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Chapter 1: Introduction

Serverless Computing or Function as a Service gaining more popularity as

the practical low overhead on-demand computing system. The common practice to

utilize serverless computing effectively is to break the monolithic application into

multiple micro-service [LRC+18] functions. Each user provides his/her executable

functions and the conditions to trigger them (e.g., based on a timer or upon arrival

of a web request). Once triggered, the task requests are formed, and it has to be

completed in a timely manner. The serverless cloud providers aim to provide the

illusion of such requests being executed on infinite resources and abstract users from

details of allocation and management decisions. Figure 1.1 highlights the

abstraction of serverless cloud against other more conventional types of cloud

service offering paradigms.

Figure 1.1. Serverless computing abstract the server management and configura-
tions from the users. It allow the users to focus on their function codes and task
requests without worrying about system details to get their tasks completed in a
timely manner. The system provider makes the illusion of tasks seamlessly executed
without the user’s involvement.
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From a provider’s perspective, a scheme to efficiently utilize cloud resources

is based on a central queue of arriving micro-service (henceforth, termed task)

requests with a scheduler that allocates these task requests to a elastic pool of

computing resources behind the scene. This shared computing resource approach

reduces resource start-up overhead and amortizes the spare reserve of the computing

resources. The service requests often have individual deadlines that failure to meet

them compromises the Quality of Service (QoS) expected by the end-users. The

increased number of service requests in the system and the overhead of moving data

around implies that the platform is getting busy. The need for efficient use of these

platforms is of paramount importance both for users and the cloud providers.

The fact that serverless computing users are not involved in the execution of

service requests on the shared resource pools allows the serverless cloud provider to

utilize techniques to gain extra efficiency. Specifically, approximating and reusing

techniques across various users’ requests in the serverless systems have a significant

and untapped potential that can avoid redundant computation in these systems.

The abstraction from user-managed resource allocation also allows the scheduler to

utilize heterogeneous computing resources. Different task types of various users have

different affinities (i.e., matching) with heterogeneous machines that are available in

cloud datacenters. Furthermore, each of these task types can be consistently

heterogeneous within itself. For instance, it takes a longer time to change the

resolution of 10-second video, compared to the time of a 5-second long segment.

These uncertainties pose a great demand on an efficient task scheduler to predict
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the task execution time and plan an efficient task mapping scheme.

Although large public cloud providers can supply virtually unlimited

resources, users often have budget constraints, thus, they are not allowed to lavishly

use cloud resources. Similarly, a fog computing system, deployed in a rural area, or

a private serverless computing system can fall short on elasticity and resource

scaling. Such budget or resource limitation from end users and the providers raise

the oversubscription problem on the computing resource, particularly, when there is

a surge in the requests arriving from multiple users. An oversubscribed system is

formally defined as a system that is overwhelmed with arriving requests to the

extent that there is no way to meet the deadlines of all the requests, thus, violating

end-users’ QoS.

In this dissertation, we investigate an efficient serverless computing platform

that takes advantage of serverless cloud characteristics to gain resource efficiency as

well as mitigating the side-effects of oversubscription. Such that the overall incurred

cost are minimize and the user QoS is enhanced.

1.1 Motivational Context

Our motivational application in this dissertation is an interactive media

(video, virtual reality, augmented reality, and/or audio) streaming engine that

processes media to the viewers’ personal requirements on the cloud before streaming

them to viewers [AWSZ05]. While the conventional media streaming platforms offer

a few media quality levels to fit the bandwidth or device’s specification, media
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Figure 1.2. Bird-eye view of the Serverless Multi-Media Stream Procressing Engine
we aims to develop.
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processing in interactive streaming addresses the user’s personal requirement. Each

viewer can add one or more processing services (e.g., audio translation, censoring

contents, color correction, context summarization) they want to apply to the media

they are using. Then streaming media will process and stream them to the viewer

interactively.

As shown in figure 1.2, we aims to utilize a private serverless computing

platform with heterogeneous resources. The platform allows both on-demand media

stream and live media stream processing. Both of which creates different

opportunity for optimization. On the on-demand media streaming side, it is possible

that multiple viewers request the same media to be streamed, hence, creating similar

or identical requests in the system. In particular, when the system is oversubscribed,
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the likelihood of having similar requests increases. For example, two viewers with no

special requirement using the same type of display device may request to stream the

same media with the same specifications. Alternatively, two viewers with dissimilar

display devices (e.g., different resolution and compression standard) or personal

requirements (e.g., audio translation or graphic censorship) may stream the same

video but with different specifications. The former case creates identical requests in

the system whereas the latter one creates similar requests. Both of which can be

combined into a compound request to save computing resources.

On the live media stream processing side, the computational reuse may not

be possible. However, the liveness nature of the live streaming means any media

segment that miss its deadline is no longer useful and can be disgarded. To

minimize impact to the user QoS if the system gets highly oversubscribed, certain

media processing requests must be dropped to free up the resource for other task

requests to meet their deadlines. This technique of dropping certain task requests,

in a certain cases, can also apply for on-demand stream processing. On-demand

stream processing, although naturally should not skip a media segment streaming to

the user, also allows the providers to change specification of the media during the

playback. In a case that a high-quality processed media segment cannot be obtained

in a timely manner, a backup low-quality version of the media segment is then

transmitted to the user instead. While dropping some media processing requests

and supplying the viewer with lower quality media segments can impact the user’s

QoS, this is arguably better than having a stuttering media playback. Therefore

5



this dissertation investigates the possibility of augmenting scheduling systems with

request merging and pruning mechanisms. To maintain overall QoS of multiple

users, the mechanisms should also maintain fairness across the user base. Figure 1.3

shows a simplified scheduling system for an interactive multimedia streaming

engine. In this system, task requests from multiple users are scheduled to be

processed on heterogeneous computing resources. Similar requests can be combined

and the stream can be approximated by proactively dropping (i.e., discard

processing) infeasible requests (segments).

Figure 1.3. Tasks from multiple users are sent to a shared scheduling queue to be
executed on computing resources. The time estimator and scheduler allows efficient
use of computing machines. Geometries of different shapes, color, and size represent
different processing tasks.
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1.2 Research Problem and Objectives

With the aim of constructing a cost- and QoS-efficient serverless cloud

platform for media streaming, in this dissertation, we address the following research
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problems:

1. How to predict the gain of task aggregation for a given configuration?

2. How to perform request aggregation with minimal scheduling overhead to

avoid redundant processing in a serverless platform and reduce deadline

violations in the system?

3. How to perform a lightweight task pruning for unlikely-to-succeed tasks in a

serverless platform to avoid wasting cloud resources?

4. How to design and implement a serverless media streaming system that is

both modular (hence, expandable) and efficient?

1.3 Contributions

Considering the research questions described in the previous section, the

major contributions of this dissertation are:

• Identifying potential benefits of task request merging and then developing a

resource saving prediction module.

• Proposing an efficient way of identifying potentially mergeable requests.

• Determining appropriateness and potential side-effects of aggregating requests.

• Mathematically modeling the impact of request dropping on the success

probability of other tasks scheduled to execute after the dropped one.
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• Proposing the request pruning mechanism as a generic mechanism that can be

applied to existing resource allocation systems.

• Implementing a prototype of on-demand media processing platform operating

in a serverless computing manner.

1.4 Dissertation Organisation

• Chapter 2 explores the related studies and provide background for serverless

computing, reusing and approximating techniques for serverless computing

platform, and commonly used task mapping heuristics.

– Chavit Denninnart, Mohsen Amini Salehi, A survey on Approximate

Computing in Serverless platforms , preparing to submit

• Chapter 3 studies the potential benefits and feasibility of computational reuse

by schedule similar task requests to be executed together. A range of video

processing task are benchmarked in various configurations to study the

resource usage saving of task executed as a group against individually. Result

of the benchmark is used to train a machine-learning based resource saving

predictor.

– Shangrui Wu, Chavit Denninnart, Xiangbo Li, Yang Wang, Mohsen

Amini Salehi, Descriptive and Predictive Analysis of Aggregating

Functions in Serverless Clouds: the Case of Video Streaming , accepted

in 22nd IEEE International Conference on High Performance Computing

and Communications (HPCC ’20)
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– A dataset of video merging benchmark which is available in the following

GitHub repository:

https://github.com/hpcclab/VideoStreaming Workload

– GitHub repository for the developed Merge saving predictor module:

https://github.com/hpcclab/Merge-Saving-Prediction

• Chapter 4 explores the first mechanism to remedy the redundant processing

issue in serverless cloud computing systems by creating request aggregation

mechanism inside Admission Control component of the system. For an

arriving request, Admission Control can recognize if it is mergeable with the

ones exist in the batch queue. Assuming that a request in the batch queue can

be modified (or cancelled and resubmitted), the Admission Control decides if

the arriving request can and should be merged with one of the existing request.

– Chavit Denninnart, Mohsen Amini Salehi, Improving Cost-Efficiency

and QoS of Serverless Computing via Computational Reuse , Submitted

to IEEE Transactions on Parallel and Distributed Systems

– Chavit Denninnart, Mohsen Amini Salehi, Adel Nadjaran Toosi, and

Xiangbo Li, Leveraging computational reuse for cost- and qos-efficient

task scheduling in clouds, Proceedings of the 16th International

Conference on Service-Oriented Computing (ICSOC ’18), Nov. 2018,pp.

828–836

– GitHub repository for the prototype of Media streaming system with
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task merging components: https://github.com/hpcclab/adaptivemerging

• Chapter 5, first, provides a mathematical model to estimate a task’s

probability of meeting its deadline in the presence of task dropping. Then,

investigate methods for engaging probabilistic dropping. Based on the

proposed model, a pruning system and a pruning-aware mapping heuristic is

implemented with an extension to engender fairness across various task types.

The pruning mechanism is presented as an independent component that can

be applied to any mapping heuristic to improve the system robustness. To

reduce overhead of the pruning mechanism, approximation methods that

remarkably reduce the number of mathematical calculations and improve the

practicality of deploying the mechanism in heterogeneous or homogeneous

computing systems are developed.

– Chavit Denninnart, James Gentry, Ali Mokhtari, and Mohsen Amini

Salehi, Efficient Task Pruning Mechanism to Improve Robustness of

Heterogeneous Computing Systems, Accepted in Journal of Parallel and

Distributed Computing, 2020

– Chavit Denninnart, James Gentry, and Mohsen Amini

Salehi,Improving robustness of heterogeneous serverless computing

systems via probabilistic task pruning, 28th Heterogeneity in Computing

Workshop (HCW 2019), in the proceedings of the IPDPS 2019

Workshops & PhD Forum (IPDPSW), May 2019
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– James Gentry, Chavit Denninnart, and Mohsen Amini Salehi,Robust

dynamic resource allocation via probabilistic task pruning in heterogeneous

computing systems, Proceedings of the 33rd IEEE International Parallel

& Distributed Processing Symposium, IPDPS ’19, May 2019

• Chapter 6 explains the implementation of the interactive media processing

platform (SMSE) that operates in a serverless computing manner. This

platform is to explore the feasibility of improvements developed in other

chapters.

– Chavit Denninnart, Mohsen Amini Salehi, SMSE: A Serverless-Based

Platform for Interactive Multimedia Streaming Engine , preparing for

submission

– GitHub repository for the prototype of interactive media streaming

system: https://github.com/hpcclab/CVSS impl

• Chapter 7 concludes the dissertation with a discussion of our main findings

and future research directions in the area of efficient serverless cloud

computing platform.
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Chapter 2: Background and Literature Study

This section provides background and survey of other research works

undertaken in the fields most related to this work.

2.1 Serverless Cloud Computing Paradigm

Cloud computing offload the application deployment details to be in the hand

of cloud providers. Refers to Figure 1.1, Infrastructure as a Service (IaaS) cloud

offers the infrastructure that the user requires while abstracting the burden steps of

obtaining the infrastructure. Platform as a Service (PaaS) abstracts the deployment

further by hiding details of their infrastructure. Users only have a view of the

software platform they want to use. Finally, Function as a Service (FaaS) [SL20] or

serverless cloud takes the abstraction to another level by abstracting the whole

server and platform management details; the user can simply view their application

as the collection of functional codes which will be handled by the cloud providers.

In a serverless computing platform, system providers manage all execution

environments, such as resource allocating, scaling, scheduling, and ensuring

availability. To use serverless computing, the end-user provides their application as

one or more application functions with a predefined function trigger that can be

timer- or event-based [WLZ+18] (such as a web request).

Since the users do not explicitly obtain their computing resources, Service

requests of multiple users can be scheduled on a shared resource pool. This

approach improves cost efficiency [ESvE+20] over the traditional IaaS model by
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reducing idle resources wastage (idle resource on each active machine and also the

number of warm spare machines.) Furthermore, the approach allows for data and

computations to be shared across multiple users, increase the cost efficiency even

further. In this section, we explore the concepts, feasibility and related studies for

computational reuse and approximate computing to enable efficient serverless

computing platform.

2.1.1 Function as a Service (FaaS). Function as a Service is a type of

cloud service model where cloud provider provide a shared system that handle the

execution of user’s code invocation on the system’s shared computing resource.

Function as a Service often gets included to be a sub-type of Platform as a Service

(PaaS) or Software as a Service (SaaS). This is because FaaS cloud can be viewed as

a platform/software that serve users’ functional code execution. Unlike IaaS and

PaaS where user still have view and management tasks of the platform, FaaS hide

away such details to the cloud provider’s responsibility. Unlike Software as a Service

cloud where providers provide and abstract the complete solution including the

functional codes to serve end user who just want to use the software. In Function as

a Service, users still provide the functional code and one or more ways to trigger the

execution (e.g., trigger by timer, by web request or by other events such as

completion of another function) [SFG+20]. Once the function and trigger is defined,

the serverless computing platform handle all other steps to realize task execution in

a timely manner. Therefore, FaaS has more flexibility to cope with vast application

requirements than the software pre-defined in the SaaS platform.
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2.1.2 Stateless versus stateful functions. In a classic definition,

serverless functions are stateless. That is, the ‘function’ part of the execution does

not maintain any data between consecutive runs. Each function invocation receives

input data and performs the user-defined function, then output the results before

termination. This scheme makes sure the platform only has to handle data

dependency on the input data before function execution rather than maintaining

data consistency during multiple concurrent runs. And thus, simplify the function

scheduler and management. However, various use cases require the state data to be

maintained between each execution. And therefore, such functions have to rely on

external data storage or simply store the state data with function input and output.

Both choices add a significant overhead to the execution. Pu et al. found that using

stateless serverless computing with external storage to perform data analytic works

can be up to 500 times slower than running the same task on clustered

VMs [PVS19]. Therefore, they proposed a specialized serverless computing platform

with a two-tier (fast and slow) storage system to remedy the over-head.

To remedy the needs of functions that need to maintain state data, certain

serverless platforms provide the built-in capability to maintain state in an efficient

manner [KWS+18]. There are two main categories of state storage: key-value

storage and system storage.

Sreekanti et al. explores a stateful serverless cloud computing platform in

Cloudburst [SLF+20]. Cloudburst utilizes Anna [WSH20], an autoscaling key-value

store, for its state maintaining. Schleier-Smith et al. developed a dedicated file
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storage system for stateful serverless computing named FAASFS [SSHPH20]. Their

work tackles multiple challenges of providing a shared storage file system across

serverless functions, including cache consistency [YXP+18] and transactional

consistency [SWC+20]. Their storage system can be accessed with POSIX-like

commands. Shillaker and Pietzuch experiment stateful serverless execution platform

in FASSM [SP20]. This platform stores and shares state data as both files and

memory segments in their software-based serverless computing system.

In both ways of realizing stateful serverless computing by centralizing the

state data management, it also provides the side benefit of enabling state data

sharing across different functions. That is, centrally store state data by serverless

execution platform enables more data to be shared and reused.

2.1.3 Containerization in FaaS. In a pure form of FaaS, containerization

is not necessary. A user can call a function by a command that looks like

client.invoke(FunctionName=‘F’,Payload=Data) [MB17, PMCC18]. The serverless

cloud platform can interpret the function code embedded in the execution request

and, therefore, do not require a predefined service container. However, if the

function is not easily interpreted in a timely manner (i.e., function takes a long time

to compile) or require any specific environment configuration (such as software

packages), this scheme can be inefficient as the overhead of making the service

available before the execution can be excessively high. Therefore, a predefined and

preloaded function can reduce the start up overhead. Such a prepared software

package is usually provided as a container image for several reasons [PMCC18].

15



First, the container image is very portable. There are predefined standards of

containerization that are publicly available and widely supported by multiple

software stacks. Second, containerization improves system security by isolating each

functions to their own space rather than running them directly on the system

platform. Third, unlike Virtual machine images, containers are light-weight and can

be deployed with minimal overhead.

2.1.4 Bare-metal FaaS. As an alternative to container-based serverless,

there are research projects and initiatives to create software-based serverless

computing platforms with the benefits of a container-based serverless platform.

Shillaker and Pietzuch proposed FAASM [SP20], a software-based serverless

computing platform that provides isolation through the usage of WebAssembly’s

software-fault isolation. Their implementation also allows for data sharing across

serverless functions and make the functions stateful rather than stateless. Their

performance evaluation shows promising results. However, their platform still

requires functions to compile to WebAssembly, and therefore, support only a subset

of all possible application implementations supported in a container form. We

believe WebAssembly is a potent technology that can allow software-based

serverless computing to compete with container-based serverless computing in terms

of security and portability while also sporting performance advantage.

2.1.5 Reusing of containers and container images to reduce

overhead. The most näıve way to execute a function in a container is to create a

single-use container image based on each function invocation request. However, the
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overhead of creating one container image for every single request can be excessive.

The more practical approach is to predefine a function as a container image ahead

of time. Each of the stateless container images is pre-loaded ready to run in the

memory. This way, the isolation is still maintained, and the start-up overhead of

repeated function invocation can be reduced. Due to memory limitations, however,

not all images can be kept in the memory for the rapid start of the function.

Infrequently used functions must be offload from memory to the storage system

(e.g., hard-drive). A container that can start rapidly from memory is generally

referred to as a warm start container. In contrast, the function that must be load

from the storage system is referred to as cold start container [LRC+18]. Cold start

containers face additional container image loading overhead in comparison to the

warm start counterpart. Such memory limitation spawns research problems.

Specifically, (1) how to reduce start-up the cold start overhead; (2) how to keep

more containers in the same amount of the memory; (3) how to minimize the

number of cold starts strategically through memory allocation.

An approach to tackle both start-up overhead of the cold start container and

allows more container images to be stored in the memory is to minimize the amount

of data required for each container image. The technique commonly deployed by

container platforms includes union mounting. In such a platform with union

mounting, each container image is not stored in one big image but rather as

multiple separate components that can mount together to form an image. This

allows the components to be build in layers. The top layer overwrite and expand
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certain parts of the file stored in lower layers. The same layer can be used by

multiple container images that require the same components, and therefore, less

amount of data must be obtained to load a container image. In addition, more

container images can be maintained in the same amount of memory. Multiple

researches improves the container layer loading system over the years. Zhao et al.

propose Duphunter [ZAA+20], a replacement layer loading module on docker

platform. The architecture is more effective in deduplicating similar layers across

multiple docker images with less deduplication overhead than prior designs.

2.1.6 Resource allocation and scheduling. The third approach to

reduce cold start overhead is to reduce the frequency of the cold start by

strategically allocate which container to remain in the memory, either for a certain

time after an execution, or preload the container in expectation of a request in an

immediate future. Shahrad et al. [SFG+20] collected and studied a 14 days period

of function invocation patterns on serverless cloud usage in Microsoft Cloud. From

their analysis, they propose a strategic plan to reduce amount of cold starts by

categorize each functions into categories. Each category have its pattern of

pre-warm and keep-alive period. After an invocation, function is removed from the

memory for the pre-warm period as the system don’t expect to get another

invocation request until the pre-warm period expires. Then the container is loaded

back into the memory ready for the next warm-start function invocation. If the

function stay in the memory for more than keep-alive period without an invocation,

then the function is again removed from memory. Such strategy reduce the number
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of cold start for majority of the functions. There are still some functions that their

invocation pattern is too unpredictable and does not benefit from strategic

predictive-base allocation. Nevertheless, benefit from correctly predicting the trigger

period of most functions certainly worth the complication of maintaining historical

profiling and prediction.

2.1.7 Commercially available and open-source serverless cloud.

Serverless computing become widely commercially available for the first time on

Amazon AWS lambda service [Ama10]. AWS lambda execute each serverless

computing code in a container upon user-defined trigger. Amazon charges for actual

resource usage by the functions. Their implementation arguably pioneer and shape

the view of commercially viable serverless computing.

Throughout the years. Multiple competing serverless computing services

emerges. Such as Azure Functions [Mic14], (Google) Cloud Functions [Clo14],

Iron.io [Iro14], Webtask.io [Web14] and many more.

On the open-source side, Apache OpenWhisk [Fou 4] is the most popular

open-source serverless cloud platform. OpenWhisk can manage and dynamically

scale infrastructure on multiple scales. In fact, the OpenWhisk itself can be

deployed as containers that can be managed by popular container management

systems. The platform accepts functions in a wide range of languages and has an

active software development community.
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2.2 Computational Reuse in Serverless Cloud

Computational reuse is conventionally deployed to gain speed up by

deduplicate data or computation. From the earliest day of programming,

programmers save computing results in some variable to be reused later. Various

kinds of data caching are developed and deployed to deduplicate the computation.

In this section, We first define the goals of performing computational reuse in

serverless platform. Then we explore various approaches of computational reuse

shown in Figure 2.1.

2.2.1 Goals and benefits of reusing in serverless. Reusing provides

several benefits to help the efficiency of serverless systems. Specifically: cost

efficiency, quality of services, and energy efficiency.

Cost efficiency: Serverless computing is a cost-efficient computing paradigm

where users only pay for the resources they really use. The providers can offer high

availability and low latency computing services at a low cost by sharing multiple

users’ tasks on the same sharing resource pools. In some ways, many existing

serverless computing platforms already adopt resource reusing and process reusing

(such as reusing container images) in their systems. To leverage the economy of

scale further, We envision serverless computing platform to enable computational

reuse across multiple users.

Quality of services (QoS): Computational reuse deduplicate data and

computation redundancy. Other than the apparent benefit to the cost-saving by
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saving computing resources. Reusing also has both a direct and indirect effect on

the perceived QoS of the user. Computational reuse can improve the QoS directly

by allowing common tasks to finish earlier with cached results. For uncached

results, Reusing free up computing resources to be less busy; thus, more resources

can be assigned to each task.

Energy efficiency: Similar to cost, Reusing can reduce the amount of energy

consumption. As the requirement of the computing is still on the rising trend and

accelerated by the digital shift necessitate by the recent global events. The energy

consumption of the computing system and green computing has become more in

focus. Centralized Cloud allows the computing to be done in places where energy

management and cooling system are favorable (such as under water [CFKP17]).

Serverless computing eases the migration of functions across locations to reduce

data transfer wastage. More importantly, Serverless platforms enable a further

reduction in energy consumption by reducing the wastage of standby resources

through the sharing of readily available resource pools. Reusing in serverless

computing improves energy efficiency by sharing the computations and storage for

tasks on the same platform.

2.2.2 Taxonomy of reusing in serverless computing. In this part, we

explore the different approaches to achieve reusing in serverless computing.

Semantic reusing versus deterministic reusing: Deterministic reusing

refers to the type of computation or data reusing that result is deduplicates
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Figure 2.1. Taxonomy of approximate reusing techniques in serverless computing.
Emphasized texts highlight the techniques we explore in this dissertation.
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redundant tasks or data. The majority of the reusing techniques focus on detecting

the computation or data that is used frequently and then cache it to be reused later.

Deterministic reusing does not impact the computation results of tasks in the

system.

Semantic reusing takes a step further on the reusing aggressiveness; rather

than reusing the obvious reusable, some research works try to find the semantic

relationship between the not-so-obvious similar data and reuse them together. In a

sense, the semantic relationship can also be considered as approximate reusing (a

part of approximate computing). An example of approximate reusing approach is

proposed by Krishnan et al. [KQB+16]. Their work can reuse partial results from

similar tasks for incremental computing. By the nature of implying the semantic,

misinterpretation can happen, and it leads to incorrect results. Most of the common

semantic relation finding systems imply the semantic similarity between data or

functions.

An example of semantic reusing on functions is to imply function A and

function B to be similar, and therefore, the result of the function A on data x

(denoted A(x)) can be reused by function B on data x (B(x)). Additionally, one of

the functions can be replaced by another rather than keeping both functions

available. Serverless computing systems accept functions from multiple users.

Usually, the functions are defined in a short and for single purpose following the

Micro-service architecture to ease the continuous development process. And

therefore, the chance of multiple users define their own functions that practically do
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the same thing is not unlikely. A similar approach can also be applied to imply a

similarity between input data of the same function [GH18]. However, when the

reusing approach not only tries to reuse the results of similar tasks. But also predict

and make a correction to the results, then the approach is generally considered as

an approximate computing technique rather than computational reuse.

Result reusing: Data reusing (especially caching) is an integral part of efficient

programming. The distinct characteristic of caching (against other types of data

storage) is that caching data is optional. Caching is maintained to speed up the

execution. However, the program can still function if it misses the caching data and

has to retrieve it in other ways.

Since the storage is not infinite or free, a well-designed system must balance

the proper cache size and complexity. A sophisticated and extensive caching system

imposes its own cost. However, a caching too small or too simple can miss a large

portion of reusable data, which result in recomputing cost. This trade-off appears

on all levels, from hardware to request transaction level. In the context of a

serverless cloud platform, the serverless platform can offer the service to cache and

reuse computation results from each of the task request execution.

