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Abstract—Despite extensive research on system heterogene-
ity, there remains a gap in measuring its impact on system
performance. Previous studies have primarily focused on the
binary definition of heterogeneity based on architectural di-
versity, without exploring dimensions of system heterogeneity
and their impacts on the system performance. To bridge this
gap, in this study, we propose a heterogeneity measure that,
for a given heterogeneous system, offers a representation of
its performance. This heterogeneity measure is instrumental for
solution architects in proactively defining their systems to be
sufficiently heterogeneous to meet their desired performance
objectives. Accordingly, we develop a mathematical model to
characterize a heterogeneous system in terms of its task and
machine heterogeneity dimensions and then condense it to a
single value, called Homogeneous Equivalent Execution Time
(HEET), which represents the execution time behavior of the
entire system. We used AWS EC2 instances to implement a
machine learning inference system. Using HEET scores in various
heterogeneous system configurations demonstrated that HEET
can accurately characterize the performance behavior of these
systems. In particular, the results show that HEET can help
predict the true makespan of heterogeneous systems with an
average precision of 84%.

Index Terms—Heterogeneous Computing, Performance Anal-
ysis, Distributed Computing Systems

I. INTRODUCTION

A. Research Motivations and Goals

Heterogeneity has been an indispensable aspect of dis-
tributed computing throughout the history of these systems.
In the modern era, as Moore’s law is losing momentum due
to power density and heat dissipation limitations [1], heteroge-
neous computing systems have attracted even more attention to
overcome the slowdown in Moore’s law and fulfill the desire
for higher performance in various types of distributed systems.
In particular, with the ubiquity of accelerators (e.g., GPUs
and TPUs) and domain-specific computing (through ASICs
and FPGAs), the matter of heterogeneity and harnessing it
has become a more critical challenge than ever before to deal
with.

In the literature, heterogeneity in computing systems is
mainly identified based on the architectural diversity of their
machines. If all machines share the same architecture, the
computing system is homogeneous; if there is architectural
diversity, the system is considered heterogeneous. However,
the 0/1 heterogeneity metric may not accurately capture the

intricacies of diverse and multifaceted systems. For example,
cloud providers like AWS offer varying instance types, in-
cluding GPU-based and CPU-based EC2 instances, each with
different associated costs. These systems can be utilized to
serve machine learning inference requests. Although multiple
viable configurations meet the desired throughput, there is
an optimal configuration that minimizes the incurred cost.
To minimize the cost incurred by different heterogeneous
computing systems, we need to be able to compare hetero-
geneous systems by quantifying the impact of heterogeneity
on performance metric (e.g., throughput). This emphasizes the
need for a more nuanced metric to inform decision-making and
navigate the vast decision space.

As such, our goal in this study is to propose a “
performance-driven heterogeneity score” that can characterize
the impact of the heterogeneity level of a system on its
performance objective (i.e., throughput) and make the system
comparable with its counterparts. In essence, our goal is to
go beyond a binary heterogeneity metric and embrace a more
nuanced approach, the heterogeneity spectrum. This spectrum
attributes a heterogeneity score to each heterogeneous system,
offering a representation of its performance relative to others.
In this way, the position of computing systems in the hetero-
geneity spectrum serves as a guiding metric and navigates the
expansive decision space, ultimately aiding in making well-
informed decisions.

B. Problem Statement and Summary of Contributions

We define a heterogeneous computing system as a set of ar-
chitecturally diverse machines that work together to complete
a set of requests (a.k.a. tasks) with different computational
requirements. We categorize the tasks that arrive at a system
based on the type of operation they perform and call them task
types. For example, in a system that helps visually impaired
people [2], [3], task types can be obstacle detection, face
recognition, and speech recognition. Moreover, we classify
machines of a computing system based on their architectural
and performance characteristics and call each one a machine
type. In this work, we consider the heterogeneity of the system
resulting from the diversity in the types of machines and
the computational requirements of the types of tasks. That
is, system heterogeneity has two dimensions: (i) machine
heterogeneity and (ii) task heterogeneity.



Profiling various task types on heterogeneous machine types
can describe their execution time behavior. Variations in the
average execution time of a given task type across all machine
types demonstrate a dimension of the system heterogeneity and
are defined as machine heterogeneity, whereas variations in
the execution time of different task types on a given machine
type highlight the other dimension of system heterogeneity and
are defined as task heterogeneity. The system heterogeneity is
defined as the compound heterogeneity of these dimensions.

To construct the heterogeneity spectrum across heteroge-
neous computing systems in a manner that can describe
the performance behavior of systems in terms of makespan
or throughput, we need to address the following research
questions: (i) How to find a heterogeneity score to make
heterogeneous systems comparable? (ii) How to exploit the
heterogeneity score to predict the performance of a computing
system?

We define Expected Execution Time (EET) as a matrix to
store the expected execution time of each type of task on
each machine. In this way, the entry EET ri, js (denoted eij)
represents the expected execution time of the task type i
in machine type j. For systems with multiple instances of
the same machine type, the corresponding columns of those
machines in the EET matrix are identical. The EET matrix,
as a whole, represents the expected performance of the entire
system in terms of the execution times of the tasks. As such,
the matrix can be used as a guide to understand the throughput
that the system can achieve.

