Cloud-Based Interactive Video Streaming Service

Mohsen Amini Salehi
HPCC lab., School of Computing and Informatics,
University of Louisiana at Lafayette
Lafayette, Louisiana, USA
amini@louisiana.edu

ABSTRACT

A wide range of applications, from e-learning to natural disaster
management are reliant on video streaming. Video streaming will
construct more than 80% of the whole Internet traffic by 2019. Cur-
rently, video stream providers offer little or no interactive services
on their streamed videos. Stream viewers, however, demand a wide
variety of interactive services (e.g., dynamic video summarization
or dynamic transcoding) on the streams. Taking into account the
long tail access pattern to video streams, it is not feasible to pre-
process all possible interactions for all video streams. Also, Pro-
cessing them is also not feasible on energy- and compute-limited
viewers’ thin-clients. The proposed research provides a cloud-based
video streaming engine that enables interactive video streaming.
Interactive Video Streaming Engine (IVSE) is generic and video
stream providers can customize it by defining their own interac-
tive services, depending on their applications and their viewers’
desires. The engine enacts the defined interactive services through
on-demand processing of the video streams on potentially hetero-
geneous cloud services, in a cost-efficient manner, and with respect
to stream viewers’ QoS demands.

KEYWORDS

Cloud Computing, Video Streaming, Resource Allocation, Real-time
Processing

1 INTRODUCTION

Thanks to the high speed Internet, basic video streaming has be-
come an ordinary service nowadays. However, what is offered
currently is far from the higher level services that enable stream
viewers to interact with the video streams. Interactive video stream-
ing is defined as processing of a video stream upon viewersaAZ
requests for that video. For instance, a viewer may request to watch
a video stream with a particular resolution [4]. Another example,
is a viewer who requests to view a summary of a video stream.
Current interactive video streaming services are very limited
and often require preprocessing of the video streams. However,
given the diversity of services offered in an ideal interactive video
streaming and the long tail access pattern to the video streams [9],
offering interactive video streaming based on lazy (i.e., on-demand)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UCC’17,, December 5-8, 2017, Austin, TX, USA.

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5149-2/17/12.

https://doi.org/10.1145/3147213.3149451

processing of the video streams is required. Such computationally-
intensive processing should be achieved in a real-time manner and
guarantee specific QoS demands of the viewers.

Cloud services have provided an ideal platform for video stream-
ing providers to satisfy the computational demands needed for
interactive video streaming [4]. However, the common problem
in utilizing cloud services [7, 8] for interactive video streaming is:
how to provide a robust interactive video streaming service through
guaranteeing QoS desires of the viewers, while incurring the minimum
cost for the cloud services? Accordingly, the objective of this research
is to present challenges, structures, and methods required to enable
interactive video streaming that guarantee QoS in a cost-efficient
manner. In particular, we present a framework for interactive video
streaming called Interactive Video Streaming Engine (IVSE) that
deals with the challenges of cloud-based interactive video stream-
ing services and provides methods to address these challenges.

The reason that video streaming tasks need independent study is
that they have unique characteristics. Video streaming tasks have
individual deadlines that can be a hard deadline (in live streams [2])
or a soft deadline (in Video On Demand (VOD) [4]). Recent studies
(e.g., [6]) show that viewers often watch the beginning of video
streams, as such, the quality of delivering the startup of video
streams is of paramount importance. Accordingly, video streams
have unique QoS demands that are defined as: minimizing missing
tasks’ individual deadlines and minimizing the startup delay of the
streams.

Depending on the type of video stream content, their processing
times (i.e., execution time) vary on different types of processing
services (i.e., Virtual Machines) offered by cloud providers. Hence,
to schedule video streaming tasks, we potentially deal with mapping
tasks to heterogeneous cluster of Virtual Machines (VMs). In such
a heterogeneous computing environment, predicting the execution
time of of video streaming tasks is necessary to efficiently map
tasks to VMs. Execution time prediction is viable thorough historic
execution information for VOD streams, however, this is not the
case in live streams, where video streaming tasks are generated
and processed for the first time [1]. Processing performance of
cloud VMs may vary over time or even VM failure can occur. In
this case, all video streams assigned to those VMs cannot proceed
with streaming. Hence, execution of video streams are required
and failed tasks have to be rescheduled with a high priority to
enable smooth video streaming. The access rate to video streams
in a repository is not uniform. In fact, access patterns to video
streams exhibits a long-tail pattern [9]. As such, caching methods
are required to identify hot video streams and appropriately cache
(store) them using different cloud storage services.


https://doi.org/10.1145/3147213.3149451

Streaming Service Providers
(eg., Netflix, Youtube)

r I ? N
' o W o
ouput
Video Splitter Video Repository ~ Caching Windows
l : Video Merger
= +
= =] Time Estimator
Admission
Control I Heterogeneous VMs
l GOP Scheduler
Batch Queue r 1
5]
Update VM
Information
VM Provisioner
- J

Figure 1: Cloud-based Interactive Video Streaming Engine (IVSE)

1.1 Interactive Video Streaming Engine (IVSE)

IVSE facilitates cost-efficient and QoS-aware interactive live or VOD
streaming using cloud services for different type of subscribers.
IVSE is extensible, meaning that the video stream provider is able
to introduce new interactive services on video streams and the core
architecture can accommodate the services while respecting the
QoS and cost constraints of the video stream provider.