There are numerous data and computational reusing researches that allow

the application to reuse the result to reduce resource usage [JCW+17] and to

speed-up the response time [ACX+16]. We found most of the researches to fall into

three categories based on how they store and reuse the data: 1) result caching, 2)
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intermediate data caching, and 3) incremental computing solution.

Result Caching: Result caching can be recognized when the platform captures

the end result of the task execution to be reused. Cache lines are usually indexed by

the task request signature (function and certain or all parts of the input data). To

address security concerns of the cache poisoning, some works separate cache bucket

with tasks same user or same function only [TY15].

Caching Intermediate Data: Intermediate result caching are those that, as the

name suggests, cache partial results. The technique is usually suited to a large

function that has multiple computing steps, in which caching the intermediate result

is more effective than caching the final result. Intermediate result caching can be

offered as key-value storage for the function to access. Rather than transparent

cache, the current implementations [ACX+16, WSH20, SLF+20, Fit04, Car13]

usually need the function code to actively store and look for the stored partial result

for reuse from a centralized caching system. Other variations of the intermediate

result caching include scheduling systems that maximizes the reusability of workflow

task processing [PBYI09, CTR+17], and those that fuse multiple functions

together [WLD+20] to form a larger function that eliminate the data movement

between functions (reusing data already in the execution platform).

Incremental Computing: The third category is incremental computing. This

technique usually caches the task result similar to result caching. However, it is not
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only reusable by the task that have the same input data. Rather, it utilizes the

system-defined or user-defined correction function to change the result of one input

data to the data of another input data. A common use case of incremental

processing is in the big data query [TS14]. Consider a database that updates daily

with minor changes from one day to the other. Supposed there is a repeated query

that is executed daily. Rather than starting the query from the beginning each day,

the incremental computing can collect the result from yesterday, subtract partial

results of the input that no longer valid today and add the partial results from the

new input to form the new result.

Process reusing: In serverless computing, the process (function) loading and

maintaining are also where reusing can significantly improve system efficiency.

Earlier in Section 2.1.5, we discussed that Union mounting help reusing part of the

container image. Also, predictive warming/cooling of the containers can maximize

the reuse of the container image in the memory. In this part, we discuss three more

techniques to increase the process reusing, namely, container image merging,

predictive function delaying and converting frequently used functions to a

long-running container.

Container Image Merging: Consider two or more function container images

that are very similar to each other. Union mounting can capture and share a high

percentage of the image when starting them from a cold start. However, the

scheduler still sees them as separate functions. And therefore, treat them separately.
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If each of those functions is not frequently used, each function can get evicted from

the memory. Those infrequently used functions that do not have a library

requirement (and hence don’t require a specific container environment) can share

the same general propose container image.

However, for functions that require function libraries and specific container

images, we envision some form of container image merging that is recognizable in

the scheduler. Such that two functions can use the same container image (but with

a different command to start the function execution). And therefore, multiple

infrequently used functions can share the same container image in the memory for a

warm start.

Long-Running Container: Based on studies [ESvE+20, SFG+20], certain

percentages of functions are invoked very frequently. And if those functions incur a

significant loading overhead even as a warm start (i.e., functions that require big

libraries such as machine learning frameworks), the repeating container warm start

for each request alone can compound to a significant resource usage. We envision an

efficient serverless computing system to recognize those tasks and transform the

container to become a stateful long running daemon with its own task queue to

reduce the start-up overhead further.

Predictive Task Delaying: Commonly, a serverless cloud tries to serve every

request as soon as possible. In fact, turnaround time is one of the main criteria

when considering the performance of FaaS cloud system. However, in reality, not
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every application needs the task to be completed as soon as possible. Some task

types can tolerate some delay as long as it still meet its deadline, and some task

types may not even have a hard deadline. To maximize reusing in serverless

computing, the user or the system should have a way to declare task urgency. An

urgent task request is scheduled to be completed as soon as possible, with warm

start containers ready to execute the task. While the less urgent task can

potentially wait to tag along with other similar arriving requests to maximize

container reuse and hence, reduce incurred cost. The scheduler should have the

ability to predict the latest time to schedule the task such that each of them waits

as long as possible to share the container with other tasks yet still meet its deadline.

2.3 Approximate Computing in Serverless Cloud

2.3.1 Goals and benefits of approximate computing in serverless

cloud. Approximate computing allows tasks that has undesirable demands in

response time, energy, or cost to be completed in a timely, energy [JRK+16], and

cost-effective manner. However, by the nature of approximate computing, the

precision and accuracy of the result are compromised. In an efficient serverless

computing platform design, we envision the system to have integrated capabilities

to approximately compute tasks that are not feasible otherwise.

We envision approximate computing to be offered to the users in three

options:

1) Provide an approximate result early, then following with an accurate result

later.
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2) Provide only approximate results to save expenses.

3) Provide an approximate result only if the system cannot complete the

accurate task on time.

2.3.2 Difference between approximation and reusing. The main

difference in approximation against computational or data reusing is the impact on

the result’s accuracy and precision. Computational reuse accelerates the turnaround

time or saves the computing resource without impacting the result. Approximate

computing decrease the result’s accuracy and precision for more time- and

resource-saving benefits. While approximate computing can be applied to the task

individually, many of the approximating techniques reuse information gathered from

other tasks. Such information can either be collected in run time or predefined

ahead of time (such as models trained for prediction). Approximate computing

techniques that directly reuse the result of tasks with the similarly close-enough

specification is also called approximate reusing.

2.3.3 Requirement for approximate computing. Approximate

computing model exploit resilient property of the system by getting the inexact but

acceptable result at a lower cost. A resilient system [JRK+16] or application must

be able to tolerate a certain amount of errors [CCRR13]. A successful approximate

computing model must not cause error that exceed the resiliency of the system in

both error magnitude and error chance.
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Error magnitude: Error magnitude can be identified by the variation of the

result value against the actual result. Each application can tolerate a different

amount of the error magnitude.

Error chance: On the other hand, some approximation techniques have a trait

that it has a high percentage chance (but not guaranteed) to give an accurate result.

However, there is also a certain chance that the approximation can be totally wrong.

The chance of getting an overly inaccurate approximation is called the error chance.

Correction function can be applied to fix the error result once the error is detected.

If the chance of getting an error is too high, then the overhead of correcting results

frequently may degrade or exceeds the benefits of the approximate computing.

2.3.4 Approximation approaches. There are various approximating

techniques that can benefit the serverless computing systems. We categorize them

in four categories as shown in Figure 2.2.

Approximate data reusing: Samadi et al. [SJLM14] proposed a system that

identifies potentially computationally reuseable tasks and uses them for

software-only approximate computation (i.e., reusing the computations that would

give close enough results rather than re-processing to get accurate results) to

improve performance, especially in Video processing context where accurate

computational results are not required.
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Figure 2.2. Taxonomy of approximation techniques in serverless computing. Em-
phasized texts highlight the techniques we explore in this dissertation.
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Data sampling: For tasks that work on a batch of data, such as data analysis

works, it is possible to reduce the input data size by sampling the dataset. There

are various techniques to take data samples, perform the computations, and then

analyze the variability and the error rate in comparison to the complete data

analysis over the whole data. Wen et al. proposed ApproxIoT [WBC+18], in their

work, they propose a sampling algorithm and quantifying the error bound to pick

data from the stream of unknown data size. Sampled data are stored in the

‘reservoir’, which is limited in size. New data can randomly replace the existing

data in the reservoir.

Approximate data storage and data pruning: Approximate data storage

can save a portion of the data footprint by either storing only part of the data or

scramble multiple data points together (such as various hash table techniques

without hash collision correction mechanisms). Alternative to approximate data

storage inside the users’ application, the cloud platform can also offer a service to

store and deduplicate ‘similar’ data together [PP14]. We believe the

deduplication-capable data storage system should be offered as a standard service in

the efficient serverless platform.

The process of retrieving data can also be approximated, usually in the form

of returning the result before ensuring the data correctness. In a storage system

where data can be modified by multiple parties concurrently, the system can either

check for validity before returning the data (strict consistency) or return the data
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first then have a following correction if the data is found to be invalidated (eventual

consistency).

Precision scaling and stochastic computing: The earliest form of

approximate computing are created by necessity. Computer storage cannot store an

infinite decimal points, hence the numbers are approximately stored and represented

by a ‘close enough’ value. Those early precision limitation are applied either system

wide or by programmer’s decision (i.e., use smaller floating point variable type).

The concept developed further to a more deliberate dynamic precision

scaling [ZPDM+17] where the calculating precision are scaled by the framework

based on multiple factors, including the trade off between computing precision and

energy requirement or turnaround time requirement.

Stochastic computing is a famous collection of techniques to achieve precision

scaling. Stochastic computing represents continuous values by streams of bits.

Calculation precision can be scaled by altering the number of bits in the bitstreams.

This technique generally requires a specialized processing unit specifically designed

for stochastic computing.

Predictive serving: The Serverless computing platform can offer an optional

service to approximate the user request ahead of time. This applies at the cloud

level by predicting which function or container the user will request next and also at

the application level by predicting the user interaction. In a case that predictive

serving miss-predict, the optional correction function can trigger to correct the
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misprediction.

Loop perforation and instruction replacement: In serverless computing

platform, Functions can either be provided as containers, or as the functional codes.

It is possible for the platform provider to analyze the code and apply approximate

computing techniques to save the computing resources. Approxilyzer [VMHA16]

framework proposed by Venkatagiri et al. analyzes the machine code and

dynamically replaces parts of the instruction with the approximated version. The

aggressiveness of approximation is tuned with consideration of appropriate quality,

resiliency, and overhead.

Approximation in the hardware level: On the hardware side, a specialized

serverless platform can offer a user opt-in special computing platform that reduced

computing costs by using approximate computing. The offering can be especially

attractive for big data and machine learning tasks that require a large batch of

data [DPL+14]. Two of the main hardware-level approximating approaches are

DVFS [RGC+15] and approximate computing hardware.

By designing specialized hardware to compute in an approximated way, both

hardware design complexity and energy consumption can be significantly

reduced [DPL+14]. Alternatively, rather than using specialized hardware to perform

approximate computing, DVFS is a technique that strategically undervolt certain

parts of the common hardware. Such undervoltage can induce errors in

computation. However, by controlling the error rate against the resiliency of the
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software, the result can be acceptable in certain applications. An example of such

an approach is shown in the study of Rahimiet al. [RGC+15]. Rahimi strategically

undervolt the GPU to gain energy efficiency. To allow more error tolerance, they

employ humming distance to improve application resiliency.

Approximation in the task level: In serverless computing cloud, each of the

processing request can be a part of the bigger workflow. In some cases, such

workflow can tolerate the loss of certain sub tasks and therefore, we can exploit the

workflow’s resilient property in the scheduling level. We explore task deferring and

dropping extensively in Chapter 5.

2.4 Heterogeneous Computing in Serverless Cloud

Serverless computing hides away the execution details from the end user.

Therefore, it open up the opportunity for the providers to utilize heterogeneous

computing system to improve efficiency. A Heterogeneous Computing (HC) system

can be described by two types of heterogeneity: inconsistent and

consistent [ASM+00, LSB+18]. Inconsistent machine heterogeneity refers to

differences in machine architecture (e.g., CPU versus GPU versus

FPGA [ZBOL17, ZAI+17, HSN17]). Consistent machine heterogeneity describes the

differences among machines of a certain architecture (e.g., different clock speeds).

Compute services offered by cloud providers are a good example of an HC system.

Amazon cloud [Ama18] offers inconsistent heterogeneity in form of various Virtual

Machine (VM) types, such as CPU-Optimized, Memory-Optimized,
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Disk-Optimized, and Accelerated Computing (GPU and FPGA). Within each type,

various VMs are offered with consistent performance scaling with price [Ama18].

Moreover, both consistent and inconsistent heterogeneity can exist in arriving tasks.

For example, an HC system dedicated to processing live video streams is responsible

for many categorically different types of tasks: changing video stream resolution,

changing the compression standard, changing video bit-rate [LSB+18]. Each of these

task types can be consistently heterogeneous within itself (e.g., it takes longer to

change resolution of 10 seconds of video, compared to 5).

Many HC systems (e.g., [ZGG17, Inf18]) present both consistent and

inconsistent heterogeneity in machines used and task types processed [SSS+09].

These systems present cases where each task type can execute differently on each

machine type, where machine type A performs task type 1 faster than machine type

B does, but is slower than other machine types for task type 2. Specifically,

compute intensive tasks run faster on (i.e., matches better with) a GPU machine

whereas tasks with memory and disk accesses bottlenecks (e.g., in-memory

databases [WQLC14, DAdAB+15, MPP16]) runs faster on a CPU-based machine.

All of this heterogeneity results in uncertainty for a given task’s execution

time, thus, inefficiency of resource allocation [ASM+00]. Accordingly, a major

challenge in HC systems is to assign tasks to machines to optimize performance goal

of the system [ASM+00].
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Figure 2.3. Overview of mapping heuristics widely-used in various types of dis-
tributed systems.
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2.5 Task Request Mapping Heuristics

Serverless (and cloud computing system in general) have such a wide variety

of performance characteristics and QoS requirement. In both homogenerous

computing system and heterogeneous computing system, optimal task-machine

mapping is proven to be an NP-complete problem [CB76, IK77]. Therefore, a large

body of mapping heuristics (e.g., [BSB+01, IK77, MLA+17]) have been developed

for these systems. Figure 2.3 provides an overview of mapping heuristics commonly

used in heterogeneous and homogeneous systems. In particular, mapping heuristics

of HC systems can be further categorized based on those operate in

immediate-mode and in batch-mode resource allocation systems.

Immediate-mode mapping heuristics do not hold tasks in an arrival queue

and they are simpler to develop. In batch-mode heuristics, however, mapping occurs

both upon task arrival (when machine queues are not full) and upon task

completion. Batch-mode heuristics generally use an auxiliary structure, known as

virtual queue (and also task queue or request queue), where arriving tasks are

examined on different machine queues. These heuristics commonly use a two-phase
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process for decision making. In the first phase, the heuristic finds the best machine

for each task, by virtue of a per-heuristic objective. In the second phase, from

task-machine pairs obtained in the first phase, the heuristic attempts to choose the

best machine-task pairs for each available machine queue slot. After all slots are

filled, or when the unmapped queue is emptied, the virtual mappings are pushed

(assigned) to the machine queues, and the mapping method is complete.

Although mapping heuristics used in homogeneous computing systems are of

batch nature, their logic is simpler than those used in batch-mode of HC systems.

Here we review widely-used heuristics in both heterogeneous and homogeneous

computing systems.

2.5.1 Immediate-mode mapping heuristics for heterogeneous

computing systems.

Figure 2.4. Immediate-mode resource allocation operates immediately, upon arrival
of a task to the system.
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Round Robin (RR): In RR [LSB16a], incoming tasks are assigned in a round

robin manner to an available machine, from Machine 0 to Machine n.

Minimum expected Execution Time (MET): In MET, the incoming task i

is assigned to the machine that offers the minimum expected execution time (i.e.,

the average of the PET (i, j) for task i on machine j).

Minimum expected Completion Time (MCT): In MCT, the incoming task

is assigned to the machine that offers the minimum expected completion time. The

completion time is obtained based on the accumulated expected execution time of

tasks queued in a given machine.

K-Percent Best (KPB): KPB is a combination of MCT and MET. It only

considers MCT amongst the K percent of machines with the lowest expected

execution times for an incoming task.

2.5.2 Batch-mode mapping heuristics for heterogeneous systems.

MinCompletion-MinCompletion (MM): This heuristic has been extensively

used in the literature [HSVL03, PEM16, EPM13, SSM+16]. In the first phase of the

heuristic, the virtual queue is traversed, and for each task in that queue, the

machine with the minimum expected completion time is found, and a pair is made.

In the second phase, for each machine with a free slot, the provisional mapping

pairs are examined to find the machine-task pair with the minimum completion

time, and the assignment is made to the machine queues. The process repeats itself
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Figure 2.5. Batch-mode resource allocation operates on batches of tasks upon task
completion (and task arrival when machines queues are not full).
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until all machine queues are full, or until the batch queue is exhausted.

MinCompletion-Soonest Deadline (MSD): Phase one is as in MM. Phase

two selects the tasks for each machine with the soonest deadline. In the event of a

tie, the task with the minimum expected completion time is selected. As with MM,

after each machine with an available queue slot receives a task from the provisional

mapping in phase two, the process is repeated until either the virtual machine

queues are full, or the unmapped task queue is empty.

MinCompletion-MaxUrgency (MMU): Urgency of task i on machine j is

defined as Uij = 1/(δi − E[Cij]), where δi is the deadline of task i, E[Cij] is the

expected completion time of task i on machine j.

Phase one of MMU is the same as MM. Using the urgency equation, phase

two selects the task-machine pair that has the greatest urgency, and adds that
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mapping to the virtual queue. The process is repeated until either the batch queue

is empty, or until the virtual machine queues are full.

Max Ontime Completions (MOC): The MOC heuristic was developed

in [SSM+16]. It uses the PET matrix to calculate robustness of task-machine

mappings. The first mapping phase finds, for each task, the machine offering the

highest robustness value. The culling phase clears the virtual queue of any tasks

that fail to meet a pre-defined (30%) robustness threshold. The last phase finds the

three virtual mappings with the highest robustness and permutes them to find the

task-machine pair that maximizes the overall robustness and maps it to that

machine’s virtual queue. The process repeats until either all tasks in the batch

queue are mapped or dropped, or until the virtual machine queues are full.

2.5.3 Mapping heuristics for homogeneous systems.

First Come First Served - Round Robin (FCFS-RR): In FCFS-RR, a

task is selected in first come first serve manner and is assigned to the first available

machine in a round robin manner, from machine 0 to the last machine.

Earliest Deadline First (EDF): EDF is functionally similar to MSD heuristic

for HC systems. The first phase finds the machine with the least expected

completion time. Then, the second phase sorts the arrival queue in an ascending

order based on tasks’ deadlines. Next, the task in the head of the arrival queue is

assigned to the machine with minimum expected completion time. This process is
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repeated until all task are mapped or the machine queues are full.

Shortest Job First (SJF): SJF is functionally similar to MM heuristic for HC

systems. The first phase finds the machine with the least expected completion time.

Then, the second phase sorts the arrival queue in an ascending order based on tasks’

expected execution time. Next, the task in the head of the arrival queue is assigned

to the machine with minimum expected completion time. This process is repeated

until all task are mapped or the machine queues are full.

2.6 Probabilistic-Based Mapping Heuristics

Mapping tasks in HC systems have been shown to be an NP-complete

problem [CB76, IK77]. As such, there are multiple prior efforts that achieve

sub-optimal solutions. Here are some notable mentions where they are either being

similar or have some influence on our work.

To model task execution times, Shestak et al. , instead of using a scalar

value, lay the groundwork for the use of probability mass functions (aka

PMF) [SSMS08]. The method for convolution of execution times to form completion

times for a queue of tasks is established. Our work in Chapter 5 builds upon their

use of PMFs and robustness measurement, while also adding the conditions of

probabilistically drop executing tasks and pending tasks. Khemka et al. [KFB+15]

investigate resource allocation in oversubscribed heterogeneous systems. They test

task utility functions based on priority, utility class, and urgency. They use a matrix

with deterministic execution times, whereas we model the times probabilistically.
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Also, unlike our approach of probabilistically determining if a task should be

dropped, their task dropping occurs only after a task’s utility goes below a static

threshold. In [SSM+16], Salehi et al. model the stochastic nature of the

heterogeneous task types on heterogeneous machine types using a matrix of

probability mass functions (PMFs) to improve robustness of dynamic resource

allocation. A mathematical model for calculating the completion time of

stochastically modeled tasks in the presence of task dropping is provided. However,

Salehi et al. only consider dropping tasks after their deadlines have passed.

Delimitrou and Kozyrakis [DK13] propose Paragon which is an immediate

(i.e., not batch) dynamic scheduling system for heterogeneous data centers. They

use singular value decomposition of historical data to classify incoming tasks based

on their heterogeneity. The classifications are used in a greedy algorithm to select a

list of candidate resources based on interference, and then from that, the best fit

based on heterogeneity [DK14]. Unlike our work in Chapter 5 that considers

probabilistic execution times for decision making, their mapping heuristics operates

based on scalar execution times. The performance metrics are also different, as their

tasks do not have deadline to consider, Paragon is only concerned about system

throughput.

In [LASJ+18], Li et al. introduce the affinity (i.e., match) of heterogeneous

cloud VMs to change coding of video streams. They observed that depending on

their content types, video files have different performances on heterogeneous VM

types. Particularly, they notice that slow-motion video contents gain from compute
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intensive VMs, such as GPUs, whereas fast-motion videos do not gain much from

such VMs. They concluded that categorizing videos based on their content types

and deploying an inconsistently heterogeneous set of cloud VMs can reduce the

incurred cost of using cloud without compromising quality. In another

work [LSB+18], Li et al. dynamically composes an inconsistently HC system to

process a heterogeneous set of video streaming tasks. However, they do not consider

the case of task dropping.

Malawski et al. [MJDN15] evaluate dynamic mapping of deadline- and

cost-constrained tasks in cloud. They support dropping workflows that would result

in a loss of high priority tasks completion, however, their metrics to quantify and

evaluate each task’s worthiness are different. Unlike our work, they focus on

homogeneous cloud VMs. Tetrisched [TZP+16] is a mapping method for consistent

HC systems used for YARN and MapReduce. It operates based on mixed integer

linear programming and considers task execution time on different machines types.

Our system uses a similar set of information to for mapping, however, it also

leverages task deferring to find a better match for tasks and considers task dropping

to alleviate oversubscription and improve robustness.

2.7 Media Stream Processing

Our motivational application is a serverless-based on-demand multimedia

processing system. Media streams (including video streams and audio streams),

either in form of on-demand streaming or live streaming, usually have to be

processed before sending to the viewer. The conversion processing to fit
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characteristics of clients’ devices [LSBB16, LSB16b] can be called transcoding.

Transcoding can encompass operations such as bit rate adjustment, spatial

resolution reduction, temporal resolution (aka frame rate) reduction, and

video/audio compression standard (codec) conversion. Transcoding can be either

performed offline or in an online (i.e., on-demand) manner for media that are rarely

accessed [LSB+18]. However, in the case of live media streaming, it is compulsory to

transcode media in an online manner because they are not available for offline

processing [LSB16b]. Our motivational application can perform media transcoding

operations, but it is also open to other more general processing on the media stream

as well. We believe a more personalized media processing (such as on-demand

customizable video and audio censorship) can become more common in the future.

For video media stream, A video stream is composed of several sequences.

Each sequence itself is composed of multiple Group Of Pictures (GOPs) with

sequence header at the beginning. Each GOP contains series of frames that begin

with I (intra) frame, followed by a number of P (predicted) frames or B

(bi-directional predicted) frames. In practice, each GOP is considered as a video

streaming processing request with an individual deadline [JDLL11, HSG17].

Deadline violation of any request reduces QoS (Quality of Experience) of the viewer.

For workload arrival patterns, Baccour et al. [BEB+20] collects and analyzes

the number of lives, viewer, location, and other metadata of more than 1,500,000 live

video streaming on Facebook during June and July 2018. They found the number of

video streams to follow two peaks distribution daily. The difference in workload
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between each day of the week is small. Therefore, to accurately replicate the arrival

pattern, our workload that emulates video streaming requests are generated as the

series of valleys, which include a high load period and low load periods.

2.8 Cloud-based Video Streaming Engine (CVSE) and Serverless-based

Media Streaming Engine (SMSE)

While storing multiple versions of the same video to serve different needs is a

conventional practice, Cloud-based Video Streaming Engine (CVSE) enables

on-demand (i.e., lazy) transcoding of video streams [LSB+18]. This is particularly

useful for video versions that are rarely accessed. In fact, it has been proven that

video streams have long-tail access pattern [DBSB17] where most of video streams

are rarely accessed and only a few percentage of videos are popular (hot) [MSL13].

For instance, in the case of YouTube, it has been reported that only 5% of videos

are frequently accessed and the rest are rarely accessed [GALM07]. This lazy

on-demand processing approach enables a wider variety of video customization than

what currently offered by a pre-transcoding system.

In this dissertation, we take the conceptual design clues of CVSE to create

Serverless-based Media Stream Processing Engine (SMSE) to efficiently perform

media processing on serverless computing system cloud.

In the SMSE architecture, as shown in Figure 2.6, the Request Ingestion

dispatches segments of the requested media stream. A media processing request

includes the operation required along with the corresponding parameters bound to

that request. Each arriving request is assigned an individual deadline and a priority
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Figure 2.6. Overview of Serverless-based Media Streaming Engine (SMSE) that is
used for on-demand processing of media streams.
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by the Admission Control component. Then, the Admission Control sends the

request to the shared batch queue where the request waits to be assigned by the

Scheduler to one of multiple processing unit’s queue. Scheduler’s batch queue is

managed based on a certain scheduling policy, such as FCFS

(First-Come-First-Serve), Earliest-Deadline-First (EDF), Max-Urgency-First and

Highest-Priority-First [HSG17]. Most of scheduling policies are reliant on the Time

Estimator component that is aware of the expected execution time of each request

type (i.e., different transcoding operation) on each Transcoding VMs. Such

estimation can be obtained based on historic execution time information of different

transcoding operations [LSBB16].

Once a request is on a processing unit’s segment queue, its operational

function and required data (such as the media segment itself) is fetched to that

processing unit and finally the request gets executed. Stream Merger component is

in charge of merging processed segments and transfer them to the viewer. Stream

Merger considers an output window for each media stream to keep track of

processed segments. The segments that are missing (e.g., because of a failure) are

requested to be resubmitted by the Admission Control component. The Segments

that still require additional processing re-entrance to the Admission Contol. Finally,

the segments that are getting popular are recognized by the Stream Cachine of

SMSE and are stored to enable caching-based computational reuse.
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2.9 Summary and Positioning of this Dissertation

In this section, we introduced serverless cloud computing paradigm and it

goals. We discussed that there are significant redundancy of computation. In

particular, we explored the scope for reusing functions and approximately

processing them.

