
Load Balancer Tuning: Comparative Analysis of
HAProxy Load Balancing Methods

Connor Rawls, Mohsen Amini Salehi

High Performance Cloud Computing (HPCC) Lab,
University of Louisiana, Lafayette LA 70508, USA

Abstract. Load balancing is prevalent in practical application (e.g.,
web) deployments seen today. One such load balancer, HAProxy, re-
mains relevant as an open-source, easy-to-use system. In the context of
web systems, the load balancer tier possesses significant influence over
system performance and the incurred cost, which is decisive for cloud-
based deployments. Therefore, it is imperative to properly tune the load
balancer configuration and get the most performance out of the existing
resources. In this technical report, we first introduce the HAProxy ar-
chitecture and its load balancing methods. Then, we discuss fine-tuning
parameters within this load balancer and examine their performances in
face of various workload intensities. Our evaluation encompasses various
types of web requests and homogeneous and heterogeneous back-ends.
Lastly, based on the findings of this study, we present a set of best prac-
tices to optimally configure HAProxy.

Keywords: Load Balancing · HAProxy · Fine-Tuning. Homogeneous ·
Heterogeneous Resources

1 Introduction

1.1 Load Balancing

In a web system, the load balancer is usually the first component of the ar-
chitecture to interact with incoming user requests. Load balancers are used to
distribute user requests to application servers that can compute and generate
the response. Two major goals of the load balancer in a web system are: A) To
maximize the overall resource utilization; and B) To minimize the time it takes
for each user to receive a response to their request. These two goals directly
affect the QoS of a web application. To attain these goals, the load balancer uses
load balancing methods (algorithm) to distribute the user requests to compute
machines. One study conducted by Google suggests that after a request’s first 3
initial seconds, the probability that a user will leave the web application is 32%
[6]. In the case where the compute servers simply do not have enough resources
to handle the incoming load of requests, the system should be scaled out to
accommodate these load surges such that the application QoS is not violated.

Cloud providers [4], [5] offer services to automatically scale system resources
under developer-defined conditions, such as when the CPU utilization threshold

http://hpcclab.org/

2 C. Rawls et al.

of an application server is met. The scaling of resources comes with a penalty,
however. Increasing system resources for larger compute power incurs a higher
cost to the user, and consumes more energy from the cloud providers perspective.
Such consequences can be remarkable in a long run [23,19]. In the realm of bursty
load behavior [16,18], applications may see large, unexpected spikes in operating
costs if the acquisition of resources is allowed to run rampant. Therefore, there
lies a delicate balance between maximizing the performance of the application
while minimizing its cloud operating costs.

One method of maximizing system performance may lie within tuning various
components of the web tier. Another method can be tuning the behavior of
load balancer tier via its configurations. Most software may perform subpar or
inadequately out-of-the-box. Users, however, can adjust certain settings either
prior or during runtime to increase performance. Maximizing each component’s
performance may prove critical to some in decreasing the need for scaling out
system resources, in turn, maintaining low operational expenditures [15,14].

1.2 HAProxy

The idea of using load balancer in distributed systems has a long history and has
been studied in various contexts, such as those for Grid computing [21,24] and
cloud [20] or for different applications [7]. All these load balancers can be broadly
categorized as Network Load Balancer (NLB) and Application Load Balancer
(ALB). The load balancing software used in this paper’s study is HAProxy.
HAProxy is an open-source load balancer meant to be as stateless as possi-
ble while maintaining high throughput of messages per second. Additionally,
HAProxy can be configured to be used in both Network Load Balancing and
Application Load Balancing contexts.

Network Load Balancer (NLB): NLBs describe load balancers that operate solely
at the transport level (i.e., TCP). More specifically, NLBs operate at the Open
Systems Interconnection (OSI) Layer 4, highlighted in Fig. 1. This figure high-
lights the separate levels of information contained in the common communication
packet exchanged between two agents. Network load balancing is not concerned
with the intricacies of the messages it is handling, such as their content, head-
ers, etc. Furthermore, NLBs do not consider the behavior of backend servers in
its decision making. Instead, NLBs only consider transport-related information
when routing messages and that is why they are often faster than the ALB
algorithms.

Application Load Balancer (ALB): Opposing NLBs, ALBs do consider the con-
tents of the messages it is routing when making decisions. From a technical
standpoint, this means that ALBs operate at OSI Layer 7 (ex. HTTP), as shown
in Fig. 1. In HTTP scenarios, this means that an ALB routing algorithm may
consider application layer fields such as the request method or the URL re-
quested. For example, an ALB might route requests whose messages contain

Title Suppressed Due to Excessive Length 3

Fig. 1. Overview of Open Systems Interconnection model.

certain header values to one specific backend server. Additionally, ALBs can po-
tentially include the state information of backend servers in their logic, hence,
are often more efficient than their NLB counterparts.