In pursuit of developing a heterogeneity score, we present
a method for transforming a heterogeneous computing system
into a hypothetical equivalent homogeneous system. This
homogenization ensures that the equivalent homogeneous sys-
tem exhibits performance behavior similar to the original
heterogeneous system for evaluation and comparison. We first
establish a baseline homogeneous system, which is generally
slower than the heterogeneous system. Then, we calculate
the speedup factor, which quantifies how much faster the
heterogeneous system is compared to the baseline. Finally,
utilizing the speedup factor relative to the baseline, we de-
termine the equivalent homogeneous system. This allows us
to capture the essence of heterogeneity while simplifying the
system for analysis and comparison. For that purpose, we
perform homogenization in two dimensions of heterogeneity:
(i) machine homogenization, where all diverse machines are
transformed into hypothetical homogeneous machines, and
(ii) task homogenization, where task types are transformed
into a hypothetical equivalent task. We examine various
measures of central tendency, namely arithmetic, geometric
and harmonic means, and propose a single measure, called
Homogeneous Equivalent Execution Time (HEET), which,
for a given EET matrix, describes the expected execution time
of a hypothetical homogeneous system whose performance
is similar to the heterogeneous system represented by the
EET matrix. Subsequently, we employ the HEET measure
to determine the throughput of the heterogeneous computing
system. We evaluated HEET score for various heterogeneous

systems and showed that it can accurately describe the impact
of heterogeneity on the desired throughput. In summary, the
specific contributions of this paper are as follows:

‚ Providing a measure to quantify the system heterogeneity
such that it can be used to determine the throughput of a
system represented by the EET matrix.

‚ Proposing a systematic approach to analyzing heterogene-
ity of a computing system via decoupling the heterogene-
ity into machine and task heterogeneity dimensions and
homogenizing each dimension separately.

‚ Proving the appropriateness of the arithmetic mean and
harmonic mean to measure the central tendency of
speedup vectors due to machine heterogeneity and task
heterogeneity, respectively.

‚ Validating how system performance (makespan or
throughput) can be derived as a function of the proposed
heterogeneity score.

II. HETEROGENEITY TO HOMOGENEITY
TRANSFORMATION

A. Overview

System heterogeneity is the result of the synergy between
machine heterogeneity and task heterogeneity dimensions. Ac-
cordingly, our approach is to individually homogenize each di-
mension of heterogeneity and then combine them to transform
the heterogeneous system into an equivalent homogeneous
one. To this end, we base our analysis on the notion of the EET
matrix that is representative of the system performance, where
the row-wise variations illustrate the machine heterogeneity,
and the column-wise variations express the task heterogeneity.
Note that if some machines in the system are the same, their
corresponding columns in the EET matrix are repeated.

In the homogenization process, we establish a baseline
homogeneous system, which is slower than the heterogeneous
system. Then, we exploit the notion of speedup to quantify
how much faster the heterogeneous system is compared to the
baseline homogeneous one. In machine homogenization (MH),
given a task type, the baseline is the slowest machine for that
task type. Thus, the speedup vector for the task type i, denoted
by ÝÑα piq, is determined based on Equation 1.

α
piq
j “

n
max
j“1

eij

eij
(1)

In the above equation, ÝÑα piq has the same dimension as the
ith row of the EET matrix. Each entry α

piq
j denotes the speedup

that the system can achieve when the machine type j executes
the task type i instead of running it on the slowest machine
type.

Similarly, in task homogenization (TH) for a certain ma-
chine, we base our analysis on the slowest task type for that
machine. Then, the speed-up vector for machine j, denoted
ÝÑ
β pjq, is calculated based on Equation 2.

βi
pjq “

m
max
i“1

eij

eij
(2)



The entry βi
pjq

indicates the speedup achieved by executing
a task of type i on the machine type j, as opposed to executing
the slowest task type on that machine.

Given the speed-up vectors due to machine (task) hetero-
geneity, our objective is to determine the overall speed-up
factor, a scalar value that quantifies the collective speed-up
gain due to the heterogeneity of machines (tasks). This overall
speed-up factor consolidates the effects of heterogeneity across
all machines (tasks), so that if all machines (tasks) were
replaced by a hypothetical machine (task) with an execution
time represented by this factor relative to the slowest machine
(task), the overall performance of the system would remain
unchanged.

Based on the mean field method [4], the interaction of
variables in a complex stochastic system can be replaced by
the average interactions between these variables. As such,
we can use the mean to represent the speedup behavior of
all ptask,machineq pairs in both ÝÑα piq and ÝÑ

β pjq. For this
purpose, we employ statistical measures of central tendency
(arithmetic, geometric, and harmonic mean) to accurately
represent ÝÑα piq and ÝÑ

β pjq. However, the challenge is that there
is no consensus on the appropriateness of these measures to
capture the central tendency of a specific use case [5], [6]
and it must be investigated case by case. An appropriate mean
speedup value derived from the EET matrix must precisely
depict the “real speedup”, a.k.a. true speedup (denoted by Γ),
that the heterogeneous system can achieve for a given work-
load. We exploit the notion of makespan (i.e., the total time to
execute the workload) to calculate the true speedup. According
to Equation 3, the true speedup is determined based on the
time to execute the workload in the heterogeneous system
with respect to its homogeneous “counterpart homogeneous
system”, as the base system (a.k.a. baseline).