Although there are multiple prior studies in task scheduling, serverless cloud

computing, and task deduplication, we noticed that there is a huge scope to improve

the efficiency in the serverless cloud computing systems. Accordingly, the

positioning of this dissertation in the serverless cloud computing research are

two-folds: (a) we devise approximate processing approaches that operate based on

dropping and deferring requests proactively; (b) we develop computational reuse

mechanism via combining similar task requests together based on their similarity.
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Chapter 3: Evaluating the Benefit and Feasibility of Computational
Reuse

3.1 Overview

In the previous chapter, our preliminary research found that computational

reuse is possible in serverless computing system. Aggregating (a.k.a. merging) of

multiple tasks brings about multiple performance benefits, in terms of reducing the

makespan time, and incurred cost requirement. However, task merging can have a

side-effect of degrading the users’ Quality of Service (QoS). In particular,

rearranging and aggregating multiple small tasks create large tasks whose execution

can potentially lead to deadline violation of either the merged task or other pending

tasks scheduled behind it.

To avoid the side-effect of task merging and deadline violation, informed

merging decisions should be made. Specifically, the mapper needs to know how

much saving can be accomplished by merging two or more tasks and then, the

merging is carried out, only if it is worthwhile. However, to date, a little attention

has been paid in the literature to profile the execution-time of the merged tasks and

understand their behavior.

The challenge in profiling the task merging is that the number of possible

combinations (i.e., merging cases) is interactable and it is not feasible to examine

and understand the behavior of all possible cases. Therefore, a method that can

predict the execution-time of the merged task is required.

Accordingly, in this chapter, we first strategically benchmark a variety of
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Figure 3.1. Tasks from multiple users are sent to a shared scheduling queue to be
executed on computing resources. The execution-time saving predictor allows efficient
use of computing machines. Geometries of different shapes, color, and size represent
different (but can be similar) processing tasks.
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merging cases to understand the influential factors on merging effectiveness. Then,

in the second part, we develop a method (shown as Execution-Time Saving

Predictor in Fig. 3.1) to estimate the execution-time saving resulted from merging

any two or more given tasks. The proposed method operates based on a machine

learning model that is trained using our observations in the first part.

3.2 Analysis of Video Task Merging Operation

3.2.1 Video benchmark dataset. We used 3,159 video segments to

construct the benchmark dataset. The video segments are gathered from a set of

100 open-license videos in YouTube [You10]. To build a representative dataset, we

assured that the chosen videos cover diverse content types with distinct motion

patterns (i.e., fast or slow pace) and various object categories.

To systematically analyze the evaluation results and eliminate the impact of

different video formats that affect the execution-time, we split all the videos to
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Table 3.1. Standardized specifications for videos in the collected video benchmark
dataset.

Codec Frame-rate Resolution Container

Standardized

format

H.264 (High) 30 fps 1280× 720 MPEG
transport

stream (TS)

two-second video segments with the standardized format detailed in Table 3.1. It is

noteworthy that segmenting videos is a common practice in stream providers and

the two-second is to comply with the MPEG transport streaming

standard [FCN05, ARA18]. We choose H.264 as the unified codec, because it is still

the most common and widely compatible format for video streaming. It is worth

noting that we selected libx264 [Vid20] as the encoders to change all the proposed

video formats. The benchmark dataset contains 3,159 video segments that are

publicly availablea for reproducibility purposes, with detailed description of the each

videob.

3.2.2 Benchmarking execution-time of video transcoding tasks.

Based on the video segments of the collected dataset, we perform a set of benchmark

services that consists of four primary video transcoding operations (tasks), namely

changing bit-rate, frame-rate, resolution, and codec. Early evaluation of the

collected execution-time revealed a remarkable variation in the execution-time of

some task types. Specifically, we noticed that codec execution-time is far beyond

the other three task types. Accordingly, we categorize the tasks types into two

groups: First group is called Video Information Conversion (VIC ) that includes

ahttps://bit.ly/3gKNijT
bhttps://bit.ly/2YMIwwb
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changing bit-rate, frame-rate, or resolution task types. Tasks of this group have a

low variation in their execution-times, when processing different video segments on

the same machine type. Second group is Video Compression Conversion that only

includes the codec task type (hence, we call it the Codec group). In contrast to the

first group, the codec execution-time (and subsequently its merge-saving) for

different video segments varies remarkably even on the same machine.

Table 3.2. The list of parameters employed to form various transcoding tasks. Each
transcoding task changes only one specification of the videos in the standardized
benchmark dataset. Accordingly, there are collectively 18 transcoding tasks: 5 for
bit-rate changing, 5 for frame-rate changing, 5 for resolution changing, and 3 for codec
changing.

Video Information Conversion (VIC)
Codec

Bit-rate Frame-rate Resolution

384K 10 fps 352×288 MPEG-4

512K 15 fps 680×320 H.265/HEVC

768K 20 fps 720×480 VP9

1024K 30 fps 1280×800 -
1536K 40 fps 1920×1080 -

To limit the degree of freedom in execution-time, we configured each

transcoding task to change only one specification of the videos in the benchmark

dataset. The characteristics (parameters) of the evaluated transcoding tasks are

listed in Table 3.2. According to the table, there are 4 task types and collectively 18

transcoding tasks, including 5 different parameters in tasks changing bit-rate, 5

parameter for tasks changing frame-rate, 5 parameters in tasks that change

resolution, and 3 parameters in tasks changing codec.

To evaluate a variety of task merging cases, we compare the time difference

between executing the 18 video transcoding tasks individually against executing
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them in various merged forms. Our preliminary evaluations showed that there is

little gain in merging more than five tasks. In addition, we observed that it is

unlikely to find more than five (similar, but not identical) mergeable tasks at any

given moment in the system. As such, in the benchmarking, the maximum number

of merged tasks (a.k.a. degree of merging) is limited to five. Even with this

limitation, exhaustively examining all possible permutations of merging 18 tasks (in

batches of 2, 3, 4, 5 tasks) collectively leads to

C(18, 2) + C(18, 3) + C(18, 4) + C(18, 5) cases, where C(x, y) refers to

y-combinations from a set of x tasks. That entails 12,597 experiments per video

segment. As performing this many experiments is time prohibitive, we reduce the

number of possible test cases to some highly representative merging cases for each

video segment. Details of the conducted benchmarking is as follows:

(A) We measured the execution-time of the 18 tasks on each one of the 3,159 video

segments in the dataset individually. This means that, in this step, we

collected 56,862 execution-times for individual tasks.

(B) We measured the execution-time of merged tasks with the same operation and

2—5 various parameters. That is, each merged transcoding task is composed

of one operation (e.g., changing resolution) with two to five different

parameters (e.g., based on the possible values of resolution, mentioned in

Table 3.2). Then, to measure the magnitude of saving resulted by the task

merging (henceforth, referred to as merge-saving), the resulting
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execution-times are compared against execution-time of individual tasks,

generated in Step (A).

(C) In our initial evaluations, we observed more consistent behavior in

merge-saving of the VIC group, as opposed those mergings included codec. As

such, our evaluations were focused on the merging cases with various

operations within the VIC group. Each operation can have various

parameters. For instance, consider video A with bit-rate b1, frame-rate f1, and

resolution r1. We merge multiple transcoding tasks on A to change: its

resolution to r2, its bit-rate to b2 and its frame-rate to f2 and f3. Then to

measure the magnitude of merge-saving, the resulting execution-times are

compared against execution-time of individual transcoding time from (A).

(D) We benchmark and analyze execution-time of merged tasks with codec

operation and operations from the VIC group. The process is similar to (C).

However, each merged task is composed of one codec changing operation with

one or more VIC class operations.

3.2.3 Analyzing the impact of task merging on execution-time.

Evaluating the impact on the makespan time: To understand the task merging

performance behavior, we evaluate the total transcoding time (a.k.a. makespan) of

the tasks in the VIC group under two scenarios: transcoding with and without

merging. We consider merging of two to five parameters for bit-rate, frame-rate, and

resolution separately shown as 2P to 5P in the horizontal axes of Fig. 3.2.
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The difference between transcoding time when executing each task

individually versus when the tasks are merged represents the merge-saving.

We observe that, in all cases, there is an increasing trend in the merge-saving

when the degree of merging is increased. Interestingly, we observe that the ratio of

merge-saving generally increases for the higher degrees of merging. The only

exception is in Fig. 3.2c (changing resolution) that by increasing the degree of

merging from 4P to 5P, the merge-saving ratio is not increased. In general, we can

conclude that all task merging with operations within the VIC group consistently

and substantially save the execution-time.

Figure 3.2. Comparison of the total transcoding time (i.e., makespan) (in seconds)
to execute multiple tasks with two to five parameters (2P—5P in the horizontal
axes) within the VIC group in two scenarios: executing individual tasks sequentially
(without task merging) versus executing them as a merged task. Sub-figures (a),
(b), and (c) represent transcoding time of bit-rate changing operation, frame-rate
changing operation, and resolution changing operation, respectively.

(a) Bit-rate (b) Frame-rate (c) Resolution

Evaluating the impact on execution-time saving: Changing the view to focus on

execution-time saving percentage, Fig. 3.3 shows that, on average, when two tasks

in the VIC group are merged (2P ), the execution-time is saved by 26%. The saving

increases to 37% when three tasks merged together. From there, the saving taper off
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to around 40% for four and five tasks merging (4P and 5P). We do not observe

significant extra merge-savings after 5P. In addition, forming a large merged task

complicates the scheduling and increase the potential side-effects (in the form of

delaying) the completion of the large task itself or other pending tasks [DAS20].

This observation holds for the merged tasks compose of multiple different operations

within VIC group (denoted as VIC Combination).

For merged tasks that include codec changing operations, the results are far

from consistent. Merge-saving of tasks that include MPEG-4 codec changing behave

similarly to pure VIC group operations. Merge-savings of tasks with HEVC codec

changing operation are consistently lower than any aforementioned cases for every

degree of merging. The minimum saving is observed when the merged task includes

VP9 codec changing operation. In which case, the saving is even reduced when the

degree of merging increased from 3P to 4P.

The results suggest that the significant gain in merging takes place in the

first three tasks merging. We can conclude that, to strike a balance between

efficiency gain and potential side-effects of task merging, the system should target to

form groups of about three tasks, rather than forming the biggest possible group of

task merging. It is also worth mentioning that codec changing operations have a

significantly (up to eight times) longer execution-time than VIC group operations.

Merging a codec changing task to VIC group tasks does not necessarily offer a

significant merge-saving, yet can jeopardizes the users’ QoS. That is, merging a

short task from the VIC group to a large task from the codec group can significantly
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delay the completion time of the short task and degrades its QoS (e.g., in terms of

missing the task’s deadline).

Figure 3.3. The result of merge-saving across varying numbers of the videos
transcoding tasks. Figure (a) and (b) show the makespan saving when tasks merged
within the VIC group and the makespan saving when codec transcoding tasks merged
with VIC group, respectively.

3.3 Predicting the Execution-Time Saving of Task Merging

3.3.1 A model to predict execution-time saving. In the benchmarking

process, we noticed that the number of cases that tasks can be merged in a system

is interactable (see Section 3.2.2). That is, it is not feasible to pre-generate the

knowledge of the merge-saving of all task types with all possible parameter values

and for all video files. However, such a knowledge is crucial to decide about

performing a task merging case [DAS20]. As such, our goal in this part is to

leverage our findings in the benchmarking section and develop a machine learning
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model that can predict the merge-saving of any given set of mergeable tasks based

on the task types and characteristics of the video segments.

In total, 81,327 data points, obtained from the benchmarking, were used to

train the proposed model. For training and validating the model, we extracted

metadata of the benchmark videos and transcoding configurations. A short sample

of these metadata is shown in Table 3.3. As we can see in the table, for each video,

we collected its essential static features, including duration, segment size, frame-rate

(FR), width, and height (for the sake of better presentation, only few columns are

shown in the table). Then, we concatenate the static features to the specification of

merged task’s transcoding configuration. The transcoding configuration includes the

number of bit-rate changing (B), spatial resolution/frame-rate changing (S),

resolution changing (R), and the type of codec changing included in the merged

task. The output of the machine learning model is the merge-saving, i.e., the

percentage of improvement in execution-time upon merging several tasks versus not

merging them.

Since the three codec transcoding parameters behave significantly different,

the codec operation parameters are marked separately in Table 3.3, as MPEG4,

VP9, and HEVC columns. In contrast, for the ones in the VIC group, we observed

that their configurations (i.e., parameter values) have little influence on the

merge-saving, in compare with their degree of merging. As such, for elements of the

VIC group, we consider the number of operations (sub-tasks) in the merged task as

opposed to the value of their parameters. Accordingly, the integer values in the B,
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S, and R columns represents the number of those operations included in the merged

task. The main benefit of marking the table in this manner is to create a robust

model that can infer the merge-saving even for unforeseen parameters. Arguably, if

we bind the elements of VIC group to their parameter values in the training, then

the model cannot efficiently predict the merge-saving of a merge request whose

parameter values are out of the scope of the training dataset.

Table 3.3. A sample of the training dataset. Left side columns show static features of
videos, such as duration, size, frame-rate (FR), and dimensions. B, S, and R columns
represent bit-rates, frame-rate, and resolution changing operation sub-tasks in the
particular merged task. Codec changing operation parameters are marked separately
with one possible parameter per column (as MPEG-4, VP9, and HEVC.) The Saving
column indicates the merge-saving caused by a particular task merging.

Dura- Size FRWidthHeightB S R MP- VP9HEVCSaving

tion (s)(KB) EG-4

2.0 876 30 1280 720 1 0 0 1 0 0 33.60%
2.0 1085 30 1280 720 1 2 1 0 0 0 39.17%
2.0 1231 30 1280 720 1 1 1 0 1 0 20.22%
1.2 969 30 1280 720 0 0 1 0 1 0 27.89%
2.0 864 30 1280 720 1 3 1 0 0 0 23.33%
2.0 1091 30 1280 720 1 1 1 0 0 1 21.95%
0.9 347 30 1280 720 1 0 1 0 0 0 31.32%
... ... ... ... ... ... ... ... ... ... ... ...

3.3.2 Gradient boosting decision tree (GBDT) to predict the

execution-time saving. Decision tree [Vad18] is a known form of prediction

model that functions based on a tree-based structure. Starting from the head node,

the model performs a test on a feature at each one of its internal nodes. Ultimately,

the traversal leads to a leaf node that includes the prediction [Mag95]. In particular,

decision trees are proven to be appropriate for predicting numerical of unknown

data [Kot13]. Because merge-saving prediction can be considered as a kind of
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numerical prediction problem, we choose decision trees to predict the saving.

However, solutions based on a single decision tree are generally prone to the

over-fitting problem [Kot13]. That means, the model is excessively attached to the

training dataset such that, at the inference time, its prediction cannot cover slight

variations in the input.

Accordingly, to devise a prediction model that is robust against over-fitting,

we utilize a optimal method of decision trees, known as Gradient Boosted Decision

Trees (GBDT) [Fri02]. This is an iterative construct based on boosted ensemble of

weak-learner decision trees. In fact, GBDT combine the multiple boosted

weak-learners into a high accuracy and robust model. The boosting technique uses a

process in which subsequent predictors learn from errors of the previous predictors.

The objective of each iteration is to reduce the prediction error, which is calculated

by a loss function [Fri02], to the minimum possible.

The pseudo-code, shown in Algorithm 1, elaborates on how the merge-saving

prediction model is trained based on GBDT. On Step 2 of the pseudo-code, a subset

of the benchmark dataset, explained in Section 3.2, is generated and is used as the

training dataset, denoted as t. We considered 80% of the benchmarked dataset in t.

The initial decision tree, denoted as B0(x), is created with random number and

trained based on t on Step 3. On Step 4, the main loop of the training model aims

at creating one weak model based (decision tree) per iteration. Note that x

represents the input features of the merged task, as expressed in Table 3.3. In this

step, there are various hyper-parameters that affect form of the decision tree being
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created. Notable hyper-parameters (among many others [Kot13]) that impact the

accuracy of the prediction model are the learning rate (denoted as L), maximum

depth of the individual regression estimators (denoted as D), the minimum number

of samples required to split an internal node (denoted as S), and the minimum

number of samples needed to be at a leaf node (denoted as J). In Sections 3.4.1

—3.4.3, we elaborate on the appropriate values of these hyper-parameters such that

the prediction accuracy of the merge-saving prediction model is maximize.

Algorithm 1: Pseudo-code of the method to build the prediction model of
the execution-time saving of a merged task.

Require: The merge-saving benchmark dataset T , obtained from Section 3.2;
Ensure: Execution-time saving predictor BM(x);

1: Let M be the number of decision trees (and iterations)
2: Create training dataset t, where t ⊂ T ;
3: Initialize decision tree B0(x) from t;
4: for m← 1 to M do
5: rmi ← Compute the prediction error of the Bm−1(x);
6: Utilize (xi, rmi) to fit a regression tree, calculating the fitted values for each

terminal region;
7: Update Bm(x) based on the Bm−1(x);
8: end for
9: return The merge-saving prediction model BM(x);

Let rmi denote the prediction error of record i ∈ t. Recall that the core idea

of GBDT is to learn from and improve upon the mistakes of the previous iteration.

Accordingly, on Step 5, we calculate rmi of the model created in the previous

iteration (i.e., Bm−1(x)). The value of rmi is calculated based on Equation 3.1. In

this equation, yi is the ground truth (i.e., actual saving in Table 3.3) for the

prediction made by Bm−1(xi). Also, L(yi, Bm−1(xi)) denotes the loss function and it

is calculated as explained in [Fri02].
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rmi = −
[
∂L(yi, Bm−1(xi))

∂Bm−1(xi)

]
(3.1)

On Step 7, the decision tree is updated (called Bm(x)) based on the value of

rmi. On Step 9, the ensemble of created decision trees form the merge-saving

prediction model. Details of forming the ensemble can be found in [Fri02].

3.4 Performance Evaluation of the Execution-Time Saving Predictor

To maximize the prediction accuracy and efficiency, it is critical to determine

the optimal combination of parameter values used in the GBDT model. As such, in

this section, first, we examine various parameters that influence the accuracy of the

prediction model. The best performance is achieved by deliberately selecting the

fittest combination of these parameters. The predicted time-saving is primarily used

for scheduling purposes where prediction errors can perturb the scheduler. As such,

we consider Root Mean Square Error (RMSE) as the primary performance

evaluation metric.

Once we optimally configure the proposed GBDT model, in the second part,

we measure and analyze its prediction accuracy with respect to other methods that

can alternatively employed to predict the merge-saving.

3.4.1 Tuning the learning rate of the predictor method. Gradient

boosting predictors become robust when the model is sufficiently learned. However,

over-fitting can occur, if they learn too fast with too little variation in the input.

The learning rate (L) of the predictor indicates how fast it can learn at each

iteration. This parameter is generally considered along with the number of trees
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(denoted as M) that is used to train the model. Parameter M is also known as the

iterations parameter, because each iteration generates one tree.

In this part, our goal is to tune the predictor with the appropriate learning

rate. For that purpose, we examine the RMSE metric when the learning rate L

changes in the range of [0.5 , 0.005]. Each learning rate is examined when number of

trees varies in the range of [350 , 6,000].

Fig. 3.4a demonstrates the relationship between RMSE and M for different

values of L. We observe that when the number of trees is low (i.e., short training),

higher learning rates lead to a faster converge of the model. Therefore, the model

achieves high accuracy in a lower number of iterations. However, the high learning

rate can be susceptible to noise on the gradient that impacts the accuracy when

leaned with a relative high number of tree.

We observe the maximum prediction accuracy for low learning rates and high

number of trees. Increasing M and decreasing L make the model less susceptible to

the noise, however, it make the model more complex and time consuming.

Accordingly, to strike a balance between accuracy and the model complexity, we

configure M = 350 and L = 0.1.

3.4.2 Tuning the value of regression estimator maximum depth.

Maximum Depth (D) is a parameter that controls the number of decision trees

allowed in the model. The optimal value of D varies from one model to another,

depending on the interaction of features within the training dataset and other

training parameters. This parameter can be ignored when there are only few
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Figure 3.4. Effect of various learning parameters on the accuracy of the prediction.
Y-axis represents the error rate. X-axis of (a), (b), and (c) represent the number of
trees in the GBDT algorithm, maximum depth of the decision tree, and the minimum
number of samples to split a node (parameter S). Each line of (a) and (c) represent
learning rate L and J values respectively.

(a) Number of Trees (M) (b) Maximum Depth (D)

(c) Minimum number of sam-
ples to split an internal node
(S)

features. However, in our model, the optimal depth value should be limited based

on the interplay of the input parameters.

Fig. 3.4b shows the correlation between maximum depth of the tree in the

range of [3, 12] in the horizontal axis and its corresponding error rate (RMSE). We

notice that, as the value of D increases, the prediction accuracy continues to

increase until D reaches 12 where we have an inflection point and we observe

over-fitting. Therefore, we set D = 11 as the appropriate value for the task merging

prediction method.

3.4.3 Tuning the value of minimum samples to create internal- and

leaf-node. In this part, we evaluate the parameters that control the minimum

sample to create a new internal node and the minimum sample to create a new leaf

node (S and J parameters, respectively) and measure their impact on the accuracy

of the prediction model.
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The value of J parameter correlates with the value of S parameter.

Accordingly, in Fig. 3.4c, we explore the prediction accuracy (by means of the

RMSE value in the vertical axis) obtained when the values of S varies in the range

of [2 , 50]. The experiment is conducted for different values of J (in the range of [1 ,

5]).

We observe that regardless of the J value, by increasing the value of S a

reverse bell curve shape is emerged. The lowest error rate, however, varies

depending on the value of J parameter. The rebound of error rate indicates

overfitting and should be avoided. From this experiment, we configure J = 2 and

S = 30 that offer the lowest error rate.

3.4.4 Evaluating improvement in the prediction accuracy. In this

part, we evaluate accuracy of the proposed prediction model (when configured as: {

M = 350, L = 0.1, D = 11, S = 30, J = 2 }) against two alternative prediction

methods. The first baseline approach, called Näıve predictor, carries out the

prediction based on a lookup table of mean execution-time saving for each

operation. Another baseline approach is based on machine learning and uses a

multi-layer perceptron (MLP) [PKG+20] for prediction.

The prediction accuracy is reported as the percentage of correct predictions,

denoted as C and is defined based on Equation 3.2. In this equation, A represents

the total number of test cases, P is the predicted execution-time saving ratio, E is

the observed execution-time saving ratio, and τ is the acceptable error rate, which is

set to 0.12 in Fig. 3.5.
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Figure 3.5. Comparing the prediction accuracy of proposed execution-time saving
prediction model (GBDT) against MLP and Näıve approaches. The horizontal axis
represents the number of tasks merged to create a merged task and vertical axis
represents the percentage of cases accurately predicted.

(a) Compare predictions with
τ = 0.12

(b) Compare predictions with
τ = 0.1

(c) Compare predictions with
τ = 0.08

C = 100%× 1

A

A∑
i=1

{
0, |Pi − Ei| > τ

1, |Pi − Ei| ≤ τ
(3.2)

We observed that the GBDT model significantly outperforms the prediction

accuracy of MLP and Näıve approaches, regardless of merging degree. Both MLP

and GBDT significantly perform more accurate for higher degrees of merging (4P

and 5P) than the lower ones (2P and 3P). The primary reason is that, the lower

degree of merging saves relatively low amount of execution-time, which is difficult to

accurately predict. The maximum prediction accuracy is 93% when GBDT is

employed in 4P.

3.5 Summary

In this chapter, we studied the potential of reusing computation via merging

similar tasks to reduce their overall execution-time in the clouds. Considering video

processing context, we built a video benchmarking dataset and evaluated the

parameters that influence the merge-saving. We observed that merging similar video
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processing tasks can save up to 31% (for merging two tasks) of the execution-time

that implies a significant cost saving in the cloud. We also learned that the

merge-saving gain becomes negligible, when degree of merging is greater than three.

Then, we leveraged the collected observations to train a machine learning method

based on Gradient Boosting Decision Trees (GBDT) to predict the merge-saving of

unforeseen task merging cases. The fine-tuned prediction model can provide up to

93% accurate resource saving prediction.

We found the resource saving as a result of reusing in the media processing

context to be sizable and worth pursuing. The next chapter, we explore the

approach to efficiently find and merge similar tasks together.
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Chapter 4: Reusing Computation in Serverless Clouds

In this chapter, we propose a mechanism based on the computational reuse

approach that aims at alleviating oversubscription by aggregating similar tasks in

the task scheduling queue of the serverless platforms. As shown in Figure 4.1, the

mechanism can aggregate (i.e., merge) not only identical tasks, but also those that

partially share their computation. We note that our mechanism complements

existing allocation- and caching-based approaches and is not a replacement for

them. In fact, the merging mechanism makes the scheduling queue less busy and

potentially lighten up the scheduling process. Caching-based approaches are also

complemented by capturing the in-progress tasks and those that are partially

similar.

Figure 4.1. The overview of task aggregation procedure. New task arrives to
Admission Control can be merged to an existing task in the Batch Queue. Task shapes
represents different task types in the system and shape color represents different
configurations of a task.
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To reuse part of the computation, a question that needs to be addressed is

how to identify mergeable tasks? An arriving task can potentially have multiple

mergeable pairs with varying levels of similarity. Also, the solution for task

similarity detection should not impose an extensive overhead to the system. The
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other concern in merging tasks is to form large compound tasks that potentially

causes missing the deadline of either the merged tasks or other pending tasks

waiting behind the merged task. As such, merging tasks raises the following two

problems: (A) What are different types of mergeable tasks and how to detect them?

