cannot be dropped).

7.2.3 Preemption of running tasks. This work is concerned with tasks that

can be dropped in an attempt to maximize system robustness. A future plan is to

extend the probabilistic approach to consider the saving of task-state and preemption of

tasks. This would start with an examination of preemption’s impact on the convolution

process, and require an estimation of time-to-preempt to simulate preemptable tasks,

and the effect on tasks meeting their deadlines.

7.2.4 Approximate computation. Not all tasks require full and accurate

completion. A future avenue of research is to add a method to approximately compute

those tasks that are unlikely to meet their deadlines, instead of dropping them from the

system. This will require the development of an additional feature of the pruning

mechanism that has an awareness of approximate computation options, to select the

appropriate computation method, in an inconsistently heterogeneous system.

7.2.5 Defer pool for immediate mode heuristics. Because of the increase

in the performance added by probabilistically dropping tasks when using immediate

71

mode heuristics, and the positive impact of deferring task-machine mapping until

high-affinity machines become available, a way to allow immediate mode heuristics to

be deferred should be investigated. Some sort of pool or deferred queue can be added to

the immediate mode heuristics to test the effect of probabilistically deferring using the

simpler heuristics.

7.2.6 Optimizing implementation and analyzing overhead of pruning

mechanism. Convolving probability mass functions is not a trivial operation.

Capturing this time-cost and integrating it into the calculations will help to better

understand how this mechanism can be applied to maximize system robustness.

Optimizing this procedure will also make running experiments easier, as the process is

time-consuming, and implementation optimizations have been outside of the scope of

this thesis.

7.2.7 Mitigating convolutional complexity with growing machine

queue sizes. In this work, the machine-queue sizes for batch mode heuristics was kept

to a relatively low size of 6, including the executing task. This was done to reduce the

compound uncertainty resulting from long queue times, but this can result in tasks

remaining in the batch queue for a long time, potentially creating a bottleneck in

constantly re-calculating deferring probabilities. A way to approximate the calculations,

or perhaps memoize their results until changes in state require recalculation, or

otherwise deal with the computational time will be necessary to increase the queue sizes

past a certain point.

72

Bibliography

[1] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Representing task
and machine heterogeneities for heterogeneous computing systems,” Tamkang
Journal of Science and Engineering, vol. Special Tamkang University 50th
Anniversary Issue, 3, no. 3, pp. 195–208, Nov. 2000, invited.

[2] M. Zahran, “Heterogeneous computing: Here to stay,” Queue, vol. 14, no. 6, p. 40,
2016.

[3] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, “Energy-efficient
scheduling for moldable real-time tasks on heterogeneous computing platforms,”
Journal of Systems Architecture, vol. 74, pp. 46–60, 2017.

[4] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “A study of
heterogeneous computing design method based on virtualization technology,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 4, pp. 86–91, 2017.

[5] Amazon, “Amazon Web Sevices (AWS) Instance Types,” 2018. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/

[6] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic
mapping of a class of independent tasks onto heterogeneous computing systems,”
Journal of Parallel and Distributed Computing (JPDC), vol. 59, no. 2, pp.
107–131, Nov. 1999.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A comparison of
eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,” Journal of Parallel and Distributed
Computing (JPDC), vol. 61, no. 6, pp. 810–837, June 2001.

[8] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-efficient and
robust on-demand video stream transcoding using heterogeneous cloud services,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 29, no. 3, pp.
556–571, Mar. 2018.

[9] Z. Zong, R. Ge, and Q. Gu, “Marcher: A heterogeneous system supporting
energy-aware high performance computing and big data analytics,” Big Data
Research, vol. 8, pp. 27–38, 2017.

[10] Louisiana Optical Network Infrastructure, “LONI Resources QB2,” 2018. [Online].
Available: http://hpc.loni.org/resources/hpc/system.php?system=QB2

[11] NextPlatform, “Heterogeneous Supercomputing on Japan’s Most Powerful
System,” 2018. [Online]. Available: https://www.nextplatform.com/2017/08/28/
heterogeneous-supercomputing-japans-powerful-system/

73

https://aws.amazon.com/ec2/instance-types/
http://hpc.loni.org/resources/hpc/system.php?system=QB2
https://www.nextplatform.com/2017/08/28/heterogeneous-supercomputing-japans-powerful-system/
https://www.nextplatform.com/2017/08/28/heterogeneous-supercomputing-japans-powerful-system/

[12] J. Smith, V. Shestak, H. J. Siegel, S. Price, L. Teklits, and P. Sugavanam, “Robust
resource allocation in a cluster based imaging system,” Parallel Computing,
vol. 35, no. 7, pp. 389–400, July 2009.

