
1

Cost-Efficient and Robust On-Demand Video
Stream Transcoding Using Heterogeneous

Cloud Services
Xiangbo Li, Mohsen Amini Salehi, Member, IEEE, Magdy Bayoumi, Fellow, IEEE,

Nian-Feng Tzeng, Fellow, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Video streams, either in the form of Video On-Demand (VOD) or live streaming, usually have to be converted (i.e.,
transcoded) to match the characteristics of viewers’ devices (e.g., in terms of spatial resolution or supported formats). Transcoding is a
computationally expensive and time-consuming operation. Therefore, streaming service providers have to store numerous transcoded
versions of a given video to serve various display devices. With the sharp increase in video streaming, however, this approach is
becoming cost-prohibitive. Given the fact that viewers’ access pattern to video streams follows a long tail distribution, for the video
streams with low access rate, we propose to transcode them in an on-demand (i.e., lazy) manner using cloud computing services.
The challenge in utilizing cloud services for on-demand video transcoding, however, is to maintain a robust QoS for viewers and
cost-efficiency for streaming service providers. To address this challenge, in this paper, we present the Cloud-based Video Streaming
Services (CVS2) architecture. It includes a QoS-aware scheduling component that maps transcoding tasks to the Virtual Machines
(VMs) by considering the affinity of the transcoding tasks with the allocated heterogeneous VMs. To maintain robustness in the presence
of varying streaming requests, the architecture includes a cost-efficient VM Provisioner component. The component provides a self-
configurable cluster of heterogeneous VMs. The cluster is reconfigured dynamically to maintain the maximum affinity with the arriving
workload. Simulation results obtained under diverse workload conditions demonstrate that CVS2 architecture can maintain a robust
QoS for viewers while reducing the incurred cost of the streaming service provider by up to 85%.

Index Terms—Cloud services; Heterogeneous VM provisioning; QoS-aware scheduling; On-demand video transcoding.

F

1 INTRODUCTION
The way people watch videos has dramatically changed
over the past years. From traditional TV systems, to video
streaming on desktops, laptops, and smart phones through the
Internet. Consumer adoption of video streaming services is
rocketing. Based on the Global Internet Phenomena Report [1],
video streaming currently constitutes approximately 64% of all
U.S. Internet traffic. It is estimated that streaming traffic will
increase up to 80% of the whole Internet traffic by 2019 [2].

Video contents, either in the form of Video On Demand
(VOD) (e.g., YouTube1 or Netflix2) or live-streaming (e.g.,
Livestream3), need to be converted based on the device char-
acteristics of viewers. That is, the original video has to be
converted to a supported resolution, frame rate, video codec,
and network bandwidth to match the viewers’ devices [3].
The conversion is termed video transcoding [4], which is a
computationally heavy and time-consuming process [3]. One
approach currently used by streaming providers for transcod-
ing is termed pre-transcoding, in which several transcoded
versions of a given video are stored to serve different types
of devices. However, this approach requires massive storage

• Xiangbo Li is with Brightcove Inc. E-mail: xli@brightcove.com
• Magdy Bayoumi, and Nian-Feng Tzeng are with the Center for Advanced

Computer Studies, University of Louisiana at Lafayette, LA 70503, USA.
E-mail: {mab, tzeng}@cacs.louisiana.edu

• Mohsen Amini Salehi is with the HPCC lab., School of Computing and
Informatics, University of Louisiana at Lafayette, LA 70503, USA.
E-mail: amini@louisiana.edu

• Rajkumar Buyya is with the Department of Computing and Information
Systems, The University of Melbourne, Melbourne, VIC 3010, Australia.
E-mail: rbuyya@unimelb.edu.au

1. https://www.youtube.com
2. https://www.netflix.com
3. https://livestreams.com

and processing resources. In addition, recent studies (e.g.,
[5]) reveal that the access pattern to video streams follows
a long tail distribution. That is, there is a small percentage of
videos that are accessed frequently while the majority of them
are accessed very infrequently. Therefore, with the explosive
demand for video streaming and the large diversity of viewing
devices, the pre-transcoding approach is inefficient.

In this research, we propose to transcode the infrequently
accessed video streams in an on-demand (i.e., lazy) manner
using computing services offered by cloud providers.

The challenge for on-demand video transcoding is how to
utilize cloud services to maintain a robust Quality of Service
(QoS) for viewers, while incurring the minimum cost to the
Streaming Service Provider (SSP).

Video stream viewers have unique QoS demands. In partic-
ular, they need to receive video streams without any delay.
Such delay may occur either during streaming, due to an
incomplete transcoding task by its presentation time, or at
the beginning of a video stream. In this paper, we refer to
the former delay as missing presentation deadline and the
latter as the startup delay for a video stream. Previous studies
(e.g., [5]) confirm that viewers mostly do not watch video
streams to the end. However, they rank the quality of a stream
provider based on the video stream’s startup delay. Another
reason for the importance of the startup delay is the fact
that once the beginning part of a stream is processed and
buffered, the provider has more time to process the rest of the
video stream. Therefore, to maximize viewers’ satisfaction, we
define viewers’ QoS demand as: minimizing the startup delay
and the presentation deadline violations.

To minimize the network delay, transcoded streams are
commonly delivered to viewers through Content Delivery
Networks (CDNs) [6]. It is worth noting that, this research
is not about the CDN technology. Instead, it concentrates

2

on the computational and cost aspects of on-demand video
transcoding using cloud services.

The goal of SSPs is to spend the minimum for renting
cloud services, while maintaining a robust QoS for viewers. To
satisfy this goal, in our earlier work [7], we investigated using
homogeneous cloud Virtual Machines (VMs). One extension,
we propose in this work, is to consider the fact that cloud
providers offer heterogeneous types of VMs. For instance,
Amazon EC2 provides General Purpose, CPU-Optimized,
GPU-Optimized, Memory-Optimized, Storage-Optimized, and
Dense-Storage VMs4 with costs varying significantly. More-
over, the execution time of different transcoding operations
varies on different VM types. That is, different transcoding
operations have different affinities with different VM types.
The challenge is how to construct a heterogeneous cluster
of VMs to minimize the incurred cost of SSPs while the
QoS demands of viewers are respected? More importantly, the
heterogeneous VM cluster should be self-configurable. That is,
based on the arriving transcoding tasks, the number and the
type of VMs within the cluster should be dynamically altered
to maximize the affinity with VMs and reduce the incurred
cost.

Based on aforementioned definitions, the specific research
questions we address in this article are:

• How can SSPs satisfy the QoS demands of viewers by
minimizing both the video streaming startup delay and
presentation deadline violations?

• How can SSPs minimize their incurred costs through
utilizing a self-configurable heterogeneous VM cluster
while maintaining a robust QoS for the viewers?

Previous works (e.g., [8], [9]) either did not consider
on-demand transcoding of video streams or disregarded the
specific QoS demands. Therefore, to answer these research
questions, we propose the Cloud-based Video Streaming
Service (CVS2) architecture that enables on-demand video
transcoding using cloud services. The architecture includes a
scheduling component that maps transcoding tasks to cloud
VMs with the goal of satisfying viewers’ QoS demands. It
also includes a VM Provisioner component that minimizes
the incurred cost of the SSP through constructing a self-
configurable heterogeneous VM cluster, while maintaining
robust QoS for viewers.

In summary, the key contributions of this paper are as
follows:

• Proposing the CVS2 architecture that enables on-demand
transcoding of video streams.

• Developing a QoS-aware scheduling component within
the CVS2 architecture to map the transcoding tasks to a
heterogeneous VM cluster with respect to the viewers’
QoS demands.

• Developing a VM Provisioner component within the
CVS2 architecture that forms a self-configurable hetero-
geneous VM cluster to minimize the incurred cost to the
SSPs while maintaining a robust QoS for viewers.

• Analyzing the behavior of the CVS2 architecture from
the QoS, robustness, and cost perspectives under various
workload intensities.

The rest of the paper is organized as follows. Section 2
provides a background on video streaming and transcoding.
In Section 3, we present the CVS2 architecture. The schedul-
ing and the VM provisioning policies will be discussed in

4. https://aws.amazon.com/ec2/instance-types

Sections 4 and 5, respectively. In Section 6, we perform
performance evaluations. Section 7 discusses related works in
the literature, and finally Section 8 concludes the paper and
provides avenues of future work.

2 BACKGROUND
2.1 Definition of Robustness
Robustness is defined as the degree to which a system can
function correctly in the presence of uncertain parameters in
the system [10].

In a system for on-demand transcoding, the arrival pattern
of the streaming requests is uncertain, which can significantly
harm QoS and viewer satisfaction [11]. Ideally, the system
has to be robust against uncertainty in the arrival pattern of
the streaming requests. That is, the system has to satisfy a
certain level of QoS, even in the presence of uncertain arrival
of streaming requests.

2.2 Video Stream Structure
A Video stream, as shown in Figure 1, consists of several
sequences. Each sequence is further divided into multiple
Group Of Pictures (GOPs) with sequence header information
at the beginning. Each GOP essentially comprises a sequence
of frames beginning with an I (intra) frame, followed by a
number of P (predicted) frames or B (bi-directional predicted)
frames. Each frame of a GOP contains several slices that
consist of a number of macroblocks (MB) which is used
for video encoding and decoding. In practice, video streams
are commonly split into GOP tasks (simply termed GOPs
in the paper) for processing that can be transcoded indepen-
dently [12].