(B) How to perform merging without endangering other tasks in the system?

Recalling that our motivational application in this dissertation is a media

streaming engine that needs to process media segments in the cloud before

streaming them to viewers [LSB+18]. Multiple viewers can stream medias in various

configurations, hence, creating similar or identical tasks in the system. In particular,

when the system is oversubscribed, the likelihood of having mergeable tasks

increases. In this context, our proposed mechanism can detect identical and similar

tasks and reuse the whole or part of the computation by merging them. Intelligently

achieving task merging can benefit both the viewers, by enabling more tasks to meet

their deadlines, and the stream providers, by improving resource utilization and

reducing their incurred cost of using services.

Although we develop this mechanism in the context of media processing

system on serverless platform, the idea of task aggregation and research findings of

this work are valid for other domains. However, we note that identifying mergeable

tasks is domain-specific and requires task profiling for each particular system.
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4.1 Overview of the Admission Control Mechanism to Reuse Computation

via Task Merging

Refers to Chapter 2.8, Admission Control is the front gate of the batch queue

and it is in charge of performing merging arriving tasks with the ones already in the

batch queue. The reason we do not perform the merging in the batch queue (i.e.,

after the task admission) is that, in that case, to find mergeable tasks, we need to

scan the entire queue and perform a pair-wise matching between the queued tasks,

which is inefficient and implies a significant number of redundant comparisons.

Figure 4.2. Task aggregation mechanism inside Admission Control of SMSE. Before
adding a task to the batch queue, it is checked if it is mergeable with any other queued
tasks and whether or not the merging operation is appropriate to be achieved.
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The proposed task merging mechanism, shown in Figure 4.2, consists of three

main components as follow: (A) Task similarity detector; (B) Merging

appropriateness identifier; and (C) Task merger. Task Similarity Detector is a

lightweight method based on hashing techniques to identify mergeable tasks. As
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detailed in Section 4.2, it maintains multiple hash tables to cover multiple levels of

tasks’ mergeability. If the arriving task is identified mergeable with an existing task,

then the system employs the Merge appropriateness identifier to assess if

performing the merge on the identified tasks can impact other tasks in the system

or not. Merge appropriateness identifier has three cooperating modules. Position

Finder locates the suitable position for merged tasks in the scheduling queue, such

that the other tasks are not affected. To examine each position, Position finder

consults with Merge Impact Evaluator to estimate which and how many tasks can

potentially miss their deadlines as the result of merging. The task merging decision

is made based on system oversubscription level obtained from Workload Assessor

(see Section 4.4 and 4.5 for further details). Once the merging is confirmed as

appropriate in a certain position of the batch queue, Task merger component

carries out the merge operation on the two tasks.

4.2 Categories of Mergeable Requests

Mergeability of two given requests can be explained based on the amount of

computation the two requests share. In particular, mergeability of two or more

requests can be achieved in the following levels:

(A) Task level : This is when more than one task which create the same processing

task present to the scheduling queue. Therefore, this level is also known as

Identical tasks and can achieve maximum computational reusability. For

instance, consider two viewers without personalized requirements stream the

same media and need it to be transcoded with the same resolution to be
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displayed on compatible devices. As these tasks lead to identical media

processing, merging them consumes the same resources required for only one

task, hence, reducing both cost and processing delay.

(B) Data-and-Operation level : This is when two or more tasks perform the same

operation on the same data but with different configurations. This level of

merging results in a combined processing task for output equivalent to

processing each task individually. Computational reusability can be achieved

through the sharing of function loading overhead and common processing

steps. For instance, consider two viewers who stream the same video with

different resolutions. Without merging, the two tasks need to load the video,

decode it, and encode it separately. However, by merging the two tasks, the

loading and decoding operations can be shared, then the encoding operation is

carried out separately.

(C) Data-only level : This is when the only common sharing specification between

two tasks is only on the data. Tasks that share the same data can reduce the

data retrieval overhead. This third tier task similarity level saves the least

amount of processing time in comparison to other cases.

It is noteworthy that, although merging increases the execution time of the

merged task (except in the Task level), our study in Chapter 3 shows that the

execution time of the merged task is remarkably (up to 40%) shorter than the

combined execution time of the unmerged tasks.
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In SMSE, the Admission Control component can achieve task level

reusability for the same segments that need to be processed with the same function,

but for different viewers. Data-and-Operation level reusability is achieved for

segments that perform the same processing function, but with different

configurations. Finally, Data-only reusability is achieved for the same segments that

are served by different functions.

4.3 Detecting Similar Tasks

Assuming there are n tasks in the queue, for each arriving task, a näıve

mergeable task detection method has the overhead of performing n comparisons to

find the mergeable tasks. To reduce the overhead, we propose a method that

functions based on hashing techniques. The general idea of the proposed method is

to generate a hash key from the arriving task request signature (e.g., media segment

id, processing type, and their parameters). Then, the Admission Control finds

mergeable tasks by searching for a matching key in the hash table of existing tasks

in the scheduling queue.

The explained method can detect Task level mergeability. We need to

expand it to detect other levels of task mergeabilities. To maximize the

computational reusability, an arriving task is first verified against Task level

mergeability. If there is no match in the Task level, then the method proceeds with

checking the next levels of mergeability, namely Data-and-operation level and

Data-only level, respectively. To achieve the multiple levels of mergeability, we

create three hash-tables—each covers one level of mergeability. The hash-keys in
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each level are constructed from the tasks’ characteristics that are relevant in

deciding mergeability at such level. For instance, in the media streaming case study,

keys in the hash-table that verifies task level mergeability are constructed from

media segment id, processing type, and their parameters. While, keys in the

hash-table that verifies Data-and-operation level mergeability are constructed from

media segment id and processing type. Similarly, keys in the hash-table of

Data-only level mergeability are constructed from segment id.

Figure 4.3. The procedure to update hash-tables upon arrival or completion of tasks.

Upon arrival of task j:

(1) if j merges with existing task i on Task level similarity:

– No update on hash-table is required

(2) if j merges with existing task i on operation-and-data or Data-only level similarity:

– Add an entry to each hash-table with hash-keys of task j and point them to
merged task i+ j

(3) if j matches with existing task i but the system chooses not to merge them:

– Add an entry to each hash-table with hash-keys of task j and point them to
task j

(4) if j does not match with any of the existing tasks:

– Hash-keys of task j are added to the respective hash-tables

Upon task j completing execution (i.e., dequeuing task j):

– Remove all entries pointing to task j from hash-tables

Each entry of the hash-tables includes a hash-key and a pointer to the

corresponding task. Entries of the three hash-tables must be updated upon a task

arrival and execution. The only exception is Task level merging, which does not
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require updating the hash-tables. Figure 4.3 shows the procedure for updating the

hash-tables for a given task j.

When the system merges task j with existing task i, the merged task,

denoted as i+ j, is essentially the object of task i that is augmented with task

information (e.g., processing parameters) of task j. In this case, as shown in Step

(2) of this procedure, the system only adds an entry to each hash-table with

hash-key of task j pointing to merged task i+ j as existing key for task i already

pointed to task i+ j. When task j is mergeable with existing task i, but the system

decides to add task j to the batch queue without merging. In this case, task j has a

higher likelihood of merging with other arriving tasks. The reason is that task i has

not merged with task j, and it does not merge with other arriving tasks. Hence, as

shown in Step (3) of the procedure, the matching entry pointing to task i is

redirected and points to task j. It is worth noting that if the arriving task does not

match with any of the existing tasks, as shown in Step (4), its hash-keys must be

generated and added to the respective hash-tables. Also, when a task is served

(processed), its corresponding entries are removed from the hash-tables.

4.4 Identifying Merging Appropriateness

4.4.1 Overview. Assume that arriving task j has Data-and-operation or

Data-only similarity with existing task i. Also, assume that task i is scheduled

ahead of at least one other task, denoted task k, in the scheduling queue. Merging

task j with i either delays the execution of task k or task i. Such an imposed delay

can potentially cause task k or i to miss their deadlines. Therefore, it is critical to
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assess the impact of merging tasks before performing the merge. The merge should

be carried out only if it does not cause more QoS violations than it improves. It is

noteworthy that Task level merging does not delay the execution of other tasks;

thus, it always can be performed.

Accordingly, in this section, we first introduce Merge Impact Evaluator

component whose job is to assess the impact of the merging arriving task on

existing tasks. Later, we introduce Position Finder, whose job is to position the

arriving task in the scheduling queue, either through merging with other tasks or as

a new entry in the scheduling queue.

4.4.2 Evaluating impact of merging. Ideally, task aggregation should be

performed without causing deadline violations for other tasks. Accordingly, the

impact of merging two or more tasks is evaluated based on the number of tasks

missing their deadlines due to the merging. The evaluation requires the Time

Estimator component (see Figure 4.1) to estimate the mean and standard deviation

of execution time of the tasks. To evaluate the impact of merging, a temporary

structure, called virtual queue, is constructed that contains a copy of machine

queues. Then, we assume the merging has taken place on the tasks in the batch

queue and schedule them to the virtual queue according to the scheduling policy.

This enables us to estimate the number of tasks missing their deadlines in the

presence of merging.

To assure the minimal impact of the merging, by default, a worst-case

analysis is performed on the completion time of the affected tasks to estimate the
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number of tasks missing their deadlines. For a given task i, we assume its execution

time follows a Normal distribution [LSB+18, HAK+19] and µi and σi represent the

mean and standard deviation of its execution time. Let Ei be the estimated

execution time of task i. In the worst-case analysis, we consider Ei to be large

enough that with a high probability (97.7%), the real execution time is less than Ei.

As such, Ei is formally defined based on Equation 4.1.

Ei = µi + α·σi (4.1)

In this equation, α is the standard deviation coefficient and its value equals

2, such that with 97.7% chance task i is not affected by the merging. Note that to

encourage more aggressive merging under oversubscription, we can relax the severity

of the worst-case analysis by diminishing the value of α (see Section 4.5for further

details).

Once we know Ei, we can leverage it to estimate the completion of task i on

a given machine m, denoted as Cm
i . We know that calculating Cm

i involves the

summation of the following four factors: (A) current time, denoted τ ; (B) estimated

remaining time to complete the task currently executing on machine m, denoted emr ;

(C) sum of the estimated execution times of N tasks that are pending in machine

queue m, ahead of task i. This is calculated as
N∑
p=1

(µp + α·σp); (D) estimated

execution time of task i. The formal definition of Cm
i is shown in Equation 4.2,
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Cm
i = τ + emr +

N∑
p=1

(µp + α·σp) + (µi + α·σi) (4.2)

In the tie situation that the number of tasks missing their deadlines with and

without merging is the same, we choose to perform merging to reduce the overall

time of using cloud resources. However, one may argue an alternative approach to

not perform the merging, because merging can marginally increase the chance of

missing deadline for other tasks.

4.4.3 Positioning aggregated tasks in the scheduling queue.

Once two tasks are detected as mergeable, the next question is: where should

the merged task be placed in the batch queue? The number of possible answers

depends on the scheduling policy of the underlying serverless computing platform.

If manipulating the order of tasks in the batch queue is allowed, then the Position

Finder examines possible locations for the merged tasks in the queue. For each

location, it consults with the Merge Impact Evaluator component (see Figure 4.2) to

identify if the merge has potential side-effects on the involved tasks or not. Once

Position Finder locates an appropriate position, it notifies Task Merger to construct

the merged task.

Scheduling policies usually sort tasks in the batch queue based on a certain

metric (known as the queuing policy). For instance, Earliest Deadline

First [LSBB16] sorts the queued tasks based on their deadlines. This assumption

restricts the number of positions can be identified for the merged tasks that in turn

limits the performance gain of task merging. To conduct a comprehensive study, in
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this section, we investigate two main scenarios: (A) when the queuing policy is

mandated, (elaborated in Sub-section 4.4.4); (B) when the queuing policy is relaxed

(elaborated in Sub-section 4.4.5).

4.4.4 Task positioning while queuing policy is maintained. In this

part, we study three commonly used queuing policies: (a) First Come First Served

(FCFS); (b) Earliest Deadline First (EDF); and (c) Max Urgency. While FCFS

and EDF are known queuing policies, Max Urgency sorts the tasks in the queue

based on tasks’ deadline and execution time. More specifically, for task i, urgency is

calculated as Ui = 1/(δi − Ei), where Ui is urgency score of task i, δi is its deadline,

and Ei is its estimated execution time.

FCFS: Let j be the arriving task and i a matching task already exists in the

queue. We can merge tasks by either augment task i with j’s specification or cancel

task i and reinsert i+ j into the queue. Therefore, the arrival time of the merged

task (i+ j) can be either the arrival time of task i or task j. In the former case,

i+ j delays completion time of all tasks located behind i. In the latter case, i+ j

only delays completion time of i. In either case, the delayed task(s) can potentially

miss their deadline(s) due to the merge operation. A compromise between these two

extreme positions is possible and is described in Sub-section 4.4.5.

EDF: In this policy, tasks with an earlier deadline are positioned earlier in the

queue. When two or more tasks are merged, each of them still keeps its individual

deadline. However, only the earliest deadline is considered for the queuing policy.
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Assuming that task i has an earlier deadline than j, task i+ j can be only

positioned in task i’s spot.

Max Urgency: Recall that except in Task level merging, other levels of merging

increase the execution time of the merged task. In this case, the urgency of i+ j is:

Ui+j = 1/(min(δi, δj)− Ei+j). This means the urgency of the merged task is

increased. Thus, the merged task can potentially move forward in the queue and get

executed earlier. As such, tasks merging in max urgency queue can potentially cause

missing the deadline of tasks located ahead of i in the scheduling queue as well.

4.4.5 Task positioning while queuing policy is relaxed. Queuing

policies mentioned in the previous part are not aware of task merging. Except for

Max Urgency that moves the merged task forward in the queue due to the increase

in the merged task urgency, other policies do not relocate the merged task.

However, a more suitable position for the merged task can be found by relaxing the

queuing policy. In this case, assuming there are n tasks in the batch queue, the

merged task, i+ j, has to be examined against n+ 1 possible locations to find the

position that maximizes the chance of all tasks meeting their deadlines. Examining

each possible location implies evaluating the impact of merging, hence, calling the

scheduling method. Assuming there are m machines in the system, each impacts

evaluation costs n·m and performing such evaluation for all n+ 1 possible locations

implies (n2 + n)·m complexity. This makes the time complexity of finding an

optimal solution as approximately O(n3).
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Such overhead itself is a burden to the system that is already oversubscribed.

As such, in the rest of this section, we propose two Position Finding heuristics and

analyze them. The objectives of these heuristics are: first, not to allow the merged

task to miss its deadline; and second, do not cause other tasks to miss their

deadlines.

Logarithmic probing heuristic: This heuristic evaluates the impact of merging

when i+ j is in the middle of the queue. The evaluation result dictates how to

proceed with the probe as follows:

(i) The position neither causes deadline violation for other tasks nor i+ j.

Therefore, the appropriate position is found.

(ii) Task i+ j misses its deadline, but the number of other tasks missing

their deadlines does not increase as a result of merging. This implies that i+ j

should be executed earlier. Thus, the procedure continues to probe in the first half

of the queue.

(iii) Task i+ j meets its deadline, but the number of other tasks missing

their deadlines increases as a result of merging. This implies that i+ j should be

executed later to reduce merging impact on other tasks. Thus, the procedure

continues to probe in the latter half of the queue.

(iv) Task i+ j misses its deadline, and the number of other tasks missing

their deadlines increases as a result of merging. Then, stop the procedure and cancel

merging because the procedure cannot find an appropriate position for merging.
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The aforementioned steps are repeated until it terminates or there is no

position left to be examined in the batch queue. In the latter case, we stop the

procedure and cancel merging.

Linear probing heuristic: In the FCFS policy, we know that the order of tasks

in the batch queue implies the order of their execution. That is, placing a task in

position p of the queue only delays tasks located behind p. That said, the first

phase of this heuristic aims at finding the latest position for task i+ j in the batch

queue so that it does not miss its deadline. The latest position for i+ j in the queue

implies the minimum number of tasks are affected —those located behind the

merged task.

To carry out the first phase, the procedure constructs virtual queues to find

the latest position for i+ j. For that purpose, it alternates the position of i+ j in

the batch queue, starting from the head of the queue. In each position, the

completion time of i+ j is calculated based on the tasks located ahead of it and is

examined if i+ j misses its deadline. Once task i+ j misses its deadline, the

previous position is the latest possible location for it not to miss its deadline.

Once we found the latest position for i+ j, we need to verify if the insertion

of i+ j causes any deadline violation for the tasks behind it or not. For that

purpose, in the second phase, we only need to evaluate the merging (via Merging

Impact Evaluator) once. If there is no impact, then the found position is confirmed.

Otherwise, the merging is canceled.
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It is noteworthy that this procedure is efficient because the virtual queue is

created only once. Also, after each task assignment to the virtual queue, it simply

adds one more checking to calculate i+ j completion time.

Analysis of the heuristics: In this part, we analyze Logarithmic Probing and

Linear Probing heuristics in terms of their complexity and optimality of the position

they find.

Complexity Analysis: Phase one of Linear Probing Heuristic examines n tasks

to be scheduled on m machines with an additional check if i+ j can be scheduled on

time directly after each of the n tasks. That results in n·m complexity to provide a

single position for Phase two to verify. Phase two is essentially evaluating the

impact of merging, which again needs n tasks to be scheduled on m machines. The

combined complexity of the two phases is 2·n·m. Alternatively, Logarithmic

Probing Heuristic spends trivial computation of O(1) to pick a position in the batch

queue to verify the appropriateness. If the position identified as inappropriate, the

search continues for up to log n positions. Since the complexity of evaluating each

position is n·m, the total complexity is n·m· log n. As the complexity of evaluating

impact of merging dominates the total complexity, the Linear Probing Heuristic

which spends less time evaluating the position is more efficient.

Optimality Analysis: Assume that there are multiple appropriate positions for

task i+ j. Logarithmic Probing Heuristic returns the first position it finds and
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meets the criteria, thus, is not biased to any certain appropriate position for the

merged task. Alternatively, Linear Probing Heuristic always finds the latest

appropriate position in the batch queue for task i+ j. This ensures that task i+ j

has the least impact on other tasks’ completion times. Being the last possible

position, however, increases the likelihood of i+ j to miss its deadline. In addition,

this makes it unlikely for other tasks to be scheduled in front of i+ j, hence,

limiting the chance of future merging operations.

4.5 Adapting Task Merging based on the oversubscription level

4.5.1 Overview. In Section 4.4, we discussed the merge appropriateness of

each task by considering a worst-case analysis to assure no task is affected by the

merging. However, when the system is oversubscribed, we can compromise the

worst-case analysis and make the system more permissive to task merging in order

to mitigate the oversubscription. In fact, sacrificing a few tasks in favor of more

merging can lighten the system oversubscription and ultimately cause fewer tasks

missing their deadlines. For that purpose, in this section, we develop the Workload

Assessor component (see Figure 4.2) that is in charge of assessing the

oversubscription level of the system and accordingly adjusting the aggression level of

applying the task merging.

4.5.2 Quantifying oversubscription of a computing system. Level of

oversubscription in the system can be quantified based various factors, such as the

rate of missing deadline and the task arrival rate. The quantification can be

achieved in a reactive manner (i.e., from known metadata) or in a proactive manner
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(i.e., based on the factors that suggest the system is about to get oversubscribed in

the near future). In this part, we provide a method for Workload Assessor that uses

decisive indicators of oversubscription to quantify the oversubscription level of a

serverless computing system.

The first intuitive idea to quantify oversubscription is based on the

(measured or expected) ratio of the task arrival rate to the processing rate [MS18].

In this case, a system is oversubscribed, only if it cannot process tasks as fast as it

receives them. This idea has two main limitations: (A) It requires the knowledge of

processing rate, which is difficult to accurately measure; (B) It is prone to report

false negative in the oversubscription evaluation. In particular, it cannot

discriminate between different circumstances that the ratio tends to one. Such a

circumstance can occur when the tasks’ arrival and processing rates are similar,

however, the batch queue may be congested (i.e., the system is oversubscribed) or

may not be (i.e., the system is not oversubscribed).

Another idea is to use the ratio of number of tasks missing their deadlines to

the total number of tasks executed [MS18]. This is based on the fact that an

oversubscribed system cannot complete all its tasks on time, thus, missing a high

number of task deadlines suggests an oversubscribed situation. Although this idea

has a good potential, yet it falls short in quantifying the degree of oversubscription.

That is, it cannot discriminate between a system that completes tasks a short time

after their deadlines versus the one that completes tasks a long time after their

deadlines.
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Improving on the shortcomings of the aforementioned methods, we propose

to quantify the oversubscription level of the system in a given time window based on

the deadline miss severity ratio. We define waitable time of task i, denoted Wi, as

the maximum time it can wait in the queue without missing its deadline. Let Ai

denote the arrival time of task i, then its waitable time is calculated as:

Wi = δi−Ai−Ei . To quantify the oversubscription level, denoted OSL, in the first

place, we discard the contribution of infeasible tasks (i.e., those with Wi < 0) and

those that can complete on time (i.e., the ones with Cm
i ≤ δi). Next, the tasks that

complete after their deadlines contribute to the oversubscription level based on the

severity of their deadline miss. For a given task i, this is calculated based on the

proximity between its completion time and its deadline (i.e., Cm
i − δi) and with

respect to its waitable time (i.e., Wi). Equation 4.3 formally shows how OSL is

calculated. Recall that Cm
i is estimated based on Equation 4.2 to quantify the

oversubscription in the current time window and Na represents the total number of

tasks across all the machine queues. To adapt Equation 4.3 for quantifying the

oversubscription of a past time window, we need to replace the estimated

completion time with the observed completion time of the tasks.

OSL =
1

Na

Na∑
i=1


0, Wi ≤ 0

0, Cm
i ≤ δi

Cm
i − δi
Wi

, Cm
i > δi

(4.3)

4.5.3 Adaptive task merging aggressiveness. The method explained in

Section 4.4 estimates the side-effect of merging on other tasks in a conservative
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manner to assure that the merging does not cause their deadlines violated. In the

face of oversubscription, estimation of the side-effect can be relaxed from the

worst-case analysis to allow more aggressive task merging, hence, mitigating the

oversubscription and increasing the overall QoS.

To make the aggressiveness of task merging adaptive, based on the measured

oversubscription level of the system, we modify the acceptable probability that a

merge operation does not cause deadline violation on other tasks of the system.

More specifically, for higher values of the oversubscription level, the acceptable

probability that other tasks meet their deadlines should be diminished and vice

versa. For that purpose, we set the acceptable probability of meeting deadline for

the tasks affected by merging to vary in the range of [2.3% , 97.7%], depending on

the oversubscription intensity. To this end, the coefficient of standard deviation (α)

has to be in [-2 , 2] range. Specifically, to adapt the value of α based on the

oversubscription level, we determine α as: α = 2− 4·OSL.
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4.6 Performance Evaluation

4.6.1 Experimental setup. We use a prototype of the SMSE platform

(developed in Chapter 6 with task merging mechanism in place. In this chapter, to

comprehensively examine various workloads with different configurations, we used

SMSE in the emulation mode. The task merging mechanism, proposed in this

paper, is implemented as the Admission Control component of SMSE. We evaluated

the proposed mechanism using eight homogeneous processing units modeled after

Chameleon Cloud [KRS+19] small VMs.

The video repository we used for evaluation includes multiple replicas of a

set of benchmark videos. Videos in the benchmarking set are diverse both in terms

of the content types and length. The length of the videos in the benchmark varies in

the range of [10, 220] seconds splitting into 5-110 video segments. The benchmark

videos are publicly available for reproducibility purposesa. More details about the

characteristics of the benchmark videos can be found in Chapter 3. For each

segment of the benchmark videos, we obtained their execution times by executing

each micro-service 30 times. The benchmarked micro-services are: reducing

resolution, adjusting bit rate, adjusting frame rate, and changing codec. In each

case, two conversion parameters are examined. For example, frame rate is changed

from 60 fps down to either 30 fps or 24 fps. Note that a codec changing

micro-service can take up to 8x longer to execute than other more trivial processing

operations (see Section 3.2.3).

ahttps://github.com/hpcclab/videostreamingBenchmark
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To evaluate the system under various workload intensities, we generate

[1,000, 2,500] video segment processing tasks within a fixed time interval. All

transcoding micro-services are available in the processing units (i.e., warm starting

micro-services). Transcoding tasks arrive to the system in a group of 5 consecutive

segments at a time. To accurately emulate common workload behavior observed in

the real video steaming systems, each workload repeatedly toggle their arrival rate

between base period and high load period where the arrival rate is increased by two

folds. Each base period is approximately three times longer than the high load

period. Each simulation case spans up to 15 of high and base period cycles. In each

simulation case, if all tasks arrive simultaneously, there is approximately 30%

chance for some tasks to find a mergeable pair. However, as the tasks are

dynamically arriving to the system throughout the simulation time, the chance of

task merging reduces to be less than 20%.

We collect the deadline miss-rate (DMR) and makespan (i.e., execution time

to finish all tasks) of completing all tasks. For the sake of better visualization of the

miss rate reduction, DMR of each configuration with merging policy is normalized

against a nearly identical configuration without the task merging in place. We

conducted each experiment 30 times, each time with different randomized task

arrival time and order. Mean and 95% confidence interval of the results are reported.

In every experiment, all tasks must be completed, even if they miss their deadlines.

For each experiment, we examine the system in four scenarios: (A) Without

task merging; (B) Conservative task merging policy (i.e., by considering merge
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Figure 4.4. Comparing the total time to complete all tasks (i.e., makespan) under
a varying number of arriving processing tasks (horizontal axis) in four scenarios:
without task merging, with Adaptive, Conservative, and Aggressive merging in place.
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appropriateness to strictly not cause additional deadline miss); (C) Aggressive task

merging policy (i.e., without considering merge appropriateness); and (D) Adaptive

task merging policy (i.e., an adaptive system that work either similar to considerate

or aggressive depending on the situation). However, for the sake of better

presentation, only some parts of the results are shown in each experiment.