In terms of HAProxy, the mechanism for enabling either NLB or ALB routing
is dependent on the load balancing algorithm chosen before runtime. HAProxy
comes with several builtin load balancing algorithms that are commonly used in
production, such as round-robin, least-connection-based, and random. It is im-
portant for the solution architects to choose the appropriate load balancing al-
gorithm (method) based on the characteristics of the system they are deploying,
as each possesses different behaviors depending on the workload. The algorithms
that HAProxy provides can be contextual in either an ALB or NLB scenario.
For example, HAProxy supports URL hashing to ensure that specific paths on
one’s website is always directed to the same server(s). This algorithm can be
considered ALB-based, as the logic examines the intricacies of the message itself
as well as the state of the backend servers to make decisions. On the other hand,
the traditional round-robin algorithm that HAProxy provides chooses backend
servers in order, hence, is considered as NLB-based.

Seeing the complexity and prevalence of load balancing and HAProxy, the
purpose of this paper is to take a deep dive into HAProxy and provide insight
on its inner workings. In a production environment, a minor improvement in

4 C. Rawls et al.

HAProxy can have substantial impacts on the user satisfaction and the incurred
cost of deploying an application.

In summary, the contributions of this work are as follows:

• Explanation of load balancing methods and HAProxy’s implementation.
• Exploration of tuning HAProxy configuration parameters.
• Performance comparison of different load balancing algorithms under various
workload scenarios.

• Impact of server heterogeneity and homogeneity on the performance of var-
ious load balancing algorithms.

Fig. 2. Architecture of general three-tier web system. The different shapes passing into
and out of the load balancer represent different task types.

2 Load Balancing Architecture

In web application deployments, the system can be broken down into three
separate tiers: load balancing, application, and database. An overview of such an
architecture can be observed in Fig. 2. The load balancing tier accepts incoming
user requests. With the load balancing algorithm, an appropriate back-end server
is determined from a list of possible servers and the request is then dispatched
to the application. The application tier’s purpose is to satisfy the computational

Title Suppressed Due to Excessive Length 5

workload that the request brings. The application machines rely on data that is
present in the database tier. With incoming requests, the application tier queries
the database tier for information used to handle its workload. Once a request has
completed its execution in the application tier, the server sends a response to the
load balancer to ultimately be returned to the client, completing the transaction.

Web requests are often user-facing, in that there is some deadline the re-
sponse must meet. The deadline can be considered a concept developed between
the inter-client/company relation. It has been shown that as the web response
time grows, the satisfaction of clients begins to drop linearly [17]. In the cir-
cumstance of website hosting, this may result in a loss of traffic and, in turn,
company profits. Other situations in which communication is considered mission
critical, such as in healthcare environments, slow response times may result in
catastrophic failure. Therefore, there is a call for ensuring the efficient load bal-
ancing of requests to minimize response times and make sure that the requests
are served within that time.

3 HAProxy Architecture Unfolded

The internal architecture of HAProxy can be viewed in Fig. 3. In step 1, incoming
user requests are received by HAProxy. HAProxy performs various preprocessing
functions on these messages such as determining header values, paths requested,
and networking information. In Step 2, the request is passed to the load balancing
algorithm. This step is where HAProxy determines which server to dispatch the
user request. In Step 3, HAProxy handles the request-to-server task in a series
of queued tasks. HAProxy establishes network sockets necessary to deliver the
message to the assigned server in Step 4. Lastly, Step 5 highlights the application
server’s finalized response to the user request.

Fig. 3. HAProxy internals, generalizing the main mechanisms used to load balance
incoming user requests to application servers.

6 C. Rawls et al.

4 Load Balancing Algorithms Supported by HAProxy

The algorithm used in load balancing is critical to the behavior of the load
balancer itself. Each algorithm may exhibit significantly different performances
in terms of response times and error rates. Additionally, choosing the correct
algorithm may prove difficult for non-technical users. As such, it is important to
have a general understanding of in which scenarios to use particular algorithms.

The load balancing algorithms supported by HAProxy can fall into two cat-
egories: ALB or NLB. This categorization can be viewed in Fig. 4. We will
discuss each algorithm in due order but first, we will make note of an important
mechanism that HAProxy utilizes in a few of its algorithms.

Under some scenarios, such as in heterogeneous environments/workloads,
certain application servers may wish to be prioritized or considered more heavily
in load balancing decisions. As such, HAProxy makes use of a weighting mechanic
for each server. What this tool provides is a way for the load balancing algorithm
to make conditional decisions based upon a server’s priority in relation to the
other servers. For example, a server more heavily weighted generally signifies that
the algorithm prefers to dispatch requests to this particular server in comparison
to other servers that are not weighted as high. By default, HAProxy sets the
weight of all servers to the same static value of 1.

Fig. 4. All algorithms supported by HAProxy, divided into NLB-based and ALB-based
logic.

4.1 Random

Random, otherwise known as Power of Two [22], randomly pulls two servers from
the list of possible servers. From these two servers, the algorithm chooses the
server with the least current load (connections). This algorithm can further be
adjusted to support Power of N where N is any positive integer. One can expect

Title Suppressed Due to Excessive Length 7

that as N approaches the number of actual backend servers, the algorithm’s
performance will begin to mimic the least connection-based algorithm.

