
1

Harnessing the Potential of Function-Reuse in
Multimedia Cloud Systems

Chavit Denninnart, Member, IEEE, Mohsen Amini Salehi, Member, IEEE,

Abstract—Cloud-based computing systems can get oversubscribed due to the budget constraints of their users or limitations in certain resource
types. The oversubscription can, in turn, degrade the users perceived Quality of Service (QoS). The approach we investigate to mitigate both the
oversubscription and the incurred cost is based on smart reusing of the computation needed to process the service requests (i.e., tasks). We propose
a reusing paradigm for the tasks that are waiting for execution. This paradigm can be particularly impactful in serverless platforms where multiple
users can request similar services simultaneously. Our motivation is a multimedia streaming engine that processes the media segments in an
on-demand manner. We propose a mechanism to identify various types of “mergeable” tasks and aggregate them to improve the QoS and mitigate
the incurred cost. We develop novel approaches to determine when and how to perform task aggregation such that the QoS of other tasks is not
affected. Evaluation results show that the proposed mechanism can improve the QoS by significantly reducing the percentage of tasks missing their
deadlines and reduce the overall time (and subsequently the incurred cost) of utilizing cloud services by more than 9%.

Index Terms—Task Aggregation, Over-subscription, Serverless Computing, Cloud computing, Video Stream Processing.

F

1 INTRODUCTION

Serverless computing or Function-as-a-Service (FaaS) is gain-
ing popularity as an on-demand and cost-efficient computing
solution for cloud-based applications. A serverless computing
system is defined as a cloud-based computing system that can
execute functions (tasks) without involving the user in the server
management. This high-level transparency provides the illusion
that there is no server in place. Modern software engineering prac-
tices, such as DevOps [1] and Continuous Integration Continuous
Delivery (CI/CD) [2], operate based on splitting an application
into several micro-services [3] where each microservice can be
hosted by the serverless computing platform.

Behind the scene, the serverless computing platform seam-
lessly handles the resource allocation and execution of the
micro-services on the cloud resources. A common practice is to
serve multiple users’ micro-services (a.k.a. task requests) on the
provider’s shared scheduling queue. The tasks often have individ-
ual deadlines that failing to meet them compromises the Quality of
Service (QoS) expected by the end-users. The platform’s scheduler
allocates the tasks to an elastic pool of computing resources such
that their QoS expectations are fulfilled.

Oversubscription in a computing system is defined as a system
that is overwhelmed with arriving tasks such that it is impos-
sible to satisfy the users’ QoS expectations. In particular, the
serverless computing platforms are prone to oversubscription for
the following reasons: (A) Even though clouds supply virtually
unlimited resources, users generally have budget constraints, and
they cannot lavishly acquire cloud resources [4]; (B) Privately
hosted serverless computing platforms (and those used in fog/edge
systems) fall short on the elasticity and scalability aspects [5]; (C)
Depending on the function trigger events, the tasks arrival pattern
is often uncertain and includes surges [6]; and (D) To maximize
their profit, cloud providers tend to increase the number of tasks
served on the minimum number of machines.

A large body of research has been dedicated to mitigating
the oversubscription problem in the computing system. The ap-
proaches undertaken in these research works follow two main
lines of thinking: First, resource allocation based approaches
(e.g., [7], [8], [9]) that try to minimize the impact of oversub-

scription through efficient mapping (scheduling) of the tasks to
the resources. Second, approaches based on the computational
reuse (e.g., [10], [11]) that avoid or mitigate the oversubscription
through efficient caching of the computational results. The latter is
particularly effective when there is a redundancy in arriving tasks.

Although both of the aforementioned approaches are effective,
they are limited in certain ways. The allocation-based approaches
mitigate the impact of oversubscription but cannot entirely resolve
it, according to the definition of the oversubscription. In addition,
many of the approaches are based on complex scheduling algo-
rithms that impose extra overhead to the already overwhelmed
system [12]. The reusing approaches that operate based on caching
are also limited because they can only reuse the computations
for tasks that are identical to the ones already completed and
cached [13]. In other words, if two tasks share part of their com-
putation, caching cannot reuse the result of the shared part [14].

Accordingly, in this research, we propose a mechanism based
on the computational reuse approach that aims at alleviating
oversubscription by aggregating similar tasks in the task schedul-
ing queue of the cloud platforms. Such scheduling queue for
shared resource is particularly common behind the scenes of
serverless computing platforms. However, it is also applicable
to other systems. As shown in Figure 1, the mechanism can
aggregate (i.e., merge) not only identical tasks but also those that
partially share their computation. We note that our mechanism
complements existing allocation- and caching-based approaches

...

Processing Units

Batch Queue

Merge-Aware 

Admission 

Control

Scheduler

Merged 

Requests

Time 

Estimator

Arriving

Request

Fig. 1: The overview of the task aggregation procedure. A new task
arrives at the Admission Control can be merged with an existing one
in the Batch Queue. Task shapes represent different task types in the
system, and shape color represents different task configurations.



2

and is not a replacement for them. In fact, the merging mechanism
makes the scheduling queue less busy and potentially lighten
up the scheduling process. Caching-based approaches are also
complemented by capturing the in-progress tasks and those that
are partially similar.

To reuse part of the computation, a question that needs to
be addressed is how to identify mergeable tasks? An arriving
task can potentially have multiple mergeable pairs with varying
levels of similarity. Also, the solution for task similarity detection
should not impose an extensive overhead on the system. The other
concern in merging tasks is to form large compound tasks that
potentially cause missing the deadline of either the merged tasks
or other pending tasks waiting behind the merged task. As such,
merging tasks raises the following two problems: (A) What are
different types of mergeable tasks and how to detect them? (B)
How to perform merging without endangering other tasks in the
system?

Our motivation in this research is a multimedia streaming
engine that needs to process multimedia contents (e.g., changing
resolution or bit-rate of video) in a serverless cloud platform
before streaming them to viewers [15]. Multiple viewers can
stream multimedia contents in various configurations, hence, cre-
ating similar or identical tasks in the system. In particular, when
the system is oversubscribed, the likelihood of having mergeable
tasks increases. In this context, our proposed mechanism can
detect identical and similar tasks and reuse the whole or part of
the computation by merging them. Intelligently achieving task
merging can benefit both the viewers, by enabling more tasks
to meet their deadlines, and the stream providers by improving
resource utilization and reducing their incurred cost of using
services.

In this research, we develop an Admission Control module
(see Figure 1) that detects different levels of similarity between
tasks and performs merging by considering the tasks’ deadlines.
In summary, the key contributions of this research are as follows:

• Proposing an efficient method to identify mergeable tasks.
• Proposing methods for proper positioning of merged tasks in

the scheduling queue.
• Determining appropriateness and potential side-effects of

merging tasks considering the oversubscription level of the
system.

• Analyzing the performance of merging on the viewer’s QoS
and the cost of utilizing the processing units.

Although we develop this mechanism in the context of the
multimedia streaming system on a serverless platform, the idea of
task aggregation and research findings of this work are valid for
other domains. However, we note that identifying mergeable tasks
is domain-specific and requires task profiling for each particular
system.

The rest of the paper is organized as follows: Section 2 pro-
vides some background on multimedia stream processing engine;
In Section 3 we present an overview of the proposed design; In
Section 4 we propose an efficient method to identify mergeable
tasks detection; In Section 5, we present merge appropriateness
determination and merge position finder; In Section 6, we discuss
ways to quantify oversubscription levels. As well as ways to
use quantified oversubscription level to enhance tasks merging
decision. In Section 7, we perform performance evaluations; In
Section 8 we discuss related works; And finally we conclude the
paper and provide potential future works in Section 9.

2 BACKGROUND

2.1 Serverless Computing Systems

In the serverless computing system, a serverless application is
composed of one or more stateless standalone microservices that
handle specific types of service request [16]. In this computing
model, the resource provider manages all execution environments
such as resource allocating, scaling, scheduling, and ensuring
availability. To use serverless computing, the user uploads the
micro-services (functions) that handle service requests that can be
triggered by a timer or an event (e.g., HTTP request). In the back
end, frequently used functions are maintained in the memory to
enable a fast (warm) start of the function upon arrival of a service
request [17]. As this treatment is not affordable for infrequently
used functions, infrequently used function is removed from the
memory and have to launch from a cold state upon invocation.
Each service request is submitted to a shared scheduling queue
for execution. As such, in comparison with the conventional IaaS
cloud, serverless platforms reduce resource idling; hence, improve
the cost-efficiency.