Fig. 1. The structure of a video stream. It consists of sev-
eral sequences. Each sequence includes multiple GOPs.
Each frame of a GOP contains several MacroBlocks.

2.3 Video Transcoding
A video initially is captured with a particular format, spatial
resolution, frame rate, and bit rate. Then, the video is uploaded
to a streaming server where it is adjusted based on the
viewer’s device resolution, frame rate, and video codec. These
conversions are generally termed video transcoding [3], [4]
operations and are explained as follows:

3

Bit Rate Adjustment. To produce a high quality video
contents, the video is encoded with high bit rate. However,
a higher bit rate also requires larger network bandwidth for
video stream transmission. SSPs usually need to transcode the
video stream to adjust the bit rate based on available viewer
bandwidth [13].
Spatial Resolution Reduction. Spatial resolution indicates
the encoded dimensional size of a video. However, the di-
mensional size does not necessarily match the screen size of
the viewer’s device. To avoid losing contents, macroblocks
of an original video have to be removed or combined (i.e.,
downscaled) to produce a lower spatial resolution video [14].
Temporal Resolution Reduction. Temporal resolution reduc-
tion happens when the viewer’s device only supports a lower
frame rate, and hence, some frames have to be dropped. Due
to dependency between frames, dropping frames can invalidate
motion vectors (MV) for the incoming frames. Temporal
resolution reduction can be achieved using methods explained
in [15].
Compression Standard (Codec) Conversion. Video com-
pression standards vary from MPEG2 to H.264, and to the
most recent one, HEVC. MPEG2 is widely used for DVD
and video broadcasting, while HD or Blu-ray videos are
mostly encoded with H.264. HEVC is the latest and most
efficient compression standard. Viewer devices usually support
a specific codec. Thus, video streams need to be transcoded
from the original codec to the one supported by the viewer’s
device [16].

2.4 Video Transcoding Using Heterogeneous VMs
Cloud providers usually offer numerous VM types. For in-
stance, Amazon EC2 currently provides more than 40 VM
types. These VM types are heterogeneous both in terms of
their underlying hardware architectures and prices. In Ama-
zon EC2, VMs are categorized in 6 groups based on their
architectural configurations. In particular, these groups are:
General-Purpose, CPU-Optimized, Memory-Optimized, GPU-
Optimized, Storage-Optimized, and Dense-Storage.

Our initial evaluations on transcoding the codec of a set of
benchmark videos5: https://goo.gl/B6T5aj (explained in Sec-
tion 6.1) demonstrated that transcoding GOPs have different
execution times on various VM types. In particular, we exe-
cuted GOPs on four VM types, and their performance results
are shown in Figure 26. We did not consider any of the Storage
Optimized and Dense Storage VM types in our evaluations as
we observed that IO and storage are not influential factors
for transcoding tasks. Due to huge diversity, we selected
one VM instance that represents the characteristics within
each category. More specifically, for GPU instance, CPU-
Optimized, Memory-Optimized, and General-Purpose types
we chose g2.2xlarge, c4.xlarge, r3.xlarge, and
m4.large, respectively. The cost of the chosen instance
types are illustrated in Table 1.

The vertical axis of Figure 2 shows the transcoding time
(i.e., execution time) for different GOPs of a given video
stream. According to the figure, in general, GPU instances
provide a lower execution time than other VM instance types.
However, for some of the GOPs, the performance difference

5. the workload trace of the benchmark videos are available from
6. Figure 2 shows the result for one of the benchmark videos. We used big

buck bunny 720p in the benchmark for this experiment. However, results for
other experiments confirm the same observations.

of GPU with other VM instances is negligible, while its cost
is remarkably higher (see Table 1). The experiment indicates
that an SSP can utilize heterogeneous VM types to minimize
its incurred cost while satisfying viewers’ QoS demands.

TABLE 1
Cost of different VM types in Amazon EC2

VM Type
GPU

(g2.xlarge)
CPU Opt.

(c4.xlarge)
Mem. Opt.

(r3.xlarge)
General

(m4.large)
Hourly Cost ($) 0.65 0.20 0.33 0.15

Fig. 2. Transcoding time (in seconds) of GOPs using dif-
ferent VM types. The horizontal axis shows the sequential
order of GOP numbers in a video stream.

3 CVS2: CLOUD-BASED VIDEO STREAMING
SERVICE ARCHITECTURE
3.1 Overview
The CVS2 architecture aims to deal with a received request for
streaming a video format that is not available in the repository
(i.e., it is not pre-transcoded). An overview of the architecture
is presented in Figure 3. It shows the sequence of actions taken
place to transcode a video stream in an on-demand manner.
The dashed lines in this figure will be investigated in our future
studies.

CVS2 architecture includes eight main components, namely
Video Splitter, Admission Control, Time Estimator, Task (i.e.,
GOP) Scheduler, Heterogeneous Transcoding VMs, VM Pro-
visioner, Video Merger, and Caching. These components are
explained in the next few subsections.

3.2 Video Splitter
The Video Splitter splits the video stream into several GOPs
that can be transcoded independently. Each generated GOP is
identified uniquely in form of G

ij

, where i is the video stream
id and j is the GOP number within the video stream.

Each GOP is treated as a task with an individual deadline.
The deadline of a GOP is the presentation time of the first
frame in that GOP. In the case of VOD, if a GOP misses its
deadline, it still has to complete its transcoding. We have made
the source code for Video Splitter publicly7 available.

7. The source code for GOP task generation is available here:https://github.
com/lxb200709/videotranscoding gop

https://goo.gl/B6T5aj
https://github.com/lxb200709/videotranscoding_gop
https://github.com/lxb200709/videotranscoding_gop

4

Fig. 3. An overview of the Cloud-based Video Streaming
Service (CVS2) architecture.

3.3 Admission Control
The Admission Control component includes policies that reg-
ulate GOP dispatching to the scheduling queue. In fact, the
Video Splitter generates GOPs for all requested video streams.
Then, the admission control policies determine the priority
(i.e., urgency) of the GOPs and dispatches them accordingly
to the scheduling queue. The admission control policies act
based on the inputs it receives from Video Splitter and Video
Merger.

The way Admission Control prioritizes a GOP is based-on
the GOP sequence number in a video stream. Details of how
to prioritize GOP tasks is explained in Section 4.2

3.4 Transcoding Virtual Machines (VMs)
VMs are allocated from the cloud provider to transcode GOP
tasks. As discussed in Section 2.4, cloud providers offer VMs
with diverse architectural configurations. Although GOPs can
be processed on all VM types, their execution times vary. In
fact, the execution time of a GOP on a particular VM type
can depend on factors such as the size of data it processes or
the type of transcoding operations it performs.

Each VM is assigned a local queue where the required data
for GOPs are preloaded before execution. The scheduler maps
GOPs to VMs until the local queue gets full.

3.5 Execution Time Estimator
The role of the Time Estimator component is to estimate the
execution time of GOP tasks. Such estimation of execution
times helps the Scheduler and VM Provisioner components to
function efficiently.

In VOD streaming, a video usually has been streamed
multiple times. Therefore, the transcoding execution time

for each G
ij

can be estimated from the historic execution
information of G

ij

[17].
As we consider the case of heterogeneous transcoding

VMs, each GOP has a different execution time on each
VM type. Therefore, the Time Estimator stores the execution
time estimations within Estimated Time to Completion (ETC)
matrices [10]. An entry of the ETC matrix expresses the
execution time of a given GOP G

ij

on a given VM type m.
We note that, even in transcoding the same GOP G

ij

on the
same type of VM, there is some randomness (i.e., uncertainty)
in the transcoding execution time. That is, the same VM
type does not necessarily provide identical performance for
executing the same GOP at different times [18]. This variance
is attributed to the fact that the same VM type can be
potentially allocated on different physical machines on the
cloud. It can also be attributed to other neighboring VMs
that coexist with the VM on the same physical host in the
cloud datacenter. For instance, if the neighboring VMs have
a lot of memory access, then, there will be a contention to
access the memory and the performance of the VM will be
different from the situation that there is no such a neighboring
VM. Therefore, to capture randomness that exists in the GOP
execution time, the mean execution time and its standard
deviation of the historic execution time for G

ij

is stored in
the corresponding entry of the ETC matrix.

3.6 Transcoding (GOP) Task Scheduler
The GOP task scheduler (briefly called transcoding scheduler)
is responsible for mapping GOPs to a set of heterogeneous
VMs. Considering the heterogeneity in performance and cost
of different VM types, the scheduler’s goal is to map GOP
tasks to VMs with the minimum incurred cost while satisfying
the QoS demands of the viewers.

GOPs of different video streams are interleaved within the
scheduling queue. In addition, the scheduler has no prior
knowledge about the arrival pattern of the GOPs to the system.
Details of the scheduling method are presented in Section 4.

3.7 VM Provisioner
The VM Provisioner component monitors the operation of
transcoding VMs in the CVS2 architecture and dynamically
reconfigures the VM cluster with two goals: (A) minimizing
the incurred cost to the stream provider; (B) maintaining a
robust QoS for viewers. For that purpose, the VM Provisioner
includes provisioning policies that are in charge of allocating
and deallocating VM(s) from the cloud based on the streaming
demand type and rate.

VM provisioning policies generally have to determine when
and how many VMs need to be provisioned (known as
elasticity [7]). For a heterogeneous VM cluster, the policy also
has to determine which type of VM needs to be provisioned.