4.2 First

With the first algorithm, an incoming request is dispatched to the first server
possessing an available connection slot. The selection of possible backend servers
are treated as a list or pool. This list is sorted based upon each server’s id, which
is some value designated by a system administrator. Upon a routing decision,
HAProxy will select the previously used server from the list (in the case of the
first request during the application’s startup, this is the first server in the list).
HAProxy will continue to route incoming requests to this same server until the
server’s designated max connection value is reached. From here, HAProxy will
then send requests to the server that is next in line.

This algorithm may prove useful for utilizing the smallest amount of servers
possible, maintaining low operational costs. However, in times in which a server
is approaching its max connection value, the tasks in execution are likely to
suffer. This is due to the numerous tasks competing for system resources.

4.3 Least Connection

HAProxy’s least connection algorithm is based upon the connection state of each
server. In dispatching an incoming request r, out of the list of possible servers,
r will be routed to the server with the current least number of connections. If
two or more servers possess the same number of connections, the round-robin
algorithm is used to determine between this subgroup.

4.4 Source

Under the source algorithm, the client’s IP of the incoming request is hashed uti-
lizing the sum weight of all of the running servers. Utilizing this hash, HAProxy
will dispatch the request accordingly. The consideration of the sum weight means
that future requests from the same clients will always be routed to the same
servers. However, these mappings would change given that a server joins or
leaves the backend. Consequently, most clients would then be routed to a sepa-
rate server.

4.5 Round-robin

With the traditional round-robin algorithm, a selection cycle is used to iterated
through the list of possible servers. Each server will be selected at most once
per selection cycle. HAProxy utilizes a weighted version of the round-robin algo-
rithm. Weighted round-robin functions similarly in that there is a selection cycle
for routing, however, each server is assigned a weight to be considered in the
algorithm’s logic. The weight of each server is used to determine the proportion

8 C. Rawls et al.

of requests to be dispatched to it. For servers m and n in the selection pool
with weights i and j respectively and i > j, the first i incoming requests will
be dispatched to server m. Upon the i + 1 request, the next j requests will be
dispatched to server n.

The weighted round-robin algorithm is useful for heterogeneous systems or
systems in which the servers are susceptible to dynamic performance changes.
However, the difficult part arises in that the system administrator must under-
stand what the weight of each server should be prior to operation. This manual
input invites human error into the load balancing equation.

4.6 Static RR

The Static RR (Round-Robin) algorithm in HAProxy functions similarly to its
non-static counterpart. This difference between these two, however, lies in the
fact that Static RR does not support changing a server’s weight on the fly. A
server’s weight may be altered during HAProxy’s runtime as the system admin
deems fit. This procedure is useful for manually tweaking the load balancing
logic, providing a more granular management. Some algorithms, such as Static
RR, do not take advantage of this feature. Instead, the server weights are ob-
served during startup and considered during the rest of the algorithm’s lifespan.

One might consider utilizing this algorithm in scenarios where CPU resource
expenditure is very tight. This is due to the algorithm’s slightly less CPU inten-
sive nature as compared to RR.

4.7 URI

HAProxy’s URI algorithm is a statically hashed routing method, similar to
source. In URI, a selective part or the entirety of each request’s URI is passed
through the hashing algorithm. The output value is modified using the sum of the
backend server weights, providing similar properties to source. Users of this al-
gorithm can decide to utilize either the query, the selected path, or both of these
parameters of the request for the hashing procedure. In addition to these cus-
tomization options, URI also supports the depth parameter. This value controls
the how far into a directory a request’s path is for the algorithm’s consideration.

This algorithm could prove useful for ensuring that all requests pertaining
to a particular page, or all pages beyond a certain depth within a directory,
are routed to the same server. Accordingly, pages that are known to be heavily
trafficked or possess an inherently large computational load can be allocated
to servers that contain proportionally larger hardware resources. In contrast,
requests that are non-intensive can be directed to ”smaller” servers.

4.8 Header

The header algorithm is another hashing method that uses a user-specified
header value to be hashed in determining the server to be routed to.

Title Suppressed Due to Excessive Length 9

4.9 RDP Cookie

The RDP Cookie algorithm examines the name in the RDP cookie for its load
balancing decisions. This value is hashed and assigned to a corresponding server.
This method ensures that returning clients will continuously be assigned to the
same server.

4.10 URL Parameter

With the URL Parameter algorithm, the query string of each request is used
for the hashing algorithm. If no query was found in the request, this algorithm
resorts to the round-robin algorithm.

This algorithm may prove useful for ensuring that returning clients will be
routed to the same server, given that a server has not left or entered the pool of
possible servers since their last request.

5 Fine-Tuning HAProxy

While utilizing HAProxy out-of-the-box may prove applicable under certain sce-
narios, it is important to maximize the performance of load balancers under
most cases. In the context of resource scaling, additional resources will be ini-
tiated or spawned upon meeting some insufficient performance metric such as
excessive response times of requests or high CPU utilization of compute servers.
This scaling increases performance in times of increased load but comes with an
increased operational costs. To minimize the need to scale out, maximizing the
efficiency of your current system is imperative.