2.2 Multimedia Stream Processing

Multimedia (e.g., video) contents, either in the form of on-demand
streaming or live streaming, usually have to be processed before
streaming them to the viewers. A wide range of processing—from
object detection [18] to changing compression standards [19]—
can be applied to the multimedia segments. A common type of
processing on video segments that we consider in this study is
to convert, a.k.a transcode, them to match the characteristics of
clients’ display devices [20], [21]. Transcoding can encompass
operations such as bit rate adjustment, spatial resolution reduc-
tion, frame rate reduction, and compression standard (codec)
conversion. Particularly, for live streaming, video segments have
to be transcoded upon arrival [22].

A multimedia stream is composed of several media segments
of varying or fixed length. While varying the segment length
based on the content can be more space-efficient, in practice, most
existing video streaming systems use a fixed-length segment of
around 2 seconds for simplicity. Each segment processing request
is considered as a task that has an individual deadline [15], [23].
Deadline violation of any task reduces the Quality of Service
(QoS) perceived by the viewer.

2.3 Serverless Multimedia Streaming Engine (SMSE)

We develop our mechanism within the context of Serverless Mul-
timedia Streaming Engine (SMSE) that enables on-demand (i.e.,
lazy) processing of multimedia streams [15]. Even though SMSE
can be fed by any type of user-defined multimedia processing
function, in this study, we use it for the common case of video
transcoding functions.

In the SMSE architecture, as shown in Figure 2, the Splitter
dispatches segments of the requested multimedia stream. A seg-
ment processing request includes the operation required along with
the corresponding parameters bound to that task. Each arriving
task request is assigned an individual deadline and a priority by
the Admission Control component. Then, the Admission Control
sends the task to the shared batch queue where the request waits
to be assigned by the Scheduler to one of multiple processing
unit’s queues. Scheduler’s batch queue is managed based on a
certain scheduling policy, such as FCFS, Earliest-Deadline-First



3

Video 
Repository Caching

Batch Queue

Merge-Aware 
Admission Control

Processing 
Units

Elasticity Manager

Time Estimator

Scheduler

Output 
Manager

Serverless Computing Cloud

Request
Ingestion

Fig. 2: Bird-eye view of the serverless multimedia streaming engine
(SMSE) platform that is used in our study to the process of multimedia
streams.

(EDF), Max-Urgency-First, and Highest-Priority-First [23]. Most
of the scheduling policies rely on the Time Estimator component
to provide the expected execution time of each task type (i.e.,
different transcoding functions) on a given machine type. Such
estimation can be obtained based on historical execution time
information of different transcoding functions [20].

Once a task is in the execution queue, its function and required
data (that is, the multimedia segment itself) are fetched for execu-
tion. Output Manager orders the processed segments and transmits
them to the viewer. Segments of the multimedia that are getting
popular are recognized by the Caching component of SMSE and
are stored to enable caching-based computational reuse.

SMSE often receives different forms of mergeable task. For
example, two viewers who use similar display devices may re-
quest to stream the same content. Alternatively, two viewers with
dissimilar display devices (e.g., different resolution and compres-
sion standard) or personal requirements (e.g., audio translation
or graphic censorship) may stream the same video, but with
different specifications. The former case creates identical tasks
in the system, whereas the latter one creates similar tasks.

We develop our task merging mechanism inside the Admis-
sion Control component of SMSE. Upon task arrival, Admission
Control recognizes if it is mergeable with the existing tasks in the
batch queue. Then, it decides if the arriving task can and should
be merged with the existing task or not. Before these steps, the
Caching component also verifies if the transcoded format of the
requested segment is already cached.

3 OVERVIEW OF THE ADMISSION CONTROL MECHA-
NISM TO REUSE COMPUTATION VIA TASK MERGING

Admission Control is the front gate of the batch queue, and it
is in charge of performing merging arriving tasks with the ones
already in the batch queue. The reason we do not perform the
merging in the batch queue (i.e., after the task admission) is that,
in that case, to find mergeable tasks, we need to scan the entire
queue and perform a pair-wise matching between the queued tasks,
which is inefficient and implies a significant number of redundant
comparisons.

Merge-Aware Admission Control

Merge Appropriateness Identifier

Task 

Similarity

Detector

Merge Impact 

Evaluator

Position

Finder

Task

Merger

checkService 

Request

(Task)
Task Similarity 

Hash-tables

update
Batch Queue

Workload 

Assessor

Fig. 3: Task aggregation mechanism inside Admission Control of
SVSE. Before adding a task to the batch queue, it is checked if it is
mergeable with any other queued tasks and whether or not the merging
operation is appropriate to be achieved.

The proposed task merging mechanism, shown in Figure 3,
consists of three main components as follows: (A) Task similarity
detector; (B) Merging appropriateness identifier; and (C) Task
merger. Task Similarity Detector is a lightweight method based
on hashing techniques to identify mergeable tasks. As detailed
in Section 4, it maintains multiple hash tables to cover multiple
levels of tasks’ mergeability. If the arriving task is identified
mergeable with an existing task, then the system employs the
Merge appropriateness identifier to assess if performing the
merge on the identified tasks can impact other tasks in the system
or not. Merge appropriateness identifier has three cooperating
modules. Position Finder locates the suitable position for merged
tasks in the scheduling queue, such that the other tasks are not
affected. To examine each position, Position finder consults with
Merge Impact Evaluator to estimate which and how many tasks
can potentially miss their deadlines as the result of merging. The
task merging decision is made based on system oversubscription
level obtained from Workload Assessor (see Section 5 and 6 for
further details). Once the merging is confirmed as appropriate in
a certain position of the batch queue, Task merger component
carries out the merge operation on the two tasks.

4 TASK SIMILARITY DETECTION

4.1 Categories of Mergeable Tasks

Mergeability of two given tasks can be explained based on the
amount of computation the two tasks share. In particular, merge-
ability of two or more tasks can be achieved in the following
levels:
(A) Task level: This is when more than one task which creates

the same processing task present to the scheduling queue.
Therefore, this level is also known as Identical tasks and can
achieve maximum computational reusability. For instance,
consider two viewers without personalized requirements
stream the same content and need it to be transcoded with the
same resolution to be displayed on compatible devices. As
these tasks lead to identical multimedia processing, merging
them consumes the same resources required for only one task,
hence, reducing both cost and processing delay.

(B) Data-and-Operation level: This is when two or more tasks
perform the same operation on the same data but with
different configurations. The combined processing task has
equivalent results as if each task is processed individually.
Computational reusability can be achieved through the shar-
ing of function loading overhead and common processing
steps. For instance, consider two viewers who stream the



4

same video content with different resolutions. Without merg-
ing, the two tasks need to load the video, decode it, and
encode it separately. However, by merging the two tasks,
the loading and decoding operations can be shared, then the
encoding operation is carried out separately.

(C) Data-only level: This is when the only common sharing
specification between the two (or more) tasks is only on
the data. Tasks that share the same data can reduce the data
retrieval overhead. This third tier task similarity level saves
the least amount of processing time in comparison to other
cases.

It is noteworthy that, although merging increases the execution
time of the merged task (except in the Task level), our other
study [24] shows that the execution time of the merged task is
remarkably (up to 40%) shorter than the combined execution time
of the unmerged tasks. Also, the aforementioned reusability forms
are context-specific and can be re-designed to fit other contexts.
This is particularly the case for the third level (data-only) task
similarity. In the video processing context, the overhead of loading
data (i.e., video contents) is higher than the containerized function
[25]. Therefore, we prioritize merging tasks with the same data,
rather than the same function. In other contexts (e.g., big data
analytics and machine learning), there can be potentially more
benefits to group tasks based on the same operation (function),
rather than the same data.

In SMSE, the Admission Control component can achieve task
level reusability for the same segments that need to be processed
with the same function, but for different viewers. Data-and-
Operation level reusability is achieved for segments that perform
the same transcoding function but with different configurations.
Finally, Data-only reusability is achieved for the same segments
that are served by different functions.

4.2 Detecting Similar Tasks

Assuming there are n tasks in the queue, for each arriving task,
a naı̈ve mergeable task detection method has the overhead of
performing n comparisons to find the mergeable tasks. To reduce
the overhead, we propose a method that functions based on
hashing techniques. The general idea of the proposed method is to
generate a hash key from the arriving task request signature (e.g.,
multimedia segment id, processing type, and their parameters).
Then, the Admission Control finds mergeable tasks by searching
for a matching key in the hash table of existing tasks in the
scheduling queue.