The VM provisioning policies are executed periodically and
also in an event-based fashion to verify whether or not the
allocated VMs are sufficient to meet the QoS demands. Once
the provisioning policy updates the set of allocated VMs, it
informs the scheduler about the latest configuration of the VM
cluster. Details of the VM provisioning policies are discussed
in Section 5.

3.8 Video Merger
GOPs are transcoded on different VMs independently. Thus,
latter GOPs in a video stream may be completed before the

5

earlier ones in a stream. The role of Video Merger is to
rebuild the sequence of GOPs in the right order. To build the
transcoded stream, Video Merger maintains an output window
for each video stream.

Video Merger is in contact with the Admission Control
component. In the event that a GOP is delayed (e.g., due
to failure) the Video Merger asks the Admission Control
for resubmission of the GOP. Upon receiving a resubmission
request, Admission Control fetches the requested GOP from
Splitter and resubmits it to the Scheduler with a high priority.

Video Merger requests for resubmission of a GOP after a
certain time elapsed and it does not need to search for the
missed GOP to see if it has failed or not.

3.9 Caching
To avoid redundant transcoding of the trending videos, the
CVS2 architecture provides a caching policy to decide whether
a transcoded video should be stored or not. If the video is
barely requested by viewers, there is no need to store (i.e.,
cache) the transcoded version. Such videos are transcoded in
an on-demand manner upon viewers’ request. We will explore
more details of the caching policy in a future research.

Considering the proposed architecture, in the next two
sections, we elaborate on the methods developed for the
Transcoding Task Scheduler and VM Provisioner components.

4 QOS-AWARE TRANSCODING (GOP) TASK
SCHEDULER
4.1 Overview
Details of the GOP task scheduler are shown in Figure 4.
According to the scheduler, GOPs of the requested video
streams are batched in a queue upon arrival to be mapped to
VMs by the scheduling method. To avoid any execution delay,
the required data for GOPs are fetched in the local queue
of the VMs, before the GOP transcoding started. Previous
studies [10] show that the local queue size should be short.
Accordingly, we consider the local queue size to be 2 in all
VMs. We assume that the GOP tasks in the local queue are
scheduled in the first come first serve (FCFS) fashion. Once a
free slot appears in a VM local queue, the scheduling method
is notified to map a GOP task from those in the batch queue
to the free slot. We assume that GOP scheduling is non-
preemptive and non-multi-tasking.

Fig. 4. QoS-aware transcoding scheduler that functions
based on the utility value of the GOPs.

Recall that the scheduler goal is to satisfy the QoS demands
of viewers by minimizing the average deadline miss rate and
the average startup delay of the video streams. The scheduling
method maps the GOP tasks to a heterogeneous cluster of

VMs where GOPs have different execution times on different
VM types. In such a system, optimal mapping of GOP
tasks to heterogeneous VMs is an NP-complete problem [19].
Thus, development of mapping heuristics to find near-optimal
solutions forms a large body of research [10], [20].

In the rest of this section, we explain the details of how the
scheduling component within the CVS2 architecture satisfies
the QoS demands. Also, for further clarity, all the symbols
used in this paper are listed in Table 2, in Appendix A Section.

4.2 Utility-based GOP Task Prioritization
One approach to minimize the average startup delay of video
streams is to consider a separate dedicated queue for the
startup GOPs of the streams [7]. Such a queue can only
prioritize a constant number of GOPs at the beginning of the
streams, with the rest of the GOPs treated as normal priority.
In practice, however, the priority of GOPs should be decreased
gradually as the video stream moves forward.

To implement the gradual prioritization of GOPs in a video
stream, we define a utility function that operates on a video
stream and assigns utility values to each GOP. Equation (1)
shows the utility function the admission control policy uses
for assigning utility values. In Equation (1), c is a constant
and i is the order number of GOP in the video stream. The
value of c determines the slope of the utility function curve.
That means, using this parameter we can adjust the importance
of the startup GOPs in a video stream. Higher values for c
create a sharp slope in the curve that implies prioritizing few
GOPs in the beginning of the video stream with a high utility
value and low utility values for the rest of GOPs in the video
stream. Our initial experiments showed that c = 0.1 provides
a reasonable slope in Equation (1).That is, it assigns a high
utility value to the GOPs in the beginning of the stream and
then the utility value gradually decreases for GOPs positioned
later in the stream.

U
i

= (
1

e
)c·i (1)

The utility values assigned to a given video stream are
depicted in Figure 5. In this figure, the horizontal axis is the
GOP number and the vertical axis is the utility value. As we
can see, the utility function assigns higher utility values (i.e.,
higher priority) to earlier GOPs in the stream. The utility value
drops for the latter GOPs in the stream.

We would like to note that, although we used Equation (1)
to assign utility values to GOP tasks, our proposed method is
general and its operation is not dependent on this particular
utility function. In fact, our proposed methods can operate
under any utility function as long as it assures that the first
part of the video is prioritized more than the rest of it.

4.3 Estimating Task Completion Time on Heteroge-
neous VMs
For each GOP j from video stream i, denoted G

ij

, the arrival
time and the deadline (denoted �

ij

) are available. It is worth
noting that the GOP deadline is relative to the beginning of
the video stream. Therefore, to obtain the absolute deadline
for G

ij

(denoted �
ij

) the relative deadline must be added to
the presentation start time of the video stream (denoted

i

).
That is, �

ij

= �
ij

+
i

.
Recall that the estimated execution time for G

ij

on VM type
m is available through the ETC matrix (see Subsection 3.5). To

6

Fig. 5. Utility values of different GOP tasks to indicate
their processing priority within a video stream.

capture randomness in the estimated execution time of GOPs,
let ⌧m

ij

be the worst-case transcoding time estimation. That is,
in the scheduling, we consider ⌧m

ij

as the sum of mean historic
execution times of G

ij

and its standard deviation on VM
m

.
Our scheduling method also needs to estimate the tasks’

completion times to be able to efficiently map them to VMs.
To estimate the completion time of an arriving GOP task G

n

on VM
m

, we add up the estimated remaining execution time
of the currently executing GOP in VM

m

with the estimated
execution time of all tasks ahead of G

n

in the local queue of
VM

m

. Finally, we add the estimated execution time of G
n

(i.e., ⌧m
n

). Recall that each GOP task has a different execution
time on different VM types that can be obtained from the
ETC matrix (see Section 3.5). Let t

r

denote the remaining
estimated execution time of the currently executing task on
VM

m

, and let t
c

be the current time. Then, we can estimate
the task completion time of G

n

on VM
m

(denoted 'm

n

) as
follows:

'm

n

= t
c

+ t
r

+
NX

p=1

⌧m
p

+ ⌧m
n

(2)

where ⌧m
p

denotes the worst case estimated execution time
of any task waiting ahead of G

n

in local queue of VM
m

and
N is the number of waiting tasks in local queue of VM

m

.

4.4 Mapping Heuristics
Mapping heuristics are responsible to map tasks from the batch
queue to machine queues (see Figure 4).Regardless of their
implementation details, mapping heuristics for heterogeneous
computing systems have a general mechanism that operates in
two main phases [21]. In Phase 1, for all tasks in the batch
queue, the machine (i.e., VM) that provides the minimum
expected completion time is determined. The output of this
phase can be considered as pairs of tasks with the machines
that provide the minimum expected completion time for them.
Then, in Phase 2, from the set of task-machine pairs identified
in Phase 1, the mapping heuristic selects the pair that maxi-
mizes its performance objective. This process is repeated until
either all tasks in the batch queue are assigned or there is no
free slot left in machine queues.

Based on the explained mechanism, MinCompletion-
MinCompletion (MM) [22]–[25], MinCompletion-
SoonestDeadline (MSD) [10], [26], and MinCompletion-
MaxUrgency (MMU) [10], [26] mapping heuristics are
defined as follows:

MinCompletion-MinCompletion (MM): In Phase 1, the
heuristic finds the machine (i.e., VM) that provides the mini-
mum expected completion time for the GOP task. In Phase 2,
the heuristic selects the pair that has the minimum completion
time from all the task-machine pairs generated in the Phase 1.
Once the selected task is mapped to the selected machine, it
is removed from the batch queue.
MinCompletion-SoonestDeadline (MSD) In Phase 1, for
each task in the batch queue, the heuristic finds the VM that
provides the minimum expected completion time. In Phase 2,
from the list of task-machine pairs found in the Phase 1, MSD
assigns the task that has the soonest deadline.
MinCompletion-MaxUrgency (MMU): In Phase 1 of MMU,
for each task in the batch queue, the heuristic finds the VM
that provides the minimum expected completion time. In Phase
2, from the list of task-machine pairs found in the Phase 1,
MMU assigns the task whose task urgency is the greatest (i.e.,
has the shortest slack).

Although these mapping heuristics are extensively em-
ployed in heterogeneous computing systems, none of them
consider the task precedence based on the utility value as
discussed in Section 4.2.

4.4.1 Utility-Based Mapping Heuristics
Recall that each GOP is assigned a utility value that shows
its precedence. Therefore, in the first phase of our proposed
scheduling method, as shown in Figure 6, the GOPs with the
highest utility values are selected and put into a virtual queue.
The rest of the scheduling method is applied on the virtual
queue rather than the whole batch queue. Given the large
number of GOPs in the batch queue, making use of the virtual
queue reduces the scheduling overhead.

Fig. 6. Virtual Queue to hold GOPs with the highest
utility values from different video streams. GOPs in Virtual
Queue are ready for mapping to VMs.

