
* * *

S U RV E Y A RT I C L E
Jou rna l Se c t i on

Efficiency in the Serverless Cloud Paradigm: A
Survey on the Reusing and Approximation Aspects

Chavit Denninnart1 | Thanawat Chanikaphon1 |
Mohsen Amini Salehi1

1High Performance Cloud Computing
(HPCC) Laboratory, School of Computing
and Informatics, University of Louisiana at
Lafayette, Louisiana, 70503, USA

Correspondence
Mohsen Amini Salehi, High Performance
Cloud Computing (HPCC) Laboratory,
School of Computing and Informatics,
University of Louisiana at Lafayette,
Louisiana, 70503, USA
Email: amini@louisiana.edu

Funding information
CNS-2007209, CNS-2007209

Serverless computing alongwith Function-as-a-Service (FaaS)
is forming a new computing paradigm that is anticipated to
found the next generation of cloud systems. The popular-
ity of this paradigm is due to offering a highly transparent
infrastructure that enables user applications to scale in the
granularity of their functions. Since these often small and
single-purpose functions are managed on shared comput-
ing resources behind the scene, a great potential for compu-
tational reuse and approximate computing emerges that if
unleashed, can remarkably improve the efficiency of server-
less cloud systems—both from the user’s QoS and system’s
(energy consumption and incurred cost) perspectives. Ac-
cordingly, the goal of this survey study is to, first, unfold the
internal mechanics of serverless computing and, second,
explore the scope for efficiency within this paradigm via
studying function reuse and approximation approaches and
discussing the pros and cons of each one. Next, we outline
potential future research directions within this paradigm
that can either unlock new use cases or make the paradigm
more efficient.

*Equally contributing authors.

1

2 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

1 | INTRODUCTION

1.1 | Serverless Computing Paradigm

The first generation of cloud technology, established around 2010, mitigated the burden of system administration and
maintenance via consolidating servers and forming centralized data centers. It is anticipated that the second genera-
tion of cloud technology focuses on mitigating the burden of developing cloud-native applications for programmers
and solution architects via the serverless computing paradigm [1].

Serverless computing provides the developers with high-level software abstractions, such as functions, a.k.a.
Function-as-a-Service (FaaS), and transparently deploying them, such that the user has the illusion of having no servers
to manage [2]. Accordingly, modern software engineering methodologies, such as DevOps [3] and Continuous Inte-
gration Continuous Delivery (CI/CD) pipelines [4], have adopted the serverless computing paradigm to facilitate rapid
cloud-native application development. These methodologies instruct splitting an application into several functions
that are invoked periodically or in response to an event. Behind the scene, each function invocation leads to the
execution of one or an ordered set of stateless microservice(s) [5].

As shown in Figure 1, the serverless computing paradigm can be defined as the combination of FaaS and BaaS
(Backend-as-a-Service) subsystems (i.e., Serverless = FaaS + BaaS [1]). While FaaS focuses on the front-end develop-
ment of functions in a wide variety of programming languages, BaaS focuses on the transparent and isolated execution
of the functions. BaaS is also in charge of data storage, scheduling, monitoring, and transparent elasticity of the func-
tions. It is noteworthy that serverless computing is a loose term, and it does not strictly enforce the user’s code to
be based on FaaS. Moreover, Serverless solutions are sometimes abstracted from the user perspective. For instance,
Amazon Athena [6] is an interactive SQL-like query processing service for Amazon S3 data. Although Athena operates
based on serverless principles, its users may consider it as a Platform-as-a-Service (PaaS) instead.

Function1
Trigger1

Functionn

Triggern
...
FaaS BaaS

Serverless Platform

Multimedia
Streaming

Transaction
Processing

IoT Data
Processing ...

Applications

Scheduler

Elasticity

Configuration

Object
Storage

Cloud Infrastructure

 Data
Analytics

F IGURE 1 The serverless computing paradigm mitigates the burden of developing cloud-native applications via offering a
high-level programming abstraction (FaaS) and transparently executing them (BaaS). Different applications can define and
trigger functions with minimal configurations needed for each function.