The explained method can detect Task level mergeability. We
need to expand it to detect other levels as well. To maximize the
computational reusability, an arriving task is first verified against
Task level mergeability. If there is no match in the Task level, then
the method proceeds with checking the next levels of mergeability,
namely Data-and-operation level and Data-only level, respectively.
To achieve the multiple levels of mergeability, we create three
hash-tables—each covers one level of mergeability. The hash-keys
in each level are constructed from the tasks’ characteristics that
are relevant in deciding mergeability at such level. For instance,
in the multimedia streaming case study, keys in the hash-table
that verifies task level mergeability are constructed from media
segment id, processing type, and their parameters. Alternatively,
keys in the hash-table that verifies Data-and-operation level merge-
ability are constructed from media segment id and processing type.
Similarly, keys in the hash-table of Data-only level mergeability
are constructed from segment id.

Upon arrival of task j:
(1) if j merges with existing task i on Task level similarity:

– No update on hash-table is required
(2) if j merges with existing task i on operation-and-data or

Data-only level similarity:
– Add an entry to each hash-table with hash-keys of task

j and point them to merged task i+ j
(3) if j matches with existing task i but the system chooses

not to merge them:
– Add an entry to each hash-table with hash-keys of task

j and point them to task j
(4) if j does not match with any of the existing tasks:

– Hash-keys of task j are added to the respective hash-
tables

Upon task j completing execution (i.e., dequeuing task j):
– Remove all entries pointing to task j from hash-tables

Fig. 4: The procedure to update hash-tables upon arrival or
completion of tasks.

Each entry of the hash-tables includes a hash-key and a pointer
to the corresponding task. Entries of the three hash-tables must be
updated upon a task arrival and execution. The only exception is
Task level merging, which does not require updating the hash-
tables. Figure 4 shows the procedure for updating the hash-tables
for a given task j.

When the system merges task j with existing task i, the merged
task, denoted as i+ j, is essentially the object of task i that is
augmented with task information (e.g., processing parameters) of
task j. In this case, as shown in Step (2) of this procedure, the
system only adds an entry to each hash-table with the hash-key of
task j pointing to merged task i+ j. This is in addition to the entry
for task i pointed to task i+ j that already exist in the table. When
task j is mergeable with existing task i, but the system decides
to add task j to the batch queue without merging. In this case, it
suggest that task i has certain characteristics (i.e., tight deadline)
which make it unsuitable for task merging. Meanwhile, Task j is
freshly arrived and has a higher likelihood of merging with other
arriving tasks. Hence, as shown in Step (3) of the procedure, the
matching entry pointing to task i is redirected and points to task
j. It is worth noting that if the arriving task does not match with
any of the existing tasks, as shown in Step (4), its hash-keys must
be generated and added to the respective hash-tables. Also, when
a task is served (processed), its corresponding entries are removed
from the hash-tables.

5 IDENTIFYING MERGING APPROPRIATENESS

5.1 Overview

Assume that arriving task j has Data-and-operation or Data-only
similarity with existing task i. Also, assume that task i is scheduled
ahead of at least one other task, denoted task k, in the scheduling
queue. Merging task j with i either delays the execution of task k
or task i. Such an imposed delay can potentially cause task k or i
to miss their deadlines. Therefore, it is critical to assess the impact
of merging tasks before performing the merge. The merge should
be carried out only if it does not cause more QoS violations than it
improves. It is noteworthy that Task level merging does not delay
the execution of other tasks; thus, it can always be performed.

Accordingly, in this section, we first introduce the Merge
Impact Evaluator component, whose job is to assess the impact



5

of the merging arriving task on existing tasks. Later, we introduce
Position Finder, whose job is to position the arriving task in the
scheduling queue, either through merging with other tasks or as a
new entry in the scheduling queue.

5.2 Evaluating the Impact of Merging

Ideally, task aggregation should be performed without causing
deadline violations for other tasks. Accordingly, the impact of
merging two or more tasks is evaluated based on the number of
tasks missing their deadlines due to the merging. The evaluation
requires the Time Estimator component (see Figure 1) to estimate
the execution time of the tasks. In the video processing context,
it is proven that the execution time of the tasks either follows
Normal distribution or can be approximated by it [15], [22], [23],
[24], [26]. Accordingly, we employ Normal distribution to model
the execution time, which is less compute-intensive than other
discrete and continuous distributions. To evaluate the impact of
merging, a temporary structure, called virtual queue, is constructed
that contains a copy of machine queues. Then, we assume the
merging has taken place on the tasks in the batch queue and
schedule them to the virtual queue according to the scheduling
policy. This enables us to estimate the number of tasks missing
their deadlines in the presence of merging.

To assure the minimal impact of the merging, by default,
worst-case analysis is performed on the completion time of the
affected tasks to estimate the number of tasks missing their
deadlines. For a given task i, we assume its execution time follows
a Normal distribution [15], [26], [27] and µi and σi represent
the mean and standard deviation of its execution time. Let Ei be
the estimated execution time of task i. In the worst-case analysis,
we consider Ei to be large enough that with a high probability
(97.7%), the real execution time is less than Ei. As such, Ei is
formally defined based on Equation 1.

Ei = µi +α·σi (1)

In this equation, α is the standard deviation coefficient, and
its default value is 2. That implies with 97.7% chance of task i
will not missing its deadline because of the merging. Note that
to encourage more aggressive merging under oversubscription,
we can relax the pessimissity of the worst-case analysis by
diminishing the value of α (see Section 6 for further details).

Once we know Ei, we can leverage it to estimate the comple-
tion of task i on a given machine m, denoted as Cm

i . We know
that calculating Cm

i involves the summation of the following four
factors: (A) current time, denoted τ; (B) estimated remaining time
to complete the task currently executing on machine m, denoted
em

r ; (C) sum of the estimated execution times of N tasks that are
pending in machine queue m, ahead of task i. This is calculated
as ∑

N
p=1(µp +α·σp); (D) estimated execution time of task i. The

formal definition of Cm
i is shown in Equation 2,

Cm
i = τ+ em

r +
N

∑
p=1

(µp +α·σp)+(µi +α·σi) (2)

In the tie situation that the number of tasks missing their
deadlines with and without merging is the same, we choose
to perform merging to reduce the overall time of using cloud
resources. However, one may argue an alternative approach to not
perform task merging because merging can marginally increase
the chance of missing deadlines for other tasks.

5.3 Positioning Aggregated Tasks in the Scheduling Queue

Once two tasks are detected as mergeable, the next question is:
where should the merged task be placed in the batch queue? The
number of possible answers depends on the scheduling policy of
the underlying serverless computing platform. If manipulating the
order of tasks in the batch queue is allowed, then the Position
Finder examines possible locations for the merged tasks in the
queue. For each location, it consults with the Merge Impact
Evaluator component (see Figure 3) to identify if the merge has
potential side-effects on the involved tasks or not. Once Position
Finder locates an appropriate position, it notifies Task Merger to
construct the merged task.

Scheduling policies usually sort tasks in the batch queue based
on a certain metric (known as the queuing policy). For instance,
Earliest Deadline First [20] sorts the queued tasks based on their
deadlines. This assumption restricts the number of positions can be
identified for the merged tasks that in turn limits the performance
gain of task merging. To conduct a comprehensive study, in this
section, we investigate two main scenarios: (A) when the queuing
policy is mandated (elaborated in Sub-section 5.3.1); (B) when the
queuing policy is relaxed (elaborated in Sub-section 5.3.2).

5.3.1 Task Positioning while Queuing Policy is Maintained

In this part, we study three commonly used queuing policies:
(a) First Come First Served (FCFS); (b) Earliest Deadline First
(EDF); and (c) Max Urgency. While FCFS and EDF are known
queuing policies, Max Urgency sorts the tasks in the queue based
on tasks’ deadline and execution time. More specifically, for task
i, urgency is calculated as Ui = 1/(δi−Ei), where Ui is urgency
score of task i, δi is its deadline, and Ei is its estimated execution
time.

5.3.1.1 FCFS: Let j be the arriving task and i a matching
task already exists in the queue. We can merge tasks by either
augment task i with j’s specification or cancel task i and reinsert
i+ j into the queue. Therefore, the arrival time of the merged task
(i+ j) can be either the arrival time of task i or task j. In the former
case, i+ j delays the completion time of all tasks located behind i.
In the latter case, i+ j only delays completion time of i. In either
case, the delayed task(s) can potentially miss their deadline(s) due
to the merge operation. A compromise between these two extreme
positions is possible and is described in Sub-section 5.3.2.

