
HLSAAS: HIGH-LEVEL LIVE VIDEO STREAMING AS A SERVICE

Mohsen Amini Salehi1, Xiangbo Li2

1HPCC Laboratory, Computer Science Department
2The Center for Advanced Computer Studies

University of Louisiana Lafayette, LA 70504, USA
{amini,xxl894}@cacs.louisiana.edu

1. INTRODUCTION

An increasingly popular type of streaming service is live
video streaming that enables users to broadcast videos via
the Internet while they are captured. For instance, using
Livestream1, viewers are able to watch the contents being
captured by users on their smart phones, laptops, and TVs.

Thanks to the high speed Internet, basic live video stream-
ing is feasible nowadays. However, what is offered cur-
rently is far from the high-level services and qualities de-
manded by the viewers and video providers. High-level
streaming services is defined as any types of further pro-
cessing on the streaming videos. For instance, the current
basic live streaming providers support a single generic dis-
play format and the viewers have to adapt their devices (e.g.,
in terms of compression standards) to this supported format.
However, viewers’ demand is to have a high quality video
stream converted (i.e., transcoded) based on the characteris-
tics of their display devices. Another instance of high-level
video streaming services, is to preserve the privacy of cap-
tured objects (e.g., people faces or car plate numbers) in the
streaming videos. These instances will be described in more
details in Section 2.

The challenge in further processing of the video streams
is twofold: first, video processing is computationally ex-
pensive and requires huge computing infrastructures; sec-
ond, the video processing has to be carried out in a real-
time manner to fulfill the QoS demands of live streaming
viewers.

To address these challenges, streaming providers are in-
creasingly becoming reliant on cloud services for their com-
putational needs. The problem in utilizing cloud services,
however, is to spend the minimum cost for the services while
meeting the viewers’ QoS demands. In particular, live stream-
ing viewers have unique QoS demands. They need to re-
ceive video streams without any delay. That is, the video
processing tasks should be completed within a short dead-
line (i.e., before their presentation times). Tasks that miss
their presentation times must be dropped (i.e., discarded)
to keep up with the live streaming. Accordingly, the drop
rate is defined as the percentage of tasks that cannot com-

1https://livestream.com/

plete before their presentation deadlines. In addition, view-
ers generally judge the streaming providers based on the de-
lay in the first few seconds of the stream, termed the startup
delay. Under this circumstance, to maximize viewers’ sat-
isfaction, video streaming QoS demand is defined as mini-
mizing the startup delay and the drop rate.

To support a flexible range of high-level live video stream-
ing services, we present an architecture called High-level
Live Streaming as a Service (HLSaaS). The architecture is
able to accept any high-level video processing request and
apply that on the live video streams. According to the re-
quested high-level service, the HLSaaS architecture allo-
cates computational resource from cloud to minimize the in-
curred cost while respecting the QoS demands of the view-
ers.

2. HIGH-LEVEL LIVE VIDEO STREAMING

A Video stream consists of several sequences. Each se-
quence is further divided into multiple Group Of Pictures
(GOP) with sequence header information in the beginning.
GOP is essentially a sequence of frames beginning with an I
(intra) frame, followed by a number of P (predicted) frames
or B (be-directional predicted) frames. We consider each
GOP as the processing unit for video stream processing.

There are various high-level live streaming services that
can take advantage of our proposed HLSaaS architecture.
For each of these applications, the architecture fulfills the
streaming QoS demands and minimizes the incurred cost to
the stream provider. Below, we explain two of such appli-
cations.

2.1. Privacy-aware Live Video Streaming

In live video streaming, while the video is being captured,
it is streamed and presented to the users in a real-time man-
ner. However, usually there are unintended contents in the
videos that can reveal unauthorized information and threats
the privacy. For instance, commonly, people’s faces are un-
intentionally captured while we record and stream a video
from a scene. Another example is the car plate numbers that
are captured unintentionally when we stream a video. How-



Figure 1: An overview of HLSaaS: A High-level Live Streaming as a Service architecture

ever, people or car owners may not like to be recognizable
in the video streams.

Currently, there is no solution to blur or remove the
unauthorized contents from the frames in a live video stream.
The HLSaaS architecture enables video broadcasters to blur
the unauthorized parts before their contents are reached to
the viewers while it maintains the cost-efficiency and stream-
ing QoS demands.

2.2. Live Video Transcoding

Captured videos usually should be converted (i.e., transcoded)
from the original format based on the characteristics of the
viewers devices (e.g., supported spatial resolution, frame
rate, and bit rate).

The HLSaaS architecture enables stream providers to
support a wide range of viewers’ display devices by intro-
ducing transcoding operations for those devices.

3. HLSAAS ARCHITECTURE

We propose an architecture to provide high-level live video
streaming services using cloud. The architecture (presented
in Figure 1) shows the sequence of actions taken place when
viewers request videos from a live streaming service provider.
Cooperation of these components leads to cost-efficient and
QoS-aware live streaming. These components are as fol-
lows:

Video Splitter: Splits each video into several GOPs,
that can be processed independently. Each GOP has an in-
dividual deadline based on the presentation time of the first
frame in that GOP. In live streaming, if a GOP misses its
deadline, it is dropped. Execution Time Estimator: In live
streaming, the execution time of GOP tasks are unknown.
This component estimates the execution time using machine
learning techniques.

(GOP) Task Scheduler: is responsible for mapping GOPs
to the processing servers (VMs). The scheduler goal is to
satisfy the QoS demands of clients in terms of minimum
startup delay and GOP drop rate of video streams.

For scheduling, GOPs of the requested video streams
are batched in a queue upon arrival. To minimize the startup
delay, we consider another queue termed the startup queue
with higher priority. The first few GOPs of each new video

stream are placed in the startup queue. The scheduler maps
GOPs to the VM that provides the shortest completion time.
We assign a higher priority to the GOPs of the startup queue.
However, the priority should not cause missing the dead-
lines of tasks waiting in the batch queue.

Stream Processing Virtual Machines (VM): VM(s)
are allocated from the cloud provider to process GOP tasks.
Each VM has a local queue where the required data for
GOPs are preloaded before execution. We assume that the
GOP tasks in the local queue are scheduled using the FCFS
method. Virtual Cluster Manager (VCM): Monitors the
operation of VMs, and resizes the VM cluster to meet the
viewers’ QoS demands and to minimize the incurred cost of
the streaming provider. Video Merger: places all the pro-
cessed GOPs in the right order, creates the live stream, and
sends the processed live streams to the viewers.

4. PERFORMANCE EVALUATION

We evaluated the scheduling of the HLSaaS for live video
transcoding service. For that purpose, we varied the number
of live streaming requests and measured the average startup
delay of the streaming videos. Figure 2 demonstrates how
the average startup delay of live streams is reduced when the
proposed QoS-aware scheduling method is applied in com-
pare with a non QoS-aware scheduling method. We observe
that by using the QoS-aware scheduling, the average startup
delay is less than 1 second. Plus, the startup delay remains
almost constant as the number of live streaming requests in-
creases.

Figure 2: Average startup delay for various number of live
streaming video requests.