5.1 Configuration Tuning

Being that HAProxy possesses over 50 possible parameters to configure, we select
only the tuning parameters that are influential in performance for most load
balancing environments. These parameters can be observed in Table 1.

The max connection parameter of HAProxy is a network configuration op-
tion that allows users to control how many potential client connections can be
established at one time. Given a value of x that is presented to the maxconn
parameter, HAProxy will reject incoming connections if there are currently x
connections already established. Users can set this value as high as their load
balancing server’s ulimit value will allow. Setting this value below the server’s
ulimit could prove useful in securing memory resources to background and OS
processes. Additionally, limiting the max connection value may prove integral
for security reasons.

HAProxy’s nbproc directive can be used to spawn more HAProxy processes.
Each one of these processes will handle a portion of the overall HAProxy compu-
tational load. In addition, nbthread can be used to further parallelize HAProxy.
It would seem obvious that distributing the workload of HAProxy and executing

10 C. Rawls et al.

Parameter Note

nbproc Number of processes

nbthread Number of processing threads

cpu-map Designate specific CPU cores for
specific threads to process on

maxconn Maximum number of concurrent
connections HAProxy will allow

busy-polling Prevents processor from sleeping
during idle periods

compression Compresses HTTP messages

spread-checks Spread out health checks to servers
instead of sending all at once

Table 1. Selected tuning parameters for increasing HAProxy performance.

each simultaneously can significantly decrease the overall computational time re-
quired to load balance client requests. However, there are certain drawbacks that
should be considered upon implementing these forms of parallelization. For one,
the nbproc directive does not support data sharing between processes. To com-
bat this issue, nbthread could be used in lieu. Additionally, HAProxy uses health
checks to obtain state information on the backend servers. This means that a
dummy request is periodically sent to the backend servers. With nbproc, each
process will send its own health checks, resulting in increased network traffic.
Lastly, increasing the thread count beyond reason is detrimental to performance.
If the number of threads in execution represent a pool of workers that exist in
an environment that can not adequately provide enough CPU time, the result-
ing contention (CPU thrashing) will lead to each thread possessing less time to
compute. Therefore, there exists a balance for allocating the proper number of
processes/threads.

To have an even more granular control on HAProxy’s processing, one can
utilize cpu-map. This directive allows users to control which process executes on
which CPU core. Essentially, the designated process(es) will always execute on
the designated CPU core.

There exists many other such tuning parameters such as tune.bufsize, which
alters the amount of memory each process is allocated or nosplice, which dis-
ables the kernel’s ability to perform TCP socket splicing. However, HAProxy’s
documentation suggests that enabling/changing these parameters may cause
buggy behavior or even result in the communication of corrupted data. As such,
HAProxy also recommends that these parameters not be touched outside of
their own core development team or under very specific scenarios. As our exper-
iments are meant to remain representative of common use-case environments,
these specialized parameters will not be explored in this work.

Title Suppressed Due to Excessive Length 11

6 Performance Evaluation of HAProxy

6.1 System Setup

In this study, a three-tier web system was created to replicate a realistic envi-
ronment that users might find while browsing a website. A blog and ecommerce
website was created and propagated with sample pages, items, and posts. This
website is used as the application in our architecture. Two types of web requests
(task types) were generated and profiled, each containing 5 possible instance
types, as explained in the next sections. The metrics were captured utilizing
40,000 instances of each task type executed in isolation to ensure no interference
from outside resource contention.

Fig. 5. Design of our experimental system [3], [9], [1], [13], [11].

A view into the hardware and software specifications of our experimental
system can be found in Table 2. The web service architecture was established in
a mixture of bare-metal, virtual, and containerized machines. The user requests
were synthesized using Apache Jmeter [2] from possible requests on the website.
The user server sits in its own virtual machine. This removes memory contention
from other working machinations of the system and provides a realistic repre-
sentation of network messaging. The load balancer and application servers each
reside in their own container. The application machines are all completely iden-
tical in terms of hardware and software. The database is a separate bare-metal
machine from the one that the user, load balancer, and application machines
reside on. Fig. 5 showcases our specific software environment for each tier.

6.2 Input Workload

The examined website created through WordPress [12] with various community-
sourced plugins. This allowed us to propagate the website with multiple pages
and contents.

Jmeter was used to record the possible HTTP requests that could be sent
to the website. These requests are saved as XML files to be used for profiling
later. Each file can be considered as a single test scenario. Each scenario is

12 C. Rawls et al.

Tier Server
Count

Underlying Hardware Software

User 1 8 cores (2.30 GHz) / 32 GB KVM VM
with Apache
JMeter

Load Balancer 1 Container on Host with
112 cores (2.20 GHz) / 330
GB

Docker Con-
tainer with
HAProxy

Application 5 16 cores (1.80 GHz) / 32 GB KVM VM
with Apache
and Word-
Press

Database 1 48 cores (2.87 GHz) / 132
GB

Bare-metal
with MySQL

Table 2. Hardware and Software Specifications Used for Experimentation

composed of only two task types: GET and POST. In the context of HTTP
web requests, GET tasks are used by users to fetch information from the web
service, such as a web page or image. POST tasks are used by users to send
information to the web service, such as posting a comment or image to the
web page. Being that a long sequence of POST requests would cause our web
pages to become bloated or change over time, consequentially, sequential requests
would be affected. Therefore, we have implemented an instrument to immediately
remove POST request content from the web page as soon as they are processed,
leaving the web page unchanged from the time of its initial creation.