Γ “
homogeneous system makespan
heterogeneous system makespan

(3)

Note that the homogeneous counterpart system is repre-
sented by an EET matrix whose entries are all equal to the
maximum value of the EET matrix of the heterogeneous
system. We use ΓM and ΓT to represent the true speed-up
with respect to machine heterogeneity and task heterogeneity,
respectively.

Given the true speedup value, we can compare it with
the calculated overall speedup to determine its accuracy. We
provide lemmas to introduce appropriate central tendency
measures for speed-up due to machine and task heterogeneity.
Taking into account that we consider the execution time of the
slowest machine (task type) as the baseline, in the machine
(task) homogenization process, given a task type (machine),
we utilize the overall speedup factor and the baseline exe-
cution time to determine the expected execution time of the
hypothetical equivalent machine (task type).

In the rest of this section, we elaborate on characterizing
machine heterogeneity and task heterogeneity dimensions and
explain how to homogenize each dimension. Then, we discuss
how to fuse these dimensions to perform homogenization.

B. Machine Homogenization

In machine homogenization, given a task type, we use
the expected execution times to aggregate the performance
behavior of all machines. This allows us to introduce a hypo-
thetical equivalent machine that can replace the heterogeneous
machines without affecting the overall performance of the
system. Specifically, for the task type i, we process the row ith

of the EET matrix with respect to the slowest machine for that
task type to form a row speedup vector, denoted ÝÑα piq. Then we
use the central tendency measure (mean) of the components of
the row speedup vector, denoted sαpiq, to aggregate the speedup
behavior of all machines.

According to [7], in the circumstances where performance is
expressed as a rate (e.g., flops), generally the harmonic mean
can accurately express the central tendency. In addition, the
central tendency can usually be represented by the arithmetic
mean when performance is of a time nature (e.g., makespan or
the total execution time of a benchmark). Lastly, they suggest
avoiding the use of geometric mean when the performance is
of the time or rate nature. In another study [6], the speedup is
considered as the performance metric to compare an improved
system with a baseline one. To do this, they used a set of
benchmarks to evaluate the performance of each system. Based
on the makespan of a benchmark, they calculated the speedup
for the enhanced system. Next, the authors discussed different
measures of central tendency (i.e., arithmetic, harmonic, and
geometric mean) to summarize the speedup results of multiple
benchmarks into a single number such that it appropriately
describes the overall speedup for the entire benchmark suite.
To validate the suitability of the mean speedup measure, they
compared it with the speedup achieved by considering the
makespan of the benchmark suite on both systems. In this
research, we also follow the same approach as [6] to validate
the accuracy of the central tendency measure of the speedup
vector. In particular, we use the notion of true speed-up (Γ) to
verify that the central tendency measure accurately represents
the speed-up vector of the row. In addition, the intensity of
task arrival to the system impacts machines’ utilization, which,
in turn, affects the true speedup. However, we are typically
interested in studying system efficiency under high arrival
rates.

In Lemma II-B, we study an extreme case where the task
arrival rate is large enough so that all machines in the system
have a task to perform at all times. We show that for such a
system, the arithmetic mean can appropriately summarize ÝÑα piq

and represent the mean speedup due to machine heterogeneity.
For the other side of the spectrum, where the task arrival rate
is low such that only one machine in the system is executing
a task at a time, it can be shown that the harmonic mean
should be used to represent the mean speedup due to machine
heterogeneity. In these lemmas, we assume that there is a
single unbounded FCFS queue of tasks that are all available
for execution (like the bag-of-tasks [8]). Whenever a machine
becomes free, it takes the next task from the queue to execute
it.



Let EET “ reijs (1 ď j ď n) denote the EET vector
of a heterogeneous computing system consisting of a set of
machine types, M “ tM1,M2, ...,Mnu, and a workload with
c ą n tasks of type Ti that are all available for execution (such
as the task bag). Tasks are queued upon arrival in a single
unbounded FCFS queue. Whenever a machine becomes free,
it takes a task from the queue and executes it. Then, the true
speedup is calculated as follows:

ΓM “ sαpiqpAq “
1

n
¨

n
ÿ

j“1

α
piq
j (4)

We assume that machine type k is the slowest for task type
Ti, that is, we have

n
max
j“1

eij “ eik. Then, the baseline system

consists of n machines with an expected execution time of
eik. For a single FCFS queue, c tasks are equally distributed
between n homogeneous machines. Hence, each machine has
to handle c

n tasks, where the expected execution time of each
task is eik. This means that the total time to complete those
tasks c in the homogeneous system is r c

n s ˆ eik. We know
0 ď r c

n s ´ c
n ă 1. If we replace r c

n s with c
n , the error in

calculating the total time is at most pr c
n s ´ c

n q{r c
n s, which

is negligible for a large number of tasks (c " n). Thus, for
simplicity, we assume that the makepan to complete the c tasks
in the homogeneous counterpart system is c

n ˆeik. However, in
a heterogeneous system, the proportions of the tasks handled
by each type of machine are not equal because faster machines
can execute more tasks.