In the second phase, similar to the heuristics introduced
in Subsection 4.4, task-VM pairs are formed based on the
VM that provides the minimum expected completion time for
each GOP in the priority queue. Then, in the third phase,
the mapping decision is made by combining a performance
objective (e.g., SoonestDeadline) and the utility values of the
GOP tasks. For combining, we prioritize the GOP with the
highest utility value from the pairings of a VM, if and only if
it does not violate the deadline of the task selected based on
the performance objective.

To clarify further, we explain the third phase using an exam-
ple. Let GOP tasks G

a

and G
b

denote pairs for VM
m

. Also, let
SoonestDeadline be the performance objective. Assume that
G

a

has a sooner deadline, whereas G
b

has a higher utility
value. In this case, G

b

can be assigned to VM
m

, if and only if
it does not violate the deadline of G

a

. To assure that assigning
G

b

does not cause a violation of the deadline of G
a

, we

7

assume that G
b

has already been assigned to VM
m

and run
the mapping heuristic again to see if G

a

can still meet its
deadline or not.

Based on the way the third phase of our proposed mapping
heuristic functions, we can have 3 variations, namely Utility-
based MinCompletion-MinCompletion (MMUT), Utility-
based MinCompletion-SoonestDeadline (MSDUT), and
Utility-based MinCompletion-MaximumUrgency (MMUUT).

5 SELF-CONFIGURABLE HETEROGENEOUS
VM PROVISIONER
5.1 Overview
The goal of the VM Provisioner component is to maintain
a robust QoS while minimizing the incurred cost to the
stream provider. To that end, the component includes VM
provisioning policies that make decisions for allocating and
deallocating VMs from cloud.

To achieve the QoS robustness, the SSP needs to define
the acceptable QoS boundaries. Therefore, the SSP provides
an upper bound threshold for the deadline miss rate of GOPs
that can be tolerated, denoted �. Similarly, it provides a lower
bound threshold for the deadline miss rate, denoted ↵, that
enables the provisioning policies to reduce the incurred cost
of the stream provider through deallocating VM(s).

The strategy of the VM provisioning to maintain QoS
robustness is to manage the VM allocation/deallocation so that
the deadline miss rate at any given time t, denoted �

t

, remains
between ↵ and �. That is, at any given time t, we should have
↵ �

t

 �.
The VM Provisioner component follows the scale up early

and scale down slowly principle. That is, VM(s) are allocated
from the cloud as soon as a provisioning decision is made.
However, as the stream provider has already paid for the
current charging cycle of the allocated VMs, the deallocation
decisions are not practiced until the end of the current charging
cycle.

In general, any cloud-based VM provisioning policy needs
to deal with two main questions:

1) When to provision VMs?
2) How many VMs to provision?

The self-configurable VM provisioning, however, introduces a
third question to the VM provisioning policies:

3) What type of VM(s) to provision?
In the next subsections, we first provide a method to

determine the suitability of VM types for GOP tasks, then we
introduce two provisioning policies, namely periodic and re-
medial, that work together to answer the three aforementioned
questions.

5.2 Identifying Suitability of VM Types for GOP
Tasks
Recall that each GOP task has different execution times on
different VM types (see Section 2). In general, GPU provides
a shorter execution time compared with other VM types.
However, for some GOPs, the execution time on GPU is
close to other VM types while its cost is significantly higher
(see Table 1). Therefore, we need a measure to determine the
suitability of a VM type for a GOP based on the two factors.

For a given GOP task, we define suitability, denoted S
i

,
as a measure to quantify the appropriateness of a VM type i

for executing the GOP task both in terms of performance and
cost. We calculate the suitability measure for a task based on
Equation (3). The measure establishes a trade-off between the
performance (T

i

) and the cost (C
i

) for a given GOP on VM
type i.

S
i

= k · T
i

+ (1� k) · C
i

(3)

The value of k, in Equation (3), is determined by the CVS2
user (i.e., video stream provider) and represents her preference
between performance and cost of VM type i. The value of T

i

is defined based on Equation (4).

T
i

=
t
max

� t
i

t
max

� t
min

(4)

where t
i

is the GOP execution time on VM type i (obtained
from the ETC matrix). Also, t

max

and t
min

are the max-
imum and minimum GOP execution times across all VM
types, respectively. Nominator of this equation determines the
execution time improvement provided by VM type i for the
GOP. Denominator of this equation ensures that the value of
T
i

remains in [0,1] space.
In Equation (3), the value of C

i

is determined according to
Equation (5).

C
i

=
c
max

� c
i

c
max

� c
min

(5)

where c
i

is the cost of transcoding the same GOP on VM type
i. Also, c

max

and c
min

are the maximum and minimum GOP
transcoding costs across all VMs, respectively. The rationale
of Equation (5) is similar to that of Equation (4). Nominator
of the equation determines the cost improvement resulted from
VM type i to transcode the GOP and denominator ensures the
value of C

i

remains in [0,1].
Based on Equation (3), for a given GOP task, we define

the GOP type based on the type of VM that provides the
highest suitability value. Later, the VM provisioning policies
will utilize the concept of GOP type in their provisioning
decisions.

5.3 Periodic VM Provisioning Policy
This VM provisioning policy occurs periodically (we term it
provisioning event) to make VM allocation or deallocation
decisions. The policy includes two methods, namely Allocation
and Deallocation.

5.3.1 Allocation Method
Algorithm 1 provides a pseudo-code for the VM allocation
method. The method is triggered when the deadline miss rate
(�

t

) goes beyond the upper bound threshold � (line 2 in
the Algorithm). The value of � is determined by the video
streaming service provider (i.e., CVS2 user) and represents
how much the provider can tolerate QoS violation in favor of
cost-efficiency.

To determine what type of VM(s) to be allocated, we
need to understand the demand for different VM types. Such
demand can be understood from the concept of GOP type,
introduced in Subsection 5.2. In fact, the number of GOP
tasks from different types can guide us to the types of VMs
that are required. More specifically, we can identify the type
of required VMs based on two factors: (A) the proportion of
deadline miss rate for each GOP type, denoted �

i

, and (B)
the proportion of GOPs of each type waiting for execution in

8

Algorithm 1 Pseudo-code for the VM Allocation Method
Input:

�: upper bound threshold for deadline miss rate
r: streaming request arrival rate

Output:
n: list of number of VMs of each type to be allocated.

1: �
t

 current deadline miss rate
2: if �

t

� � then
3: for each VM type i do
4: �

i

 deadline miss rate for each GOP type i
5: �

i

 ratio of each GOP type i in the batch queue
6: Calculate the demand (!

i

) for each VM type i
7: ⇢

i

 minimum utilization in VMs of type i
8: if !

i

� !
th

and ⇢
i

� ⇢
th

then
9: n

i

 b r·!i
�

c
10: Allocate n

i

VM type i
11: end if
12: end for
13: end if

the batch queue, denoted �
i

. In fact, factor (A) indicates the
current QoS violation status of the system, whereas factor (B)
indicates the QoS violation status of the system in the near
future.

Based on these factors, we define the demand for each VM
type i, denoted !

i

, according to Equation (6). The constant
factor 0 k 1, in this equation, determines the weight
assigned to the current deadline miss rate status and to the
future status of the system.

For implementation, we experimentally realized that the
value of k should be determined in a way that GOPs waiting in
the batch queue (i.e., �

i

) are assigned a higher weight, rather
than the current QoS violation of each GOP type (i.e., �

i

).
The reason is that, the GOP tasks in the batch queue represent
the QoS violation the system will encounter in a near future
which is more important than the QoS violation the system
currently is encountering. Hence, we considered k = 0.3 (thus,
1� k = 0.7) in Equation (6). Based on this justification, we
believe that in a system with a different workload scenario
than those we considered in our evaluations, the value of k
should remain the same.

!
i

= k · �
i

+ (1� k) · �
i

(6)

If the demand for VM type i is greater than the allocation
threshold (!

th

in line 8), and also the utilization of correspond-
ing VM type (⇢

i

) is greater than the utilization threshold (⇢
th

),
then the policy decides to allocate from VM type i.

Once we determine the type of VMs that needs to be
allocated, the last question to be answered is how many VMs
of each type to be allocated (lines 8 - 11 in the Algorithm).
The number of allocations of each VM type depends on how
far is the deadline miss rate of GOP type i is from �. For that
purpose, we use the ratio of !

i

/� to determine the number of
VM(s) of type i that has to be allocated (line 9). The number
of VM(s) allocated also depends on the arrival rate of GOP
tasks to the system. Therefore, the GOP arrival rate, denoted
r, is also considered in line 9 of Algorithm 1.

5.3.2 Deallocation Method
The VM deallocation method functions are based on the lower
bound threshold (↵). That is, it is triggered when the deadline
miss rate (�

t

) is less than ↵. Once the deallocation method is
executed, it terminates at most one VM. The reason is that, if
the VM deallocation decision is practiced aggressively, it can
cause loss of processing power and results in QoS violation in
the system. Therefore, the only question in this part is which
VM should be deallocated.

In the first glance, it seems that the deallocation method
can simply choose the VM with the lowest utilization for
deallocation. However, this is not the case when we are
dealing with a heterogeneous VM cluster. The utilizations
of the VMs are subject to the degree of heterogeneity in
the VM cluster. For instance, when the VM cluster is in a
mostly homogeneous configuration, the task scheduler has no
tendency to a particular VM type. This causes all VMs in the
cluster to have a similar and high utilization. Hence, if the
deallocation method functions just based on the utilization, it
cannot terminate VM(s) in a homogeneous cluster, even if the
deadline miss rate is low.