The scenarios used for testing vary in the request rate that is provided to the
system. The first scenario’s request rate was approximately 16.67 users/second
over a period of 60 seconds for a total of 1,000 requests. We then ran similar tests
with differing request rates of over the same period providing a list of total re-
quests: [5,000:40,000] with increments of 5,000 total requests. The total amount
of requests can be partitioned between both task types, however, requests in-
stances of both task types were sent simultaneously. The input workload scenario
configurations can be observed in Table 3.

7 Tuning Number of HAProxy Threads

As discussed earlier, getting the most out of our current load balancer is useful
for decreasing system costs and maximizing system performance. For this exper-
iment, we measure the performance of various configurations of HAProxy. Being
that HAProxy processes many possible parameters, each with a large amount of
possible parameter values, the combinatorial search space to examine all configu-
rations is time prohibitive. Hence, we examine the number of processing threads

Title Suppressed Due to Excessive Length 13

Total Requests Test Period (s) Requests/Second

1000 60 16.67

5000 60 83.33

10000 60 166.67

15000 60 250

20000 60 333.33

25000 60 416.67

30000 60 500

35000 60 583.33

40000 60 666.67

Table 3. Input Workload Scenarios for Testing HAProxy Performance.

Fig. 6. Performance results from tuning processing threads parameter. The dashed red
line indicates the deadline tasks should be meeting.

14 C. Rawls et al.

parameter as a potentially influential parameter on the performance. We utilize
the round-robin load balancing algorithm, as this is the most general algorithm
provided by HAProxy and can be utilized in most non-specialized scenarios. The
results of this test can be observed in Fig. 6.

It could be expected that increasing the number of processing threads leads
to an increase of the number of tasks executed in parallel. Hence, we should
expect that the response times of requests to decrease as the load balancer is
able to accommodate incoming tasks accordingly. As our experiment shows, the
number of threads in our case marginally affects the response time. A possible
explanation as to why we do not see any significant effect that the number of
threads possess on response time is that our backend system is not complex
enough to exploit this feature of HAProxy. Our system is small enough so as to
allow HAProxy to already minimize the response time of requests with just one
thread. Essentially, in our case, we receive no use out of increasing the parallelism
of HAProxy because there is nothing to be parallelized.

From our results, we can form a safe estimation that the default number
of processing threads provided by HAProxy (64) is enough to accommodate
most workloads. Furthermore, decreasing the number of threads controlled by
HAProxy will only marginally decrease the response time of requests. As such,
setting nbthread to 1 will allow for similar performances while alleviating the po-
tential contention for resources for additional applications running on the same
machine as HAProxy.

Best Practice Reduce the number of processing threads to 1 if HAProxy is
sharing system resources with additional processes. Otherwise, it is best to leave
nbthread untouched.

8 Comparing Performance Impact of Load Balancing
Algorithms

It is important to understand when to use a specific load balancing algorithm
for the task at hand. If the incoming workload’s characteristics are known prior
to operation, their behavior can be exploited to choose the correct algorithm
in order to maximize system performance. In this experiment, we compare each
algorithm against the same workloads as in the previous experiment. The algo-
rithm performance results can be viewed in Fig. 7. It should be noted that some
algorithms supported by HAProxy require a preparation period to designate the
algorithm logic. For example, the RDP cookie algorithm assumes remote desktop
operation in the system environment. As our scenarios do not partake in such ac-
tion, we have obligated to remove these algorithms for the following experiment.
Additionally, it was originally observed that the algorithms experiment begin to
show interesting results at the 40,000 task count mark. Due to this behavior, we
increased the range of tasks to 80,000 to better view a discrepancy between the
algorithms’ performance.

Title Suppressed Due to Excessive Length 15

Fig. 7. Performance results from tuning the load balancing algorithm. Due to trend
overlaps, the following algorithms are stacked: [fist, source], [random, leastconn, static-
rr, roundrobin], [uri].

From the performance results, we can observe that most algorithms appear
to be impartial to the task types in our given workload. URI, however, exhibits
different performance for each task type. For example, URI shows the best per-
formance for GET requests while exhibiting the worst performance for POST
requests. The likely cause for this behavior is due to the URI algorithm directing
all GET requests to the same servers while sending POST requests to others.
In this scenario, URI is making a task-to-server partitioning scheme that is re-
sulting in a loss of overall performance. Alternatively, the other algorithms send
a mixture of both task types to all servers. It can be speculated that if our
environment consisted of a set of servers to better accommodate the resources
necessary to respond to the POST requests, the URI algorithm would showcase
the best performance or both task types. However, being that our backend is
homogeneous, the potential for URI’s logic can not be fully utilized. Additional
to this notable feature, the first and source algorithms seem to perform worse
for GET tasks. Comparatively, the static-rr, random, roundrobin, and leastconn
algorithms are more robust to task types as these algorithms do not exhibit
much of a performance change as the number of requests increase between task
types.