A common approach to handle function calls (henceforth, called users’ requests or tasks) in BaaS is to gather the
requests from all triggering sources (e.g., API calls, timer, and events) into a central queue. Then, a resource allocator
maps these requests to scalable pools of computing resources. To isolate the requests from each other and to avoid
the side effects of using shared resources, often, some forms of task sandboxing, such as containers or micro Virtual
Machines (e.g., Firecracker VM [7]), are employed.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 3

transcode(v1,c1)

transcode(v1,c2)

decode(v1)load(v1)

load(v1) decode(v1)

encode(c1)

encode(c2)

transcode
(v1,c1)

transcode(v1,c2)

load(v1)

encode(c1)

encode(c2)

(a)
Separate
Function
Execution

(b)
Function
Reusing

bitrate(v1,b1)

bitrate(v1,b2)

decode(v1)load(v1)

(c)
Function

Approximation
≈bitrate(v1,b1)

decode(v1)

encode(b1)

Approximation
Engine

F IGURE 2 Comparison of three scenarios to handle similar function invocations: (a) separately executing functions; (b)
reusing load and decode microservices of the function calls, and (c) approximating a function call and making it compatible with
an existing one.

1.2 | Scope for Efficiency in the Serverless Computing Paradigm

The shared and transparent nature of serverless systems offers great potential for efficiency—both from the system
and user perspectives. From the system end, metrics such as throughput, utilization, energy consumption, and carbon
emission, and from the user end, Quality of Service (QoS) (e.g., turnaround time), and the user’s incurred cost can be
potentially improved.

The potential efficiency improvement can be unleashed, primarily via smart resource allocation methods that
can identify identical and/or similar tasks in the serverless system. As a motivating example, consider the case of
a serverless cloud used for processing live video contents before streaming them to the viewers [8]. As shown in
Figure 2, the system has transcode(v,c) function to change the codec of video segment v to c; and bitrate(v,b)

function to change the bit-rate of video segment v to b. The figure shows possible scenarios of function execution in
the system. Consider two invocations of transcode(v1,c1) and transcode(v1,c2) coexist in the system. Without
merging, shown in Figure 2(a), the two invocations separately load, decode, and encode the video. Alternatively, by
merging these invocations into one task, shown in Figure 2(b), the load and decode identical operations can be reused,
and then encode operation into two different codecs is carried out individually. Because transcode() function cannot
be approximated, consider bitrate() function to explain function approximation. In this case, shown in Figure 2(c),
one invocation, bitrate(v1,b2), can be approximated to bitrate(v1,b1), hence, the whole execution chain can be
reused. Accordingly, two main directions to improve the efficiency of serverless computing can be enumerated as
follows:

1. Computational reuse that avoids redundant processing of identical or similar function requests. It focuses on
reusing the whole or part of the execution, underlying platform (e.g., container), and allocated resources of a
process. A well-established reusing approach is based on caching [9] that can avoid the re-execution of a recent
task. While caching is retroactive by nature and can only capture identical tasks, in serverless computing, there is
a scope for proactive reusing. In this manner, similar (or identical) concurrent function calls can be aggregated to

4 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

one merged task to reuse a part of (or the whole) computation—even before an instance of the task is complete
and cached. For example, the scheduler of a serverless system can detect two workflows that share the same
sub-task (or use the same data) ahead of time, and schedule the sub-task or data to be reused.

2. Approximate computing that can be employed in contexts where lower quality (less accurate) results can be tol-
erated (e.g., Machine Learning (ML), live-streaming, etc.). Using approximate computing, the cost, energy, and
response time of the serverless cloud can be reduced. Some common approaches for approximate computing
include scaling down the precision of the invoked function, downsampling its input data, skipping some compu-
tation steps in the function workflow, or approximating the function result from similar or recent invocations.

It is noteworthy that, in use cases where security is a concern, function reuse and approximation can be carried
out on subsequent function invocations of the same user. Nevertheless, in other use cases where there is no se-
curity concern (e.g., stateless functions performing mathematical operations [10]) reusing and approximation can be
implemented more broadly—across users or organizations.