The challenge is how to identify the degree of heterogeneity
in a VM cluster. To cope with this challenge, we need to
quantify the VM cluster heterogeneity. Then, we can apply
the appropriate deallocation method accordingly.

We define degree of heterogeneity, denoted ⌘, as a quantity
that explains the VM diversity (i.e., heterogeneity) that exists
within the current configuration of the VM cluster. We utilize
the Shannon Wiener equitability [27] function to quantify the
degree of heterogeneity within our VM cluster. The function
works based on the Shannon Wiener Diversity Index that is
represented in Equation (7).

H = �
NX

i=1

p
i

· ln p
i

(7)

where, N is the number of VM types, p
i

is the ratio of
VM type i of the total number of VMs. Then, the degree
of heterogeneity is defined as follows:

⌘ = H/H
max

(8)

Higher values of ⌘ indicates a higher degree of heterogene-
ity in a cluster and vice versa. Once we know the degree of
heterogeneity in a VM cluster, we can build the deallocation
method accordingly. Algorithm 2 provides the pseudo-code
proposed for the VM deallocation method. The method is
triggered when the deadline miss rate (�

t

) becomes less than
the lower bound threshold ↵, which is defined by the CVS2
user and represents how much the system can tolerate deadline
miss rate in favor of cost-efficiency.

The deallocation method is carried out in 4 main steps. In
the first step, the VM(s) with the lowest utilization are chosen
(lines 3 — 4 in Algorithm 2). In the second step, ties are
broken by selecting the least powerful VM (line 5). If more
than one VM remains, in the third step (line 6), ties are broken
based on the VM with the minimum remaining time to its
charging cycle.

For a VM cluster that tends to a heterogeneous configuration
(i.e., ⌘ � ⌘

th

), the policy deallocates the selected VM (termed
VM

j

in the algorithm) if its utilization is less than the VM
utilization threshold (i.e., ⇢

j

< ⇢
th

). The value of ⌘
th

deter-
mines the boundary between homogeneous and heterogeneous

9

Algorithm 2 Pseudo-code for the VM Deallocation Method
Input:

↵: lower bound threshold for deadline miss rate

1: �
t

 current deadline miss rate
2: if �

t

 ↵ then
3: calculate the utilization of each VM in the cluster
4: find VM(s) with the lowest utilization
5: resolve ties by choosing the least powerful VM(s)
6: VM

j

 resolve ties by selecting the VM with the
minimum remaining time to its charging cycle

7: ⌘ calculate the degree of heterogeneity
8: if ⌘ � ⌘

th

and ⇢
j

� ⇢
th

then
9: No deallocation

10: else
11: Deallocate VM

j

12: end if
13: end if

configurations in a VM cluster. We experimentally realized
that ⌘

th

= 0.4 can discriminate homogeneous configurations
from heterogeneous ones. The value of ⇢

th

is determined by
the CVS2 user based on its cost and performance trade-off.
In contrast, in a VM cluster that tends to a homogeneous
configuration, even if the utilization is high, the policy can
deallocate VM

j

based on the deadline miss rate (lines 8 —
12).

It is worth noting that the deallocation method is also
executed at the end of the charging cycle of the current VMs
to deallocate VMs marked for deallocation. The reason for
enacting VM termination at the end of the VM charging
cycle is that the VM has already been paid for the whole
charging cycle. Therefore, there is no benefit in terminating
it before its charging cycle, even though it is recommended
for deallocation. To implement this and to assure that no GOP
task is left incomplete, the scheduler keeps track of each VM’s
remaining time to its charging cycle and the completion time
of the tasks assigned to that VM. If a VM is marked for
deallocation, before scheduler maps a new GOP task to it, the
scheduler estimates the completion time of GOPs assigned to
that VM, in addition to the completion time of the new GOP
task. If the completion times are larger than the time remains
to the VM’s charging cycle, the GOP tasks are rescheduled
on other VMs. Otherwise, the scheduler keeps sending GOP
tasks to the VM, even though it is marked for deallocation.

5.4 Remedial VM Provisioning Policy
The periodic VM provision policy cannot cover request ar-
rivals to the batch queue that occur in the interval of two
provisioning events.

To cope with the shortage of the periodic policy, we propose
a lightweight remedial provisioning policy that can improve
the overall performance of the VM Provisioner component.
By injecting this policy into the intervals of the periodic
provisioning policy, we can perform the periodic policy less
frequently.

In fact, the remedial provisioning policy provides a quick
prediction of the system based on the state of the virtual
queue. Recall that the Virtual Queue includes the distinction of
streaming requests waiting for transcoding in the batch queue.
Hence, the length of the Virtual Queue implies the intensity

of streaming requests waiting for processing. Such long batch
queue increases the chance of a QoS violation in the near
future. Thus, our lightweight remedial policy only checks the
size of the Virtual Queue (denoted Q

s

). Then, it uses Equation
(9) to decide for the number of VMs that should be allocated.

n = b Qs

✓ · � c (9)

where n is the number of VM(s) that should be allocated;
Q

s

is the size of the Virtual Queue. ✓ is a constant factor
that determines the aggressiveness of the VM allocation in
the policy. That is, lower values of ✓ leads to allocating more
VMs and vice versa. In the implementation, we considered
✓ = 10. In the remedial policy, we allocate a VM type that,
in general, provides a high performance per cost ratio (in the
experiments, we used c4.xlarge).

Experiment results indicate that the remedial provisioning
policy does not incur any extra cost to the stream service
provider. Nonetheless, it increases the robustness of the QoS
by reducing the average deadline miss rate and average startup
delay (see Section 6.5). To verify the performance of the
proposed methods, in the next section, we evaluate them in dif-
ferent configurations and under various workload conditions.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup
We used CloudSim [28], a discrete event simulator, to model
our system and evaluate performance of the scheduling meth-
ods and VM provisioning policies. To create a diversity
of video streaming requests, we uniformly selected videos
over the range of [10 , 600] seconds from a set of bench-
mark videos. We made the benchmarking videos publicly
available for reproducibility purposes8. We modeled our sys-
tem based on the characteristics and cost of VM types in
Amazon EC2. We considered g2.2xlarge, c4.xlarge,

r3.xlarge, and m4.large in our experiments. The VMs
represent the characteristics of various VM types offered by
Amazon cloud and form a heterogeneous VM cluster.

To simulate a realistic video transcoding scenario, using
FFmpeg

9, we performed four different transcoding operations
(namely codec conversion, resolution reduction, bit rate adjust-
ment, and frame rate reduction) for each of the benchmarking
videos. Then, the execution time of each transcoding operation
was obtained by executing them on the different VM types.

To capture the randomness in the execution time of GOPs on
cloud VMs, we transcoded each GOP 30 times and modeled
the transcoding execution times of GOPs based on the Normal
distribution10.

To study the performance of the system comprehensively,
we evaluated the system under various workload intensities.
For that purpose, we varied the arrival rate of the video
streaming requests from 100 to 1000 within the same period
of time. The inter-arrival times of the requested videos are
generated based on the Normal distribution, where the mean
of inter-arrival time is based on the time divided by the number
of requests and standard deviation is the mean divided by 3.
All experiments of this section were run 30 times, and the

8. The videos can be downloaded from: https://goo.gl/TE5iJ5
9. https://ffmpeg.org
10. The generated workload traces are available publicly from:

https://goo.gl/B6T5aj

10

mean and the 95% of the confidence interval of the results
are reported for each experiment. In all the experiments, we
considered the values of ↵ and � equal to 0.05 and 0.1,
respectively. That is, we consider that the SSP chose to keep
the deadline miss rate between 5% to 10%. Any deadline
miss beyond 10% is considered as a QoS violation. The QoS
boundary is shown in the form of a horizontal line in the
experiment results.

6.2 Average Completion Time of Early GOP Tasks
The goal of using utility-based mapping heuristics is to prior-
itize GOPs with high utility (i.e., earlier GOPs in the stream)
for reducing their completion time. Although this factor is
extended in next experiments through evaluating the average
startup delay. We conduct the experiment to further evaluate
how this goal is satisfied when our utility-based scheduling
methods with different mapping heuristics are applied.

In Figure 7, the horizontal axis is the GOP number of the
first 20 GOPs in the benchmark video streams and the vertical
axis is the average completion time of the GOPs in seconds.
For this experiment, we have used 1000 GOP tasks and VM
provisioning policies are in place.

Figure 7 demonstrates that, in general, the utility-based
heuristics provide a significantly lower average completion
time. Among traditional heuristics, MM performs the best.
This is because MM prioritizes the GOPs with short execution
times, which results in faster processing in the system. We also
observed that MSDUT performs better in compare with other
utility-based heuristics, specifically for GOP numbers more
than 15. This is because the dynamic VM provisioning policy
works based on the tasks deadline miss rate. Since MSDUT
favors tasks with short deadlines, many GOPs miss their
deadlines as the system becomes busy. Therefore, it allocates
more VMs that, in turn, reduces the average completion time
of the GOPs.

Fig. 7. Average completion time of early GOPs under
different scheduling methods. The horizontal axis shows
the GOP numbers in the video stream and the vertical
axis shows the average completion time of GOPs. We
used 1000 GOP tasks and the VM provisioning policies
are applied.

6.3 Impact of Utility-based Mapping Heuristics
To evaluate the impact of utility-based mapping heuristics on
QoS and cost, we compare them with the traditional mapping
heuristics in two scenarios: (1) VM provisioning performed

in the static way (Subsection 6.3.1) and (2) under the VM
provisioning policies (Subsection 6.3.2). To construct a static
heterogeneous cluster, we allocate three VMs of each type.