From the results of the load balancing algorithm experiment, it is prevalent
that some ALB algorithms may require further system tuning to receive the full
benefits they bring in terms of request response time. However, while choosing

16 C. Rawls et al.

an NLB might appear to be a safer, more general alternative, there are still
significant performance discrepancies between them.

Best Practice Choose random, leastconn, roundrobin, or static-rr for load bal-
ancing under general circumstances. Choose URI for potential performance in-
crease at the cost of system profiling/further resource tuning.

9 Impact of Load Balancing Algorithms in a
Heterogeneous Environment

As we have seen from the load balancing algorithm experiment, there lies po-
tential performance differences when the server environment is heterogeneous
(URI results). Due to these observations, we have ran the same load balancing
performance experiment on a different set of server configurations. The hetero-
geneous server environment hardware specifications can be found in Table 4.
The hardware configurations used in this experiment were inspired by AWS’s
M5 EC2 instances. As such, our configurations are meant to be representable of
these instance types. The results of this experiment can be observed in Fig. 8.

EC2
Instance

Server
Count

Underlying
Hardware

m5.xlarge 1 4 cores (1.80 GHz) / 16 GB

m5.2xlarge 1 8 cores (1.80 GHz) / 32 GB

m5.4xlarge 1 16 cores (1.80 GHz) / 64 GB

m5.8xlarge 1 32 cores (1.80 GHz) / 128 GB

m5.12xlarge 1 48 cores (1.80 GHz) / 192 GB

Table 4. Heterogeneous environment hardware specifications used for experimentation.

It is known that certain load balancing algorithms exploit the nature of
heterogeneous systems while others rely on the homogeneity of servers to perform
well. As with the impact of algorithms experiment, URI performs well for tasks
of one type but poorly for tasks of another type. For POST tasks, URI is able
to meet the deadline for all scenarios except for an incoming task rate of 17.5k
tasks/60s. Additionally, with the heterogeneous environment, we see less overlaps
in performance trends between tasks. For example, in the homogeneous results,
random, leastconn, static-rr, and roundrobin all exhibited the same performance
behaviors. However, in the heterogeneous results, random and leastconn share
similar behaviors alone while static-rr and roundrobin share behaviors.

We can also observe that the overall response times increase drastically when
utilizing a heterogeneous server environment as compared to the homogeneous
counterpart. For example, random showcases a relatively small curve for both

Title Suppressed Due to Excessive Length 17

Fig. 8. Performance results of heterogeneous environment experiment. Due to trend
overlaps, the following algorithms are stacked: [static-rr, roundrobin], [random, least-
conn].

task types in a heterogeneous environment. In the homogeneous results, random
showed similar agnostic behavior in regards to task type, but possessed a 63.75%
lower response time for an incoming task rate of 20k tasks / 60s.

Load balancing algorithms source and URI both use information from incom-
ing tasks to partition workloads to application servers in a manner that could be
exploited by server heterogeneity. However, from these results, it can be claimed
that URI can potentially show better performance at the cost of reliability in
terms of task type while source shows better robustness to task task at the cost
of response time. One potential explanation for this dynamic may lie within
the differences in task characteristics NLB and ALB algorithms observe. NLB
algorithms only examine network-level information about a given task, such as
the user’s IP address. This kind of information is not particular to a task and
fails to provide important features that describes an incoming workload. On the
other hand, ALB algorithms examine more granular information about a task,
such as the page requested. Under the guise of an ecommerce store, particular
pages may be more object-rich. From this example, an ALB algorithm will be
able to determine the ”weight” of an incoming task and better act accordingly,
as compared to NLB algorithms.

18 C. Rawls et al.

Best Practice It is imperative to utilize algorithms that can properly exploit
server heterogeneity if the backend is not homogeneous. ALB algorithms that fit
into this category (URI) show better performance results.

10 Extending HAProxy with Custom Load Balancing
Methods

Utilizing the available options HAProxy provides may prove suitable for many
general use cases. However, it may be desired to further tune HAProxy’s perfor-
mance, we design custom load balancing algorithms to cater to specific use cases.
Being that HAProxy is open-source, we can easily dive deep into its source code
to edit the way an algorithm behaves or add our own custom algorithm. In this
section, we will describe an example scenario for customizing a specific algorithm
while highlighting important aspects of HAProxy’s code. We will be referring to
files and directories that can be found on HAProxy’s GitHub repository [8].

In our example, we will be customizing the load balancing algorithm random.
We would like to inject additional information into its logic to consider for load
balancing incoming requests. The current method provides ample task dispersion
so as to not “overcrowd” one specific server. For the sake of illustration, in our
example, we desire to further increase the granularity of the equality of resource
partitioning.