Therefore, the speedup of the heterogeneous system is
calculated as follows:

ΓM “
1

n
¨

c
Q

c
n
ř

j“1
α

piq

j

U “
1

n
¨

c
c

n
ř

j“1
α

piq

j

“
1

n
¨

n
ÿ

j“1

α
piq
j “ sαpiqpAq

(5)

Where we assumed that
´

c{
n
ř

j“1

α
piq
j

¯

P Z, which may result

in negligible error for a large number of tasks.
In Lemma II-B, we assumed that tasks are queued into a

single unbounded FCFS queue. Whenever a machine becomes
available, it selects a task from the queue and processes
it. In support of this scheduling approach, we introduce
the lemma II-B, demonstrating that it yields the minimum
makespan for bag-of-tasks in heterogeneous computing sys-
tems.

Let EET “ reijs (1 ď j ď n) denote the EET vector
of a heterogeneous computing system consisting of a set of
machine types, M “ tM1,M2, ...,Mnu, and a workload with
c tasks of type Ti that are all available for execution (i.e.,
bag of tasks). Then, the minimum makespan (total time to
complete the workload) is obtained using a Round-Robin load
balancer across available machines.

Based on the Round-Robin load balancer for available ma-
chines, whenever a machine becomes free, it takes a task from
the FCFS unbounded queue and executes it. Let ek “

n
max
j“1

eij ,

representing the slowest machine type for the task Ti. Based
on the proof in Lemma II-B, the number of tasks completed

on each machine is nj “ c{
´

eij
n
ř

j“1

1
eij

¯

such that
n
ř

j“1

nj “ c.

Also, based on Lemma II-B, the makespan, denoted by τ˚, is

determined as τ˚ “ nj ¨ eij “

´

c{
n
ř

j“1

ek
eij

¯

¨ ek. If there are

other fractions of tasks completed on machines, denoted by n1
j

(1 ď j ď n), such that the resultant makespan, denoted τ 1, is
less than τ˚; thus, for each machine, n1

j must be less than nj .
If there exists a machine with n1

j ą nj , then the corresponding
makespan of the tasks completed on that machine will be
τ 1 “ n1

j ¨ eij ą nj ¨ eij “ τ˚, which is in contradiction with
the primary assumption τ 1 ă τ˚. Thus, we have n1

j ă nj ,
and for the total number of tasks completed on the machines,

we have
n
ř

j“1

n1
j ă

n
ř

j“1

nj “ c. Thus, we cannot obtain a

makespan less than τ˚ with the same number of tasks. This
proves that assigning tasks that are all available for execution
on available machines in a Round-Robin manner results in a
minimum makespan.

C. Task Homogenization

In Section II-B, we consider the row speed-up vector to
characterize machine heterogeneity for a given task type.
Likewise, in task homogenization, we define column speedup
vector, denoted by ÝÑ

β pjq, to characterize task heterogeneity
for machine type j. Then, we summarize the column speedup
vector into a representative mean value, denoted sβH

pjq
. In

Lemma II-C, we prove that the harmonic mean is an accurate
measure of the central tendency of ÝÑ

β pjq.
Let EET “ reijs (1 ď i ď m) denote the expected

execution time (EET) vector of a set of task types, T “

tT1, T2, ..., Tmu in the machine type Mj . A workload trace
of c tasks (c ą m) of type Ti P T arrive at the system.
Tasks are queued on arrival in a single unbounded FCFS queue
and executed by the machine Mj . Then, the true speedup is
determined as follows:

ΓT “
1

m
ř

i“1

ωi

βi
pjq

“ sβH
pjq (6)

Assume that the kth task type is the largest task type. That
is, ekj is the maximum value in the jth column of EET .
Then, for a homogeneous workload that contains only the type
of task Tk, the total time consumed by the machine Mj to
perform those tasks is c ˆ ekj . However, for a heterogeneous
workload with ωi as the proportion of each task type to the
total number of tasks, the total time required to execute each
task type by machine Mj is c ˆ ωi ˆ eij . Thus, the total
time consumed to process all tasks is

řm
i“1 c¨ωi¨ eij . Then, the

speed-up to execute the heterogeneous workload, as opposed
to the homogeneous workload of type Tk, is determined based
on Equation 7.



ΓT “
c¨ ekj

m
ř

i“1

c¨ωi¨ eij

“
1

m
ř

i“1

ωi¨
eij
ekj

(7)

Based on Equation 2, we know that βi
pjq

“
ekj

eij
. Further-

more, the weighted harmonic mean of the column speedup
vector due to the heterogeneity of the task, denoted by sβH

pjq
,

is calculated based on Equation 8.

sβH
pjq “

1
m
ř

i“1

wi
1

βi
pjq

(8)

Based on Equations 7 and 8, we prove that the true speedup
due to task heterogeneity is the weighted harmonic mean of
ÝÑ
βj .