5.3.1.2 EDF: In this policy, tasks with an earlier deadline
are positioned earlier in the queue. When two or more tasks are
merged, each of them still keeps its individual deadline. However,
only the earliest deadline is considered for the queuing policy.
Assuming that task i has an earlier deadline than j, task i+ j can
be only positioned in task i’s spot.

5.3.1.3 Max Urgency: Recall that except in Task level
merging, other levels of merging increase the execution time of
the merged task. In this case, the urgency of i + j is: Ui+ j =
1/(min(δi,δ j)−Ei+ j). This means the urgency of the merged task
is increased. Thus, the merged task can potentially move forward
in the queue and get executed earlier. As such, tasks merging in
max urgency queue can potentially cause missing the deadline of
tasks located ahead of i in the scheduling queue as well.

5.3.2 Task Positioning while Queuing Policy is Relaxed

Queuing policies mentioned in the previous part are not aware of
task merging. Except for Max Urgency that moves the merged
task forward in the queue due to the increase in the merged task



6

urgency, other policies do not relocate the merged task. However,
a more suitable position for the merged task can be found by
relaxing the queuing policy. In this case, assuming there are n
tasks in the batch queue, the merged task, i+ j, has to be examined
against n+1 possible locations to find the position that maximizes
the chance of all tasks meeting their deadlines. Examining each
possible location implies evaluating the impact of merging, hence,
calling the scheduling method. Assuming there are m machines
in the system, each impacts evaluation costs n·m and performing
such evaluation for all n+1 possible locations implies (n2 +n)·m
complexity. This makes the time complexity of finding an optimal
solution as approximately O(m·n2).

Such overhead itself is a burden to the system that is already
oversubscribed. As such, in the rest of this section, we propose
two Position Finding heuristics and analyze them. The objectives
of these heuristics are: first, not to allow the merged task to miss
its deadline; and second, do not cause other tasks to miss their
deadlines.

5.3.2.1 Logarithmic Probing Heuristic: This heuristic
evaluates the impact of merging when i+ j is in the middle of
the queue. The evaluation result dictates how to proceed with the
probe as follows:

(i) The position neither causes deadline violation for other
tasks nor i+ j. Therefore, the appropriate position is found.

(ii) Task i+ j misses its deadline, but the number of other
tasks missing their deadlines does not increase as a result of
merging. This implies that i+ j should be executed earlier. Thus,
the procedure continues to probe in the first half of the queue.

(iii) Task i+ j meets its deadline, but the number of other
tasks missing their deadlines increases as a result of merging. This
implies that i+ j should be executed later to reduce the merging
impact on other tasks. Thus, the procedure continues to probe in
the latter half of the queue.

(iv) Task i+ j misses its deadline, and the number of other
tasks missing their deadlines increases as a result of merging.
Then, stop the procedure and cancel merging because the pro-
cedure cannot find an appropriate position for merging.

The aforementioned steps are repeated until it terminates, or
there is no position left to be examined in the batch queue. In the
latter case, we stop the procedure and cancel merging.

5.3.2.2 Linear Probing Heuristic: In the FCFS policy,
we know that the order of tasks in the batch queue implies the
order of their execution. That is, placing a task in position p of
the queue only delays tasks located behind p. That said, the first
phase of this heuristic aims at finding the latest position for task
i+ j in the batch queue so that it does not miss its deadline. The
latest position for i+ j in the queue implies the minimum number
of tasks are affected —those located behind the merged task.

To carry out the first phase, the procedure constructs virtual
queues to find the latest position for i+ j. For that purpose, it
alternates the position of i+ j in the batch queue, starting from the
head of the queue. In each position, the completion time of i+ j is
calculated based on the tasks located ahead of it and is examined
if i+ j misses its deadline. Once task i+ j misses its deadline, the
previous position is the latest possible location for it not to miss
its deadline.

Once we found the latest position for i+ j, we need to verify
if the insertion of i + j causes any deadline violation for the
tasks behind it or not. For that purpose, in the second phase, we
only need to evaluate the merging (via Merging Impact Evaluator)
once. If there is no impact, then the found position is confirmed.

Otherwise, the merging is canceled. It is noteworthy that this
procedure is efficient because the virtual queue is created only
once. Also, after each task assigned to the virtual queue, it simply
adds one more condition to check i+ j completion time.

5.3.2.3 Analysis of the Heuristics: In this part, we
analyze Logarithmic Probing and Linear Probing heuristics in
terms of their complexity and optimality of the position they find.

Complexity Analysis. Phase one of Linear Probing Heuristic
examines n tasks to be scheduled on m machines with an additional
check if i+ j can be scheduled on time directly after each of the n
tasks. That results in n·m complexity to provide a single position
for Phase two to verify. Phase two is essentially evaluating the
impact of merging, which again needs n tasks to be scheduled on
m machines. The combined complexity of the two phases is 2·n·m.
Alternatively, Logarithmic Probing Heuristic spends trivial com-
putation of O(1) to pick a position in the batch queue to verify the
appropriateness. If the position is identified as inappropriate, the
search continues for up to logn positions. Since the complexity of
evaluating each position is n·m, the total complexity is n·m· logn.
As the complexity of evaluating the impact of merging dominates
the total complexity, the Linear Probing Heuristic, which spends
less time evaluating the position, is more efficient.

Optimality Analysis. Assume that there are multiple appropri-
ate positions for task i+ j. Logarithmic Probing Heuristic returns
the first position it finds and meets the criteria. Thus, it is not
biased to any certain appropriate position for the merged task.
Alternatively, Linear Probing Heuristic always finds the latest
appropriate position in the batch queue for task i+ j. This ensures
that task i+ j has the least impact on other tasks’ completion times.
Being the last possible position, however, increases the likelihood
of i+ j to miss its deadline. In addition, this makes it unlikely for
other tasks to be scheduled in front of i+ j, hence, limiting the
chance of future merging operations.

6 ADAPTING TASK MERGING BASED ON THE OVERSUB-
SCRIPTION LEVEL

6.1 Overview

In Section 5, we discussed the merge appropriateness of each
task by considering a worst-case analysis to assure no task is
affected by the merging. However, when the system is oversub-
scribed, we can compromise the worst-case analysis and make the
system more permissive to task merging in order to mitigate the
oversubscription. In fact, sacrificing a few tasks in favor of more
merging can lighten the system’s oversubscription and ultimately
cause fewer tasks to miss their deadlines. For that purpose, in
this section, we develop the Workload Assessor component (see
Figure 3) that is in charge of assessing the oversubscription level
of the system and accordingly adjusting the aggression level of
applying the task merging.

6.2 Quantifying Oversubscription of a Computing System

The level of oversubscription in the system can be quantified
based on various factors, such as the rate of missing deadlines
and the task arrival rate. The quantification can be achieved in
a reactive manner (i.e., from known metadata) or in a proactive
manner (i.e., based on the factors that suggest the system is about
to get oversubscribed in the near future). In this part, we provide
a method for Workload Assessor that uses decisive indicators



7

of oversubscription to quantify the oversubscription level of a
serverless computing system.

The first intuitive idea to quantify oversubscription is based
on the (measured or expected) ratio of the task arrival rate to the
processing rate [28]. In this case, a system is oversubscribed if it
cannot process tasks as fast as it receives them. This idea has two
main limitations: (A) It requires the knowledge of processing rate,
which is difficult to accurately measure; (B) It is prone to report
false negative in the oversubscription evaluation. In particular, it
cannot discriminate between different circumstances that the ratio
tends to one. Such a circumstance can occur when the tasks’ arrival
and processing rates are similar. However, the batch queue may be
congested (i.e., the system is oversubscribed) or may not be (i.e.,
the system is not oversubscribed).

Another idea is to use the ratio of the number of tasks
missing their deadlines to the total number of tasks executed [28].
This is based on the fact that an oversubscribed system cannot
complete all its tasks on time. Thus, missing a high number of task
deadlines suggests an oversubscribed situation. Although this idea
has good potential, yet it falls short in quantifying the degree of
oversubscription. That is, it cannot discriminate between a system
that completes tasks a short time after their deadlines versus the
one that completes tasks a long time after their deadlines.