The load balancing algorithm that is desired to be edited is called from the
file backend.c in HAProxy’s src/ directory. The assign_server function is
used to parse which algorithm the user has decided from their configuration file
and call the algorithm itself. Additional to this, the HTTP request is passed as
an object possessing various characteristics such as URL paths and headers. In
our case, the get_server_rnd function is called. Located in this function is the
core of the load balancing logic.

For our example, we capture CPU utilization information from our appli-
cation servers using the libvirt library [10]. We implement a custom library to
capture this information remotely and embed it into HAProxy’s code. The cur-
rent CPU utilization of each server is recorded in real-time and called from
get_server_rnd before making its final decisions. Specifically, the random al-
gorithm will only pull from a list of possible servers whose CPU utilization lies
below a user-specified threshold. From here, we let the default random algorithm
take over and return the selected server.

When adding custom libraries, it is necessary to include them in the Makefile.
Specifically, the OBJS variable must include the new object file that is desired to
be created from the new header file.

HAProxy’s code is complex and should be respected when adding addi-
tional content. To avoid any potentially unwanted behaviors or errors, leaving
HAProxy’s code as default as possible is a good measure. In our example, we seg-
regate our custom logic as much as possible from HAProxy’s original logic. We
attempt to minimize the association that our code holds with HAProxy and let

Title Suppressed Due to Excessive Length 19

it perform its own actions where it can. Customizing with this idea in mind will
prevent any unforeseen consequences should an unassuming variable or block of
code is interacted with, causing a snowball effect somewhere else in HAProxy’s
dense architecture.

Once the code has been altered and it is time to compile, there is a list of
options to choose from such as lua version, multithreading support, and target
compiler. A list of these options can be found in the Makefile. In our exam-
ple case, we include the additional libvirt library to support the CPU utilization
readings. To compile additional libraries that HAProxy would otherwise be unfa-
miliar with, the compile command must include the options ADDINC and ADDLIB

for acknowledging the library path and adding the library to the list of libraries
to be compiled, respectively. Here is our full command to compile with the in-
cluded libvirt library:

make -j \$(nproc) TARGET=linux-glibc USE\textunderscore LUA=1

LUA\textunderscore INC=/opt/lua-5.4.3/src/ LUA\textunderscore

LIB=/opt/lua-5.4.3/src/ ADDINC=-L/opt/libvirt ADDLIB=-lvirt

↪→

↪→

From here, one can simply make install and then run the customized HAProxy
program.

11 Conclusion and Future Works

In this work, we studied HAProxy load balancer. We explored its internal me-
chanics and its parameters. Specifically, we unfolded the load balancing algo-
rithms it uses and examined them under real-world settings with various work-
load intensities and under homogeneous and heterogeneous back-end servers. We
realized that: (A) When running HAProxy in isolation on a given server, using
the default value of processing threads leads to the best performance in terms
of response time. If HAProxy is sharing the host machine with additional pro-
cesses, then users might be inclined to lower the number of threads HAProxy
controls. Our experiments show that this will come with a marginal increase in
the response time of requests. (B) Under general load balancing scenarios in a ho-
mogeneous server environment, the algorithms that provide the lowest response
times are random, leastconn, roundrobin, and static-rr. Furthermore, these al-
gorithms exhibit little deviation amongst themselves in trends in response time.
Utilizing algorithms that can exploit server heterogeneity may lead to potential
increases in performance at the cost of necessary system profiling and further
resource tuning. (C) If using a heterogeneous server environment, it is applicable
to use algorithms that perform well under homogeneous scenarios. Therefore, it
is necessary to characterize the servers and implement either source or URI algo-
rithms to receive the acceptable performance for the deployed application. (D)
ALB algorithms that exploit heterogeneous natures show better performance
than their NLB counterpart.

In the future, we plan to extend HAProxy with custom-designed load bal-
ancing algorithms. Importantly, we plan to implement the ability to proactively

20 C. Rawls et al.

drop task requests that are unlikely to meet their deadlines. Such a method
can have at least two benefits: (A) coping with the oversubscribed situation and
make the system busy for tasks with a higher chance of meeting their deadlines;
and (B) handling Denial of Service (DoS) attacks and proactive drop (ignore)
tasks that are artificially generated to make the system unresponsive.

References

1. Apache icon. https://download.logo.wine/logo/Apache_HTTP_Server/Apache_
HTTP_Server-Logo.wine.png. Accessed: 2022-10-12.

2. Apache jmeter. https://jmeter.apache.org/. Accessed: 2022-12-11.

3. Apache jmeter icon. https://www.titans.sk/en/freelancers/project/test-a

nalytik-211026a/. Accessed: 2022-10-12.

4. Aws auto scaling. https://aws.amazon.com/autoscaling/. Accessed: 2022-12-11.

5. Azure autoscale. https://azure.microsoft.com/en-us/products/virtual-mac

hines/autoscale/. Accessed: 2022-12-11.

6. Consumer insights. https://www.thinkwithgoogle.com/consumer-insights/

consumer-trends/mobile-page-speed-new-industry-benchmarks/. Accessed:
2022-12-11.