1.3 | Positioning of This Survey Study

To position this survey paper, we describe recent related studies from academia and industry that focus on serverless
computing, and then, in Table 1, we summarize the comparison and highlight the topics covered in each work.

(i) Optimizing and extending serverless platforms by Nazari et al. [11]: This study focuses on the cold start and startup
time optimizations, inter-function communication techniques, and possible extensions to the serverless platform. Al-
though the serverless optimization aspects overlap with our work, we concentrate on the reusing and approximate
computing techniques that are not covered in them.
(ii) Architectural design of serverless systems by Li et al. [12]: This work decouples the serverless architecture into
four stacked layers namely, virtualization, encapsulation, orchestration, and coordination. The survey includes mul-
tiple techniques of implementation and efficiency improvements, such as pre-warming and scheduling strategies. In
contrast, our work encompasses optimization techniques that are achieved at the intersection of the platform and
application levels.
(iii) Eismann et al. [13] survey the state of serverless applications by providing a systematic study of serverless applica-
tions. They analyze 16 characteristics of 89 serverless applications collected from open-source projects and literature
and compared the results with 10 related survey studies and datasets to analyze community consensus.
(iv) Raza et al. [14] measure various features and performance metrics of the commercial and open-source FaaS
platforms. They particularly study the performance per cost benefits from the application developer’s perspective.
Several optimization techniques are discussed to present a developer’s decision-making factor in choosing a FaaS
platform.
(v) Serverless computing survey conducted byMampage et al. [15]: This work identifies aspects of serverless resource
management and proposes a taxonomy of elements that influence these aspects, encompassing characteristics of
system design, workload attributes, and stakeholder expectations. However, the proposed taxonomy does not include
efficiency improvement aspects such as approximate computing.
(vi) The survey of opportunities and challenges in serverless by Li et al. [16]: This paper collects papers reflecting the
state of the art of serverless computing. They identify the serverless computing model’s challenges and study how
the existing works address them. Their work presents various areas that need further attention from the research
community, on the contrary, our work particularizes on the scope for efficiency in the serverless paradigm.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 5

Naz.
et al.
[11]

Li
et al.
[12]

Eism.
et al.
[13]

Raza
et al.
[14]

Mam.
et al.
[15]

Li
et al.
[16]

Chak.
et al.
[16]

CNCF
[18]

Data-
dog
[19]

IBM
[20]

This
sur-
vey

stateful serverless ✓ ✓ ✓ ✓ ✓

cold start ✓ ✓ ✓ ✓ ✓ ✓

security ✓ ✓ ✓ ✓ ✓ ✓

trend ✓ ✓ ✓ ✓ ✓ ✓

compare solutions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

deterministic ✓ ✓ ✓ ✓ ✓ ✓

data level ✓

instruction level ✓

semantic ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

Prior studies

Pl
at
fo
rm

as
pe

ct
s

Challenges

Adoption

Pe
rfo

rm
an
ce

as
pe

ct
s Reusing

Approx.

Reuse & approx.

Scheduling

Future direction

TABLE 1 Positioning of this survey study with respect to prior survey studies in the serverless computing area.

(vii) Chakraborty et al. [17] compare cloud frameworks on the basis of different paradigms. Cloud computing, fog
computing, Cloud of Things (CoT), and Fog of things (FoT) paradigms are discussed with their respective properties
and limitations. Our work is conducted with a comparable aspect, but dives deeper into the serverless paradigm.
(viii) CNCF annual survey [18]: It is a statistical report that contains a list of up-to-date technologies and serverless
providers.
(ix) The state of serverless by Datadog [19]: The report analyzes the current trends of serverless applications on
three leading cloud providers namely, AWS, Google Cloud, and Microsoft Azure.
(x) Enterprise-level serverless systems by IBM [20]: This survey was conducted by IBM Market Development & In-
sights (MD&I) and encompasses the perception of enterprises from the serverless paradigm, in areas like user experi-
ence, security, and CEO opinions.

A summary of the characteristics of these studies is compared in Table 1. In the table, we can see that several
prior works focus on the platform and specification aspects of the serverless systems, whereas, our work concentrates
on the potential to improve the performance of serverless systems via novel computational reuse and approximate
computing techniques.