D. Homogeneous Equivalent Execution Time (HEET)

From lemmas II-B, we learn that the arithmetic mean repre-
sents the overall speed-up factor due to machine heterogeneity.
Moreover, Lemma II-C, proves that the weighted harmonic
mean represents the mean speedup due to task heterogeneity.
Taking these into account, we can perform task homogeniza-
tion on each column of the EET matrix and reduce each
column vector ÝÑ

β pjq to its mean value sβH
pjq

. In this manner,
we construct a row vector, denoted sβH “ rsβH

p1q
, sβH

p2q
, ..., sβH

pnq
s,

whose contents summarize the execution time behavior of
all types of tasks into an equivalent hypothetical task type
(denoted T˚). We use Equation 6 to determine sβH

pjq
for

machine type j. Note that the mean speed-up due to task
heterogeneity for machine type j is calculated with respect
to the slowest task type for machine type j (homogeneous
counterpart). Therefore, to determine the expected execution
time of T˚ in the machine type j, we consider that T˚ is
sβH

pjq
times faster than the slowest task type in the machine

type j. The resultant row vector of the expected execution
time of T˚ on machines describes the machine heterogeneity.
In a similar approach, we can aggregate the machine types
into a single hypothetical machine type (denoted M˚) whose
execution time behavior is representative of the entire set of
machine types in the heterogeneous system. To this end, we
construct the speedup vector due to machine heterogeneity for
T˚, denoted by ÝÑα p˚q, based on Equation 9.

α
p˚q

j “

m
max
i“1

eij

sβH
pjq

(9)

Then, we use the arithmetic mean of ÝÑα p˚q to determine
the mean speed-up due to machine heterogeneity, denoted by
sαp˚qpAq for T˚. In fact, sαp˚qpAq represents how much M˚

is faster than the slowest machine type for the hypothetical
equivalent task type (T˚). As a result, we can represent
the execution time behavior of the heterogeneous computing
system with Homogeneous Equivalent Execution Time, HEET,
using the expected execution time of T˚ on M˚ as follows:

HEET “

n
max
j“1

α
p˚q

j

sαp˚qpAq
(10)

For clarity, we use Figure 1 to illustrate the derivation of
HEET using an example. In Stage (a) of the figure, an EET
matrix is considered. Then, in Stage (b), the EET matrix is
used to derive the speedup matrix due to task heterogeneity
based on Equation 2. The column j of this matrix demonstrates
the speed-up due to the heterogeneity of the tasks for the type
of machine j, denoted by ÝÑ

β pjq. Next, in stage (c), we employ
the harmonic mean (Equation 8) to represent each column
vector ÝÑ

β pjq in the form of a scalar value. In this way, the set
of speedup vectors due to task heterogeneity (which constructs
a matrix) is reduced to a row speedup vector. In Stage (d), we
calculate the expected execution time of T˚ on machines by
using the execution time of the slowest task type and sβH

pjq
.

In Stage (e) we determine the speedup vector due to machine
heterogeneity for T˚, based on Equations 1. In stage (f), we
use the arithmetic mean to determine the mean speedup due to
the heterogeneity of the machine for T˚. Lastly, in stage (g),
we calculate the HEET measure by considering the speedup
value obtained in stage (f) considering the execution time of
the slowest machine type for T˚ (M1 in stage (d)) as the
baseline.

HEET is able to accurately characterize system hetero-
geneity, and our hypothesis is that, for a given workload,
systems with similar HEET scores exhibit similar makespan,
too. For a given workload trace with T task types, the
system A with the set of heterogeneous machine types MA

offers a larger makespan than the heterogeneous system B
with machine types MB (|MA| “ |MB |), if and only if
HEETA ą HEETB .

E. Estimating Makespan and Throughput Using HEET

The mathematical approach used to obtain HEET is actually
to transform the EET matrix that represents the heterogeneous
system into a homogeneous EET matrix whose elements are
values of HEET. In other words, we proposed a mathematical
formulation for homogenization that transforms a heteroge-
neous computing system into a hypothetical homogeneous sys-
tem such that both perform similarly in terms of performance
metrics such as makespan and throughput.

Recall that the HEET metric is the expected execution
time of the hypothetical equivalent task type (T˚) on the
hypothetical equivalent machine type (M˚). Replacing the
machine types with M˚ and task types with T˚, results
in a homogeneous EET matrix, denoted by EET˚, whose
elements are HEET values. The lemmas II-B and II-C prove
that the homogeneous system represented by the matrix EET˚

exhibits a similar makespan as the heterogeneous system
represented by the EET matrix. Given a workload of c of
tasks, its makespan, denoted by τ , on a heterogeneous com-
puting system can be estimated by the makespan of the same
workload on the homogeneous equivalent system represented
by EET˚. For a homogeneous system of n machines (M˚),
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Fig. 1: An example illustrating the stages to calculate the heterogeneity measure (HEET). (a) The EET matrix representing a
heterogeneous system. (b) The speedup matrix due to task heterogeneity is derived from EET matrix based on Equations 2.
(c) Based on Equation 8, we consolidate each column into a mean value using the harmonic mean. (d) Calculate the expected
execution time of T˚ on machines using the execution time of the slowest task type and β

H

j . (e) The speedup vector due to
machine heterogeneity for T˚, based on Equations 1. (f) we employ Equation 4 on the resultant speedup vectors to determine
the mean speedup value due to machine heterogeneity. (g) HEET score represents the execution behavior of the heterogeneous
system.

the expected makespan of executing c tasks of the same type
(T˚) is the number of tasks distributed on each machine ( c

n )
multiplied by the expected execution time of that task type on
the machine type (i.e., HEET value). As a result, the makespan
is determined as follows:

τ “
c

n
¨ HEET (11)

Similarly, we can use the HEET score to estimate the system
throughput, denoted by θ, as follows:

θ “
n

HEET
(12)

Furthermore, to facilitate comparison across heterogeneous
computing systems with varying numbers of machines, we
normalize the HEET score by the number of machines, result-
ing in HEET {n, denoted as S-HEET.