6.3.1 Static Heterogeneous VM Cluster
Figure 8 compares the results of utility-based mapping heuris-
tics with the traditional batch heuristics under a static het-
erogeneous VM cluster. For traditional mapping heuristics,
Figures 8(a) and 8(b) show that MM provides a significantly
lower average deadline miss rate (by up to 40%) than MSD and
MMU, in particular when the system is more oversubscribed
(i.e., overloaded). However, MSD and MMU provide a lower
average startup delay than MM. This is because both MSD
and MMU function based on the deadline and the deadline of
the startup GOPs is low since they are prioritized.

In Figure 8(e), we observe that MMUT provides a signif-
icantly better average deadline miss rate (around 50% when
there are 1000 video requests) in comparison with MSDUT
and MMUUT. More importantly, we can see, in Figure 8(d),
that MMUT provides a low and stable startup delay in
comparison with other heuristics even when the system is
oversubscribed. This is because prioritizing shorter tasks in
MMUT produces a lower average deadline miss rate which,
in return, benefits the startup GOPs to be processed.

We should note that although MMUT provides a lower
start up delay, it yields a higher deadline miss rate than the
traditional MM (see Figure 9). This is because the utility-
based mapping heuristics prioritize GOPs with higher utility
values (i.e., higher priority) to reduce the start up delay. This
causes a higher deadline miss rate particularly when we use
static resource allocation. As we will explain in the next
section, utility-based mapping heuristics, in particular MMUT,
significantly outperform traditional mapping heuristics, when
accompanied with dynamic resource provisioning.

We do not observe any major cost difference for more
intensive workloads. This is because in the static cluster, the
workload can be handled within the same time period. When
the system is oversubscribed, there is a minor increase in cost,
as seen in Figure 8(c) and Figure 8(f). This is because it takes
a longer time to finish the processing of the tasks in those
cases.

6.3.2 Dynamic Heterogeneous VM Cluster
Figure 9(c) demonstrates that, regardless of the mapping
heuristic, the dynamic VM provisioning policy significantly
reduces the incurred cost (up to 80% when the system is not
oversubscribed) in comparison to the static heterogeneous VM
cluster. The incurred cost increases as the VM provisioning
policy needs to allocate additional VMs to maintain QoS
robustness for more video streaming requests.

In Figure 9(a), we can observe that the average startup
delay increases for traditional mapping heuristics. However,
it is more stable in comparison with Figure 8(a) with static
heterogeneous VMs. This is because the VM provisioning
policy adapts the VM provisioning to the workload intensity
to meet the QoS demands of the stream viewers.

Figures 9(d), 9(e), and 9(f) demonstrate the robustness
resulted from applying the utility-based mapping heuristics
together with the VM provisioning policies. That is, with
the increase of the workload, the system all together pro-
duces a low and stable average startup delay and average
deadline miss rate without incurring extra cost to the stream

11

(a) Startup delay under traditional heuristics (b) Deadline miss rate under traditional heuristics (c) Cost under traditional heuristics

(d) Startup delay under utility-based heuristics (e) Deadline miss rate under utility-based heuris-
tics

(f) Cost under utility-based heuristics

Fig. 8. The results under utility-based mapping heuristics against those under traditional mapping heuristics when the
number of video requests varies. Subfigures (a), (b), and (c), respectively, show the average startup delay, deadline
miss rate, and the incurred cost under traditional mapping heuristics, while (d), (e), and (f) show the same factors
under utility-based mapping heuristics are applied. The horizontal dashed line denotes the acceptable QoS boundary
(�).

provider. In particular, we observe the average deadline miss
rates of MMUUT and MSDUT have dramatically decreased.
Normally, MMUUT and MSDUT lead to higher average
deadline miss rates than MMUT. However, with the dynamic
VM provisioning policies, the high deadline miss rates of
MMUUT and MSDUT trigger the VM provisioning policies
to allocate more VMs that, in turn, reduce the deadline miss
rate. Nonetheless, the deadline miss rate of MMUT is not
sufficiently high enough to trigger the allocation method.

Further evaluations and comparisons against previous works
are discussed in Appendix B.

6.3.3 Discussion
We can summarize our findings about the proposed mapping
heuristics (discussed in Subsections 6.3.1 and 6.3.2) as fol-
lows:

1) In both static and dynamic heterogeneous VM provi-
sioning: MMUT provides the lowest and the most stable
average startup delay in compare with all other mapping
heuristics.

2) In both static and dynamic heterogeneous VM provi-
sioning: The three proposed mapping heuristics incur
approximately the same cost to the stream provider.

3) In static heterogeneous VM provisioning: MMUT results
in a lower average deadline miss rate, in compare with
MMUUT and MSDUT.

4) In dynamic heterogeneous VM provisioning: MMUUT
and MSDUT outperform MMUT in terms of average
deadline miss rate. Typically, MMUUT and MSDUT

result in a higher deadline miss rate (as shown in
Figure 8(e), when a static VM provisioning is used).
The reason for the opposite behavior of MMUUT and
MSDUT, in dynamic VM provisioning, is that their
higher deadline miss rate triggers allocating more VMs,
hence, their deadline miss rate is decreased. It is worth
noting that, although MMUT results in a higher deadline
miss rate, it is still below the threshold provided by the
video stream provider (see Figure 9(e)).

6.4 The Impact of VM Provisioning Policies
To further investigate the performance of the proposed VM
provisioning policies, we compare it against the case in which
a static homogeneous VM cluster is deployed. For evaluation,
we vary the number of streaming requests in the system from
100 to 1000. In this experiment, we choose MMUT as the
mapping heuristic. The reason for choosing MMUT is that,
in general, it performs better than other heuristics both in
static and dynamic VM provisioning. Albeit, MMUT does not
outperform other heuristics in terms of deadline miss rate when
dynamic VM provisioning is used (see Figure 9(e)). However,
even in that case, it can still keep the deadline miss rate below
the QoS threshold provided by the video stream provider For
the static clusters, as it is shown in Figure 10, we evaluate
clusters with 5 to 10 VMs. In all of them we utilized GPU VM
type (g2.2xlarge). We observed that the average startup
delay, and the average deadline miss rate are too high when
fewer VMs are allocated. Therefore, we do not include them in

12

(a) Startup delay under traditional heuristics (b) Deadline miss rate under traditional heuristics (c) Cost under traditional heuristics

(d) Startup delay under utility-based heuristics (e) Deadline miss rate under utility-based heuris-
tics

(f) Cost under utility-based heuristics

Fig. 9. The results under utility-base mapping heuristics against those under traditional mapping heuristics when
dynamic provisioning policies are applied. The X-axis indicates the number of streaming requests, and Subfigures (a),
(b), and (c) show the average startup delay, deadline miss rate, and the incurred cost, respectively, under traditional
mapping heuristics, while (d), (e), and (f) show the same factors under utility-based mapping heuristics. The horizontal
dashed line indicates the acceptable QoS boundary (�).

the graphs. We would like to note that we also used other VM
types to compare against dynamic VM provisioning. However,
their performances were even worse than the GPU type.

In Figure 10(a), we can see that as the number of video
requests increases, the average startup delay in all static
policies grows. However, the dynamic VM provisioning policy
provides a low and stable average startup delay. When the
system is not oversubscribed (i.e., number of stream requests
less than 400), the dynamic provisioning policies provide a
slightly higher startup delay than the static policy. The reason
is that when the deadline miss rate is low, the VM provisioning
policies allocate fewer VMs to reduce the incurred cost.
Hence, new GOP tasks have to wait for transcoding. However,
in the static policy, specifically with a large number of VMs,
GOPs in the startup queue can be transcoded quickly, reducing
the average startup delay.

Figure 10(b) illustrates that the VM provisioning policies
lead to low and stable average deadline miss rate in compar-
ison with the static ones. In the static configuration, as the
number of video requests increases, the average deadline miss
rate grows dramatically. However, we notice that the average
deadline miss rate with the dynamic VM provisioning policies
remains stable, even when the system becomes oversubscribed.
We can conclude from the experiment that the proposed
VM Provisioner component in the CVS2 enables the system
to tolerate workload oversubscription. That is, it makes the
system robust against the fluctuations in the arrival workload.

In addition to low and stable average startup delay and av-
erage deadline miss rate, Figure 10(c) shows that the dynamic

VM provisioning policies reduce the incurred cost by up to
85% when the system is not oversubscribed. Even when the
system is oversubscribed (i.e., with more than 500 streaming
requests in the system) the dynamic VM provisioning policies
reduced the cost to around 50%. In fact, when the streaming
request rate is low, VMs are under-utilized; however, in the
static VM cluster, the streaming service provider still has to
pay for them. In contrast, with the dynamic VM provisioning,
the system deallocates idle VMs when the deadline miss rate
is low, which reduces the incurred cost significantly. As the
number of streaming requests increases, more VMs of the
appropriate types are created, and hence, the incurred cost of
the dynamic VM provisioning policies approaches that of the
static one. We can conclude that, from the cost perspective,
our proposed VM provisioning policies are more efficient,
particularly when the system is lightly loaded.