An overview of IVSE is presented in Figure 1. Upon receiving a
streaming request, Video Splitter partitions the video into several
Group of Pictures (GOPs) [3] that can be processed independently.
Each GOP is treated as a task with an individual deadline which
is the presentation time of the first frame in that GOP. The Admis-
sion Control component prioritizes dispatching of the GOPs to the
scheduling queue. The VM Provisioner component allocates hetero-
geneous VM(s) from cloud to execute GOPs. Each VM is assigned a
local queue to preload GOPs’ data before execution. VM Provisioner
component monitors the performance of VMs and adaptively con-
figures the heterogeneity of the VM cluster based on the workload.
Time Estimator provides predictive information on the affinity of
GOP tasks with various VM types. The Scheduler component uses
the estimation information for efficient allocation of tasks to VMs.
Video Merger rebuilds the processed stream using an output win-
dow for each stream. In the event that a GOP is delayed (e.g., due
to failure), Video Merger asks the Admission Control to resubmit
the GOP urgently. The Caching component decides if a part of, or
the whole processed stream should be stored.

In summary, this this research project describes innovations in
interactive video streaming particularly in the following areas:

e Robust, cost-efficient, and self-configurable VM provisioning
policy: We explain novel methods to provision a dynamic
VM cluster that conforms its heterogeneity according to the
arriving requests (see [4] for further details).

o Heterogeneity- and QoS-aware scheduling method: It effi-
ciently schedules streaming tasks on available heterogeneous

VMs with the goal of minimizing both missing tasks’ dead-
lines and their startup delays (see [4] for further details).

e Execution time prediction for video streaming tasks: We
elaborate on the influential factors of the video streaming
tasks execution times. In addition, we explain the way to
model affinity exists between heterogeneous VMs and tasks
while considering their cost difference (see [10] for further
details).

e A priority-aware admission control method: That prioritizes
submission of streaming tasks to minimize the startup de-
lay. The method can also consider the viewer subscription
priority, and network speed at the viewers’ end.

e Cost-efficient caching methods: We will elaborate on the
trade-off between computation versus storage for video streams.
We also provide a formal way to measure the hotness of video
streams and provide methods that perform caching based on
the hotness measure (see [5] for further details).

2 CONCLUSIONS

Video streaming is one of the prominent services of the current and
future Internet. Viewers increasingly request for more interactions
on the streamed videos. In this research, we provide an Interactive
Video Streaming Engine (IVSE) that leverages cloud computing in
an efficient way to provide flexible interactivity for the streamed
videos. IVSE can be easily extended with new video processing
services and can support live and on-demand streaming.

REFERENCES

[1] Matin Hosseini, Mohsen Amini Salehi, and Raju Gottumukkala. 2017. Enabling

Interactive Video Stream Prioritization for Public Safety Monitoring through

Effective Batch Scheduling. In Accepted in the 19th IEEE International Conference

on High Performance Computing and Communications (Bankok).

Xiangbo Li, Mohsen Amini Salehi, and Magdy Bayoumi. 2016. VLSC: Video

Live Streaming Using Cloud Services. In Proceedings of 5th IEEE International

Conferences on Big Data and Cloud Computing. 595-600.

[3] Xiangbo Li, Mohsen Amini Salehi, and Magdy Bayoumi. Oct. 2015. Cloud-Based
Video Streaming for Energy- and Compute-Limit Thin Clients. In the Stream2015
Workshop at Indiana University.

[4] Xiangbo Li, Mohsen Amini Salehi, Magdy Bayoumi, and Rajkumar Buyya. 2016.
CVSS: A Cost-Efficient and QoS-Aware Video Streaming Using Cloud Services.
In Proceedings of the 16th IEEE/ACM International Conference on Cluster Cloud
and Grid Computing (CCGrid ’16).

[5] Darwich Mahmoud, Beyazit Ega, Salehi Mohsen Amini, and Bayoumi Magdy.
2017. Cost Efficient Repository Management for Cloud-Based On-Demand Video
Streaming. In In proceedings of 5th IEEE Internationa Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud). 1-6.

[6] Lucas CO Miranda, Rodrygo LT Santos, and Alberto HF Laender. 2013. Charac-
terizing video access patterns in mainstream media portals. In Proceedings of the
22nd International Conference on World Wide Web. 1085-1092.

[7] Murali K. Pusala, Mohsen Amini Salehi, Jayasimha R. Katukuri, Ying Xie, and
Vijay Raghavan. 2016. Massive Data Analysis: Tasks, Tools, Applications, and
Challenges. Springer India, New Delhi, 11-40.

[8] Mohsen Salehi and Rajkumar Buyya. 2010. Adapting Market-Oriented Schedul-
ing Policies for Cloud Computing. In Algorithms and Architectures for Parallel
Processing. ICA3PP °10, Vol. 6081. 351-362.

[9] Navin Sharma, Dilip Kumar Krishnappa, David Irwin, Michael Zink, and Prashant

Shenoy. 2013. Greencache: Augmenting off-the-grid cellular towers with mul-

timedia caches. In Proceedings of the 4th ACM Multimedia Systems Conference.

271-280.

Li Xiangbo, Joshi Yamini, Darwich Mahmoud, Landreneau Brade, Amini Salehi

Mohsen, and Bayoumi Magdy. 2017. Performance Analysis and Modeling of

Video Transcoding Using Heterogeneous Cloud Services. In IEEE Transactions on

Parallel and Distributed Systems. 1-12.

[2

[10



	Abstract
	1 Introduction
	1.1 Interactive Video Streaming Engine (IVSE)

	2 Conclusions
	References