III. SYSTEM DESIGN

In this section, we present an overview of the components
that we have designed to evaluate the HEET metric. Our
implementation includes a real-world end-to-end “inference
system”, customized to match real-world production scenarios
[9]. Throughout our experimentation, we used AWS EC2
instances as machines. Note that, with slight modifications,
the system can also be readily deployed on alternative cloud
platforms. The primary objective of our system is to validate
the precision of the estimated makespan based on Equation 11

by comparing them against the actual makespan in various
configurations of the system. Figure 2 illustrates the overall
architecture of the system. The components of the system are
explained in the following paragraphs.
Model Loader To encompass a diverse range of model types,
we used the extensive model repository offered by Hugging-
Face [10]. We used four different models in our experiment:
(1) Image classification: Resnet50 [11], (2) Object detection:
Yolov5 [12], (3) Question answer: DistilBERT [13], and (4)
Speech recognition: Wav2vec2 [14]. Given the variety of deep
learning frameworks from which these models were sourced,
we sought consistency in our experiments. To achieve this,
we converted all models to the ONNX format (Open Neural
Network Exchange) [15] using the PyTorch ONNX converter
[16]. Using ONNX gives us the advantage of a unified model
server setup, applicable across all model types.
Model Server Each of the models used during the experiments
should be deployed as a machine learning service. We have
used the multi-model serving capability of modern inference
systems [17] to encapsulate multiple models into a single
inference service. Each of the services is supported by an AWS
EC2 instance. On each machine, we spin up a containerized
version of the NVIDIA Triton Inference Server [18] and
load all model variants onto it. Communications to model
servers are implemented using gRPC [19] due to its superior
performance compared to other transfer protocols [20].
Workload We synthesized the workload traces assuming that
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Fig. 2: Performance comparison of the same set of schedul-
ing methods with the same workload across two computing
systems, A and B, with different levels of heterogeneity
(horizontal axis). The vertical axis shows the percentage of
tasks completed on time.

the inter-arrival time between tasks in the workload traces
follows an exponential distribution with the mean arrival rate
as its parameter [21]. According to the bag-of-task assumption
[2], we have also designed a workload of tasks that are all
available for execution from the beginning (i.e., arrival time
is zero). Tasks are sent asynchronously to the machines that
host the ML services based on their arrival times.
Monitoring The monitoring component in each of the EC2
instances is equipped with Prometheus [22], a monitoring
system, and a time series database. It records the inference
time of all model servers during experiments and is stored in
the database for later analysis. To construct the EET matrix,
Profiler compares each task type with machine types and
employs Prometheus to obtain the expected inference times.
Instance Manager During experiments, it is necessary to
reconfigure heterogeneous computing systems with a different
number of instances of each type. To support this, we have
automated the process of reconfiguring the system in a central
instance manager. The process of transitioning between two
instance configurations includes (1) removing the current
instances and cleaning the cluster, (2) setting up the new
sets of machines with required dependencies, (3) bringing
up the Triton container on top of the EC2 instances, and
finally loading the models to the Triton inference server. We
have automated all steps 1-4 using the AWS Python SDK
[23]. Furthermore, the types of EC2 instance that we used
during our experiments are (1) t2.large, (2) c5.2xlarge and (3)
g4dn.xlarge. These instance types are similar to slow, medium,
and fast machines in inferring the selected machine learning
tasks.
Load Balancer Tasks are queued in a single unbounded FCFS
queue upon arrival. Then, the load balancer assigns tasks to

available machines in a round-robin manner. Mapping events
are triggered by the completion or arrival of a task. In case a
task arrives at the system while there is no available machine,
the load balancer defers the mapping event until a machine
becomes free.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

To validate the developed heterogeneity measure, in this
section, we execute a workload of four deep learning appli-
cations on various combinations of three types of Amazon
EC2 instances (machine) to verify the HEET score in real-
world settings. Specifically, we used four different applica-
tions/models in our experiment: (1) image classification im-
plemented using the Resnet50 model [11], (2) object detection
implemented according to the Yolov5 model [12], (3) question-
answering based on the DistilBERT model [13], and (4) speech
recognition using the Wav2vec2 model [14]. For machine
types, we utilize GPU-based (g4dn.xlarge), compute-
optimized (c5.2xlarge), and general-purpose CPU-based
(t2.large) Virtual Machines offered by AWS EC2 services.
To obtain the expected execution time of the image classi-
fication task on these machines, we processed 1000 sample
images on each instance type. We repeat the experiment 10
times, and finally we use the expected value of these 10,000
inference operations in the EET matrix. Similarly, for the
object recognition task, we ran the object recognition task
for 1000 sample images 10 times to determine the expected
execution time of the object recognition task. For the speech
recognition task type, we execute a recorded audio of length 4
seconds on the machine types. Then, the average value of the
inference times is used to fill the EET matrix. For question
answering, we provide a sample context and question as input
of the inference task and run the inference task 1000 times. We
aggregated the inference times and determined the expected
execution time for use in the EET matrix.