1.4 | Paper Structure

Before studying efficiency in serverless cloud computing, we need to learn about the nuts and bolts of serverless
computing. Accordingly, in the rest of this survey, we first dive deep into the serverless computing details and study
its anatomy. Next, we compare the serverless systems against other distributed computing paradigms and discuss
why a separate study is required to make these systems efficient. Then, we concentrate on the efficiency of the
serverless systems. The examples described in the previous part only show one possible scenario for reusing and
approximating a function. We are to explore the potential for different forms of function reuse and approximation
that can be unleashed, thereby, enabling efficient serverless cloud computing. An overview of the approaches that
are studied in this work is shown in Figure 7.

We believe this survey study can help the research community to further develop these areas and build more
efficient serverless computing platforms. The rest of the paper is organized as follows: Section 2 introduces the current
state of commercial and research-based serverless computing platforms. Section 3 address the unique characteristics

6 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

Application
Provider

Function
Manager

i) Two Functions
Uploaded

Cloud
Gateway

ii) User or Application
triggers Function 1

Function Repository

Serverless Cloud

Function1
Trigger1

Function
Executor

iii) Function 1 is executed and the result is returned
iv) Repeat from step ii) for Function 2 with the result of Function 1

Function2
Trigger2

Application
Provider

Function
Manager

1) Two Functions
Uploaded as a

workflow

Cloud
Gateway

ii) User or Application
Triggers the Workflow

Function Repository

Serverless Cloud

Function1
Trigger1

Function
Executor

iii) Function1 then Function 2 are executed, only the result of
Function 2 is returned

Function2
Trigger2

F IGURE 3 An example workflow with two functions uploaded by the application provider. In this example, the
Function trigger is configured as an on-demand API request and the result of Function 1 serves as the input for
Function 2. Scenario A (on the left) sets up two functions separately. Scenario B (on the right) chains two functions
on the serverless platform.

of serverless that provide potential and burden to reusing and approximation techniques. Then, Section 4 discusses
the potential of computational reuse on various parts of the serverless computing platform. Next, Section 5 discusses
the approximate computing techniques that can be applied on serverless computing platforms. Section 6 lists some
potential development directions to increase data and compute reusability in serverless computing platforms. Finally,
we conclude this paper in Section 7.

2 | NUTS AND BOLTS OF THE SERVERLESS COMPUTING PARADIGM

2.1 | Introducing Serverless Computing

Serverless computing and FaaS abstract the users from both server maintenance and management. However, un-
like PaaS, using serverless entails breaking the application into multiple functions that each one can potentially be
developed in a different programming language. Then, the entire function execution management, such as resource
allocation, scaling, scheduling, fail-over, and platform configurations, are transparently handled by the underlying
serverless platform. As such, this paradigm simplifies the software development process and enables the users to
become solution-oriented and focus on their business logic, rather than specific server configuration details.

2.2 | Functions Triggers in Serverless Computing

FaaS enables users to develop functions and define a way to enact their execution, called function triggers. FaaS
platforms desire the user’s application to be constructed as a set of single-purpose functions that receive a set of
input parameters and yield a set of outputs [21]. Each function is managed and scaled independently by the BaaS
platform.

Function triggers are typically based on API calls (e.g.,web requests), timers, and completion of other events (e.g.,
completion of another task) [22,23]. As shown in Figure 3, twomain ways to designate function triggers for serverless
workflows are: (a) Defining the trigger for each function individually; and (b) Utilizing a workflow schema (e.g., JSON
workflow definition [24]). In scenario A of Figure 3, the application provider creates two functions separately (through
the functionmanager) in the serverless platform. Upon triggering theworkflow through the cloud gateway, Function 1

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 7

is executed first. Then, the result is returned to the application provider, and the provider feeds the result of Function 1
to trigger Function 2 and get the intended result. In scenario B, however, the application provider chains two functions
as a workflow on the cloud. In this case, upon Function 1 completion, the serverless platform automatically triggers
Function 2 with the result of function 1 before returning the final result to the user.