Improving on the shortcomings of the aforementioned meth-
ods, we propose to quantify the oversubscription level of the
system in a given time window based on the deadline miss
severity ratio. We define waitable time of task i, denoted Wi,
as the maximum time it can wait in the queue without missing
its deadline. Let Ai denote the arrival time of task i, then its
waitable time is calculated as: Wi = δi−Ai−Ei . To quantify the
oversubscription level, denoted OSL, in the first place, we discard
the contribution of infeasible tasks (i.e., those with Wi < 0) and
those that can complete on time (i.e., the ones with Cm

i ≤ δi).
Next, the tasks that complete after their deadlines contribute to
the oversubscription level based on the severity of their deadline
miss. For a given task i, this is calculated based on the proximity
between its completion time and its deadline (i.e., Cm

i − δi) and
with respect to its waitable time (i.e., Wi). Equation 3 formally
shows how OSL is calculated. Recall that Cm

i is estimated based
on Equation 2 to quantify the oversubscription in the current time
window and Na represents the total number of tasks across all
the machine queues. To adapt Equation 3 for quantifying the
oversubscription of a past time window, we need to replace the
estimated completion time with the observed completion time of
the tasks.

OSL =
1

Na

Na

∑
i=1


0, Wi ≤ 0
0, Cm

i ≤ δi
Cm

i −δi
Wi

, Cm
i > δi

(3)

6.3 Adaptive Task Merging Aggressiveness

The method explained in Section 5 estimates the side-effect of
merging on other tasks in a conservative manner to assure that
the merging does not cause their deadlines violated. In the face of
oversubscription, estimation of the side-effect can be relaxed from
the worst-case analysis to allow more aggressive task merging,
hence, mitigating the oversubscription and increasing the overall
QoS.

To make the aggressiveness of task merging adaptive, based
on the measured oversubscription level of the system, we modify
the acceptable probability that a merge operation does not cause

deadline violation on other tasks of the system. More specifically,
for higher values of the oversubscription level, the acceptable
probability that other tasks meet their deadlines should be dimin-
ished and vice versa. Therefore, we set the value of Standard
Deviation coefficient (α) to inversely scale against the OSL value.
We formulate α as α = β− 2·β·OSL where β is the maximum
value of Standard Deviation coefficient. The value of β = 2 allows
α to scale in the range of [-2 , 2], which translates to real execution
time being less than the estimated execution time with [2.3%
, 97.7%] probability. That is, to consider task merging, without
oversubscription (OSL→ 0), the system requires a high certainty
(97.7%) that a task completes on or before its estimated time.
Conversely, under a high oversubscription (OSL→ 1), merging
can be enacted with a low on-time task completion probability
(2.3%).

7 PERFORMANCE EVALUATION

7.1 Experimental Setup

We developed a prototype of the SMSE platform with the task
merging mechanism in place. We made SMSE publicly available1

for the research community and reproducibility purposes. In this
study, to comprehensively examine various workloads with differ-
ent configurations, we used SMSE in the emulation mode (except
for the first experiment). The task merging mechanism, proposed
in this paper, is implemented as the Admission Control component
of SMSE. For the sake of reproducibility, we modeled a serverless
computing system to have the specifications equivalent to eight
Small VMs in the Chameleon Cloud [29]. That is, we modelled
the execution time of each task on each serverless machine based
on the benchmarked execution time of that task on the Small VMs
of the Chameleon Cloud.

The multimedia repository we used for evaluation includes
multiple replicas of a set of benchmark videos. Videos in the
benchmarking set are diverse both in terms of the content types
and length. The length of the videos in the benchmark varies in the
range of [10, 220] seconds, splitting into 5-110 video segments.
The benchmark videos are publicly available for reproducibility
purposes2. More details about the characteristics of the benchmark
videos can be found in our other study [24]. For each segment
of the benchmark videos, we obtained their execution times by
executing each micro-service 30 times. The benchmarked micro-
services are: reducing resolution, adjusting bit rate, adjusting
frame rate, and changing codec. In each case, two conversion
parameters are examined. For example, the frame rate is changed
from 60 fps down to either 30 fps or 24 fps. Note that a codec
changing micro-service can take up to 8x longer to execute than
other more trivial processing operations [24].

To evaluate the system under various workload intensities, we
generate [1,000, 2,500] video segment processing tasks within a
fixed time interval. All transcoding micro-services are available in
the processing units (i.e., warm starting micro-services). Transcod-
ing tasks arrive in the system in a group of 5 consecutive segments
at a time. To accurately emulate common workload behavior
observed in the real video steaming systems, each workload
repeatedly toggle their arrival rate between the base period and
high load period, where the arrival rate is increased by two folds.
Each base period is approximately three times longer than the

1. https://github.com/hpcclab/adaptivemerging
2. https://github.com/hpcclab/videostreamingBenchmark

https://github.com/hpcclab/videostreamingBenchmark


8

high load period. Each simulation case spans up to 15 high and
base period cycles. In each simulation case, if all tasks arrive
simultaneously, there is approximately 30% chance for some tasks
to find a mergeable pair. However, as the tasks are dynamically
arriving in the system throughout the simulation time, the chance
of task merging reduces to be less than 20%. These test cases are
used throughout all the experiments except one in Section 7.2.

We collect the deadline miss-rate (DMR) and makespan (i.e.,
execution time to finish all tasks) of completing all tasks. Although
we employ ‘weighted estimated time after the deadline’ to fine-
tune the response of adaptive merging based on the oversub-
scription level, we show DMR as the evaluation metric, which
is a common metric to express the user satisfaction. DMR is an
intuitive metric that makes the results comparable to other studies.
For the sake of better visualization of the miss rate reduction, the
DMR of each configuration with merging policy is normalized
against a nearly identical configuration without the task merging
in place. We conducted each experiment 30 times, each time with
different randomized task arrival time and order. Mean and 95%
confidence interval of the results is reported. In every experiment,
all tasks must be completed, even if they miss their deadlines.

For each experiment, we examine the system in four scenarios:
(A) Without task merging; (B) Conservative task merging policy
(i.e., by considering merge appropriateness to strictly not cause
additional deadline miss); (C) Aggressive task merging policy (i.e.,
without considering merge appropriateness); and (D) Adaptive
task merging policy (i.e., an adaptive system that works either
similar to considerate or aggressive depending on the situation).
However, for the sake of better presentation, only some parts of
the results are shown in each experiment.

7.2 Evaluating the Resource Saving of Task Merging

In the first experiment, our goal is to examine the impact of task
merging on the makespan time. For that purpose, we configured
SMSE in the real-setting mode and executed two video tasks under
the merged and unmerged scenarios. Specifically, we examined
three cases: executing the tasks separately; merge them under data-
only task merging; and merge them under the task level similarity.

As we can see in Figure 5, executing two tasks individually
(i.e., , without merging) takes approximately twice as much the
time it takes to complete the tasks in the task level merging. Merg-
ing the tasks under data-only merging also saves around 30-45%

Resolution Bit Rate Frame Rate Codec
Task Type

0

2

4

6

8

10

12

14

16

M
ak

es
pa

n 
(s

)

No-merge
Similar Task Merging
Identical Task Merging

Fig. 5: Comparing the time to complete two tasks performing various
video processing task types in three configurations: not merging,
merging as similar tasks and merging as identical tasks.

of the makespan time. This figure also shows the heterogeneity
of task size in the system. Codec changing operation requires
approximately eight times longer than the frame rate changing
operation, for example.

7.3 Impact of the Task Merging on the Makespan Time

In the next experiment, our goal is to see the impact of the task
merging on makespan of the whole system. This metric implies
the time cloud resources are deployed, and subsequently, the cost
incurred to execute all the tasks. We examine the system under
various subscription levels (from 1,000 to 2,500 requests) arriving
within the time interval. In this experiment, we examine systems
with three queuing policies, namely FCFS, EDF, and MU (Max
Urgency). Also, the Position Finder component is disabled for this
experiment. That means all the merged tasks are placed in the
position of the existing task in the batch queue. In this system,
because tasks are not dropped and computing resources are homo-
geneous, the scheduling policies do not make a significant change
in the makespan. Therefore, only the results of the FCFS queuing
policy are presented.

1k 1.5k 2k 2.5k
Oversubscription Level (#Service Requests)

0

2

4

6

8

10

M
ak

es
pa

n 
(s

)

Conservative
Adaptive

Aggressive
No-merge

Fig. 6: Comparing the total time to complete all tasks (i.e., makespan)
under a varying number of arriving processing tasks (horizontal axis)
in four scenarios: without task merging, with Adaptive, Conservative,
and Aggressive merging in place.

As we can see in Figure 6, our proposed merging mecha-
nism saves the makespan between 4% to 9.1%. Saving in the
makespan time is more pronounced when the system is highly
oversubscribed. This is because there is more backlog of tasks
in the scheduling queue at any moment. Hence, there is a higher
chance of a new arriving task to find its mergeable pair.