To synthesize the workload trace, we assume that the inter-
arrival time between tasks in the workload traces follows
an exponential distribution with the mean arrival rate as its
parameter. For the bag-of-tasks, we assume that all tasks are
available for execution from the beginning (arrival time is
zero). Tasks are queued in a single unbounded FCFS arrival
queue upon arrival and assigned to the available machines in
the round-robin manner. Tasks are considered latency-sensitive
and have hard deadlines. The performance metric (makespan)
is defined as the time that the system requires to complete all
tasks in the workload trace.

Recall that we employed hybrid central tendency measures
(column-wise harmonic mean and row-wise arithmetic mean)
to obtain a meaningful representative of the execution-time
behavior of heterogeneous computing systems. To illustrate
the effectiveness of our method, we compare the experimental
results with the following baselines as representatives of
the execution time behavior of heterogeneous systems: (1)
Arithmetic mean, (2) Harmonic mean, and (3) Geometric mean
of the elements of the EET matrix.
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Fig. 3: The system performance in terms of the makespan (left) and throughput (right) (vertical axis) upon varying S-HEET
scores (horizontal axis) for workloads 1000 tasks. Each individual point represents the average result of multiple computing
systems with the same S-HEET score. Furthermore, the colored area illustrates the 95% confidence interval of the results.

B. Estimating Throughput via HEET Score

In this experiment, our goal is to assess the ability of
the HEET score to estimate the true throughput and the
true makespan of the heterogeneous computing systems using
Equations 12 and 11, respectively. To study the behavior
of heterogeneous systems with varying HEET scores, we
simulate a variety of heterogeneous systems with three types
of machines and four types of tasks. To this end, we generate
228 different system configurations with a different number
of instances of each type (i.e., t2.large, c5.2xlarge,
and g4dn.xlarge). Then, for each system configuration,
we feed it with a bag of 1000 tasks of four types (i.e.,
image classification, object detection, question answering, and
speech recognition). Eventually, we averaged the makespan
and throughput in different system configurations with the
same HEET score.

Figure 3 shows the results of the true and estimated
makespan and throughput with varying S-HEET score, which
is the HEET score scaled with the number of machines (i.e.,
HEET

n ). Each ( makespan, S-HEET)/(throughput, S-HEET)
point shows the average makespan and throughput of different
system configurations with the same S-HEET value. The
colored area illustrates the 95% confidence interval of the
results. As shown in Figure 3, we can observe that systems
with lower S-HEET scores generally perform better (i.e.,
lead to a smaller makespan or higher throughput) than those
with higher HEET score values. This statement itself means
that the S-HEET score can be effectively used as a measure
to “compare different heterogeneous computing systems” in
terms of makespan or throughput. Moreover, we can observe
that the results exhibit a narrow confidence interval, that is,
systems with the same S-HEET score will perform similarly in
terms of makespan and throughput. The number of different
configurations with S-HEET scores equal to 9, 10, or 11 is
small (less than 9); therefore, we observe a wider confidence
interval for these S-HEET scores in the results.

In addition, the results show that the estimated values
(makespan and throughput) using the HEET score based on

Equations 12 and 11, respectively, can predict the true values
with an average accuracy of 84%. Note that we used the
expected values of the execution times to determine the HEET
score. As a result, the accuracy of the estimation depends on
the degrees of uncertainty that exist in the execution times.
Consequently, we ran a simulation with zero uncertainty in
expected execution times to demonstrate the root cause of the
error in estimating the makespan and throughput using the
HEET score. The results show that the makespan calculated
using the HEET score accurately estimates the makespan of
the simulation. Thus, we can say that in heterogeneous systems
with low levels of uncertainty in execution times, estimating
makespan using HEET score is an accurate method.

Given a user-defined throughput threshold, we can deter-
mine the corresponding HEET score and use it to configure
a heterogeneous system with the desired throughput. For a
desired throughput, the HEET score enables solution architects
to proactively configure a heterogeneous system that can meet
that objective (instead of try and error) with minimum cost.

In summary, the result of this experiment validates the
applicability of the HEET score for real-world scenarios. In
particular, when the HEET score is applied across systems,
it can accurately compare different heterogeneous systems
with respect to their performance metrics (makespan and
throughput) without examining the workload in these systems.

C. Other heterogeneity measures

In this experiment, we investigate the effectiveness of the
arithmetic, harmonic, and geometric mean of expected execu-
tion times of task types in machine types as heterogeneity mea-
sures representing the execution behavior of heterogeneous
systems. To this end, we conducted a similar experiment as in
Section IV-B to study the performance (in terms of makespan)
of 228 heterogeneous computing systems. An appropriate
heterogeneity measure should be able to identify similarity and
superiority in terms of performance metrics (e.g., makespan or
throughput) across heterogeneous systems.