[13] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic robustness
metric and its use for static resource allocations,” Journal of Parallel and
Distributed Computing (JPDC), vol. 68, no. 8, pp. 1157–1173, Aug. 2008.

[14] M. A. Salehi, J. Smith, A. A. Maciejewski, H. J. Siegel, E. K. Chong, J. Apodaca,
L. D. Briceño, T. Renner, V. Shestak, J. Ladd et al., “Stochastic-based robust
dynamic resource allocation for independent tasks in a heterogeneous computing
system,” Journal of Parallel and Distributed Computing (JPDC), vol. 97, pp.
96–111, Nov. 2016.

[15] X. Li, M. A. Salehi, and M. Bayoumi, “VLSC: Video Live Streaming Using Cloud
Services,” in Proceedings of the 6th IEEE International Conference on Big Data
and Cloud Computing Conference, ser. BDCloud ’16, October 2016, pp. 595–600.

[16] ——, “High performance on-demand video transcoding using cloud services,” in
Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ser. CCGrid ’16. IEEE, 2016, pp. 600–603.

[17] P. Liu, X. Li, J. J. Qu, W. Wang, C. Zhao, and W. Pichel, “Oil spill detection with
fully polarimetric uavsar data,” Marine Pollution Bulletin, vol. 62, no. 12, pp.
2611–2618, 2011.

[18] L. Szalinski, L. Abdulkareem, M. Da Silva, S. Thiele, M. Beyer, D. Lucas, V. H.
Perez, U. Hampel, and B. Azzopardi, “Comparative study of gas–oil and gas–water
two-phase flow in a vertical pipe,” Chemical engineering science, vol. 65, no. 12,
pp. 3836–3848, 2010.

[19] M. Fingas and C. E. Brown, “Oil spill remote sensing: a review,” in Oil spill
science and technology. Elsevier, 2011, pp. 111–169.

[20] W. Ma, L. Cao, L. Yu, G. Long, and Y. Li, “Gpu-fv: Realtime fisher vector and its
applications in video monitoring,” in Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval. ACM, 2016, pp. 39–46.

[21] U. Y. Ogras and R. Marculescu, “Analysis and optimization of prediction-based
flow control in networks-on-chip,” in Modeling, Analysis and Optimization of
Network-on-Chip Communication Architectures. Springer, 2013, pp. 105–133.

[22] M. Airouche, L. Bentabet, and M. Zelmat, “Image segmentation using active
contour model and level set method applied to detect oil spills,” in Proceedings of
the World Congress on Engineering, vol. 1, no. 1. Lecture Notes in Engineering
and Computer Science, 2009, pp. 1–3.

74

[23] B. Khemka, R. Friese, L. D. Briceo, H. J. Siegel, A. A. Maciejewski, G. A. Koenig,
C. Groer, G. Okonski, M. M. Hilton, R. Rambharos, and S. Poole, “Utility
functions and resource management in an oversubscribed heterogeneous computing
environment,” IEEE Transactions on Computers, vol. 64, no. 8, pp. 2394–2407,
Aug 2015.

[24] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel, G. A. Koenig,
S. Powers, M. Hilton, R. Rambharos, and S. Poole, “Utility driven dynamic
resource management in an oversubscribed energy-constrained heterogeneous
system,” in Proceedings of the 28th IEEE International Parallel & Distributed
Processing Symposium Workshops, ser. IPDPSW ’14, May 2014, pp. 58–67.

[25] ——, “Utility maximizing dynamic resource management in an oversubscribed
energy-constrained heterogeneous computing system,” Sustainable Computing:
Informatics and Systems, vol. 5, pp. 14–30, Mar. 2015.

[26] S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous computing
systems,” The Journal of Supercomputing, vol. 73, no. 6, pp. 2313–2338, 2017.

[27] E. Coffman and J. Bruno, Computer and Job-shop Scheduling Theory. New York,
NY: John Wiley & Sons, 1976.

[28] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent
tasks on non-identical processors,” Journal of the ACM, vol. 24, no. 2, pp.
280–289, Apr. 1977.

[29] K. Kaya, B. Uçar, and C. Aykanat, “Heuristics for scheduling file-sharing tasks on
heterogeneous systems with distributed repositories,” Journal of Parallel and
Distributed Computing (JPDC), vol. 67, no. 3, pp. 271–285, Mar. 2007.