6.5 Impact of the Remedial VM Provisioning Policy
To evaluate the efficacy of the remedial provisioning policy,
we conduct an experiment on the dynamic VM provisioning
policy in two scenarios: (A) when the VM Provisioner com-
ponent uses both the periodic and remedial polices and (B)
when only the periodic provisioning policy is in place. We
measure QoS in terms of average Deadline Miss Rate (DMR),
average startup delay, and the incurred cost when the number
of streaming requests varies in the system (along the X-axis
in Figure 11). In this experiment we assume that the MMUT
mapping heuristic is utilized.

13

(a) Comparison of average startup delay (b) Comparison of average deadline miss rate (c) Comparison of average cost

Fig. 10. Performance comparison under static and dynamic VM provisioning policies. Subfigure (a) illustrates the
average startup delay, (b) shows the average deadline miss rate, and (c) demonstrates the incurred cost to the
streaming provider under dynamic and static provisioning policies, with MMUT applied as the mapping heuristic.

As illustrated in Figure 11, when the system is not oversub-
scribed (i.e., fewer than 500 streaming requests), the difference
between the two scenarios is negligible. This is because when
streaming requests arrived between two provisioning events
are not excessive, the VMs allocated by the periodic VM
provisioning policy are sufficient to keep the QoS robust.

Alternatively, when the system is oversubscribed, the num-
ber of streaming requests that arrive between two provisioning
events is high and affects the prediction of the provisioning
policy. Under this circumstance, as depicted in Figure 11,
relying only on the periodic provisioning policy leads to
a high deadline miss rate. Nonetheless, when the remedial
VM provisioning policy is utilized even with the system
is oversubscribed, the deadline miss rate remains stable. In
addition, as it is shown in the last sub-figure of Figure 11,
the remedial VM provisioning policy comes without incurring
any extra cost to the stream provider.

Fig. 11. Impact of the remedial VM provisioning policy
on the startup delay, deadline miss rate (DMR) and the
incurred cost.

7 RELATED WORK
Techniques, architectures, and challenges of video transcod-
ing have been investigated by Ahmad et al. [3] and Vetro
et al. [4]. Cloud-based video transcoding for VOD has been
studied in [29], [30]. However, they all investigated the case
of offline transcoding (i.e., pre-transcoding). A taxonomy of

the researches undertaken on cloud-based video transcoding
and the position of our contribution with respect to them is
illustrated in Figure 12.

Fig. 12. A taxonomy of video transcoding using cloud.
Red blocks position the contributions of this work.

Jokhio et al. [31] present a computation and storage trade-
off strategy for cost-efficient video transcoding in the cloud.
The trade-off is based on the computation cost versus the
storage cost of the video streams. They determine how long
a video should be stored or how frequently it should be re-
transcoded from a given source video. Zhao et al. [32] take
the popularity, computation cost, and storage cost of each
version of a video stream into account to determine versions
of a video stream that should be stored or transcoded. The
earlier studies demonstrate that it is possible to transcode infre-
quently accessed videos streams in an on-demand manner [33].
However, they do not explore the possible ways to carry out
the on-demand transcoding efficiently by utilizing appropriate
scheduling methods and VM provisioning policies.

In systems with dynamical task arrival, task scheduling can
be performed either in an Immediate or a Batch mode [20].
In the former, the tasks are mapped to processing machines
as soon as they arrive to the scheduler, whereas in the latter,
few tasks are collected in a batch queue and are scheduled at
the same time. Amini Salehi et al. [10] have compared these
scheduling types in heterogeneous computing systems and

14

concluded that the batch-mode significantly outperforms the
immediate-mode. The reason is that, in the batch-mode, tasks
can be shuffled and they do not have to be assigned in the order
they arrived. Accordingly, we consider batch-mode mapping
in the scheduling component of the CVS2 architecture. It is
noteworthy that the current batch-mode scheduling heuristics
(e.g., see those in [20]) and even those in the immediate-
mode cannot fulfill the QoS requirements of on-demand video
transcoding applications, mainly in terms of the startup delay.

To consider the startup delay, in [7], a startup queue was
considered to prioritize the first few GOPs in video streams.
Alternatively, in this paper, we improve the startup queue
model by assigning a utility value to each GOP. To minimize
the startup delay, the earlier GOPs in a video stream are
assigned higher utility values.

Ashraf et al. [8] propose a stream-based admission con-
trol and scheduling approach using a two-step prediction
model to foresee the upcoming streams’ rejection rate through
predicting the waiting time at each machine. Later, a job
scheduling method is utilized to drop some video segments
to prevent video transcoding jitters. However, they do not
consider minimizing the startup delay of video stream using
a heterogeneous cluster of VMs.

Previous works on cloud-based VM provisioning for video
transcoding (e.g., [9], [30]) mostly consider the case of off-
line transcoding. Thus, their focuses are mainly on reducing
makespan (i.e., total transcoding times) and the incurred costs.

Netflix adopts the scale up early, scale down slowly prin-
ciple for its VM provisioning [34] on Amazon EC2. It pe-
riodically checks the utilization of its allocated VMs. The
allocated VMs are scaled up by 10%, if their utilization is
greater than 60% for 5 minutes. They are also scaled down by
10%, if the VMs utilizations is less than 30% for 20 minutes.
Lorido et al. [34] categorize current auto-scaling techniques
into five main families: static threshold-based rules, control
theory, reinforcement learning, queuing theory, and time series
analysis. Then, they utilize the classification to carry out a
literature review of proposals for auto-scaling in the cloud.

In our earlier work [7], a QoS-aware VM provision-
ing policy was proposed for on-demand video transcod-
ing.Nonetheless, the policy did not consider heterogeneous
types of VMs offered by cloud providers. They just consider
one type of VM (i.e., a homogeneous cluster of VMs) and
try to minimize the incurred cost to the stream provider.
Given the affinity between different transcoding types and
VM types, VM provisioning policies are required to allocate
and deallocate from heterogeneous VM types to minimize the
incurred cost. This will enable the creation of a dynamically-
formed VM cluster that changes its configurations based on
the arriving transcoding requests. The current work is different
from [7] in several other ways too. We provide a method
to quantify heterogeneity of a VM cluster and use it in
deallocation policy of the VM cluster. We provide a method to
quantify the suitability of each VM type for various transcod-
ing operations. We develop new scheduling heuristics that
are QoS-aware and are tailored for heterogeneous computing
systems. We also provide a utility function that prioritizes
GOPs in a video stream based on their position in the stream.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the CVS2 streaming engine for
on-demand video transcoding. In particular, we developed the

Task Scheduler and VM Provisioner components of CVS2.
The components are aware of the viewers’ QoS demands and
aim to maintain QoS robustness while minimizing the incurred
cost to the SSP. The components take advantage of the het-
erogeneous VMs, offered by the cloud providers with diverse
prices. The Scheduler minimizes the startup delay and the
deadline violations of the streams. The VM Provisioner is cost-
aware in allocating/deallocating heterogeneous VMs. Experi-
ment results demonstrate that proposed scheduling reduces the
average startup delay and the deadline miss rate. In addition,
heterogeneous VM provisioning reduces the incurred cost by
up to 85%, particularly, when the system is not oversubscribed.
The VM provisioning is robust against uncertainties in the
arrival of streaming requests, without incurring any extra cost
to the provider.

The CVS2 architecture is useful for SSPs to utilize cloud
services and offer on-demand transcoding of video streams
with a low cost. In future, we will extend the admission
control to be failure-aware. We will also consider multiple
cloud scenarios for faster video delivery.

ACKNOWLEDGMENTS
This research was supported by the Louisiana Board of Re-
gents under grant number LEQSF(2016-19)-RD-A-25. This is
a substantially extended version of a paper presented at the
IEEE/ACM International on Conference on Cluster, Cloud and
Grid Computing (CCGrid ’16) [7].

REFERENCES
[1] G. I. P. Report, “https://www.sandvine.com/trends/global-internet-

phenomena/,” accessed May 1, 2016.
[2] C. V. N. Index, “Forecast and methodology, 2014-2019,” 2015.
[3] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: an

overview of various techniques and research issues,” IEEE Transactions
on Multimedia, vol. 7, no. 5, pp. 793–804, Oct. 2005.

[4] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures
and techniques: an overview,” IEEE Magazine on Signal Processing,
vol. 20, no. 2, pp. 18–29, Mar. 2003.

[5] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of
internet short video sharing: A youtube-based measurement study,” IEEE
Transactions on Multimedia, vol. 15, no. 5, pp. 1184–1194, Aug. 2013.

[6] R. Buyya, M. Pathan, and A. Vakali, Content delivery networks.
Springer Science and Business Media, vol. 9, 2008.

[7] X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya, “CVSS: A Cost-
Efficient and QoS-Aware Video Streaming Using Cloud Services,” in
Proceedings of the 16th IEEE/ACM International Conference on Cluster
Cloud and Grid Computing, ser. CCGrid ’16, May 2016.

[8] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius,
“Stream-based admission control and scheduling for video transcoding
in cloud computing,” in Proceedings of the 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, ser. CCGrid
’13, pp. 482–489, May 2013.

[9] M. Kim, Y. Cui, S. Han, and H. Lee, “Towards efficient design and
implementation of a hadoop-based distributed video transcoding system
in cloud computing environment,” International Journal of Multimedia
and Ubiquitous Engineering, vol. 8, no. 2, pp. 213–224, Mar. 2013.