4.6.2 Impact of the task merging on the makespan time. In the first

experiment, our goal is to see the impact of the task merging on makespan. This

metric implies the time cloud resources are deployed, and subsequently, the cost

incurred to execute all the tasks. We examine the system under various subscription

levels (from 1,000 to 2,500 requests) arriving within the time interval. In this
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experiment, we examine systems with three queuing policies, namely FCFS, EDF,

and MU (Max Urgency). Also, the Position Finder component is disabled for this

experiment. That means all the merged tasks are placed in the position of the

existing task in the batch queue. In this system, because tasks are not dropped and

computing resources are homogeneous, the scheduling policies do not make a

significant change in the makespan. Therefore, only the results of the FCFS queuing

policy are presented.

As we can see in Figure 4.4, our proposed merging mechanism saves the

makespan between 4% to 9.1%. Saving in the makespan time is more pronounced

when the system is highly oversubscribed. This is because, there is more backlog of

tasks in the scheduling queue at any moment, hence, there is a higher chance of a

new arriving task to find its mergeable pair.

Comparing different task merging policies in the figure reveals that their

difference in the total makespan is mostly marginal. The conservative merging

policy is more reluctant to perform task merging that can result in tasks missing

their deadlines. However, that has an unintended positive effect on the total

makespan by piling up more tasks in the early stage of its execution, which

subsequently increases the chance of a new task to find a suitable mergeable pair in

the later stage. Nonetheless, at a higher level of oversubscription, such effect is

diminished, as there is a sufficient number of merge candidates in the batch queue

regardless of the merging policy being employed. Thus, in a highly oversubscribed

system, the makespan saving of the Conservative merging slightly lags behind other
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more Aggressive merging policies.

4.6.3 Impact of the task merging on QoS. In this experiment, our goal

is to evaluate the viewers’ QoS. For that purpose, we measure the deadline miss rate

reduction resulted from merging tasks and compare it with a system that has no

task merging under various oversubscribed levels.As shown in Figure 4.5, we observe

that task merging significantly reduces the deadline miss rate for all the scheduling

policies. We observe that the improvement in deadline miss rate of FCFS is less

than the EDF and MU scheduling policies. It is also more consistent in compare

with the other policies. This is because FCFS, by nature, causes a larger average

waiting time and does not schedule tasks based on their deadlines. That is why the

performance of task merging mechanism, when combined with FCFS, is lower than

other scheduling policies.

The comparison across different merging policies reveals that, for low

oversubscription levels, Conservative and Adaptive merging result in a higher

deadline miss rate reduction than Aggressive merging. The reason is that the

Aggressive merging makes inappropriate merging decisions that lead to deadline

violation. However, as the oversubscription level increases, aggressively merging

tasks seems to be the best approach.

Comparing the results shown in Figure 4.4 with those in Figure 4.5 reveals

that the difference in deadline miss rate can be larger than the difference in

makespan (i.e., up to 18% miss rate reduction compare to up to 9% makespan

reduction). This is because a small reduction in completion time can cause the
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merged tasks to meeting their deadlines, instead of missing it. We can conclude that

the impact of task aggregation mechanism on viewers’ QoS becomes more

remarkable when it is combined with efficient scheduling policies.

4.6.4 Evaluating the impact of the position finder. In this part, we

examine the effect of the merge position finder module from Section 4.4.4 on the

deadline miss rate reduction. We assume the system to schedule tasks in the FSCS

manner while each of the merged tasks has a chance to be placed outside of their

original order in the queue (using Linear Probing heuristic). We apply different

merging policies without and with the position finder module (represented as

+Pfind in the result figure) in place.

Figure 4.6 shows an interesting result where position finding module not only

improves the deadline miss rate reduction in most cases, but also degrades the

performance of Conservative and Adaptive merging policies under highly

oversubscribed condition. This is because the position finder module places each

merged task in a position that introduces the least amount of impact to other tasks.

However, such a position that puts the least amount of impact on other tasks is also

a position that is the closest to miss its own deadline. This, at the edge position,

limits future mergeability should the other tasks want to merge in front of it. This

is not the case for a system with low task arrival rate, because it is likely that the

merged task completes its execution before another task merging in front of it. Also,

Aggressive merging does not concern with the merge appropriateness, thus, future

mergeability is not reduced by the merged task placement. Accordingly, we
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recommend against using Position Finder module with the Conservative and

Adaptive merging policies in the face of high oversubscription levels.

4.6.5 Impact of the execution time uncertainty on task merging. As

we noticed in Section 4.4.2, merging decisions are made based on their impacts on

the completion time distribution of other tasks. However, the magnitude of

uncertainty in the execution time distribution of the tasks can be a decisive factor

on the accuracy of estimating the merging side-effects, and subsequently, the

deadline miss rate resulted by them. Accordingly, in this experiment, our aim is to

evaluate how the three task merging policies function in the face of different levels

of uncertainty in the execution time. For that purpose, we increase the randomness

of execution time when sampling from the mean execution times. The base level of

uncertainty in execution time distribution, observed from the video transcoding

services, is relatively low, as the standard deviation equals to approximately 4% of

the mean execution time. In this part, we examine the deadline miss reduction

when the standard deviation of execution time distribution is increased by 5 and 10

times, expressed as 5SD and 10SD in the results, under different oversubscription

levels in the system.

The result of this experiment shown in Figure 4.7 and includes some

interesting observations. Specifically, we observe that as the level of uncertainty

rises, there is more performance gain in performing merging. At the low

oversubscription level, Conservative and Adaptive merging policies, both of which

consider the standard deviation coefficient (α) and the merge impact evaluation,
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gain more deadline miss reduction than the Aggressive policy. However, at a high

oversubscription level (2.5k) with a high level of uncertainty, unlike other merging

policies, Conservative merging often evaluates merging options as too risky to

impacting other tasks. Therefore, the Conservative merging does not allow as many

task merging as other policies, and thus performance gain is reduced as the

uncertainty level rises. Adaptive merging does not exhibit such behavior and

perform well in both situations.

Figure 4.8 shows the impact of increasing the uncertainty level on the

performance of the position finder module. Comparing the result to those from

Figure 4.7, we learn that when the position finder module is engaged, the increasing

level of uncertainty only has a minimal impact on the deadline miss rate reduction.

At 2.5k oversubscription level, the Aggressive policy with the help of position finder

module still performs significantly better than other policies.
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Figure 4.5. Comparing the deadline miss rate reduction under a varying number of tasks
(horizontal axes) using Conservative, Aggressive, and Adaptive merging policies. Subfigures
(a), (b), and (c) show the reduction under FCFS, EDF, and Max Urgency (MU) queuing
policies.
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(b) EDF queue
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(c) MU queue
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Figure 4.6. Comparing the effect of position finder module in term of deadline miss
rate reduction under varying number of arriving tasks (horizontal axis) with three merge
aggressiveness levels that are applied without and with the position finder, shown as Pfind
in the chart.
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Figure 4.7. Comparing the deadline miss rate reduction for different number of arriving
tasks (horizontal axis) using the three merging policies applied on tasks with different
uncertainty in their execution time distribution. 5SD and 10SD designate five times and ten
times the randomness than the regular dataset.
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Figure 4.8. Comparing the deadline miss rate reduction under varying number of arriving
tasks (horizontal axis) using the three merging policies and three levels of execution time
uncertainty. In every case, the position finder module (Pfind in the chart) is activated.
5SD and 10SD designate five and ten times more uncertainty in execution time distribution
than the regular workload trace.
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4.7 Summary

In this chapter, we investigate the computational reuse through task

merging. Our goal is to gain resource efficiency and alleviate the oversubscription

via merging arriving service requests (task) with other (exact or similar) tasks in

the system. In that regard, we dealt with two challenges: First, how to identify

identical and similar tasks in an efficient manner? Second, how to perform (or not

perform) merging to achieve the best QoS in the system? To address the first

challenge, we identified three main levels of similarity that tasks can be merged.

Then, we developed a method to detect different levels of task similarity within a

constant time complexity. To address the second challenge, we developed a method

that determines, based on system oversubscription condition, how to perform the

merge operation so that the deadlines of other tasks in the system are likely least

affected. Experimental results demonstrate that task merging can reduce the overall

execution time of tasks by more than 9%. Hence, cloud resources can be deployed

for a shorter time. Interestingly, this benefit comes with improving QoS of the users

by up to 18%. We concluded that when the level of oversubscription in the system

is high, merging tasks aggressively (i.e., without being considerate of the impact on

other tasks) helps in improving the QoS. Conversely, with lower levels of

oversubscription, merging should be carried out with consideration of the impact on

other tasks, not to cause unnecessary impact on the QoS.

Although we implemented this system in the context of a video streaming

platform, the concept can be applied to the computing platform of other domains as
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long as we can define similarity levels in those domains. In this chapter we

investigated the impact of reusing on the efficiency of serverless cloud platforms. In

the next section, we explore an alternative direction where the serverless computing

proactively avoid processing task requests that are unlikely to succeed.
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Chapter 5: Approximate Computating in Serverless Clouds

In this chapter, we introduce another mechanism to alleviate the impact of

oversubscription. Unlike previous chapter, here, we assume the serverless computing

platform already tries to optimize the computing schemes to no avail. That is, even

with the use of Heterogeneous Computing (HC) resources (making the computing

platform HC system) and all other optimization techniques, it still unable to finish

all tasks on time. Therefore, we minimize the impact of not able to finish all the

tasks instead. We revise the scheduling system to postpone the mapping of tasks

that are unlikely to succeed on time from utilizing the resource (deferring) and drop

tasks that are hopeless to finish before the deadline (dropping). Such actions can

reduce the impact of oversubscription to the overall perceived QoS of the end-users

by allowing more on-time task completion. And hence, more robust against

oversubscription of the resources. In our motivational application (SMSE), such

task dropping triggers the media streaming to either skip some frames or use

low-quality back-up segments in place of the requested media segment. Such an

approximate processing approach allows the system to keep up with the demand

while resulting in a slightly inaccurate (media streaming) result.

We define robustness as the degree to which a system can maintain

performance in the face of uncertainty [SSMS08]. The overall goal of this study is to

maximize the robustness of an HC system. Each task request is considered to have

a hard individual deadline, past which, no value remains in executing the task.
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Hence, tasks are dropped (i.e., removed) from the system when their deadline

passes [KFB+15, KFP+15]. The performance metric based on which we measure

robustness of an HC system is the number of tasks that meet their deadlines in the

system. Therefore, the specific goal of this study is to maximize the number of tasks

meeting their deadlines in the HC system (referred to as task success) in the face of

uncertain execution times in an oversubscribed system. A model of machine and

task heterogeneity [AA17] must be available to the resource allocation system, and

the system must harness this awareness to overcome with the uncertainty of the HC

system.

When tasks have hard deadlines, time spent executing tasks that are

ultimately dropped is wasted time. This wasted time cascades down the queue of

tasks, delaying the execution of other tasks, and increasing the number of missed

tasks in the future—decreasing system robustness. To mitigate this, tasks with a

low probability of success should not be mapped, and if they are, they should be

dropped before execution [HAK+19]. If probabilistically pruning these

unlikely-to-succeed tasks yields more tasks completing on-time in oversubscribed

HC systems, how do we maximize the robustness gained thereby?

To address this question, in this research, we propose a pruning

mechanism [DGS19] (as depicted in Figure 5.1) that is composed of two methods,

namely deferring and dropping. Task deferring deals with postponing assignment of

unlikely-to-succeed tasks to a next mapping event with the hope that the tasks can

be mapped to a machine that provides a higher chance of success for them.
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Alternatively, when the system is oversubscribed, the pruning mechanism

transitions to a more aggressive mode and drops the tasks that are unlikely to

succeed. Before determining deferring and dropping details, we need to model the

impact of task dropping on the probability of success for the tasks scheduled to

execute after the dropped task. Then, we determine the appropriate probability for

dropping and deferring. We propose a method to dynamically determine when the

resource allocation system should transition to a more aggressive mode and engage

in task dropping. We compare and analyze robustness obtained from deploying our

proposed pruning mechanism against an HC system that either does not perform

pruning or has a basic pruning implemented.

Figure 5.1. Pruning mechanism. Heterogeneous tasks are mapped to heterogeneous
machines in batches. In each mapping, the pruner drops or defers tasks based on
their probability of success.
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Maximizing robustness of HC systems in terms number of tasks meeting

their deadlines can potentially cause bias towards executing certain task types and

affects fairness of the system. As such, we develop a mapping method to maintain
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fairness while maximizing robustness.

Our hypothesis is that the proposed pruning mechanism not only improves

robustness of an HC system, but can impact the incurred cost and energy

consumption of using resources. As such, we investigate the impact of the proposed

probabilistic pruning mechanism on the incurred cost and energy consumption of

using heterogeneous cloud VMs and compare it against common mapping methods.

Due to generality of the pruning idea, we implement it as an independent

mechanism that can be applied to mapping heuristics of any type of (homogeneous

or heterogeneous) computing system to improve its robustness.

Naively implementing the theory behind the pruning decisions imposes a

significant overhead to decide the fate of a given task. As such, to make the pruning

mechanism practical, we develop methods based on approximation and caching that

effectively mitigate the mechanism’s overhead, without major impact on the

effectiveness of pruning.

5.1 Calculating Task Completion Time in the Presence of Task Dropping

Upon dropping a task in a given machine queue, the completion time PMF

of those tasks behind the dropped tasks is improved. Intuitively, dropping a task,

whose deadline has passed or has a low chance of success, enables the tasks behind

it to begin execution sooner, thus, increasing their probability of success and

subsequently, overall robustness of the HC system. Each task in queue compounds

the uncertainty in the completion time of the tasks behind it in the queue.

Dropping a task excludes its PET from the convolution process, reducing the
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Figure 5.2. Batch-mode resource allocation operates on batches of tasks upon task
completion (and task arrival when machines queues are not full). Pruning mechanism can
be plugged into existing resource allocation system. Geometries of different shapes, color,
and size represent different processing tasks.
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compound uncertainty as well.

The pruning mechanism we propose in this research should be able to

calculate the impact of dropping a task on the probability of success (i.e., success

chance) of tasks behind the dropped tasks. In this section, we provide the

mathematical model to calculate the completion time and probability of meeting

deadline of a task located behind a dropped task.

Recall that each entry (i, j) of PET matrix is a PMF represents the

execution time of task i’s task type on a machine type j. In fact, PET (i, j) is a set

of impulses, denoted Eij, where eij(t) represents execution time probability of a

single impulse at time t. Similarly, completion time PMF of task i on machine j,

denoted PCT (i, j), is a set of impulses, denoted Cij, where cij(t) is an impulse

representing the probability of completing task i on machine j at time t.

Let i be a task with deadline δi arrives at time α and is given a start time on
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idle machine j. In this case, the impulses in PET (i, j) are shifted by α to form its

PCT (i, j) [SSM+16]. Then, the success chance of task i on machine j is the

probability of completing i before its deadline, denoted pij(δi), and is calculated

based on Equation 5.1.

pij(δi) =

t≤δi∑
t=α

cij(t) (5.1)

In case machine j is not idle (i.e., it has executing or pending tasks) and

task i arrives, the PCT of the last task in machine j (i.e., PCT (i− 1, j)) and

PET (i, j) are convolved to form PCT (i, j). This new PMF accounts for execution

times of all tasks ahead of task i in the machine queue j. For example, in

Figure 5.3, an arriving task i with δi = 7 is assigned to machine j. Then, PET (i, j)

is convolved with the PCT of the last task on machine queue j to form PCT (i, j).

Figure 5.3. Probabilistic Execution Time (PET) of arriving task i is convolved
with the Probabilistic Completion Time (PCT) of the last task on machine j to form
PCT (i, j).
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The completion time impulses are generated differently based on the way

task dropping is permitted in a system. Three scenarios are possible: (A) Task
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dropping is not permitted; (B) Only pending tasks can be dropped; and (C) Any

task, including the executing one, can be dropped. We note that the initial idea of

calculating these completion time PMFs were proposed in [SSM+16]. However, in

the following, we mathematically model and provide the closed form solution for

calculating completion time PMFs. Considering the space limit, interested readers

can refer to [SSM+16] for further explanations.

(A) Task dropping is not permitted, i.e., when all mapped tasks must

execute to completion, Equation 5.2 is used to calculate the impulses, denoted

cNoDropij (t), of Cij from the convolution of PET (i, j) and PCT (i− 1, j).

cNoDropij (t) =
k<t∑
k=1

[eij(k)· cNoDrop(i−1)j (t− k)] (5.2)

(B) Only pending tasks can be dropped. In this case, the impulses in

PCT (i− 1, j) that occur after the deadline of task i are not considered in

calculating PCT (i, j), as that would indicate task i is dropped due to its deadline

passing. Therefore, the formulation changes to reflect the impact of truncated

PCT (i− 1, j) in the convolution process. Owing to the complexity of calculating

PCT (i, j), in this circumstance, we develop a helper function, denoted f(t, k), as

shown in Equation 5.3, that helps Equation 5.4 to discard impulses from

PCT (i− 1, j) ≥ δi. To calculate impulse cij(t), note that if t < δi, then t− k < δi.

In this case, Equations 5.4 and 5.3 operate the same as Equation 5.2. However, for

cases where t ≥ δi, we use the helper Equation 5.3 to generate an impulse by

discarding impulses of PCT (i− 1, j) ≥ δi. Later, in Equation 5.4, we add impulses
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in i− 1 that occur after δi to account for when task i− 1 completes at or after δi.

f(t, k) =


0, ∀(t− k) ≥ δi

eij(k)· cpend(i−1)j(t− k), ∀(t− k) < δi

(5.3)

cpendij (t) =



k<t∑
k=1

f(t, k) + cpend(i−1)j(t), ∀t ≥ δi

k<t∑
k=1

f(t, k), ∀t < δi

(5.4)

(C) All tasks (including executing one) can be dropped. In fact, in this case,

the completion time impulses are obtained similar to Equation 5.4. However, the

special case happens when t = δi because at this time, if task i has not completed, it

is dropped. For the purposes of calculating PCT (i, j) using Equation 5.5,

PCT (i− 1, j) is guaranteed to be complete by its deadline. Therefore, as

Equation 5.5 shows, all the impulses after δi are aggregated into the impulse at

t = δi. We should note that, the discarded impulses, i.e., those of task i− 1 that

occur at or after δi, must be added to Cij, to indicate the probabilities that task

i− 1 completes after task i’s deadline.

cevictij (t) =



k<∞∑
k=t

cpendij (k) + cevict(i−1)j(t), t = δi

cevict(i−1)j(t), ∀t > δi

k<t∑
k=1

f(t, k), ∀t < δi

(5.5)

We note that, calculating completion time and probability of success based
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on the proposed theory at each mapping event poses a non-negligible overhead to

the system. Therefore, in section 5.5, we propose methods based on approximate

computing to mitigate this overhead and making pruning a practical component of

a resource allocation system.

5.2 Maximizing Robustness via Pruning Mechanism

In the beginning of the mapping event, if the system is identified as

oversubscribed, the pruning mechanism (aka pruner) examines machine queues.

Beginning at the executing task (queue head), for each task in a queue, the success

probability (success chance) is calculated. Tasks whose chance of success values are

less than or equal to the dropping threshold are removed from the system. Then,

the mapping method determines the best mapping for tasks in the batch queue.

Prior to assigning the tasks to machines, the tasks with low chance of success are

deferred (i.e., not assigned to machines) and returned to the batch queue to be

considered during the next mapping events. This is in an effort to increase

robustness of the system by waiting for a machine with better match to become

available for processing the deferred task. To design the pruner for an HC system,

three sets of questions regarding deferring and dropping operations are posed that

need to be addressed.

First, a set of questions surround the probability thresholds at which tasks

are dropped or deferred. How to identify these thresholds are described in

Sections 5.3–5.3.2. A related question that arises is, should a system-level probability

threshold be applied for task dropping? Or, should there be individual

110



considerations based on the characteristics of each task? If so, what characteristics

should be considered, and how should they be used in the final determination?

Second, there is the matter of when to begin task dropping, and when to

cease. That is, how to dynamically determine the system is oversubscribed and

transition the pruner to a more aggressive mode to drop unlikely-to-succeed tasks

such that the overall system robustness is improved. The answer to this question is

provided in Section 5.3.5.

Pruning can potentially lead to unfair scheduling across tasks

types—constantly pruning compute-intensive and urgent task types in favor of other

tasks to maximize the overall robustness. Hence, the third question is how the

unfairness across task types can be prevented? Should the system prioritize task

types that have been pruned? If so, how much of a concession should be made? We

address this question in Section 5.4.

5.3 Determining Task Dropping Probability

5.3.1 Dynamic per-task dropping probability threshold. At its

simplest, the task dropper can apply uniform dropping threshold for all tasks in a

machine queue. However, a deeper analysis tells us that not all tasks have the same

effects on the probability of on-time completion for the tasks behind them in queue.

This difference can be taken into account to make the best decision about which

tasks should stay and which are dropped.

In addition to determining task’s chance of success, other features of

completion time PMF can be valuable in making decisions about probabilistic task
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dropping. We identify two task-level characteristics that further influence the

chance of success of tasks located behind a given task i: (A) the position of task i in

machine queue, and (B) the shape (i.e., skewness) of completion time PMF of task i.

In fact, the closer a task is to execution (i.e., to the head of machine queue),

the more tasks are affected by its completion time. For instance, with a machine

queue size of six, an executing task affects the completion time of five tasks queued

behind it, where the execution time of a task at the end of the queue affects no

tasks. Therefore, the system should apply a higher dropping threshold for tasks

close to queue head.

Skewness is defined as the measure of asymmetry in a probability

distribution and is calculated based on Equation 5.6, as explained in [BB07]. In this

equation, N is the sample size of a given PMF, Yi is an observation, Ȳ is the mean

of observations, and σ is the standard deviation of the observations. A negative

skewness value means the tail is on the left side of a distribution whereas a positive

value means that the tale is on the right side. Generally, |S| ≥ 1 is considered

highly skewed, thus, we define s as bounded skewness and we have −1 ≤ s ≤ 1.

S =

√
N(N − 1)

N − 2
×
∑n

i=1 (Yi − Ȳ )3/N

σ3
(5.6)

A negatively skewed PMF has the majority of probability occurring on the

right side of PMF. Alternatively, because the bulk of a probability is biased to the

left side of a PMF, a positive skew implies that a task is completed sooner than

later. The middle PMFs in Figure 5.4 each represents a completion time with a

success chance of 0.75, however, they show different types of skewness. Using this
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information, we can see that two tasks with the same success chance can have

different impacts on the success chance of tasks behind them in queue. Tasks that

are more likely to complete sooner (i.e., positive skewness) propagate that positive

impact to tasks behind them in queue. The opposite is true for negatively skewed

tasks. Reasonably, we can favor tasks with positive skewness in task dropping.

Figure 5.4 shows the effects of different types of skews on the completion times of

tasks behind them in queue. Subfigure 5.4b shows the negative effects of negative

skew whereas Subfigure 5.4c shows the positive effect of positive skew on the success

chance of the next task in the queue.

Using the skewness and queue position, the system can adjust a base

dropping threshold dynamically, for each task in a machine queue. The adjusted

dropping threshold for a given task i, denoted φi, is calculated based on

Equation 5.7. To favor tasks with positively skewed completion time PMF, we

negate the skewness (si). To account for position of task i in machine queue,

denoted κi, we divide the negated skewness by the position. Addition of 1 is just to

avoid division by zero and ρ is a parameter to scale the adjusted dropping

threshold. Ideally, this will allow more tasks to complete before their deadline,

leading to a higher robustness in an HC system.

φi =
−si· ρ
κi + 1

(5.7)

This dynamic adjustment of the probability is done only in the dropping

stage of the pruner. When it comes to deferring tasks, the task position is always

the same (i.e., the tail of the queue), and it is too early to consider the shape of the
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Figure 5.4. Demonstration of effect of task i’s skewness on completion time PMF
of task i + 1 (right-most PMFs) with a deadline 5 (δi+1 = 5). The left-most PMFs
show execution time PMF of task i + 1 and the middle ones show completion time
PMF of task i (δi = 3).
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tasks PMF, as there are, as yet, no tasks behind it in queue.

5.3.2 Determining task deferring probability. We discussed that any

task that has a chance of success lower than its specified dropping threshold has too

low of a success chance to warrant risking of allocating it to a resource. The optimal

deferring value, however, is applied to unmapped tasks in the batch queue and

should vary based on the workload characteristics. In fact, deferring threshold acts

as a throttle that controls the flow of incoming tasks to the HC system. In one

hand, a too-high deferring threshold ensures that available machine queue slots are

reserved only for tasks with a high chance of success, but can lead to resource

under-utilization by leaving the computing resource idle. On the other hand, a

too-low deferring threshold allows tasks, potentially with low chance of success, to

fill the machine queue slots—preventing the mapping of high-chance incoming tasks.

To avoid such scenarios, an appropriate deferring threshold should be dynamically

determined based on the characteristics of the workload in the system. In the rest of

this section, we describe our approach to dynamically adjust the deferring threshold

based on the workload characteristics.