[30] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling on
heterogeneous computing systems,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[31] Y. Chen, H. C. Liao, and T. Tsai, “Online real-time task scheduling in
heterogeneous multicore System-on-a-Chip,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 24, no. 1, pp. 118–130, Jan. 2013.

[32] Y. Lee and A. Y. Zomaya, “A novel state transition method for
metaheuristic-based scheduling in heterogeneous computing systems,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 19, no. 9, pp.
1215–1223, Sep. 2008.

[33] Y. C. Lee and A. Y. Zomaya, “Rescheduling for reliable job completion with the
support of clouds,” Future Generation Computer Systems, vol. 26, no. 8, pp.
1192–1199, Oct. 2010.

75

[34] C. Delimitrou and C. Kozyrakis, “QoS-aware scheduling in heterogeneous
datacenters with Paragon,” ACM Transactions on Computer Systems, vol. 31,
no. 4, pp. 1–34, Dec. 2013.

[35] ——, “Quality-of-Service-aware scheduling in heterogeneous data centers with
paragon,” IEEE Micro, vol. 34, no. 3, pp. 17–30, 2014.

[36] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Tetrisched: global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. ACM, 2016, p. 35.

[37] D. Machovec, S. Pasricha, A. A. Maciejewski, H. J. Siegel, G. A. Koenig,
M. Wright, M. Hilton, R. Rambharos, T. Naughton, and N. Imam, “Preemptive
resource management for dynamically arriving tasks in an oversubscribed
heterogeneous computing system,” in Proceedings of the 31st IEEE International
Parallel and Distributed Processing Symposium Workshops, ser. IPDPSW ’17, May
2017, pp. 54–64.

[38] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds,”
Future Generation Computer Systems, vol. 48, pp. 1–18, 2015.

[39] K. Li, “Performance analysis of list scheduling in heterogeneous computing
systems,” World Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 4, no. 3, pp. 484–491, 2010.

[40] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling,” in Proceedings of the 5th European conference on Computer systems.
ACM, 2010, pp. 265–278.

[41] T. W. Malone, R. E. Fikes, and M. T. Howard, “Enterprise: A market-like task
scheduler for distributed computing environments,” 1983.

[42] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. New
York, NY: Springer Science+Business Media, 2005.

[43] B. D. Young, J. Apodaca, L. D. Briceño, J. Smith, S. Pasricha, A. A. Maciejewski,
H. J. Siegel, B. Khemka, S. Bahirat, A. Ramirez, and Y. Zou, “Deadline and
energy constrained dynamic resource allocation in a heterogeneous computing
environment,” The Journal of Supercomputing, vol. 63, no. 2, pp. 326–347, Feb.
2013.

[44] A. Dogan and F. Ozguner, “Genetic algorithm based scheduling of meta-tasks with
stochastic execution times in heterogeneous computing systems,” Journal of
Cluster Computing, vol. 7, no. 2, pp. 177–190, Apr. 2004.

76

[45] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and load distribution
for multiple heterogeneous multicore server processors across clouds and data
centers,” IEEE Transactions on Computers, vol. 63, no. 1, pp. 45–58, Jan. 2014.

[46] A. Kumar and R. Shorey, “Performance analysis and scheduling of stochastic
fork-join jobs in a multicomputer system,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 4, no. 10, pp. 1147–1164, Oct. 1993.

[47] X. He, X. Sun, and G. Von Laszewski, “Qos guided min-min heuristic for grid task
scheduling,” Journal of Computer Science and Technology, vol. 18, no. 4, pp.
442–451, 2003.

[48] M. Pedemonte, P. Ezzatti, and Á. Mart́ın, “Accelerating the min-min heuristic,” in
Parallel Processing and Applied Mathematics. Springer, 2016, pp. 101–110.

[49] P. Ezzatti, M. Pedemonte, and Á. Mart́ın, “An efficient implementation of the
min-min heuristic,” Computers & Operations Research, vol. 40, no. 11, pp.
2670–2676, 2013.

77

James A. S. Gentry Bachelor of Arts, University of Massachusetts, Spring 2005; Master
of Business Administration, University of Louisiana at Lafayette, Fall 2007;
Master of Science, University of Louisiana at Lafayette, Summer 2018

Major: Computer Science

Title of Thesis: Robust Resource Allocation of Independent Tasks in Heterogeneous
Computing Systems via Probabilistic Task Pruning

Thesis Director: Mohsen Amini Salehi

Pages in Thesis: 88; Words in Abstract: 290

Abstract

In heterogeneous distributed computing system, diversity can be present both in

the computational resources and in the types of arriving tasks. In an inconsistently