Comparing different task merging policies in the figure reveals
that their difference in the total makespan is mostly marginal.
The conservative merging policy is more reluctant to perform
task merging, which can result in tasks missing their deadlines.
However, that has an unanticipated positive effect on the total
makespan by piling up more tasks in the early stage of its
execution, which subsequently increases the chance of a new task
to find a suitable mergeable pair at a later time. Nonetheless, at
a higher level of oversubscription, such effect is diminished, as
there is a sufficient number of merge candidates in the batch
queue regardless of the merging policy being employed. Thus,
in a highly oversubscribed system, the makespan saving of the
Conservative merging slightly lags behind other more Aggressive
merging policies.



9

7.4 Impact of the Task Merging on QoS

In this experiment, our goal is to evaluate the viewers’ QoS. For
that purpose, we measure the deadline miss rate reduction resulted
from merging tasks and compare them with the comparable
systems that have no task merging under various oversubscribed
levels. Note that, in an oversubscribed system, the evaluated
scheduling policies yield different DMR value. Nevertheless, the
merging mechanism complements the employed scheduling policy
and improve it to offer a better QoS (lower DMR value).

As shown in Figure 7, we observe that task merging sig-
nificantly reduces the deadline miss rate for all the scheduling
policies. We observe that the improvement in the deadline miss
rate of FCFS is less than the EDF and MU scheduling policies.
However, the reduction is more consistent across oversubscription
levels when comparing to the other policies. This is because FCFS,
by nature, does not schedule tasks based on their deadlines or
urgencies. There is no critical point which the scheduler tip over
from assigning mostly tasks with a tight but manageable deadline
to mostly tasks with a too-short deadline.

The comparison across different merging policies reveals that,
for low oversubscription levels, Conservative and Adaptive merg-
ing result in a higher deadline miss rate reduction than Aggres-
sive merging. The reason is that the Aggressive merging makes
inappropriate merging decisions that lead to deadline violation.
However, as the oversubscription level increases, aggressively
merging tasks seems to be the best approach as the seemingly
too aggressive task merging that yields immediate penalty results
in less oversubscribed system later.

Comparing the results shown in Figure 6 with those in Figure 7
reveals that the difference in deadline miss rate can be larger than
the difference in makespan (i.e., up to 18% miss rate reduction
compare to up to 9% makespan reduction). This is because a
small reduction in completion time can cause the merged tasks to
meeting their deadlines instead of missing them. We can conclude
that the impact of the task aggregation mechanism on viewers’
QoS becomes more remarkable when it is combined with efficient
scheduling policies.

7.5 Evaluating the Impact of the Position Finder

In this part, we examine the effect of the merge position finder
module from Section 5.3.1 on the deadline miss rate reduction. We
assume the system to schedule tasks in the FSCS manner while
each of the merged tasks has a chance to be placed outside of
their original order in the queue (using Linear Probing heuristic).

We apply different merging policies without and with the position
finder module (represented as +Pfind in the figure) in place.

1.5k 2.5k
Oversubscription Level (#Service Requests)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
iss

 R
at

e 
Re

du
ct

io
n 

(%
)

Conservative
Conservative+Pfind
Adaptive

Adaptive+Pfind
Aggressive
Aggressive+Pfind

Fig. 8: Comparing the effect of position finder module in term of
deadline miss rate reduction under a varying number of arriving
tasks (horizontal axis) with three merge aggressiveness levels that are
applied without and with the position finder, shown as Pfind in the
chart.

Figure 8 shows an interesting result where the position finding
module not only improves the deadline miss rate reduction in
most cases but also degrades the performance of Conservative
and Adaptive merging policies under highly oversubscribed con-
ditions. This is because the position finder module places each
merged task in a position that introduces the least amount of
impact on other tasks. However, such a position that puts the least
amount of impact on other tasks is also a position that is the
closest to miss its own deadline. This, at the edge position, limits
future mergeability should the other tasks want to merge in front
of it. This is not the case for a system with a low task arrival rate
because it is likely that the merged task completes its execution
before another task merging in front of it. Also, Aggressive
merging does not concern with the merge appropriateness. Thus,
future mergeability is not reduced by the merged task placement.
Accordingly, we recommend against using the Position Finder
module with the Conservative and Adaptive merging policies in
the face of high oversubscription levels.

7.6 Impact of the Execution Time Uncertainty on Task Merg-
ing

As we noticed in Section 5.2, merging decisions are made based
on their impacts on the completion time distribution of other

1k 1.5k 2k 2.5k
Oversubscription Level (#Service Requests)
0

5

10

15

20

25

M
iss

 R
at

e 
Re

du
ct

io
n 

(%
) Conservative

Adaptive
Aggressive

(a) FCFS queue

1k 1.5k 2k 2.5k
Oversubscription Level (#Service Requests)
0

5

10

15

20

25

M
iss

 R
at

e 
Re

du
ct

io
n 

(%
) Conservative

Adaptive
Aggressive

(b) EDF queue

1k 1.5k 2k 2.5k
Oversubscription Level (#Service Requests)
0

5

10

15

20

25

M
iss

 R
at

e 
Re

du
ct

io
n 

(%
) Conservative

Adaptive
Aggressive

(c) MU queue

Fig. 7: Comparing the deadline miss rate reduction under a varying number of tasks (horizontal axes) using Conservative, Aggressive, and
Adaptive merging policies. Subfigures (a), (b), and (c) show the reduction under FCFS, EDF, and Max Urgency (MU) queuing policies.



10

1.0k 2.5k
Oversubscription Level (#Service Requests)

0

10

20

30
M

iss
 R

at
e 

Re
du

ct
io

n 
(%

)

Conservative
Conservative-5SD
Conservative-10SD
Adaptive
Adaptive-5SD

Adaptive-10SD
Aggressive
Aggressive-5SD
Aggressive-10SD

Fig. 9: Comparing the deadline miss rate reduction for the different
number of arriving tasks (horizontal axis) using the three merging
policies applied on tasks with different uncertainty in their execution
time distribution. 5SD and 10SD designate five times and ten times the
randomness than the regular dataset.

tasks. However, the magnitude of uncertainty in the execution time
distribution of the tasks can be a decisive factor in the accuracy of
estimating the merging side-effects, and subsequently, the deadline
miss rate resulted from them. Accordingly, in this experiment, our
aim is to evaluate how the three task merging policies function
in the face of different levels of uncertainty in the execution
time. For that purpose, we increase the randomness of execution
time when sampling from the mean execution times. The base
level of uncertainty in execution time distribution, observed from
the video transcoding services, is relatively low, as the standard
deviation is approximately 4% of the mean execution time. In this
part, we examine the deadline miss reduction when the standard
deviation of execution time distribution is increased by 5 and 10
times, expressed as 5SD and 10SD in the results, under different
oversubscription levels in the system.

1.5k 2.5k
Oversubscription Level (#Service Requests)

0

5

10

15

20

M
iss

 R
at

e 
Re

du
ct

io
n 

(%
)

Cons-Pfind
Cons-Pfind-5SD
Cons-Pfind-10SD
Adapt-Pfind
Adapt-Pfind-5SD

Adapt-Pfind-10SD
Agg-Pfind
Agg-Pfind-5SD
Agg-Pfind-10SD

Fig. 10: Comparing the deadline miss rate reduction under a varying
number of arriving tasks (horizontal axis) using the three merging
policies and three levels of execution time uncertainty. In every case,
the position finder module (Pfind in the chart) is activated. 5SD and
10SD designate five and ten times more uncertainty in execution time
distribution than the regular workload trace.

The result of this experiment, shown in Figure 9, includes
some interesting observations. Specifically, we observe that as
the level of uncertainty rises, there is more performance gain in
performing merging. At the low oversubscription level, Conser-
vative and Adaptive merging policies, both of which consider the
standard deviation coefficient (α) and the merge impact evaluation,

gain more deadline miss reduction than the Aggressive policy.
However, at a high oversubscription level (2.5k) with a high
level of uncertainty, unlike other merging policies, Conservative
merging often evaluates merging options as too risky to impacting
other tasks. Therefore, the Conservative merging does not allow as
many task merging as other policies, and thus performance gain is
reduced as the uncertainty level rises. Adaptive merging does not
exhibit such behavior and perform well in both situations.

Figure 10 shows the impact of increasing the uncertainty level
on the performance of the position finder module. Comparing the
result to those from Figure 9, we learn that when the position
finder module is engaged, the increasing level of uncertainty only
has a minimal impact on the deadline miss rate reduction. At the
2.5k oversubscription level, the Aggressive policy with the help of
the position finder module still performs significantly better than
other policies.