Selective factor (denoted ∆) is defined as the ratio of the number of tasks in

batch queue (waiting to be mapped) to the number of empty slots in machine

queues. A high selective factor indicates that there are many unmapped tasks, but

not enough machine queue slots to accommodate them. In this scenario, task

mapping should be more selective and task dropping should be more aggressive to

free up machine queue slots for a better-suited tasks that are waiting to be mapped.
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Let υ be the deferring threshold in an HC system with b unmapped tasks in

its batch queue. A competent task is a task whose maximum success chance across

all machines is higher than the υ. That is, competent tasks are those that are not

deferred because they have decent chance of success. Accordingly, task competency

level (denoted Γ) in a batch queue is defined as the ratio of the number of

competent tasks to the total number of unmapped tasks and is calculated based on

Equation 5.8. High task competency level (close to 1) implies a high percentage of

tasks in the batch queue are qualified for mapping, but are not mapped due to

inadequate slots in the machine queue. In this case, the deferring threshold should

be increased, so that only the highly competent tasks are considered for mapping.

Conversely, a low task competency level can be an indication that the task deferring

threshold is set too high, i.e., the system is too selective, such that the majority of

the tasks cannot pass the deferring threshold.

Γ =
1

b

b∑
i=1

{
0, max(pij(δi)) < υ|j ∈ {0..m}
1, max(pij(δi)) ≥ υ|j ∈ {0..m}

(5.8)

5.3.3 Instantaneous robustness. Instantaneous robustness at a given

time is defined as the average of chance of success for all tasks exist in the system.

Let m be the number of machine queues, q the number of queue slots in each

machine queue, and pij(δi) is the chance of meeting the deadline of task i in the

machine queue j. Then, instantaneous robustness is calculated based on

Equation 5.9. Our hypothesis is that maintaining a high instantaneous robustness

leads to a high level of overall system robustness. As such, instantaneous robustness
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can act as a performance indicator for task deferral and mapping heuristics. The

system should aim to maintain the high instantaneous robustness level and avoid

task mappings that reduce the instantaneous robustness.

ψ =
1

m · q

m∑
j=1

q∑
i=1

pij(δi) (5.9)

5.3.4 Deferring probability threshold. When the system is not heavily

oversubscribed and there are more empty slots in the machine queue than tasks in

the batch queue (i.e., ∆ < 1), the new deferring threshold (υn) can be reduced from

its current value (υc) to allow more task mappings. Alternatively, when there are

more tasks to map than the number of available slots (i.e., ∆ > 1), we act based on

the competency level (Γ). If no task is passing its deferring threshold (i.e., Γ = 0),

it means that the deferring threshold is high and has to be reduced. Otherwise, in

the case of oversubscription, we set the deferring threshold to a value near the

instantaneous robustness value. The vale of θ is a constant to adjust the deferring

probability threshold. Equation 5.10 formally expresses the way deferring

probability threshold is dynamically calculated.

υn =



υc − θ, ∆ < 1

ψ − θ, ∆ ≥ 1,Γ 6= 0

υc − θ, ∆ ≥ 1,Γ = 0

(5.10)

5.3.5 Aggressive pruning by dynamically engaging task dropping.

To maximize robustness of the system, the aggression of the pruning mechanism has
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to be dynamically adjusted in reaction to the level of oversubscription in the HC

system. The pruning mechanism considers the number of tasks missed that their

deadlines since the past mapping event as an indicator of the oversubscription level

in the system. We use the identified oversubscription level as a toggle that

transitions the pruner to task dropping mode. However, in this case, the pruner can

potentially toggle to dropping mode as a result of an acute spike in task-arrival, and

not a sustained oversubscription state.

To judge the oversubscription state in the system, the pruner operates based

on a moving weighted average number of tasks that missed their deadlines during

the past mapping events. Let dτ the oversubscription level of the HC system at

mapping event τ ; and µτ the number of tasks missing their deadline since the past

mapping event. Parameter λ is tunable and is determined based on the relative

weight assigned to the past events. The oversubscription level is the calculated

based on Equation 5.11. In the experiment section, we analyze the impact of

lambda and determine an appropriate value for it.

dτ = µτ ·λ+ dτ−1· (1− λ) (5.11)

Another potential concern is minor fluctuations about the toggle switching

the dropping off and then back on. We employ a Schmitt Trigger [KRMB12] to

prevent minor fluctuations around dropping toggle. We set separate on and off

values for the dropping toggle. Based on our initial experiments, we determined the

Schmitt Trigger to have 20% separation between the on and off values. For instance,
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if oversubscription level two or higher signals starting dropping, oversubscription

value 1.6 or lower signals stopping it.

5.4 Pruning Mechanism as Module of a Resource Allocation System

In this section, with the goal of maximizing the system robustness, theories

presented in Sections 5.1and 5.2are leveraged to design a pruning mechanism as a

module of resource allocation system that can work with any mapping heuristic.

Then, two probabilistic mapping heuristics, called Pruning Aware Mapper (PAM)

and Fair Pruning Aware Mapper (PAMF) are proposed to work along with the

pruning mechanism.

Figure 5.5. Components of pruning mechanism. Inputs are mapping metadata and
outputs are pruning decisions to apply on mapper (task deferring) or machine queues
(task dropping). The pruning system is packaged as module in resource allocation
systems to function in conjunction with mapping heuristic.
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5.4.1 Task pruning mechanism. The overall architecture of the pruning

mechanism is shown in Figure 5.5. The Accounting module receives meta data (e.g.,
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tasks’ deadline, PET, and PCT) from the resource allocation system. The

meta-data are available for other components to utilize. The Toggle module (in

either the default or Schmitt trigger configuration) uses the collected information to

measure the oversubscription level of the HC system. It then decides whether or not

it is beneficial to engage the “task dropping”.

With the goal of maximizing the robustness, the Pruner module enacts the

the dropping and deferring sub-modules to prune tasks whose chance of success is

lower than the thresholds specified in the Pruning Configuration. Moreover,

dropping and deferring thresholds are dynamically adjusted during each mapping

event to maximize the system robustness. To this end, the Dropping Threshold

Estimator modifies the dropping threshold based on each task’s skewness and

position in the machine queue. Furthermore, The Deferring Threshold Estimator

module adjusts the deferring threshold based on the oversubscription level.

The Fairness module is employed to avoid unfair pruning mechanism. This

module detects the suffering task types (i.e., those that are consistently dropped)

and adjusts the pruner to prevent task types being unfairly pruned. The Fairness

module is elaborated in Section 5.4.2. Output of the pruning mechanism is its

decision that can be either task dropping (applied on machine queues) or task

pruning (applied on unmapped queue).

As mentioned earlier, the pruning mechanism is pluggable, that is, it can be

added to any mapping heuristic. In the next part, we explain plugging the pruning

mechanism to two new probabilistic-base mapping heuristics, namely PAM and
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PAMF.

5.4.2 Mapping heuristics with pruning mechanism. In this part, two

mapping heuristics that work in conjunction with the pruning mechanism are

developed. First, a heuristic called Pruning Aware Mapper (PAM) leverages the

chance of success to probabilistically maximize the robustness of the system. In this

scope, the robustness of the system is defined as the number of tasks completed on

time during the study time. However, only considering the chance of success to

maximize the robustness can result in unfair task type completion. As a result, a

second mapping heuristics is proposed to achieve maximum robustness balanced

with fairness across task types. The heuristics occur in two phases. In the first

phase, for each task, a machine that has the best affinity is determined and a

task-machine pair constructed. PAM considers task-machine affinity implicitly via

taking the chance of success of a task into consideration. Then, the best

task-machine pair is selected for mapping and that task is assigned to its paired

machine. Note that the pruning mechanism can be plugged in mapping heuristics to

maximize the system robustness. The pruning occurs in two steps. First, prior to

any mapping decision, the pruner performs task-dropping on machine queues. Next,

tasks in the batch queue with chance of success lower than the deferring threshold

are deferred, leaving the deferred tasks to remain in the batch queue.

Pruning aware mapper (PAM): In PAM, maximizing the system robustness

happens by maximizing each task’s chance of success. To this end, the PET matrix
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is used to determine the chance of success for each task.

Based on our prior observations, the machine offering highest chance of

success is selected for constructing the task-machine pair during the first phase of

the PAM heuristic. Then, in the second phase, the pair with lowest completion time

is selected for mapping. In this way, the system prefers to map tasks having both

high chance of success and short execution time.

Fair pruning aware mapper (PAMF): Probabilistic task pruning potentially favors

task types with shorter execution times, resulting in unfairness. This is because

shorter tasks usually have a higher probability of completion within their deadlines.

PAMF is designed to mitigate such unfair task pruning. In this mapping heuristic,

thresholds (dropping and deferring) are adjusted for task types unfairly treated.

We define a sufferage value at mapping event e for each task type f , denoted

εef , that determines how much to decrease (i.e., relax) the base pruning threshold.

Note that we define 0 as no sufferage. We define fairness factor (denoted ϑ) as a

constant value across all task types in a given HC system by which we change

sufferage value of task types. This fairness factor denotes how quickly any task’s

sufferage value changes in response to missing a deadline. A high factor results in

large relaxation of probabilistic requirements. Updating the sufferage value occurs

upon completion of a task in the system.

A successful completion of a task of type f in mapping event e results in

lowering the sufferage value of task type f by the fairness factor, i.e.,
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εef = ε(e−1)f − ϑ, whereas for an unsuccessful task we add the fairness factor, i.e.,

εef = ε(e−1)f + ϑ. Note that we limit sufferage values (εef ) to be between 0 to 100%.

The mapping heuristic determines the fair pruning threshold for a given task type f

at a mapping event e by subtracting the sufferage value from the base pruning

threshold.

This updated pruning threshold enables PAMF creates a more fair

distribution of completed tasks by protecting tasks of unfairly-treated types from

pruning. Once we update pruning thresholds for suffered task types, the rest of

PAMF functions as PAM.

5.5 Practicality of the Pruning Mechanism

One concern when considering the deployment of probabilistic approaches in

the mapping of tasks is the extra computational overhead. Repeated convolutions

put strains on the machine that handle task mapping, especially when tasks are

small and come in large numbers. To ensure a probabilistic task pruning mechanism

and PAM are real-world practical, this section describes some techniques that can

be used to mitigate the scheduling overhead.

5.5.1 Macro-level memoization to reduce redundant calculations.

During the first and second phase of PAM (and most probabilistic mapping

heuristics), each and every unmapped task’s execution time PMF (PET) are

convolved with the PCT of the last tasks of each machine queue. Finding PCT is a

chain convolution process that starts from the head of the machine queue.

Supposing N tasks in each of the M machine queues, to find the PCT of B
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Figure 5.6. Overview of optimization strategies, (1) PCT of last task in the machine
queue is predetermined before mapping event, (2) and (3) perform PMF compaction
(approximation) of last task in machine queue’s PCT and arrival task’s PET respec-
tively, (4) Chance of success can be calculated by an algorithm with memoization
without a complete convolution.
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unmapped tasks, there can be up to B·N ·M convolutions. Therefore it is

recommended to cache the PCT of the last task in each machine queue before the

mapping event to remove the repetitive convolutions on the machine queue (this is

shown as step (1) in Figure 5.6). This reduces the number of convolutions to

B·M +N ·M where N ·M part is cached at the beginning of the mapping event.

Note that this caching is only valid for a single mapping event. Once the current

time passes, this cache is no longer valid.

Once the PCT of the last task in the machine queue is calculated, it is also

possible to perform PMF approximation on the PCT. Which will be explained in

the next part.
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5.5.2 Approximation to reduce convolutions overhead. It is well

known that the convolution process can impose a significant computation due to the

sheer number of impulses that form the PCT after a chain of compound

convolutions. Therefore, to alleviate scheduling overhead, some dynamic

programming and approximating techniques are utilized to reduce the time spent in

PMF convolution process. In this part, we first introduce a procedure to reduce the

number of impulses. We then propose a procedure to replace the last step of the

convolution process in a probabilistic mapping heuristic: convolving the PCT of the

last task in machine queue and the PET of each unmapped task. Due to the size of

PCTs convolved from the machine queue, a large number of unmapped tasks can

impose a significant computational overhead, and warrants a customized algorithm.

PMF approximation: Convolution process time relates directly to the number

of impulses in the PMF. In the case that the PMF is too finely detailed, convolution

can be a burden with the calculation of many small impulses. Due to high

uncertainty in a heterogeneous computing system, the extra resolution may not yield

significantly better decision making. We can therefore, in some calculations, use an

approximate PMF which has lower number of impulses than a detailed original

PMF. The approximate PMF can be created by combining multiple impulses in a

specific range together as shown in Figure 5.7. In the approximation process, in the

case that we know the range of minimum and maximum time impulses to keep in

the distribution, the distribution can also be cropped to the specified range. An
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example of the case where the relevant range is known is when the impulses of last

task in the machine queue’s PCTs (step (2) in Figure 5.6) are being approximated.

The maximum time can be set as the longest deadline of the entire unmapped task

without effecting the chance of success measurement in the task mapping process.

Figure 5.7. An example of impulse approximation process with bucket size of two
and minimum and maximum range set to 52, and 58. Impulses are grouped and
combined in 2 time unit interval in the specific range. All impulses that are more
than specified max or less than specified min are combined together.

=

Original PMF PMF approximation (2, 52, 58) Compacted PMF

𝑀𝑎𝑥 = 58𝑀𝑖𝑛 = 52

50 54 5852 56 60 50 54 5852 56 60

𝑆𝑖𝑧𝑒 = 2

50 54 5852 56 6062

Micro-level memoization to reduce convolution overhead: Probabilistic

mapping heuristics require calculations of unmapped tasks’ chances of success to

make mapping decisions. To find these probabilities in a straightforward way, we

first compute each unmapped task’s PCT (completion time PMF) by convolving the

unmapped task’s PET against the PCT of the last task of each machine queue

(which can be memorized and approximated, as mentioned earlier). Then we

measure the resulting PCT against the task’s deadline to calculate the chance of

success. The PCT of each unmapped task is only calculated to find the potential

mapping probability and is not reused. Therefore, to speed up the process, instead

of calculating an unmapped task’s PCT before measuring its chance of success, we
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propose a process that directly calculates the success chance from two distributions

(PET of the unmapped task and PCT of the last task in a machine queue) without

creating a full PCT of the unmapped task first.

Assuming that both distributions’ impulses can be iterate through in a

sorted order from the earliest time to the latest time (i.e., impulses are sorted by

their time). The procedure virtually performs a partial convolution on only pairs of

impulses that together represent the resulting time less than the specified deadline.

And since the impulses are sorted in order, some partial results between the

iterations (memoc in the algorithm) can be memorized.

Algorithm 2: Efficient Calculation of Probability of Success for Task x on
Machine j.

Input: E ← PET of an unmappped task x
Input: C ← PCT of the last task in the machine queue j
Input: δx ← Deadline of task x
Result: Chance of convolved distribution finish before deadline

1 e← First impulse of E;
2 c← First impulse of C;
3 k ← e;
4 pxj ← 0 ;
5 memoc ← 0 ;
6 while time(k+1) < δx do
7 k ← next impulse after k ;

8 while k 6= e do
9 while time(c)+time(k) < δx do

10 memoc ← memoc + chance(c) ;
11 c← next impulse after c;

12 pxj ← pxj +memoc· chance(k);
13 k ← previous impulse before k;

14 Return pxj;

Algorithm 2 takes input as the distribution E (PET of an unmapped task x),

distribution C (cached PCT of the last task in a machine queue j), and the deadline

δx for measuring the chance of success. chance(c) signifies the probability associated
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with the impulse c in the distribution C, and time(c) signifies the time value

associated with the impulse c. Line 6-7 finds the last impulse of Distribution E that

is less than δx. Line 8 and 13 iterate back from the impulse found from line 7 back

to the first impulse. Line 9 to 11 combine all chance from C’s impulses that when

pairing them with a specific impulse of distribution E from line 8 still provides a

combined time of less than δx. Finally, Line 12 sum the multiplication of impulse k

from distribution E (line 8) and the combined chance from lines 9-11. Note that the

memoc and impulse c from line 10 and 11 are not reset on any iteration. The value

always carry over from one iteration to the next. The final result is the chance of

meeting the deadline δx as if distribution E and distribution C are convolved

together.

A simplified example of the Algorithm 2 is provided in Figure 5.8. In this

example, task x’s deadline is at the time 13, the procedure runs through distribution

E and C in 4 iterations where it considers one of E’s impulse per iteration. Note

that the impulse that has the time 16 is ignored as it is greater than the deadline.

During each iteration, it considers C’s impulses that can combine with the targeted

e impulse and still meeting the deadline. Some partial results are carried over from

prior iterations. The right most column is the pxj value after each iteration. And

the bottom right most cell contains all the values that constitute the chance of

meeting the deadline as if distribution E and distribution C are convolved together.

Supposing distribution E has p impulses and distribution C has r impulses,

the straightforward convolution requires at least p· r multiplications. Measuring the
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Figure 5.8. A simplified example of Procedure 2. E is the PET of an unmapped
task, C is PCT of the last task in a machine queue. The table goes through each
iteration from start to finish. Notions in Italic are carried from their prior iteration.
The carry over notion on the two right most column are stored as a scalar value
denoted memoc and pxj in the algorithm, respectively.

C = Cached PCT of last 
task of a machine queue

E = PET of an unmapped task

Iteration Time 
impulse 
from E

Time impulses from B that 
meet the criteria

Chance of 
impulse 
from E

Chances of impulses 
from C that meet 

the criteria

Sum of the probability to meeting deadline 

1 Impulse 8 Impulse 4 e8 c4 =e8 .(c4)

2 Impulse 6 Impulse (4) , 6 e6 (c4) + c6 =e8 .(c4) +e6 .(c4 + c6)

3 Impulse 4 Impulse (4 , 6) , 8 e4 (c4 + c6 ) +c8 =e8 .(c4) + e6 .(c4 + c6)  
+e4 .(c4 + c6+ c8)

4 Impulse 2 Impulse (4, 6 , 8) , 10 e2 (c4+c6+c8) +c10 =e8 .(c4) + e6 .(c4 + c6)  
+e4 .(c4 + c6+ c8)
+e2 .(c4 + c6+ c8+ c10)

Deadline= 13

6 104 8

c4 c6

c8

c10

4 82 6 16

e2
e4

e6

e8
e16

chance of success also requires another run through combined impulses. Algorithm 2

is a combination of the two process together. And it loops through distribution E at

most twice and distribution C at most once (rather than p times). The

multiplication happens at most p time. Hence we reduce the time complexity from

p· r to 2· p+ r, significantly speeding up the measurement of the chance of success in

probabilistic-based mapping heuristics.
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5.6 Experimental of Pruning Mechanism on Commonly Utilized Mapping

Heuristics

To evaluate the impact of pruning mechanism on a variety of widely-used

mapping heuristics, we conducted a simulation study under various configurations of

heterogeneous (in both immediate- and batch-modes) and homogeneous computing

systems. For the experiments, Pruning Configurations are set to use Pruning

Threshold of 50% and Fairness factor of 0.05, unless otherwise stated. To accurately

analyze the impact of dropping and deferring, we evaluate them both individually

and together.

For each set of experiments, 30 workload trials were performed using

different task arrival times built from the same arrival rate and pattern. In each

case, the mean and 95% confidence interval of the results are reported. The

experiments were performed using the Louisiana Optical Network Infrastructure

(LONI) Queen Bee 2 HPC system [Inf18].

While the task completion time estimation involves multiple convolutions

which impose calculation overhead, there are multiple implementation techniques

that can minimize the overhead of repeated calculation, such as task grouping and

memorization of partial results. Moreover, all the task pruning decisions are made

by a dedicated machine which reserved for resource allocation. Therefore, pruning

mechanism does not add extra overhead to each HC resources in our experiments.

5.6.1 Workload generation. Twelve SPECint benchmarks were run

numerous times on a set of eight machines which were used to generate probabilistic
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execution time (PET) PMFs [SSM+16]. The PMFs were generated by creating a

histogram on a sampling of 500 points from a Gamma distribution formed using one

of the means, and a shape randomly chosen from the range [1:20]. This was done for

each of the twelve benchmarks, on each of the eight machinesa, resulting in the eight

by twelve machine type to task type PET matrix. The PET matrix remains

constant across all of our experiments.

In each experiment, a determined number of tasks per time unit is fed to the

system within a finite time span. For each experiment, the system starts and ends

in an idle state. As such, The first and last 100 tasks in each workload trial are

removed from the data to focus the results on the portion of the time span where

the system is oversubscribed.

To conduct a comprehensive evaluation, two sets of workload were examined:

(A) Constant rate arrival pattern: a Gamma distribution is created with a mean

arrival rate for all task types. The variance of this distribution is 10% of the mean.

Each task type’s mean arrival rate is generated by dividing the number of time

units by the estimated number of tasks of that type. A list of tasks with attendant

types, arrivals times, and deadlines is generated by sampling from each task type’s

distribution. (B) Variable rate (spiky) arrival pattern: In this case, tasks arrive

with variable rates, as shown in Figure 5.9, to mimic arrival patterns observed in

HC systems (e.g., [MSL13]). The spike times were determined uniformly, from the

aThe 8 machines are: Dell Precision 380 3 GHz Pentium Extreme, Apple iMac 2 GHz Intel Core
Duo, Apple XServe 2 GHz Intel Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P
AMD Athlon 64 FX-60, IBM System P 570 4.7 GHz, SunFire 3800, and IBM BladeCenter HS21XM.
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Figure 5.9. Spiky task arrival pattern used in the experiments. Each color represents
one task type. For better presentation, only four task types are shown. The Vertical axis
shows the task arrival rate and horizontal axis shows the time span.
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Figure 5.10. Impact of employing the Toggle module in a pruning mechanism works with
immediate- and batch-mode heuristics. Horizontal axis shows how task dropping is engaged
in reaction to oversubscription and vertical axis shows percentage of tasks completed on
time.
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(b) Batch-mode mapping heuristics
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constant arrival workload, by dividing the workload time span to the number of

spikes we want to create. During each spike, task arrival rate rises up to three times

more than the base (lull) period. Each spike lasts for one third of the lull period.
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Since the spiky arrival pattern is frequently observed in real systems, it is our

default workload arrival pattern in the experiments. For each task, as noted in

Equation 5.12, the deadline is calculated by adding the mean duration for that task

type (avgi) to the arrival time (arri), and then adding in a slack period based on

the mean of all task type’s duration multiplied by a tuning parameter (β· avgall).

This slack allows for the tasks to have a chance of completion in an oversubscribed

system. In the workload trials, the value of β of each task is randomly chosen from

the range of [0.8, 2.5].

δi = arri + avgi + (β· avgall) (5.12)

We carried out experiments under a variety of task arrival rates

(oversubscription levels), however, the default rate used for plotting graphs includes

15K tasks that represents a moderately oversubscribed system. All the workload

trials are publicly available from git.io/fhSZW for reproducing purposes.

5.6.2 Impact of toggle reacting to oversubscription in HC systems.

In this experiment, our goal is to evaluate the impact of Toggle module within the

pruning mechanism. Recall that the Toggle module is in charge of triggering task

dropping operation. As such, we evaluate three scenarios: First, when there is no

Toggle module in place and dropping operation is never engaged (referred to as “no

Toggle, no dropping”); Second, when Toggle module is not in place and task

dropping is always engaged (referred to as “no Toggle, always dropping”); Third,

when the Toggle module is in place and is aware of (i.e., reactive to)
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oversubscription (referred to as “reactive Toggle”). In this case, the Toggle module

engages task dropping only in observation of at least one task missing its deadline,

since the previous mapping event.

Figure 5.10a shows the results for the immediate-mode mapping heuristics

and Figure 5.10b shows them for the batch-mode. In both cases, we can observe

that when Toggle functions in reaction to oversubscription, the overall system

robustness is improved, regardless of the mapping heuristic deployed. The only

exception is RR immediate-mode heuristic. The reason is that RR does not take

execution time or completion time into account and it continuously maps tasks with

a relatively low chance of success. These mapped tasks are subjected to be removed

by task dropping. Without probabilistic task dropping, some of those low-chance

tasks can complete on time. We can also observe that in immediate-mode, KPB

provides the highest robustness (percentage of tasks completing on time) and also

benefits the most from task dropping. This is because it makes more informed

mapping decisions after dropping underperforming tasks.

The experiment testifies that our hypothesis in removing tasks with low

chance of success in favor of other tasks is true and can significantly improves

robustness—by up to 12% in immediate-mode and 19% in batch-mode.

5.6.3 Impact of task deferring on batch-mode heuristics. In this

experiment, we evaluate the impact of task deferment within the pruning

mechanism. As deferring operation works on the arrival (batch) queue, it can only

be enabled for batch-mode heuristics. We conducted the experiment for task
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Figure 5.11. Impact of tasks deferring on batch-mode mapping heuristics in an HC Sys-
tem with workload intensity of 25K. The Vertical axis shows percentage of tasks completed
on time. The horizontal axis is the minimum success probability needed for each task to be
mapped.
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pruning threshold set to 0% (no task pruning), 25% , 50%, and 75%. As the results

of this experiment is more prominent under high level of oversubscription, we set

the task arrival to 25K tasks in the workload trials.

Figure 5.12. Impact of pruning mechanism on batch-mode heuristics in HC systems.
Horizontal axes show the number of tasks arriving within a time unit (i.e., oversubscription
level). In the legend, “-P” denotes heuristics use pruning mechanism.
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(b) Spiky Arrival Pattern
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Figure 5.13. Impact of pruning mechanism on mapping heuristics of homogeneous sys-
tems. Horizontal axes show the number of tasks arriving within a time unit (i.e., oversub-
scription level). In the legend, “-P” denotes heuristics use pruning mechanism.
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(b) Spiky Arrival Pattern
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Figure 5.11 shows that, without task deferring (i.e., when Pruning Threshold

is zero), MM, MSD, and MMU’s robustness are the lowest (between 5% to 23%).

However, as task deferring is employed, all mapping heuristics can attain more than

44% robustness. This is because pruning mechanism delays mapping of tasks with

low chance of success until a more suitable machine becomes available. Hence,

machines are utilized only to execute promising tasks, thereby increasing the

robustness. Our observation also implies that, for these widely used batch-mode

mapping heuristics, by limiting the selection-pool of a mapping-heuristic to

likely-to-succeed tasks, task deferring can reduce the performance differences of the

heuristics to offer similar robustness, regardless of their algorithmic logic.