Figure 4 shows the results of the makespan for different
heterogeneous systems with varying mean expected execution
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Fig. 4: The system performance in terms of the makespan (vertical axis) with respect to the varying mean of the EET matrix
(horizontal axis) for a workload of 1000 tasks. In (a)–(c), eetarithmetic, eetharmonic, and eetgeometric are the arithmetic, harmonic,
and geometric mean of the expected execution times of task types on machines types as represented in the EET matrix. Each
individual point represents the average result of multiple computing systems with the same mean EET value.

times calculated based on arithmetic ( Ďeetarithmetic), harmonic
( Ďeetharmonic), and geometric ( Ďeetgeometric) mean techniques.
In Figure 4a, the results show that the estimated makespan
using Ďeetarithmetic cannot follow the true makespan and
is considerably inaccurate. Similarly, we observe that the
harmonic mean and geometric mean heterogeneity measures
are also inaccurate.

In summary, comparing the results for the baseline hetero-
geneity measures, as shown in Figure 4, with the results for
the HEET score, as shown in Figure 3, verifies that heteroge-
neous systems are well characterized with the HEET measure
and can be used to accurately estimate the performance of
heterogeneous systems.

V. RELATED WORKS

Heterogeneous computing systems utilize various comput-
ing machines to perform various tasks with different compu-
tational requirements. The idea of exploiting system hetero-
geneity to improve system performance considering different
objectives such as energy [24], [25] and QoS [26], [27],
[28] has been extensively explored in the literature. Based on
these works, it has been proven that heterogeneity can play a
crucial role in improving different system performance met-
rics; however, these works fall short of providing a concrete
metric that can explain the impact of heterogeneity on system
performance.

Expected Time to Compute Matrix (ETC) The idea of
characterizing a heterogeneous computing system using the
Expected Time-to-Compute (ETC) matrix was first explored
by Ali et al. [29]. They used the coefficient-of-variation of
expected execution times as a measure of heterogeneity. Then,
they suggested an algorithm that takes the mean and standard
deviation of execution times to generate the ETC matrix
of the heterogeneous system. However, their method neither
characterizes the performance of different heterogeneous sys-
tems nor makes them comparable. In contrast, we present a
mathematical model to measure system heterogeneity such that
it can characterize the overall system performance behavior
and make different systems comparable.

Moreover, Mokhtari et al. [2], leveraged the ETC matrix to
model the performance behavior of heterogeneous computing
systems and introduced a fair and energy-aware scheduling
algorithm. Narayanan et al. [30] proposed a throughput matrix
to model the performance behavior of the system. Specifically,
each entry pi, jq in the matrix represents the performance
of the job i on the machine j. The matrix also implies
system heterogeneity; hence, they leveraged it to devise a
heterogeneity-aware scheduling method that can be optimized
for different performance metrics.

Heterogeneity-aware Machine Learning Inference Serv-
ing Systems Several research works have been conducted
to devise heterogeneity-aware machine learning inference
services considering performance objectives such as cost,
QoS, or throughput. Kairos [31] is a deep learning infer-
ence serving framework that maximizes throughput under
the cost budget and QoS constraint. For that purpose, they
proposed a heterogeneity-aware query distribution mechanism
that maximizes throughput. In these works, it is assumed that
the performance (i.e., throughput) of a heterogeneous system
cannot be mathematically described; however, in our work,
we propose an analytical approach to accurately estimate the
throughput of a heterogeneous system. This would help to find
the optimal configuration that minimizes cost while meeting
the throughput target.

VI. CONCLUSION

In this research, we provided a measure to quantify the
heterogeneity of the system with respect to a performance
metric (make-span or throughput) and for a given set of task
types. For this purpose, we proposed a homogenization process
to determine a hypothetical homogeneous configuration such
that the throughput remains unchanged. We characterize sys-
tem heterogeneity by decoupling heterogeneity into machine
and task dimensions and perform the homogenization process
in each dimension. In machine homogenization, we proved
that the expected execution time of the equivalent machine is
determined using the arithmetic mean of the speed-up vector
with the slowest machine as the baseline. We also proved that



the harmonic mean can measure the mean speedup due to task
heterogeneity. Finally, we introduce the Homogeneous Equiva-
lent Execution Time (HEET) score as a heterogeneity measure
that represents the speed of a heterogeneous system for a given
set of task types. In this way, we transform a heterogeneous
system into a hypothetical equivalent homogeneous system
with similar performance metrics (makespan and throughput).
HEET can be used as a score in the heterogeneity spectrum to
globally compare the performance of different heterogeneous
systems. We observe that the HEET score can effectively
estimate the makespan and throughput with an average and
minimum accuracy of 84% and 80.0%, respectively. We also
show that the main source of error is the uncertainty in
execution times. We conclude that the HEET score enables
solution architects to proactively configure a heterogeneous
system, instead of the current approach which is primarily
based on trial and error. In the future, we plan to incorporate
probabilistic analysis into our analysis to capture uncertainties
in execution times. Another avenue for future work is to
extend the dimensions of heterogeneity by considering power
heterogeneity.
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