8 RELATED WORKS

Software-based computational reuse has been extensively re-
searched and deployed. However, not many systems can merge
and reuse tasks before they are completed, and many of them tie
very closely to one specific application. Below are some notable
works in this area.

Chard et al., a FaaS cloud platform named funcX [30]. FuncX
containerizes functions to be executed at various endpoints most
suitable to the function nature (e.g., high CPU power machines
or low storage latency machines close to the data source). Their
solution can reuse the computing result that matches the recently
executed task through the caching system.

Elgamal et al. [31] proposed a serverless computing platform
with the capability to fuse (i.e., merge) functions together to
reduce the incurred cost of using the serverless computing cloud.
Unlike our work, which merge unrelated tasks to reuse some part
of the computation based on some similarity, their work fuse
functions of the same workflow to reduce the data transition cost.
Similar to our work, not all possible fusing options are appropriate.
They evaluate the trade-off between fusing functions together and
treat them separately through estimated incurring costs on a task
by task basis.

Popa et al. [32] presented modules to identify identical and
similar tasks to cache partial results and reuse them on incre-
mental computation specifically on Dryad [33] platform context.
They proposed two solutions: One solution automatically caches
computational results. Another solution merges tasks based on
the programmer’s defined merge function. Their first solution is
a caching system, while their second solution is a computational
reuse system specific to the Dryad platform, which does not have
a deadline and QoE to consider.

Gunda et al. [34] proposed an architecture that instead of
caching finished computation product, it offers caching of inter-
mediate computed data, which can derive into multiple versions
of finished results with minimal further computation. They treated
data and computation interchangeably in the sense that data can
be replaced by re-computation to regain that data. Hence they
could cache more intermediate computational data and less final
results to save storage. However, they do not merge tasks and plan
the scheduler to reuse intermediate data that will be available but
currently is not ready.

Tiwari and Solihin [35] proposed a module to deduplicate
identical data and merging tasks in the MapReduce platform using



11

IMMR (In-Memory-MapReduce). Unlike much other deduplica-
tion in storage system based MapReduce, merging data in memory
based MapReduce requires merging operations to perform at the
data-structure level instead of the file system, and all operations
must be done in a more timely manner. This is an eminent
work showing the deduplication system on MapReduce style
applications.

Tang and Yang [36] proposed a system to deduplicate storage
and intermediate computational data among multiple mutually dis-
trusted users in a cloud computing system in a secure way through
API call and kernel modules. They use Radis for caching works,
which they isolate cache by application signature in a way that
only the same applications can share data together. The solution
is especially helpful for libraries and services that are commonly
used among multiple users. However, those libraries and services
need to be modified to use their work’s caching API. They focus on
providing a securely shared key-stored caching system that allows
coders to freely select when and what intermediate computation to
cache through API, unlike our works, which focus more on detect
and merging tasks with deadline consideration.

Boos et al. [37] exploited pre-caching technique to mitigate
real-time VR rendering performance issue on low-power mobile
GPU. This work is focused on how to do computational reuse of
similar scenes and rendering tasks in a Virtual Reality context and
not applicable to other fields.

Samadi et al. [38] proposed a system that identifies poten-
tially computationally reusable tasks and uses them for software-
only approximate computation (i.e., reusing the computations
that would give close enough results rather than re-processing
to get accurate results) to improve performance, especially in
Video processing context where accurate computational results are
not required. Unlike our work, they heavily prefer performance
improvement over the user’s QoS, who is now getting inaccurate-
results.

Paulo and Pereira et al. [39] developed a system to per-
form deduplication of high throughput data using Bloom f ilters.
Bloom f ilters, while fast, has chances of giving false positive hash
checking. Therefore they achieve lower overhead data duplicate
detection than the hash-table approach we use, at the price of
compromised accuracy. Marahatta et al. [40] propose a dynamic
task scheduling that emphasizes energy efficiency of the cloud data
center. Part of their solution utilizes task merging to reduce mean
response time and total energy consumption. Unlike our work,
where we focus on oversubscribed conditions, their work aims to
lower the energy consumption of underutilized data center.

9 CONCLUSION AND FUTURE WORKS

In this paper, we investigated the problem of oversubscription in
the serverless computing platforms. Our goal is to alleviate the
oversubscription via merging arriving service requests (task) with
other (exact or similar) tasks in the system. In that regard, we
dealt with two challenges: First, how to identify identical and
similar tasks in an efficient manner? Second, how to perform (or
not perform) merging to achieve the best QoS in the system?
To address the first challenge, we identified three main levels of
similarity that tasks can be merged. Then, we developed a method
to detect different levels of task similarity within a constant time
complexity. To address the second challenge, we developed a
method that determines, based on system oversubscription condi-
tion, how to perform the merge operation so that the deadlines of

other tasks in the system are likely least affected. Experimental
results demonstrate that task merging can reduce the overall
execution time of tasks by more than 9%. Hence, cloud resources
can be deployed for a shorter time. Interestingly, this benefit comes
with improving the QoS of the users by up to 18%. We concluded
that when the level of oversubscription in the system is high,
merging tasks aggressively (i.e., without being considerate of the
impact on other tasks) helps in improving the QoS. Conversely,
with lower levels of oversubscription, merging should be carried
out with consideration of the impact on other tasks, not to cause
an unnecessary impact on the QoS.

Although we implemented this system in the context of a video
streaming platform, the concept can be applied to the computing
platform of other domains as long as we can define similarity
levels in those domains. In the future, we plan to extend this
work by considering the impact of using heterogeneous comput-
ing resources in the system. Another interesting future research
direction can be exploring the impact of marginally compromising
tasks’ specification accuracy (substitute some task parameters with
similar value) to enable more computational sharing with other
existing tasks. Such an approach requires semantic similarity (as
opposed to deterministic similarity) detection that operates based
on machine learning. However, as machine learning methods
impose considerably more overhead than the hash-table approach,
the system must take into the account the cost benefit of utilizing
the machine learning before employing them.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of the paper. This
is a substantially extended version of a paper presented at the 16th
International Conference on Service-Oriented Computing (ICSOC
’18) [41]. This research is supported by the National Science
Foundation under award# CNS-2007209 and CNS-2047144.

REFERENCES

[1] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee
Software, vol. 33, no. 3, pp. 94–100, May 2016.

[2] M. Meyer, “Continuous integration and its tools,” IEEE software, vol. 31,
no. 3, pp. 14–16, May 2014.

[3] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice
performance,” in Proceedings of the 2018 IEEE International Conference
on Cloud Engineering, ser. (IC2E’18), Apr. 2018, pp. 159–169.

[4] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li,
“Application-aware dynamic fine-grained resource provisioning in a
virtualized cloud data center,” IEEE Transactions on Automation Science
and Engineering, vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[5] W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon: A dynamic and efficient
serverless and faas framework for private cloud,” in Proceedings of the
6th International Conference on Computational Science and Computa-
tional Intelligence, ser. CSCI ’19, Dec. 2019, pp. 1416–1421.

[6] E. Baccour, A. Erbad, K. Bilal, A. Mohamed, M. Guizani, and M. Hamdi,
“FacebookVideoLive18: A Live Video Streaming Dataset for Streams
Metadata and Online Viewers Locations,” in Proceedings of the 10th
Intl. Conference on Internet of Things, ser. ICIOT ’20, Feb. 2020.

[7] S. Liu, K. Ren, K. Deng, and J. Song, “A dynamic resource allocation and
task scheduling strategy with uncertain task runtime on IaaS clouds,” in
Proceedings of the 6th International Conference on Information Science
and Technology, ser. ICIST ’16, May 2016, pp. 174–180.

[8] A. Alfayly, I.-H. Mkwawa, L. Sun, and E. Ifeachor, “Qoe-driven lte
downlink scheduling for voip application,” in Proceedings of the 12th
Annual IEEE Consumer Communications and Networking Conference,
ser. CCNC ’12, Jan. 2015, pp. 603–604.

[9] I.-H. Hou and P.-C. Hsieh, “QoE-Optimal Scheduling for On-Demand
Video Streams over Unreliable Wireless Networks,” in Proceedings of
the 16th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, ser. MobiHoc ’15, Jun. 2015, pp. 207–216.



12

[10] J. Zhang, G. Wu, X. Hu, and X. Wu, “A distributed cache for hadoop
distributed file system in real-time cloud services,” in Proceedings of
the 13th ACM/IEEE International Conference on Grid Computing, ser.
GRID ’12, Sep. 2012, pp. 12–21.

[11] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A balanced
scheduler with data reuse and replication for scientific workflows in cloud
computing systems,” Future Generation Computer Systems, vol. 74, pp.
168–178, Sep. 2017.