In Figure 5.11, we can see that, in all heuristics, the robustness does not

improve for Pruning Thresholds higher than 50%. In fact, a high Pruning Threshold

makes the system conservative in allocating tasks and defers tasks whose completion

can improve overall robustness. Therefore, setting Pruning Threshold to 50% is a
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proper configuration for the pruning mechanism.

5.6.4 Impact of pruning mechanism on batch-mode heuristics. In

this experiment, our goal is to evaluate the impact of the pruning mechanism

holistically under various oversubscription levels. We evaluated the system

robustness when mapping heuristics are coupled with and without the pruning

mechanism. The pruning mechanism is configured with Pruning Threshold of 50%

and Toggle is set to engage task dropping reactively.

Figure 5.12 shows that, for all heuristics under both constant and spiky

arrival pattern, pruning mechanism improves the robustness. Pruning mechanism

makes the largest impact for MSD and MMU. These heuristics attempt to map

tasks with short deadlines and, thus, low chance of success. By limiting these

heuristics to map tasks whose chance is beyond a certain threshold, their overall

system robustness is improved.

5.6.5 Impact of pruning mechanism on homogeneous systems. In

addition to mapping heuristics for heterogeneous system, we also conduct

experiments on homogeneous mapping heuristics to evaluate the impact of pruning

mechanism. Pruning configurations are set to use reactive Toggle and Pruning

Threshold of 50%.

Figure 5.13 shows that, in all levels of oversubscription, applying pruning

mechanism to homogeneous systems significantly increases system robustness (by up

to 28%) for all mapping heuristics on both constant and spiky arrival pattern.

Importantly, as the oversubscription level increases, the impact of pruning
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mechanism is more substantial. With 25K tasks arrival rate, in constant arrival

pattern, EDF and SJF can only achieve 4% and 10% robustness, respectively.

Coupling pruning mechanism into these heuristics raises both the robustness to

more than 30%. The reason is that, similar to heterogeneous systems, pruning

mechanism allows the system to avoid mapping unlikely-to-succeed tasks, which

appear more often under higher levels of oversubscription.

Based on the observations of this experiment, we can conclude that, pruning

mechanism works equally as well and provides as much benefit to homogeneous

systems as to the heterogeneous systems.
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5.7 Experimental of Pruning Mechanism with Specifically Designed Pruning-

Aware Mapping Heuristics

To conduct a comprehensive performance evaluation of specifically created

Pruning-Aware Mapping heuristics (PAM and PAMF), we simulate a computing

system with eight inconsistently heterogeneous machines (i.e., M = 8). To generate

the probabilistic execution time PMFs (PET), the mean execution time results from

twelve SPECint benchmarks on a set of eight bare-metal machinesb were

determined. These mean execution times for each benchmark on each system

formed the mean values for our task-machine execution times. The function

describing execution time of the tasks on a machine is assumed to be a unimodal

distribution; from a gamma distribution using the task-machine mean execution

time, and with a shape randomly picked from the range [1:20], 500 execution times

were sampled. From these times, a histogram was generated to produce a discrete

probability mass function (PMF). This was repeated for each task type on each

machine, and the resultant eight machine by twelve task type matrix of PMFs was

stored as the PET matrix which remains constant across all of our experiments. We

note that other statistical methods can be explored to learn and tweak PMF

distributions in an online manner.

5.7.1 Workload generation. Our simulation is of a finite span of time

units, starting and ending in a state where the system is idle. As the system comes

bThe 8 machines are: Dell Precision 380 3 GHz Pentium Extreme, Apple iMac 2 GHz Intel Core
Duo, Apple XServe 2 GHz Intel Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P
AMD Athlon 64 FX-60, IBM System P 570 4.7 GHz, SunFire 3800, and IBM BladeCenter HS21XM.
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online, and tasks begin to accumulate in the queue, the system is not in the desired

state of oversubscription. The same is true of the end of the simulation, when the

last tasks are finishing, and no more are arriving to maintain the oversubscribed

state. In an effort to minimize the effects of the non-oversubscribed portion of the

simulation from the data, the first and last 100 tasks to complete are removed from

the results. Only the remaining tasks from the oversubscribed portion of the

simulation are used in the analysis.

Based on other workload investigations [KFP+15, KFB+15], a gamma

distribution is created with a mean arrival rate for all task types that is synthesized

by dividing the total number of arriving tasks by the number of task types. The

variance of this distribution is 10% of the mean. Each task type’s mean arrival rate

is generated by dividing the number of time units by the estimated number of tasks

of that type. A list of tasks with attendant types, arrivals times, and deadlines is

generated by sampling each task type’s distribution.

Recall that we consider each task to have an individual hard deadline and it

has to be dropped once the deadline is missed. For a given task i, the deadline is

calculated as δi = arri + avgi + (β· avgall), where arri is the arrival time, avgi is the

mean execution time for that task type (range from 50 to 200 ms) , β is a slack

coefficient, and avgall is the mean of all task type’s execution. This slack allows for

the tasks to have a chance of completion in an oversubscribed system.

A series of simulations were run using the Louisiana Optical Network

Infrastructure (LONI) Queen Bee 2 HPC system [Inf18]. For each set of tests, for
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each examined parameter, 30 workload trials were performed using different task

arrival times built from the same arrival rate and pattern, and the mean and 95%

confidence interval of the results is reported. The arrival rates are listed in terms of

number of tasks per time unit.

Each experiment is a set of 30 workload trials, consisting of 1200 tasks per

trial. Each of the experiments investigates high levels of oversubscription where few

tasks complete successfully using baseline heuristics. Due to frequent task mapping

events, each machine in the HC system has a machine-queue size of three, counting

the executing task and the dropping toggle as one task. We also evaluated the

system with the size of machine-queue equals to six, and the results were consistent

with the presented ones. For each of the experiments, unless otherwise noted, the

performance metric (and the vertical axis) is the percentage of tasks completed

before their deadline (i.e., overall robustness).

5.7.2 Dynamic engagement of probabilistic task dropping. In this

experiment, our aim is to appropriately measure the oversubscription level (see

Equation 5.11) by determining the weight that should be assigned to the number of

deadlines missed in the recent mapping event versus the previous values of the

oversubscription level. We also evaluate the impact of using Schmitt Trigger as

opposed to using a single threshold for dynamic engagement of task dropping. This

experiment was conducted under 25k tasks arriving to the system.

Figure 5.14 shows that by assigning a higher weight to the number of

dropped tasks in the most recent mapping event, the overall robustness of the
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Figure 5.14. Impact of historical oversubscription observations and Schmitt Trigger
on determining oversubscription level of HC system. Horizental axis represents the
value of λ coefficient in Equation 5.11.
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system is increased from 39.9% to 42.5%. This is due in part to the steady nature of

task-arrival in our workload trials with only few sudden spikes. While the maximum

robustness is reached with λ = 0.9 with Schmitt Trigger, enabling Schmitt Trigger

alone make the bigger difference than setting the λ to an optimal value. The system

robustness of λ = 1 is close enough to the result with λ = 0.9, while ignoring the

history tracking altogether which can incur less scheduling overhead.

We can conclude that under high oversubscription levels, the best results

come from taking immediate action when tasks miss their deadlines, and then a

steady application of probabilistic task dropping until the situation is decidedly

controlled (i.e., reaching the lower bound of Schmitt Trigger).

5.7.3 Evaluating the mutual impacts of deferring and dropping

thresholds. The goal of this experiment is two-fold: First, it identifies the impact
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of choosing a proper initial dropping threshold; Second, it evaluates the impact of

deferring threshold on effectiveness of the dropping. For that purpose, we disable

dynamic deferring threshold and set it statically. Note that, if the workload

characteristics is known, it can be helpful to set deferring threshold statically to

reduce the pruning overhead.

A static deferring threshold has to be designated greater than the dropping

threshold. Otherwise, a task can be dropped immediately, once it is mapped.

Accordingly, to conduct this evaluation, we add a gap value to the initial dropping

threshold (e.g., a dropping threshold of 50% would require at least 55% robustness

to map a task to a machine). Three dropping thresholds (25%, 50%, and 75%) are

examined and the 5% gap is increased until the deferring threshold reaches 90%.

The results, shown in Figure 5.15, are generated from a workload with 25k tasks.

Figure 5.15. Impact of deferring and dropping thresholds on the system robustness.
Dropping threshold is denoted by line type and color.
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Figure 5.15 validates the experiment assumption, by showing that using a

higher deferring threshold leads to higher system robustness. In addition, we

observe that if the deferring threshold is chosen high enough, deferring operation

prevails dropping and diminishes its influence on the system robustness. Specifically,

if we choose deferring threshold at 90%, we obtain a similar system robustness,

regardless of the intitial dropping threshold value. It is noteworthy that a higher

dropping threshold influences the incurred cost of using an HC system, because they

prevent wasting time processing unlikely-to-succeed tasks that have been mapped to

the system. Based on the experiment, in the rest of evaluations, initial dropping

threshold 50% is used.

Figure 5.16. Evaluating the impact of dynamic deferring probability on the system
robustness on the system with oversubscription level of 15k and 30k
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(a) Impact of initial deferring thresholds
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(b) Impact of pruning on steady and spiky
workloads

. (a) The effect of choosing different initial deferring thresholds on the system
robustness. (b) Comparing dynamic deferring probability threshold (denoted with
Dyn- prefix) against the best statically-determined deferring threshold (denoted

with Optimal- prefix) for both steady (stdy) and spiky workloads.
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5.7.4 Evaluating the impact of deferring on various types of

workloads. In this experiment, our goal is to evaluate effectiveness of the dynamic

deferring threshold adjustment in various scenarios. First, we examine if the initial

value of dynamic deferring threshold matters for the ultimate system robustness.

For that purpose, we vary the initial deferring probability threshold and study the

system robustness using PAM heuristic. Specifically, we examined initial deferring

thresholds (shown as Init Def-th) to 50%, 70%, and 90%. Results of the experiment

in Figure 5.16a shows that, as the system adjusts the deferring probability threshold

dynamically, the initial deferring threshold does not make a difference to the final

system robustness values and they are nearly identical, regardless of the initial

deferring threshold.

Second, we compare the performance of PAM when it is geared to a pruning

mechanism that uses dynamic deferring threshold against when the pruning

mechanism is set to the best experimentally-found deferring threshold value. Note

that, in the latter case, the deferring threshold is static and does not change

throughout the experiment. Also, note that the deferring threshold is the best for

the examined workload and the best value might be different for other workloads.

To assure the applicability of the analysis to any workload, we study two types of

arriving workloads: (A) Steady task arrival rate (shown as stdy in the experiment);

and (B) Varying arrival rate (shown as spiky in the experiment). The varying

arrival rate workload has the same number of total tasks arriving to the system as

the steady one, but with burst task arrival periods. That is, within each time
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interval, the task arrival rate switches between on-peak (i.e., high arrival rate) and

off-peak (i.e., low arrival rate) periods. In summary, by combining static and

dynamic deferring threshold and steady or spiky workloads, we evaluate four cases,

shown as dyn-stdy, best-stdy, dyn-spiky, and best-spiky, in Figure 5.16b.

Figure 5.16b expresses that, in both steady and spiky workloads, the

dynamic threshold provides almost the same robustness as to the best-known static

deferring threshold. In addition, comparison between steady and spiky workload

reveals that the pruning mechanism does not suffer significantly from the

uncertainties in task arrival rate. That is, the system shows to be robust against the

uncertainties in task arrival rate.

5.7.5 Evaluating the impact of fairness factor. Our aim is to study if

PAMF heuristic (see Section 5.2) alleviates unfairness. We test the system using a

fairness factor ranging from 0% (i.e., no fairness adjustment) to 25%. Recall that

this fairness factor is the amount by which we modify the sufferage value for each

task type. The sufferage value for a given task type at a given mapping event is

subtracted from the required threshold, in an effort to promote fairness in

completions amongst task types. For each fairness factor, we report: (A) The

variance in percentage of each task type completing on time. The objective is to

minimize the variance among these. (B) The overall robustness of the system, to

understand the robustness we have to compromise to attain fairness. Robustness

value is noted above each bar in Figure 5.17. We tested oversubscription level of 25k

and 30k tasks.
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Figure 5.17. Evaluating fairness and robustness on the system with 15k and 30k
oversubscription level
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Figure 5.17 shows that significant improvement in fairness can be attained at

the cost of compromising robustness. In the case of 15k oversubscription level, we

observe that using 10% fairness factor results in a remarkable reduction in standard

deviation of completed tasks that implies increasing fairness. The standard

deviation drops from 16% to 13.5%, at the cost of '1% reduction in robustness

(from 65% to 64%). This compromise in robustness is because deferring fewer tasks

in an attempt to improve fairness results in fewer tasks successfully completed

overall.

However, in the case of 30k oversubscription level (and to a lesser extent, 20k

and 25k cases that are not shown in the figure), the fairness factor makes more

significant differences as the oversubscription increases. This is due to the fact that
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a higher oversubscription level provides more tasks to select at each mapping event.

Therefore there is more possibility to bias the mapping to make the task mapping

fairer.

Since high fairness factor value significantly impact on robustness in highly

oversubscribed cases, we configure PAMF with 10% fairness factor in the

experiments, which include various oversubscription levels.

5.7.6 Evaluating the impact of pruning mechanism on the system

robustness. In this experiment, we compare the overall robustness offered by

PAM and PAMF against baseline heuristics described in Section 2.5.2and those

baseline heuristics retrofitted with probabilistic pruning mechanism. We conducted

this evaluation under various oversubscription levels. However, for presentation

clarity, we only show oversubscription levels with 15k and 30k tasks. We note that

the same pattern is observed with other oversubscription levels evaluated.

In Figure 5.18a, we observe that PAM results in a substantial increase in

system robustness in comparison to other heuristics. On oversubscription level of

15k, PAM scores at nearly 67% robustness and PAMF, trading percentage of tasks

completed for types of tasks completed, results in nearly 64% robustness. MOC,

another heuristic that maps tasks based on the robustness value, is the closest in

robustness to PAM, rivaling PAMF, at nearly 58%. The inability to

probabilistically drop tasks leads to wasted processing and delayed task mapping,

thereby lowering robustness. With robustness under 50%, the performance of

MinMin lags behind, as it allocates tasks to machines no matter how unlikely they
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Figure 5.18. Comparison of PAM and PAMF against baseline heuristics with and
without pruning mechanism. Vertical axis shows the percentage of task completed
on time.
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are to succeed. The robustness offered by both MSD and MMU suffers in

comparison because these heuristics, instead of maximizing the performance of the

most-likely tasks, prioritize tasks whose deadlines or urgency is closest (i.e., least

likely to succeed tasks). With an oversubscription of 30k tasks, MSD and MMU

perform particularly bad because they mostly map tasks that fail to meet their

deadlines. When comparing PAM and PAMF against the average of the other four

heuristics, PAM and PAMF result in averagely 22% higher robustness.

In Figure 5.18b, we observe that, for all heuristics, adding the pruning

mechanism to the existing mapping heuristics improves the robustness. The pruning

mechanism makes the largest impact on MSD and MMU. These heuristics

occasionally attempt to map tasks with too tight deadlines, thus, resulting in a low

chance of success. By limiting these heuristics to map tasks whose chance is beyond
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a certain threshold, their overall system robustness is significantly improved.

Figure 5.19. Impact of probabilistic task pruning on the incurred cost and consumed
energy of using resources. Horizontal axes show the oversubscription level and the
vertical axes, respectively, show the average incurred cost and energy consumed per
task completed on time.
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5.7.7 Cost and energy gains of probabilistic task pruning. To

investigate the incurred cost of using resources, pricing from Amazon cloud

VMs [Ama18] has been corresponded to the machines in the simulation. Energy

consumption in active and idle states has been roughly estimated based on the

machine’s specification [FWB07]. Specifically, we assume each machine to consume

70% of their rated power supply when the machine is active and 25% when it is idle.

Each machine’s usage time is tracked. The price and energy incurred to process the

tasks are divided by the percentage of tasks completed on time to provide a

normalized view of the incurred costs and consumed energy.

Figure 5.19a and 5.19b suggest that in an oversubscribed system, both PAM

and PAMF incur at least 33% lower cost and energy per completed task than MM.

We exclude MMU and MSD from the figure because they are shown to perform
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poorly in the prior experiment, which makes their cost per task completion ratio

unchartable, when compared to other heuristics.

While previous tests have shown PAM outperforms other heuristics in terms

of robustness in the face of oversubscription, these results demonstrate that the

benefits are realized in dollar cost and consumed energy as well, due to not

processing tasks needlessly.

5.7.8 Evaluating the imposed overhead. To evaluate task pruning

mechanism and PAM’s scheduling overhead. We compare PAM that is implemented

from the concept introduced in Section 5.4against PAM that utilizes

computational-reuse and approximation techniques that we introduced in Section 5.5

(called approximate PAM and shown as PAM+APPROX ). First, we compare the

task mapping performance in terms of the number of tasks completed on time.

Then, we measured and compared the makespan of the simulation, which is directly

related to the scheduling overhead. For the sake of accuracy, all the measurements

have been carried out on an isolated machine, without any disturbing workload.

Figure 5.20a shows that there is no statistically and practically significant

difference in the performance of PAM and approximate PAM. This confirms our

hypothesis that computational reuse does not change the mapping results, while the

approximation introduces only minor rounding errors. However, due to the high

uncertainty of the heterogeneous computing system, such approximated rounding

induces only minimal changes to mapping decisions.

Figure 5.20b shows that the approximate PAM performs drastically faster
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Figure 5.20. Impact of reusing and approximation techniques of the pruning mecha-
nism and mapping heuristics on the (a) system robustness and (b) imposed overhead.
Horizontal axis in both figures shows the oversubscription level and vertical axis in (a)
shows sytem robustness and in (b) shows the percentage of reduction in the imposed
overhead.
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than the PAM implementation. The saving is particularly remarkable on the larger

oversubscription cases such as 30k where approximate PAM cuts the processing

time out by 93% when compared to the PAM’s implementation (i.e., approximate

PAM is 13.5 times faster than simple PAM). Another point we observe is the growth

of execution time. PAM’s scheduling overhead grows in a more than the linear way

in response to the increase in oversubscription level. However, approximate PAM’s

scheduling overhead is a little lower on 30k than 15k oversubscription level. This is

because while more oversubscribed workload puts more tasks in the batch queue at

each moment (which make each mapping event slower), the higher oversubscription

level also means there are fewer mapping events for the experiment with the same

number of tasks arrival. The fewer mapping events and more load per mapping

event cancel each other in the case of approximate PAM.
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5.8 Summary

The goal of this chapter was to improve robustness of the systems via

pruning tasks with low probability of success. We designed a pruning mechanism as

part of resource allocation system. For pruning, we determined probability values to

either defer or drop a task whose chance of success is low. We enabled the pruning

mechanism to determine dropping threshold at the task level and dynamically

adjust the deferring threshold based on the characteristics of the arriving workload.

We showed that task pruning mechanism improves robustness of the system when

work in conjunction with commonly used task mapping heuristics. To gain even

higher robustness, we developed a probabilistic mapping heuristic, PAM, that

cooperates with the pruning mechanism. We showed that PAM can improve system

robustness by on average '22%. We upgraded PAM to accommodate fairness by

compromising around four percentage points robustness. We employed approximate

computing in calculation of probabilities in the system to reduce the scheduling and

pruning overheads (by up to 93%) and ensure that the mechanism can be used

practically. We concluded that: (A) when the system is not oversubscribed, tasks

with low chance of success should be deferred (i.e., wait for more favorable mapping

in the next mapping); (B) When the system is sufficiently oversubscribed, the

unlikely-to-succeed tasks must be dropped to alleviate the oversubscription and

increase the probability of other tasks succeed; (C) The system benefits from

setting higher deferring threshold than dropping threshold. Evaluation results

revealed that the pruning mechanism (and PAM) not only improves system
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robustness but also reduces the cost and energy of using cloud-based HC resources

by '33%. The idea of pruning developed in this chapter is generic and can be

applied to other HC systems as well.

In the next chapter we develop the prototype of the Serverless Media

Streaming Engine with all the findings of this and all the prior chapters.
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Chapter 6: Prototype Implementation of Serverless Media Streaming
Engine (SMSE)

6.1 Overview

In the prior chapters, we studied the mechanisms to perform computational

reuse via task merging and approximate processing through task dropping and

deferring on a serverless computing platform. In this chapter, we prototype some of

those mechanisms in a media stream processing platform using serverless computing

resources.

Multimedia streaming is becoming an integral part of many applications,

ranging from virtual and augmented reality (VR/AR) [SMKP18, ZSN19], 360◦

streaming (e.g., Wowza [Ser18]), holographic video [MNS+19], and gaming (e.g.,

Twitch.tv [fG19]) to e-learning [DLW14], remote surgery [HNF+17], video

conferencing [FKK18], network-based TVs [PB15], personal broadcasting (e.g.,

Facebook Live [Ser19]), situational awareness via video surveillance

[HSG17, CCY+16], and movie industry (e.g., Netflix [Res18]). In fact, just video

streaming alone is already one of the major services of the Internet and constitutes

more than 75% of the whole Internet traffic [Ind15, CS18].

Multimedia streaming services grow in popularity and diversity; their

demand for hardware and software resources increases. Due to the burden and cost

of maintaining such resources, making use of cloud services has become a common

practice for stream providers. Currently, stream providers such as Netflix and many

others extensively rely on general-purpose cloud services (e.g., Amazon cloud
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[Ama15]) to offer robust and reliable streaming services

[LSBB16, LSB+18, LASJ+18, HLWL16] to the extent that costs of using clouds

have become the main source of expenditure for them. Netflix, as an example, is

estimated to expend around $40 Million on Amazon cloud every month [Net19].

Another expense is the software development costs that stream providers are

incurred due to a lack of high-level programming support from general-purpose

cloud providers [CLFG15].

CDN and multiple caching techniques have been used with limited

effectiveness to reduce cloud resource usage. However, such an approach is not

applicable to live media streaming, and it also loses its effectiveness as the number

of media customization increases. It is also not the best practice to send out the

high-quality master media to perform extensive processing on viewers’ thin-clients

(e.g., smartphones) due to bandwidth, energy, and compute limitations [LS17].

Therefore, a back-end system to on-demand process the media before sending them

to the user must be utilized.

Our goal in this chapter is to develop a special-purpose cloud platform for

multi-media streaming to offer flexible services in a robust and cost-efficient manner.

The platform enables interactive streaming services through on-demand media

stream processing on potentially heterogeneous cloud services in a cost-efficient

manner while observing viewers’ QoS guarantees.

To this end, we developed an Interactive Serverless-Based Media Streaming

Engine (SMSE). SMSE facilitate cost-efficient and QoS-aware interactive live or
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VOD multimedia streaming using serverless cloud service for a different type of

subscribers. SMSE is designed to be extensible, meaning that the stream service

provider will be able to introduce new interactive services on video streams, and the

core architecture can accommodate the services while respecting the QoS and cost

constraints of the stream service provider. To accomodate the large number of

available services, each service is stored in service repository where stream providers

(and end-users) can cherry-pick which of these services they want to have available

to them.

6.2 Architecture

An overview of SMSE is presented in Figure 6.1. In a simplified use case, the

user hits the media playing button on a front-end web page to signify the Request

Ingestion component to generate corresponding media transcoding requests. In

certain cases where the specified media with exact specifications are already cached

in CDN or Video Repository, the content is then sent directly to the user without

processing on the cloud. Otherwise, each user request generates multiple processing

requests. Each of the processing requests is an association between a) each of the

pre-splitted media segment required by the media stream. We pre-split the media in

such a way that it allows them to be parallel processed independently. b) processing

service available in the Service Repository and c) processing specification and

metadata. Admission Control component assign priority of each processing request.

Each processing request waits in the segment queue to be scheduled by Scheduler

(with execution time information from Time Estimator component) to be processed
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in one of the Processing Unit. After the task is scheduled from the segment queue to

a processing unit’s machine queue, the associated media (such as video segment) is

fetched to the Processing unit to get ready for its execution once it reaches the head

of the queue. The Elasticity Manager monitors the performance of Processing units

and adaptively allocates the appropriate amount of resources from the cloud (e.g.,

containers) based on the workload. Finally, once the task is being processed, the

resulting media is sent to CDN and the viewer. If the caching component detects

that such a processing request is popular, it may also decide to cache the resulting

media. In the event that a segment is delayed (e.g., due to failure), the Output

Manager asks the Admission Control to resubmit the request with urgent priority.

The rest of this section, we go into detail on the details and design priority of each

component.

6.2.1 Request ingestion. Request Ingestion handles all processing

requests being made by viewers. Each one of the streaming requests usually

generates multiple sub-tasks that can be processed in parallel. The Request

Ingestion component converts the user request to tasks for the SMSE system to

handle with defined deadline. For most media streaming, each request has the

individual deadline as the presentation time of the media segment [LSB16b].

6.2.2 Media repository. Media Repository contains a copy of each media

available on the platform. Those media segments are usually stored in a high

definition format suitable to be reprocessed to other specifications. Once a media

stream request is received, the media repository notify the media segment
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Figure 6.1. System components of the Interactive Serverless-Based Media Streaming
Engine (SMSE)
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specifications to the request ingestion. Then, once the task is assigned to one of the

processing units, a copy of the original media segment is then transfer to the

processing unit, waiting to be processed. Media Repository can be augmented with

content deduplication and approximate storage features.

6.2.3 Service repository. Service Repository manages the types of

processing that the SMSE can perform. As shown in Figure 6.1, new stream

processing services can be dynamically defined and extended within SMSE by third

parties (e.g., stream service provider). Due to the nature of video processing

frameworks, which can have a large framework dependency, SMSE encourages the

functions to be offered in the form of long-running containers.