Heterogeneous Computing (HC) system, different task types can have different

performance characteristics (i.e., execution times) on heterogeneous machines. A

mapping method is required to match arriving tasks with machines based on both

machine availability and performance to maximize the number of tasks meeting their

deadlines (known as robustness). In particular, for tasks with hard individual deadlines

(e.g., live video streaming tasks), those that have missed their deadlines are dropped,

as there is no value in executing them. The problem investigated in this research is how

to maximize robustness of an HC system, specifically, when it is oversubscribed. The

proposal is to prune (i.e., defer or drop) tasks with low probability of meeting their

deadlines. Pruning low-chance tasks increases the probability of other tasks meeting

their deadlines. To that end, first a model is provided to estimate the probability of

meeting deadline for each task in the presence of task dropping. Second, a pruning

mechanism is proposed to predictively defer or drop tasks in an effort to maximize the

overall robustness of the HC system. Third, a mapping method is proposed that

functions based on the pruning mechanism and improves robustness of the HC system.

Fourth, to show a broad application, the pruning mechanism is applied to other

mapping heuristics. Fifth, further development of the pruning mechanism is made from

multiple fronts to improve robustness, engender fairness amongst completed task types,

and examine the cost ramifications of using a pruning mechanism. Simulation results,

harnessing a selection of mapping heuristics, show the efficacy of the proposed pruning

mechanism can improve robustness of some oversubscribed HC system by more than

40%.

79

Biographical Sketch

James A. S. Gentry received his Bachelor of Arts in the spring of 2005 in English

from the University of Massachusetts Boston, and his M.B.A. from the University of

Louisiana at Lafayette in 2007. The son of Robert and Judith Gentry, he began his

pursuit of a master’s degree in the fall of 2017 at the University of Louisiana at

Lafayette and received a Graduate Teaching Assistantship–first helping students learn

the basics of computer science, and then helping them through the crucible of operating

systems. He completed the requirements for the degree in summer of 2018.

80

	Dedication
	Acknowledgments
	Introduction
	Motivations
	Research Problem and Objectives
	Methodology Overview
	Thesis Organization

	Survey of Related Literature
	Overview
	Task Scheduling
	Heterogeneous Computing
	Stochastic Robustness
	Dynamic Resource Allocation
	Task Dropping
	Task Deferring
	Summary

	Background
	Bayesian Statistics for Resource Allocation
	System Model Overview
	Benchmark Resource Mapping Heuristics for Heterogeneous Distributed Systems
	Heterogeneous batch mode heuristics.
	Heterogeneous immediate mode heuristics.
	Homogeneous computing scheduling heuristics.

	Evaluation Setup
	Overview.
	Generating workload to evaluate mapping heuristics.

	Summary

	Probabilistic Deferring and Dropping
	Overview
	Probabilistic Task Dropping
	Pruning-Aware Mapping Method (PAM)
	Probabilistic Pruning Performance Evaluation
	Experimental overview.
	Impact of varying pruning threshold.
	Impact of different toggles to engage task dropping.
	Impact of dropping without deferring.
	Impact of deferring without dropping.
	Impact of level of oversubscription.

	Summary

	Applying Probabilistic Pruning to Existing Mapping Heuristics
	Overview
	Experimental overview.

	Performance Evaluation of Batch Mode Heuristics
	Effect of probabilistic deferring on system robustness.
	Effect of probabilistic dropping on system robustness.
	Effect of probabilistic pruning on system robustness.

	Performance Evaluation of Immediate Mode Heuristics
	Performance Evaluation of Mapping Heuristics in Homogeneous Computing Distributed Systems
	Summary

	Advanced Pruning: Decoupling Dropping and Deferring
	Experimental Overview
	Decoupled Deferring and Dropping
	Performance evaluation of decoupled thresholds.

	Dynamic Per-Task Dropping Threshold
	Performance evaluation of per-task dynamic pruning threshold.

	Interpreting the Dropping Toggle
	Performance evaluation of different dropping toggle interpretations.

	Evaluating Fairness among Task Types
	Performance evaluation of fairness technique.

	Costs Comparison of PAM and Other Mapping Heuristics
	Cost evaluation of probabilistic dropping.

	Summary

	Conclusion and Future Works
	Discussion
	Future Works
	Dynamic per-task dropping threshold via PET and workload synthesis.
	Tasks with priority.
	Preemption of running tasks.
	Approximate computation.
	Defer pool for immediate mode heuristics.
	Optimizing implementation and analyzing overhead of pruning mechanism.
	Mitigating convolutional complexity with growing machine queue sizes.

	Bibliography
	Abstract
	Biographical Sketch