[12] F. Guo, L. Yu, S. Tian, and J. Yu, “A workflow task scheduling
algorithm based on the resources’ fuzzy clustering in cloud computing
environment,” International Journal of Communication Systems, vol. 28,
no. 6, pp. 1053–1067, Apr. 2015.

[13] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi, “Efficient In-memory
Data Management: An Analysis,” Proceedings of the VLDB Endowment,
vol. 7, no. 10, pp. 833–836, Jun. 2014.

[14] X. Andrade, J. Cedeno, E. Boza, H. Aragon, C. Abad, and J. Murillo,
“Optimizing cloud caches for free: A case for autonomic systems with a
serverless computing approach,” in Proceedings of the 4th IEEE Interna-
tional Workshops on Foundations and Applications of Self* Systems, ser.
FAS* W ’19, Jun. 2019, pp. 140–145.

[15] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-
Efficient and Robust On-Demand Video Stream Transcoding Using
Heterogeneous Cloud Services,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 29, no. 3, pp. 556–571, Mar. 2018.

[16] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the USENIX
Annual Technical Conference, ser. USENIX ’18, Jul. 2018, pp. 133–146.

[17] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” arXiv preprint arXiv:2003.03423, 2020.

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[19] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret,
“The discover codec: architecture, techniques and evaluation,” in Pro-
ceedings of the 27th Picture Coding Symposium, ser. PCS’07, Nov. 2007.

[20] X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya, “CVSS: A Cost-
Efficient and QoS-Aware Video Streaming Using Cloud Services,” in
Proceedings of the 16th IEEE/ACM International Conference on Cluster
Cloud and Grid Computing, ser. CCGrid ’16, May 2016, pp. 106–115.

[21] X. Li, M. Darwich, M. Bayoumi, and M. Amini Salehi, “Cloud-based
video streaming services: A survey,” Advances in Computers, vol. 123,
June 2020.

[22] X. Li, M. A. Salehi, and M. Bayoumi, “VLSC: Video Live Streaming
Using Cloud Services,” in Proceedings of the 6th IEEE International
Conference on Big Data and Cloud Computing Conference, ser. BD-
Cloud ’16, Oct. 2016, pp. 595–600.

[23] M. Hosseini, M. A. Salehi, and R. Gottumukkala, “Enabling Interactive
Video Stream Prioritization for Public Safety Monitoring through Effec-
tive Batch Scheduling,” in Proceedings of the 19th IEEE International
Conference on High Performance Computing and Communications, ser.
HPCC ’17, Dec. 2017.

[24] S. Wu, C. Denninnart, X. Li, Y. Wang, and M. Amini Salehi, “Descriptive
and predictive analysis of aggregating functions in serverless clouds: The
case of video streaming,” in Proceedings of the 22nd IEEE International
Conferences on High Performance Computing and Communications, ser.
HPCC ’20, Dec. 2020.

[25] D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi,
“The art of cpu-pinning: Evaluating and improving the performance of
virtualization and containerization platforms,” in Proceedings of the 49th
Intl. Conference on Parallel Processing, ser. ICPP ’20, Aug. 2020.

[26] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and
M. Bayoumi, “Performance analysis and modeling of video transcoding
using heterogeneous cloud services,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 910–922, 2018.

[27] R. Hussain, M. Amini, A. Kovalenko, Y. Feng, and O. Semiari, “Fed-
erated edge computing for disaster management in remote smart oil
fields,” in Proceedings of the 21st IEEE International Conference on
High Performance Computing and Communications, ser. HPCC ’19,
Aug. 2019, pp. 929–936.

[28] D. P. Mahato and R. S. Singh, “Reliability modeling and analysis for
deadline-constrained grid service,” in Proceedings of the 32nd Interna-
tional Conference on Advanced Information Networking and Applica-
tions Workshops, ser. WAINA ’18, May 2018, pp. 75–81.

[29] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad,
and P. Ruth, “Chameleon: a scalable production testbed for computer

science research,” in Contemporary High Performance Computing, May
2019, pp. 123–148.

[30] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcx: A federated function serving fabric for
science,” arXiv preprint arXiv:2005.04215, 2020.

[31] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in Proceedings of the 3rd IEEE/ACM
Symposium on Edge Computing, ser. SEC ’18, Oct. 2018, pp. 300–312.

[32] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing work in
large-scale computations,” in Proceedings of 1st USENIX workshop on
Hot Topics in Cloud Computing, ser. HotCloud ’09, Jun. 2009.

[33] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed Data-parallel Programs from Sequential Building Blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems, ser. EuroSys ’07, Mar. 2007, pp. 59–72.

[34] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: Automatic Management of Data and Computation in Datacen-
ters,” in Proceedings of the 9th USENIX Cnf. on Operating Systems
Design and Implementation, ser. OSDI ’10, Oct. 2010, pp. 75–88.

[35] D. Tiwari and Y. Solihin, “MapReuse: Reusing computation in an in-
memory mapreduce system,” in Proceedings of the 28th IEEE Interna-
tional Parallel and Distributed Processing Symposium, ser. IPDPS ’14,
May. 2014, pp. 61–71.

[36] Y. Tang and J. Yang, “Secure Deduplication of General Computations.”
in Proceedings of the 2015 USENIX Annual Technical Conference, ser.
USENIC ATC’ 15, Jul. 2015, pp. 319–331.

[37] K. Boos, D. Chu, and E. Cuervo, “FlashBack: Immersive Virtual Reality
on Mobile Devices via Rendering Memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’16, Jun. 2016, pp. 291–304.

[38] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based Approximation for Data Parallel Applications,” Association for
Computing Machinery’s Special Interest Group on programming lan-
guages (ACM SIGPLAN) Notices, vol. 49, no. 4, pp. 35–50, Feb. 2014.

[39] J. Paulo and J. Pereira, “Distributed exact deduplication for primary
storage infrastructures,” in Proceedings of the 14th IFIP International
Conference on Distributed Applications and Interoperable Systems, Jun.
2014, pp. 52–66.

[40] A. Marahatta, S. Pirbhulal, F. Zhang, R. M. Parizi, K.-K. R. Choo,
and Z. Liu, “Classification-based and energy-efficient dynamic task
scheduling scheme for virtualized cloud data center,” Preprint on IEEE
Transactions on Cloud Computing, 2020.

[41] C. Denninnart, M. Amini Salehi, A. N. Toosi, and X. Li, “Leveraging
computational reuse for cost- and qos-efficient task scheduling in clouds,”
in Proceedings of the 16th International Conference on Service-Oriented
Computing, ser. ICSOC ’18, Nov. 2018, pp. 828–836.

Chavit Denninnart is a Ph.D. student at High Per-
formance Cloud Computing (HPCC) laboratory at
University of Louisiana at Lafayette. His research
interests include cloud based resource allocation,
serverless computing, computational reuse, heteroge-
neous computing, and low-latency cloud-based video
streaming.

Mohsen Amini Salehi received his Ph.D. in Comput-
ing and Information Systems from Melbourne Univer-
sity, in 2012. He is an NSF CAREER Awardee Assis-
tant Professor and the director of HPCC lab, at the
School of Computing and Informatics, University of
Louisiana at Lafayette. His research focus is on edge-
to-cloud continuum, heterogeneity, virtualization, re-
source allocation, energy-efficiency, and security.


	Introduction
	Background
	Serverless Computing Systems
	Multimedia Stream Processing
	Serverless Multimedia Streaming Engine (SMSE)

	Overview of the Admission Control Mechanism to Reuse Computation via Task Merging
	Task Similarity Detection
	Categories of Mergeable Tasks
	Detecting Similar Tasks

	Identifying Merging Appropriateness
	Overview
	Evaluating the Impact of Merging
	Positioning Aggregated Tasks in the Scheduling Queue
	Task Positioning while Queuing Policy is Maintained
	Task Positioning while Queuing Policy is Relaxed


	Adapting Task Merging based on the oversubscription level
	Overview
	Quantifying Oversubscription of a Computing System
	Adaptive Task Merging Aggressiveness

	Performance Evaluation
	Experimental Setup
	Evaluating the Resource Saving of Task Merging
	Impact of the Task Merging on the Makespan Time
	Impact of the Task Merging on QoS
	Evaluating the Impact of the Position Finder
	Impact of the Execution Time Uncertainty on Task Merging

	Related Works
	Conclusion and Future works
	References
	Biographies
	Chavit Denninnart
	Mohsen Amini Salehi