6.2.4 Admission control and segment queue. Admission Control is the

front gate of the segment queue (queue for tasks waiting to be scheduled by the

scheduler) and it is in charge of assigning a priority level and a certain internal

metadata to each video segment based on their level of urgency. Further more, it

can be extended to perform other functions such as deduplicating or merging the

arriving task to an existing task in the system as extensively studied in Chapter 4.

6.2.5 Scheduler. Scheduler distributes the arriving segment processing

tasks to available processing units by considering the QoS demands of the request

against several factors. Those factors include the current workload of each

processing unit and the ability of the processing unit to process such task type

(called task-machine affinity).

The scheduler is the class that provides the most customizability in our
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platform. While the simple implementation of the scheduler submits tasks to

machines in FCFS, round-robin manner, we provide a variety of more sophisticated

scheduler implementations. In addition to scheduling policies explained in

Section 2.5, we also implemented the Priority-based scheduling [LSB16a] proposed

by Li et al. with a couple of minor details adjusted. First, not all processing units

can process a given task type. Second, even the processing units capable of

processing the task type can get too busy to be considered as a candidate (i.e., their

waiting queue is too long). The scheduler component can be augmented with the

probabilistic task dropping and deferring proposed in Section 4. However, not all

tasks can be dropped from the system. The SMSE platform supports the processing

of both live media streaming and also on-demand media streaming. In the case of

live media streaming, the task can be dropped after the deadline as they are no

longer useful. In contrast, in the case of on-demand media streaming, the viewers

still expect to receive the media segments even after the deadline has passed.

Therefore, those tasks still have to be processed even after the deadline.

6.2.6 Elasticity manager. The elasticity manager dynamically allocates or

deallocates resources based on the current workflow. It can work solely on top of a

serverless computing platform, in which case the elasticity manager only adjusts the

appropriate budget limit to the serverless platform usage, leaving the actual

resource management works to the serverless platform.

Alternatively, the elasticity manager can also manually manage the resource

by working on two levels. In this way, the elasticity manager scale in and out the
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Figure 6.2. An example configuration of the elasticity manager controlling several
machines. In this simplified example, elasticity manager is suggested to scale up
the number of red processing unit (container) for red rectangular shape to keep up
with the demand. Geometries of different shapes, color, and size represent different
processing tasks. Geometries that stack together signify compounded (merged) tasks.
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number of machines to adjust the computing power. Then, within each machine,

the elasticity manager controls the number of processing units of each function

individually. Figure 6.2 shows the elasticity manager working in this configuration.

Note that each machine can also be heterogeneous machines that best suit to

different type of functions.

6.2.7 Processing units. We define a processing unit as the most granular

computing resource in the view of the scheduler. A processing unit in the SMSE

platform can be an entire machine or a long-running container on top of the

(bare-metal or virtual) machine. However, we discourage the use of an entire bare

metal machine as a processing unit for two reasons. First, many service functions

are not implemented to be highly parallelizable, and therefore, a large part of

resources in the bare-metal machine might not be used efficiently. Second, currently,

a new function in SMSE is providing as a container image. Using bare machine as a

processing unit does not allow the real-time introduction of a new (function) service.

Once started, each processing unit listens to a machine queue (implemented

using RabbitMQ) for tasks assigned from the scheduler. The machine queue is vital

for efficient usage of processing power by minimizing scheduling and resource

waiting time. Upon task arrival to the machine queue, the processing unit fetch the

corresponding media (such as video segment) ahead of the task’s execution time.

All machine queue is managed in a FCFS manner for tasks with normal priority.

However, a task with a high priority can skip the line for urgent execution.

6.2.8 Time estimator.
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The time estimator component highlights the modular design of our

platform. The time estimator predicts task execution time (and completion time) of

each request on each processing unit. For the balance of usability and prediction

accuracy, the time estimator model execution time following a normal distribution.

Hence, the result of timing predictions has a mean and standard deviation

component. However, the class can be overwritten to predict the execution time

with Probability Mass Function (PMF) or Probability Density Function (PDF) as

necessary.

We provide two implementations of the Time Estimator to select on run

time. In an implementation called profile mode, the time estimator simply reads the

pre-defined table to find the expected execution time of each media segment, with

the specified processing service on the specified processing unit type. This mode is

highly deterministic and is suitable for testing several components of the SMSE.

In another implementation called learn-mode, time estimator accumulated

historical data from prior task executions to form knowledge for estimating each

task type of the later occurrences. Unlike profile mode, The time estimator in this

mode does not attempt to discriminate the estimation data between different media

segments. In other words, a task that involves the same operation on the same

processing unit yields the same time estimation regardless of involved media

segments. This mode is useful when a high amount of task type variation is

expected, and there is no complete execution time profile available.
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6.2.9 Output manager and caching system. The output manager

resides near the end of the processing pipeline. It keeps track of all requested media

segments of all users and making sure all segments are processed properly and in a

timely manner. In a case that a certain segment is missing, the output manager

component can request the admission control to resend the processing request of the

segment in an urgent priority. The output manager also allows the multi-stage (i.e.,

workflow) tasks to be performed in the SMSE. When the output manager found a

task that needs to be processed further with a different service to reach the user’s

specification, it generates the new task accordingly.

In addition, output manager can determine the hotness [DSBB19] (i.e.,

popularity) of each segment. Media segments that are predicted to be requested

again in the near future can be cached for reusing in a local caching server or on

CDN [VDS19].

6.2.10 Extendability of the system. While SMSE provides a number of

pre-defined media processing services, we expect most of the task types to be

created by the service providers. As such, we structured video processing services

within SMSE as an interface that can be extended by third parties as shown in

Figure 6.3. For example, if a stream service provider would like to provide an

auto-translation for video subtitles. Then they can define the media processing task

and provide SMSE a container image to process such task type. We take the

processing service as a long-running container for several reasons. First, many task

types for media processing require either a specific version of video processing tools
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or machine learning frameworks, which is easiest to deliver as a container. Second,

regarding the long-running manner, many of the video processing tasks require low

latency results. By making service containers standby and ready to execute tasks

without the container start-up overhead, the start-up latency is significantly

reduced. We evaluate the overhead of launching one container for one task against

reusing the long-running container in section 6.3.2.

Table 6.1. Quick reference of technology and tools used in SMSE

Component Tools
Language for Scheduler Java

Language for
Processing Unit Python 3

Message Queuing RabbitMQ [DE17]
Object Serializer Google Protobuf [GVRP20]

Default Media Processing Tool FFmpeg [ZZS16]
Default Video Streaming Standard Apple HLS [SSA17]

Web Player Hosting Node.js [TV10]

6.3 Performance Evaluation

6.3.1 Experimental setup. To evaluate the prototype of the SMSE

platform implemented using tools listed in Table 6.1. We experiments two parts

separately. The first two experiments measure the start up latency of the service

containers. The rest of the experiments the SMSE in a full deployment mode (i.e.,

not simulated) using containers performing media processing tasks.

The media repository we used for evaluation includes a set of videos. Videos

in the repository set are diverse both in terms of the content types and length. The

length of the videos in the repository varies in the range of [10, 220] seconds

splitting into 5-110 video segments. The benchmark videos are publicly available for
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Figure 6.3. Expandable Interfaces in Serverless Media Stream Processing Engine
(SMSE). Each Box outside of the SMSE Core represents each of the expandable
interface to increase the capability and compatibility of the system.
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reproducibility purposesa. More details about the characteristics of the repository

videos can be found in Chapter 3. The processing services in the experiment

includes: reducing resolution, adjusting bit rate, and adjusting frame rate. In each

case, two conversion parameters are examined. For example, frame rate is changed

from 60 fps down to either 30 fps or 24 fps.

To evaluate the system under various workload intensities, user requests are

profiled to request for [400, 1,200] media segment processing tasks within a fixed

time interval. Other than the first two experiments, all transcoding micro-services

are available in the processing units (i.e., warm starting micro-services). Processing

tasks arrive to the system in a group of up to twenty consecutive segments at a

time. To accurately profile common workload arrival pattern observed in the real

video steaming systems, each workload repeatedly toggle their arrival rate between

base period and high load period where the arrival rate is increased by two folds.

Each base period is approximately three times longer than the high load period.

6.3.2 Evaluating processing unit configurations. In this part, we

compare the start-up overhead of various deployment schemes of a processing unit.

In SMSE, the task processing unit can be deployed as a thread, as a virtual

machine, and as a container. To cope with the ever-changing demand of each

functions, the number of processing units for each function is dynamically adjusted

periodically. Therefore, a low start-up overhead of the resource can help to keep up

with the surge of demand without resorting to a high amount of hot spare resources.

ahttps://github.com/hpcclab/videostreamingBenchmark
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Evaluating startup latency of processing units: Figure 6.4 shows the start-up

latency of processing unit deployments: processing unit as a thread, processing unit

as a container, processing unit as a virtual machine.

The latency of starting virtual machines in our set-up is far beyond other

schemes at over 12 seconds for one VM and increases to over 30 seconds for four

VMs. Therefore we leave their data out of the chart for the clarity of other

configurations. Performance wise, starting a processing unit as a thread has the

least start-up overhead. However, such configuration lack isolation and scaling

flexibility. Each service processing unit running on a bare-metal machine can

interfere with each other, and each of them may require different software libraries

that conflict with each other. Deploying the processing unit as a container

eliminates such a downside while imposing an acceptable amount overhead.

Evaluating the effect of container reusing: In this part, we evaluate the two

approaches to using containers for task processing. The most straight-forward and

simple solution is to launch a new container for each task. This imposes a container

start-up overhead for every task. The second solution is to reuse a container for

multiple tasks by making the processing unit a long-running container. Each of the

processing units is assigned its own machine queue, which will be filled by tasks

assigned from the scheduler. In this way, each processing unit (each container) can

process multiple tasks with only a single start-up overhead. However, each task still

imposes the queueing overhead.
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Figure 6.4. Comparing the start-up latency of three processing unit deployments:
processing unit as a thread, processing unit as a container, processing unit as a virtual
machine. X-axis shows the number of processing units to deploy. Y-axis shows the
time in seconds to start all the processing units indicated in X-axis.
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Figure 6.5 shows the round trip time from assigning one to four tasks to

getting the processing result back from the processing units. For the container

reusing approach, we found the task processing time to overwhelm the queueing

overhead. The round trip messaging latencies are only six to thirty milliseconds and

therefore are not plottable when the scale of task processing time is almost two

seconds. For the approach that creates a new container for each task, we found the

container creation takes a similar or longer time than the time it takes to process

the task. As such, creating one container per task execution is highly inefficient.

And therefore, the container reusing approach is selected for all further experiments.
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Figure 6.5. Comparing the execution time of one to four video processing tasks
running on containers in two configurations: reusing existing container and starting
a new container for each task.
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6.3.3 Evaluating the optimal degree of concurrency on the

execution platform. In this part, we evaluate the number of tasks deploying

concurrently for optimal performance. Specifically, for a machine with 16 CPU

cores, how many concurrent processing units (containers) result in the lowest

deadline miss-rate? Note that the function containers in the study can use up to

two CPU cores each.

Figure 6.6 shows the deadline miss-rate as we increase the number of

concurrent containers and the workload intensity. We observe a significant

improvement in the deadline miss-rate when the number of concurrent tasks

increases from four concurrent containers (which utilize eight CPU cores) to eight
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Figure 6.6. Comparing the deadline miss-rate of systems with various workload
intensity across three configurations. Each configuration specifically runs 4, 8, and
12 concurrent containers on a machine with sixteen CPU cores, respectively. Each
container can also use two CPU cores concurrently.
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concurrent containers (utilize sixteen CPU cores). From there, when increasing the

degree of concurrency further to twelve concurrent containers, the deadline

miss-rate rises. This is due to two reasons. First, twelve concurrent containers can

use up to twenty-four CPU cores while the system only has sixteen. This increases

the number of context switches. Second, media processing tasks require a significant

amount of memory and storage access that can become more scarce when sharing

with more concurrent task executions. Based on the results, we believe the optimal

performance can be achieved for the media processing execution platform when the

number of expected CPU core usage is the same as the number of CPU in the

system. The extra concurrency after that point can impact the performance in a
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negative way.

6.3.4 Evaluating scheduling policy.

Figure 6.7. Comparing the deadline miss-rate of system with various workload
intensity, with various scheduling policy.
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In this part, we evaluate the perceived QoS of the users in the system with

three built-in scheduling policies, namely Priority, First-Come-First-Serve (FCFS),

and Earliest-Deadline-First (EDF). Priority-based policy is described in this

Section, while other two policies are explained in detail in Section 2.8. The task

executions run on eight concurrent containers using a container reusing execution

scheme, as they found to be optimal from the prior experiment. Figure 6.7 shows

the deadline miss-rate as the workload intensity increases. We found that the

deadline miss-rate of three scheduling policies is not significantly different from each

other. Therefore, we measure other factors in addition to the deadline miss-rate,
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namely: start-up delays and fairness.

Figure 6.8. Comparing the start-up delay of the first video segment of each stream
between the systems with different scheduling policy.
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Evaluating streaming start-up delay: To evaluate the streaming start-up

delay, we measure the end-to-end time from when the stream request arrives in the

system to the time that the first segment is delivered to the viewer. Figure 6.8

shows the start-up delay of systems with different task scheduling policies across

various workload intensities. Note that all these workload intensities are causing

oversubscription in the system. Specifically, even at 1,500 tasks arrival during the

time window, the system already misses a few percentages of task deadlines (see

Figure 6.7). By the nature of how each policy operates, the priority-based

scheduling policy yields the lowest start-up delay by far. This is because the
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priority-based scheduling policy prioritizes the first few segments of each video

stream over the later segments. Therefore, this policy likely results in the lowest

wait time for each streaming.

Figure 6.9. Comparing the fairness among users as a result of scheduling policies.
Y axis shows the suffering variation of each user measured by variance of deadline
miss-rate across video streams.
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Evaluating fairness across users: In this part, we assume each user to

request exactly one media stream. Recalling that deadline miss-rate are similar

between each of the scheduling policy, the variance of deadline miss-rate across

different streams can indicate unfairness. Specifically, stream with a high deadline

miss-rate get unfair treatment compare to another stream that has a lower deadline

miss-rate. Based on the result in Figure 6.9, priority-based scheduling is also the

fairest scheduling policy. It makes sure that each user can get their first few media
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segments in a timely manner. And then, if the system cannot keep up with the

workload intensity, all the streams suffer near the end of their streaming.

6.4 Summary

In this chapter, we dealt with the problems of efficiently utilizing serverless

computing resources for creating special propose computing platform. Specifically,

we implements the prototype of the Serverless Media Stream Processing Engine that

is highly extensible. The platform enables interactive streaming services through

on-demand media stream processing on potentially heterogeneous cloud services in a

cost-efficient manner while observing viewers’ QoS guarantees.

The prototype developed in this Chapter is the motivational application

which helps evaluating the concepts in other chapters.
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Chapter 7: Conclusion and Future Research Directions

This chapter summarizes the research and findings of this dissertation.

Additionally, research topics that have emerged during the course of this research

but is have not been addressed are discussed.

7.1 Discussion

In this dissertation, our main objective goal was to investigate an efficient

serverless cloud computing system. This leads to realization of potential inefficiency

of processing similar or duplicated task requests and their corresponding effect to

oversubscription issue. As such, two approach of dealing with oversubscription issue

is proposed.

In chapter 3, we studied the potential of reusing computation via merging

similar tasks to reduce their overall execution-time in the clouds. Considering video

processing context, we built a video benchmarking dataset and evaluated the

parameters that influence the merge-saving. We observed that merging similar video

processing tasks can save up to 31% (for merging two tasks) of the execution-time

that implies a significant cost saving in the cloud. We also learned that the

merge-saving gain becomes negligible, when degree of merging is greater than three.

Then, we leveraged the collected observations to train a machine learning method

based on Gradient Boosting Decision Trees (GBDT) to predict the merge-saving of

unforeseen task merging cases. The fine-tuned prediction model can provide up to

93% accurate resource saving prediction.
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In chapter 4, we alleviate the oversubscription of the system via merging

arriving requests with others (exact or similar) requests in the system. There are

two challenges of this approach: First, how to identify identical and similar requests

in an efficient manner? Second, how to perform (or not perform) merging to achieve

the best QoS in the system? To address the first challenge, we identified three main

levels of similarity that requests can be merged. Then, we developed a method to

detect different levels of request similarity within a constant time complexity. To

address the second challenge, we developed a method that determines, based on

system oversubscription condition, how to perform the merge operation so that the

deadlines of other requests in the system are likely least affected. Experimental

results demonstrate that the proposed system can reduce the overall execution time

of requests by more than 9%. Hence, cloud resources can be deployed for a shorter

time. This benefit comes with improving QoS of the users as well. We also

concluded that when the level of oversubscription in the system is high, merging

requests aggressively (i.e., without considering the impact on other requests) helps

in maintaining QoS and makes the system more robust. Conversely, with lower

levels of oversubscription, merging requests should be carried out with consideration

of the impact on other requests to not cause unnecessary impact the QoS.

In chapter 5 we remedy the oversubscription impact on QoS and the

cost/energy per on-time task completion by emblace the task pruning mechanism

where we prioritize and prune away tasks that have low chance of completing on

time from clogging the resources that can be used on other tasks which have higher
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chance of on time completion. We designed a pruning mechanism as a stand-alone

component of the resource allocation system. For pruning, we determined

probability values to either defer or drop a task whose chance of success is low. We

enabled the pruning mechanism to determine dropping threshold at the task level

and dynamically adjust the deferring threshold based on the characteristics of the

arriving workload. We developed a probabilistic mapping heuristic, PAM, that

cooperates with the pruning mechanism. We showed that PAM can improve system

robustness by on average '22%. We upgraded PAM to accommodate fairness by

compromising around four percentage points robustness. We employed approximate

computing in calculation of probabilities in the system to reduce the scheduling and

pruning overheads (by up to 93%) and ensure that the mechanism can be used

practically. We concluded that: (A) when the system is not oversubscribed, tasks

with low chance of success should be deferred (i.e., wait for more favorable mapping

in the next mapping); (B) When the system is sufficiently oversubscribed, the

unlikely-to-succeed tasks must be dropped to alleviate the oversubscription and

increase the probability of other tasks succeed; (C) The system benefits from setting

higher deferring threshold than dropping threshold. Evaluation results revealed that

the pruning mechanism (and PAM) not only improves system robustness but also

reduces the cost and energy of using cloud-based HC systems by '33%.

Finally, the implementation details of a serverless-based cloud media

processing platform is detailed in Chapter 6. Although this implementation of

serverless computing platform is domain-specific to media processing. Most of the
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general design features can expand and apply to process other type of computation

as well. The design goal of this platform is not only to be efficient but also modular

and flexible. A wide variety of task mapping heuristics is supported. Task execution

time can be modelled as normal distribution (through mean and standard

deviation) or other type of distribution (through Probability Mass Function).

Multiple computing resources are supported and the application interface is

provided to expand the capability further. The platform is used for evaluating

components in-focus of other chapter.

In conclusion, an efficient serverless computing platform that is capable of

merging similar task requests and prune tasks to maintain QoS in the event of

oversubscription can be particularly useful to serve as a foundation to the future

generation of FaaS cloud computing system.

7.2 Future Works

Based on our findings during the development of a serverless computing

platform. There are several points where the work could be expanded upon that

were not covered in this dissertation.

7.2.1 Optimal workflow formation to maximize reusability. All the

tasks in this study are independent tasks with no data dependency between each

other. However, in many use cases of Serverless cloud, each FaaS task requests can

be a part of the complex workflow. This is especially true when the functions are

developed following CI/CD guideline. When the task dependency is considered, it

open up a few branches of research topic to be explored.
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First, the task pruning mechanism must understand the implication of

dropping or delaying a dependency task to its dependent tasks. The task pruning

mechanism can no longer consider all tasks to be equally important and can drop

them independently.

Second, to reach the final output of each workflow, there can be multiple

configurations of the intermediate steps along the workflow. For example to get a

censored video in a lower resolution, the video can change its resolution first before

applying censorship later or vice versa where we apply censorship first then

changing resolution. In each configuration, the resulting execution time and the

resusability of the intermediate data varies. Task mapping heuristics should

dynamically optimize task’s workflow, by scheduling the order of functions in a way

that the total execution time is minimized and reusability of the result in the

intermediate steps before reaching the final step is enhanced.

7.2.2 Smart prediction of the merge-saving for new functions

and/or new machine types. In Chapter 3, we found the resource saving of

Codec changing operation to scale different to those of VIC operations as the degree

of merging increase. On top of that, some of the Codec changing operations also

behave different to the others. We manually categorize those operations that behave

similarly together as a group. However, a systematic and automatic test and

categorization process for an unknown operation should be studied. Such that, the

Merge-Saving Predictor can perform a few tests on an unknown operation to

categorize the operation in a group which share the same behavior to ease the
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prediction.

Similar categorization and reusing of similar machine’s data can be explored

to create the execution profile data of new machine type also.

7.2.3 Fairness for domain-specific functions. In Chapter 5, we

augmented pruning-aware mapping heuristics with a fairness module. Such fairness

module tries to balance the number of completion among task types and or users.

However, just the equalizing the number of task completion or deadline-miss rate

still considered unfair. As each domain have various QoS concerns, domain-specific

fairness models should be explored.

7.2.4 Semantic deduplication in media streaming. Our motivational

application is the interactive media streaming system which process the media to

the user’s specification upon request. This is done to avoid storing multiple

redundant versions of the same media in multiple configurations. However, while we

can avoid pre-processing and storing multiple pre-transcoded versions of the same

media, the users can still upload redundant media of the same content to the

system. An example of such case is the video of popular football match. Many users

upload the exact same video to their channels creating duplicated content.

Alternatively, they can also voice over with their comments on the same video

creating a similar video (same pictures, different audio). A storage system that is

capable of deduplicating the same media content and approximately store similar

content can reduce the redundancy in the system further.
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7.2.5 Semantic request approximation. Consider a task request that

want a video segment to be transcoded from their original 4K resolution to be 1080p

in an oversubscribed system. As the system is oversubscribed, the task cannot be

completed in a timely manner. Chapter 4 allow the task request to combine with

other similar request (e.g., same video segment in 720p) to form a compound

request which still can also miss its deadline if the saving from request merging is

not significant enough. Chapter 5 can drop the task if it is considered infeasible and

then supply the user with a baseline minimal version of the result (e.g., same video

segment in 240p). Between the two approach there is a third unexplored alternative.

Providing that there is a similar task request already scheduled in the

system. If the request merging with accurate request specification does not yield a

timely completable request. Instead of dropping such request and supply the user

with a bare minimal result, the system can explore with the options of marginally

compromising requests’ specification accuracy (substitute some request parameters

with similar value) to enable more computational sharing with other existing

requests. Such specification compromising can allow the the user to get a less than

ideal result that is still better than the bare minimum version of the result if the

task request is dropped.

7.2.6 Merge-aware task scheduler for under-loaded systems. The

proposed task merging system in for serverless cloud assume the system to be

oversubscribed. Thus focussing on resolving QoS issue that caused by

oversubscription. However, in a case when the system is not oversubscribed (i.e.,
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resources are highly scalable), the system that emphasize on completing as many

tasks as soon as possible can miss out on potential cost saving merges. For instance,

if an arriving task is scheduled to execute too early, it cannot be merged with a soon

to arrive tasks. In contrast, delaying the execution to the latest possible moment to

still catch the QoS increase the chance of it to be merge with others. We believe a

merge-aware task scheduler can increase the cost efficiency of executing tasks on

serverless system.

7.2.7 Failure recovery in serverless computing systems. Fault

tolerant in most computing system can be achieved through check-pointing and

restoring of the faulted computing resource. However, in serverless computing

paradigm, the exact restoration of the failed hardware is not required. Also, each

tasks is generally run for a short time. And specifically in our case, task does not

required to take the exact same step to complete its execution. For example, a

compound (merged) task in a failed machine’s scheduling queue can be re-issued as

separate tasks (or each of them combine with other tasks) on different machines to

complete within the deadline.
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Abstract

Cloud-based serverless computing systems, either public or privately

provisioned, aim to provide the illusion of infinite resources and abstract users from

details of the allocation decisions.

With the goal of providing a low cost and a high QoS, the serverless

computing paradigm offers opportunities that can be harnessed to attain the goals.

Specifically, our strategy in this dissertation is to avoid redundant computing, in

cases where independent task requests are similar to each other and for tasks that

are pointless to process. We explore two main approaches to (A) reuse part of

computation needed to process the services and (B) proactively pruning tasks with

a low chance of success to improve the overall QoS of the system.

For the first approach, we propose a mechanism to identify various types of

“mergeable” tasks, which can benefit from computational reuse if they are executed

together as a group. To evaluate the task merging configurations extensively, we

quantify the resource-saving magnitude and then leveraging the experimental data

to create a resource-saving predictor. We investigate multiple tasks merging

approaches that suit different workload scenarios to determine when it is

appropriate to aggregate tasks and how to allocate them so that the QoS of other



tasks is minimally affected.

For the second approach, we developed the mechanisms to skip tasks whose

chance of completing on time is not worth pursuing by drop or defer them. We

determined the minimum chance of success thresholds for tasks to pass to get

scheduled and executed. We dynamically adjust such thresholds based on multiple

characteristics of the arriving workload and the system’s conditions. We employed

approximate computing to reduce the pruning mechanism’s computational

overheads and ensure that the mechanism can be used practically. The developed

task pruning components are modular and are compatible with various scheduling

policies.

We develop both approaches in the context of a serverless on-demand media

processing platform. However, the ideas and approaches developed in this

dissertation are generic and can be applied to serverless systems in other contexts.
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