[10] M. A. Salehi, J. Smith, A. A. Maciejewski, H. J. Siegel, E. K. Chong,
J. Apodaca, L. D. Briceño, T. Renner, V. Shestak, J. Ladd, A. Sutton,
D. Janovy, S. Govindasamy, A. Alqudah, R. Dewri, and P. Prakash,
“Stochastic-based robust dynamic resource allocation for independent
tasks in a heterogeneous computing system,” Journal of Parallel and
Distributed Computing (JPDC), vol. 97, pp. 96 – 111, June 2016.

[11] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource configura-
tion for cloud infrastructure management,” Future Generation Computer
Systems Journal (FGCS), vol. 29, no. 2, pp. 472–487, Feb. 2013.

[12] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Analysis of video
segmentation for spatial resolution reduction video transcoding,” in
Proceedings of IEEE International Symposium on Intelligent Signal
Processing and Communications Systems, ser. ISPACS ’11, pp. 1–6,
Dec. 2011.

[13] O. Werner, “Requantization for transcoding of mpeg-2 intraframes,”
IEEE Transactions on Image Processing, vol. 8, pp. 179–191, Feb. 1999.

15

[14] N. Bjork and C. Christopoulos, “Transcoder architectures for video
coding,” IEEE Transactions on Consumer Electronics, vol. 44, no. 1,
pp. 88–98, Feb. 1998.

[15] S. Goel, Y. Ismail, and M. Bayoumi, “High-speed motion estimation
architecture for real-time video transmission,” The Computer Journal,
vol. 55, no. 1, pp. 35–46, Apr. 2012.

[16] T. Shanableh, E. Peixoto, and E. Izquierdo, “MPEG-2 to HEVC video
transcoding with content-based modeling,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 23, pp. 1191–1196, July
2013.

[17] A. M. Al-Qawasmeh, A. A. Maciejewski, and H. J. Siegel, “Charac-
terizing heterogeneous computing environments using singular value
decomposition,” in Proceedings of 24th IEEE International Symposium
on Parallel and Distributed Processing, Workshops and PhD Forum, ser.
IPDPSW ’10, pp. 1–9, Apr. 2010.

[18] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of EC2 cloud computing services for
scientific computing,” in Proceedings of the 1st International Conference
on Cloud Computing, pp. 115–131, Oct. 2009.

[19] P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna, “Efficient collec-
tive communication in distributed heterogeneous systems,” Journal of
Parallel and Distributed Computing, vol. 63, no. 3, pp. 251–263, 2003.

[20] B. Khemka, R. Friese, L. D. Briceno, A. A. Maciejewski, G. A. Koenig,
G. Okonski, M. M. Hilton, R. Rambharos, S. Poole, and C. Groer,
“Utility functions and resource management in an oversubscribed het-
erogeneous computing environment,” IEEE Transactions on Computers,
vol. 64, no. 8, pp. 2394–2407, Aug. 2015.

[21] J. Smith, A. A. Maciejewski, and H. J. Siegel, “Maximizing stochastic
robustness of static resource allocations in a periodic sensor driven
cluster,” Future Generation Computer Systems Journal (FGCS), vol. 33,
pp. 1–10, Apr. 2014.

[22] J. L. L. Simarro, R. M. Vozmediano, F. Desprez, and J. R. Cornabas,
“Image transfer and storage cost aware brokering strategies for multiple
clouds,” in Proceedings of the 7th IEEE International Conference on
Cloud Computing, pp. 737–744, June 2014.

[23] L. D. Briceno, H. J. Siegel, A. A. Maciejewski, M. Oltikar, J. Brateman,
J. White, J. Martin, and K. Knapp, “Heuristics for robust resource
allocation of satellite weather data processing on a heterogeneous
parallel system,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 22, no. 11, pp. 1780–1787, Jan. 2011.

[24] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic
robustness metric and its use for static resource allocations,” Journal of
Parallel and Distributed Computing (JPDC), vol. 68, no. 8, pp. 1157–
1173, Aug. 2008.

[25] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi
et al., “Dynamically mapping tasks with priorities and multiple deadlines
in a heterogeneous environment,” Journal of Parallel and Distributed
Computing (JPDC), vol. 67, no. 2, pp. 154–169, Feb. 2007.

[26] J. E. Smith, J. Apodaca, A. A. Maciejewski, and H. J. Siegel, “Batch
mode stochastic-based robust dynamic resource allocation in a hetero-
geneous computing system.” in Proceedings of the 16th International
Conference on Parallel and Distributed Processing Techniques and
Applications, ser. PDPTA ’10, pp. 263–269, July 2010.

[27] I. F. Spellerberg and P. J. Fedor, “A tribute to claude shannon (1916–
2001) and a plea for more rigorous use of species richness, species
diversity and the ‘shannon–wiener’index,” Global ecology and biogeog-
raphy, vol. 12, no. 3, pp. 177–179, May 2003.

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, pp. 23–50, Aug. 2011.

[29] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud
computing,” in Proceedings of the 21st IEEE International Conference
on Parallel, Distributed and Network-Based Processing, pp. 254–261,
Feb. 2013.

[30] S. Lin, X. Zhang, Q. Yu, H. Qi, and S. Ma, “Parallelizing video
transcoding with load balancing on cloud computing,” in Proceedings of
the IEEE International Symposium on Circuits and Systems, ser. ISCAS
’13, pp. 2864–2867, May 2013.

[31] F. Jokhio, A. Ashraf, S. Lafond, and J. Lilius, “A computation and
storage trade-off strategy for cost-efficient video transcoding in the
cloud,” in Proceedings of the 39th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, ser. SEAA ’13, pp. 365–
372, Sep. 2013.

[32] H. Zhao, Q. Zheng, W. Zhang, B. Du, and Y. Chen, “A version-
aware computation and storage trade-off strategy for multi-version VoD
systems in the cloud,” in Proceedings of the 20th IEEE Symposium on
Computers and Communication, ser. ISCC ’15, pp. 943–948, July 2015.

[33] K. Keahey and M. Parashar, “Enabling on-demand science via cloud
computing,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp.
21–27, Aug. 2014.

[34] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, Mar. 2014.

Xiangbo Li received his Ph.D. degree in com-
puter engineering from University of Louisiana
at Lafayette in 2016. He is currently working
as video engineer at Brightcove Inc., a cloud
based online video platform company. He is an
expert in cloud-based video transcoding, video
packaging and delivery.

Mohsen Amini Salehi received his Ph.D. in
Computing and Information Systems from Mel-
bourne University, Australia, in 2012. He is cur-
rently an Assistant Professor and director of
the High Performance Cloud Computing (HPCC)
laboratory, School of Computing and Informatics
at University of Louisiana Lafayette, USA. His
research focus is on Distributed and Cloud com-
puting including heterogeneity, virtualization, re-
source allocation, and security.

Magdy Bayoumi received the BSc and MSc
degrees in electrical engineering from Cairo Uni-
versity, Egypt, the MSc degree in computer en-
gineering from Washington University, St. Louis,
and the Ph.D. degree in electrical engineering
from the University of Windsor, Ontario. He was
the Vice President for Conferences of the IEEE
Circuits and Systems (CAS) Society. He is the
recipient of the 2009 IEEE Circuits and Systems
Meritorious Service Award and the IEEE Circuits
and Systems Society 2003 Education Award.

Nain-Feng Tzeng (M86-SM92-F10) received
the Ph.D. degree in Computer Science from
the University of Illinois at Urbana-Champaign.
Since 1987, he has been with Center for
Advanced Computer Studies, University of
Louisiana at Lafayette, where he is currently a
professor. He was on the editorial boards of the
IEEE Transactions on Parallel and Distributed
Systems, 1998 — 2001, and IEEE Transactions
on Computers, 1994 — 1998.

Rajkumar Buyya is a Fellow of IEEE, Professor
of Computer Science and Software Engineer-
ing, Future Fellow of the Australian Research
Council, and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,
at the University of Melbourne, Australia. He
is one of the highly cited authors in computer
science and software engineering worldwide.
Microsoft Academic Search Index ranked Dr.
Buyya as #1 author in the world (2005-2016) for

both field rating and citations evaluations in the area of Distributed and
Parallel Computing.

http://hpcclab.org/

	Introduction
	Background
	Definition of Robustness
	Video Stream Structure
	Video Transcoding
	Video Transcoding Using Heterogeneous VMs

	CVS2: Cloud-Based Video Streaming Service Architecture
	Overview
	Video Splitter
	Admission Control
	Transcoding Virtual Machines (VMs)
	Execution Time Estimator
	Transcoding (GOP) Task Scheduler
	VM Provisioner
	Video Merger
	Caching

	QoS-Aware Transcoding (GOP) Task Scheduler
	Overview
	Utility-based GOP Task Prioritization
	Estimating Task Completion Time on Heterogeneous VMs
	Mapping Heuristics
	Utility-Based Mapping Heuristics

	Self-Configurable Heterogeneous VM Provisioner
	Overview
	Identifying Suitability of VM Types for GOP Tasks
	Periodic VM Provisioning Policy
	Allocation Method
	Deallocation Method

	Remedial VM Provisioning Policy

	Performance Evaluation
	Experimental Setup
	Average Completion Time of Early GOP Tasks
	Impact of Utility-based Mapping Heuristics
	Static Heterogeneous VM Cluster
	Dynamic Heterogeneous VM Cluster
	Discussion

	The Impact of VM Provisioning Policies
	Impact of the Remedial VM Provisioning Policy

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Xiangbo Li
	Mohsen Amini Salehi
	Magdy Bayoumi
	Nain-Feng Tzeng
	Rajkumar Buyya

	Appendix A: Table of Notations
	Appendix B: Further Performance Evaluations of CVS2