7. Haproxy. http://docs.haproxy.org/2.6/intro.html. Accessed: 2022-12-11.

8. Haproxy. https://github.com/haproxy/haproxy. Accessed: 2022-12-11.

9. Haproxy icon. https://upload.wikimedia.org/wikipedia/commons/a/ab/Hapr

oxy-logo.png. Accessed: 2022-10-12.

10. libvirt. https://libvirt.org/index.html. Accessed: 2022-12-11.

11. Mysql icon. https://cdn.icon-icons.com/icons2/2699/PNG/512/mysql_logo_

icon_169941.png. Accessed: 2022-10-12.

12. Wordpress. https://codex.wordpress.org/Main_Page. Accessed: 2022-12-11.

13. Wordpress icon. https://cdn-icons-png.flaticon.com/512/174/174881.png.
Accessed: 2022-10-12.

14. Mahmoud Darwich, Ege Beyazit, Mohsen Amini Salehi, and Magdy Bayoumi. Cost
efficient repository management for cloud-based on-demand video streaming. In
Proceedings of the 5th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud), pages 39–44, 2017.

15. Chavit Denninnart, Mohsen Amini Salehi, Adel Nadjaran Toosi, and Xiangbo Li.
Leveraging computational reuse for cost-and qos-efficient task scheduling in clouds.
In Proceedings of the International Conference on Service-Oriented Computing (IC-
SOC ’18), pages 828–836, 2018.

16. James Gentry, Chavit Denninnart, and Mohsen Amini Salehi. Robust dynamic
resource allocation via probabilistic task pruning in heterogeneous computing sys-
tems. In Proceedings of the 33rd IEEE International Parallel & Distributed Pro-
cessing Symposium, IPDPS ’19, May 2019.

17. John A Hoxmeier and Chris DiCesare. System response time and user satisfaction:
An experimental study of browser-based applications. 2000.

18. Xiangbo Li, Mohsen Amini Salehi, Yamini Joshi, Mahmoud Darwich, Landreneau
Brad, and Magdi Bayoumi. Performance analysis and modelling of video stream
transcoding using heterogeneous cloud services. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 30(4):910–922, Sep. 2018.

https://download.logo.wine/logo/Apache_ HTTP_Server/Apache_HTTP_ Server-Logo.wine.png
https://download.logo.wine/logo/Apache_ HTTP_Server/Apache_HTTP_ Server-Logo.wine.png
https://jmeter.apache.org/
https://www.titans.sk/en/freelancers/project/test-analytik-211026a/
https://www.titans.sk/en/freelancers/project/test-analytik-211026a/
https://aws.amazon.com/autoscaling/
https://azure.microsoft.com/en-us/products/virtual-machines/autoscale/
https://azure.microsoft.com/en-us/products/virtual-machines/autoscale/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-page-speed-new-industry-benchmarks/
http://docs.haproxy.org/2.6/intro.html
https://github.com/haproxy/haproxy
https://upload.wikimedia.org/wikipedia/commons/a/ab/Haproxy-logo.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Haproxy-logo.png
https://libvirt.org/index.html
https://cdn.icon-icons.com/icons2/2699/PNG/512/mysql_ logo_icon_169941.png
https://cdn.icon-icons.com/icons2/2699/PNG/512/mysql_ logo_icon_169941.png
https://codex.wordpress.org/Main_Page
https://cdn-icons-png.flaticon.com/512/174/174881.png

Title Suppressed Due to Excessive Length 21

19. Xiangbo Li, Mohsen Amini Salehi, and Magdy Bayoumi. Vlsc: Video live streaming
based on cloud services. In Proc. of Big Data & Cloud Applications Workshop, as
part of the 6th IEEE International Conference on Big Data and Cloud Computing
BDCloud, volume 16, 2016.

20. Xiangbo Li, Mohsen Amini Salehi, Magdy Bayoumi, Nian-Feng Tzeng, and Rajku-
mar Buyya. Cost-efficient and robust on-demand video stream transcoding using
heterogeneous cloud services. IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), 29(3):556–571, Mar. 2018.

21. Hossain Deldari Mohsen Amini Salehi. Grid load balancing using an echo-system of
intelligent ants. In Proccedings of the 24th IASTED International Multi-Conference
Parallel and Distributed Computing and Networks, 2006.

22. Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random
choices: A survey of techniques and results. Combinatorial Optimization, 9:255–
304, 2001.

23. Mohsen Salehi and Rajkumar Buyya. Adapting market-oriented scheduling poli-
cies for cloud computing. In Algorithms and Architectures for Parallel Processing,
volume 6081 of ICA3PP’ 10, pages 351–362. Springer Berlin / Heidelberg, 2010.

24. Mohsen Salehi, Hossain Deldari, and Bahare Dorri. MLBLM: A Multi-level Load
Balancing Mechanism in Agent-Based Grid. In Soma Chaudhuri, Samir Das, Hi-
madri Paul, and Srikanta Tirthapura, editors, International Conference Distributed
Computing and Networking, volume 4308 of ICDCN ’06, pages 157–162. Springer
Berlin / Heidelberg, 2006.

	Load Balancer Tuning: Comparative Analysis of HAProxy Load Balancing Methods