Although defining an individual trigger for each function is simpler, more flexible and more popular, defining mul-
tiple function triggers together in form of a workflow schema is more advantageous. First and foremost, the schema
can provide useful metadata for the resource allocator in BaaS to identify parallelizable tasks and schedule them
together, thereby, improving the resource utilization and users’ QoS (e.g., waiting time). Second, using the schema,
complex function workflows can be defined that otherwise would be time-consuming and error-prone to build [25].
The third advantage is the portability and reusability that making use of the workflow schema offers. While per-
function triggers are tied to each function, the workflow of functions is defined within a schema file with a specific
syntax [25]. The schema can be used to effortlessly re-deploy the application on the same serverless platform. How-
ever, re-deploying the application on the different public serverless platforms is not achievable at this time, due to the
lack of platform-agnostic standards.

2.3 | The Matter of “Function State” in Serverless Computing

Functions in serverless computing are originally designed to be stateless. That is, a function does not maintain (i.e.,
memorize) any state data (e.g., shared variables) between consecutive invocations, and its output is merely subject
to its input arguments. Statelessness is, in fact, a primary practice in functional programming [26] that prevents side
effects [27], thereby, improving software robustness and predictability. This implies that, for a given input, a stateless
function (e.g., mathematical operation, query/string preprocessing, etc.) always yields the same output, thus, the
function results can be reused (e.g., via caching). In addition, stateless functions mitigate the overhead of serverless
platforms by relieving them from maintaining data consistency and synchronization in executing functions [2].

Despite the benefits of stateless functions, some applications naturally demand the state to be maintained. Refac-
toring the stateless version of these applicationsmakes them prohibitively inefficient. For instance, a big data analytics
workload (e.g., for semantic search [28]) cannot afford to load the entire dataset for each function call, nor can it afford
to forward the output to other functions along the workflow. A common approach to circumvent this situation is to
persist the state on the external storage services [29]. However, Pu et al. [30] demonstrate that employing external
storage to carry out serverless data analytics is up to 500× slower than using IaaS clouds. Note that, once the state
of a function is persisted on the external storage, it behaves as a stateful function and its results are not reusable
anymore (unless the state domain is small and cacheable).

The matter of state is still an open challenge in the serverless paradigm. Several research works have been under-
taken to offer a built-in stateful serverless solution [31]. Such solutions often employ some forms of key-value and/or
file-based storage. Sreekanti et al. [32] develop a stateful serverless platform, called Cloudburst, using Anna [33],
which is auto-scaling key-value storage, to persist the state. Pu et al. propose Shuffling [30], a stateful domain-specific
serverless platform for data analytics, with a hierarchical state persistence—a fast layer on the memory and a slower
one on the device storage. Schleier-Smith et al. develop a dedicated POSIX-like file-storage system to enable state-
ful serverless computing, called FAASFS [34]. It tackles multiple challenges of providing a shared file system across
functions, such as cache and transactional consistency [35, 36]. Shillaker and Pietzuch evaluate stateful functions
within the FAASM platform [37] via sharing the state in form of both memory segments and files. Kraft et al. propose
Apiary [38], a serverless framework for data-centric functions. It compiles application logic into a database stored
procedures to improve performance. On the other hand, some solutions for the function state operate based on the

8 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

actor model [39]. Azure Functions provide support for the Entity functions [40]. Kalix [41] and Apache Flink [42] offer
an implementation of the actor model for stateful serverless.

2.4 | Function Isolation in Serverless Computing

In principle, virtualization is not a must for FaaS and serverless cloud offerings. A user can essentially call a function
using a command in the general form of client.invoke(FunctionName=‘F’,Payload=Data) [43,44]. Upon invocation,
the FaaS engine can interpret the function and form a task that can be then directly executed on the host machine (i.e.,
bare-metal resource provisioning). However, lack of isolation in bare-metal raises security concerns, particularly, when
there are coexisting tasks from multiple users on shared computing resources. Therefore, some form of sandboxing is
required to isolate the execution environment of each function call. Broadly speaking, such isolation can be provided at
the following levels: application-level runtime frameworks (WebAssembly [45] and language runtime [46]), Operating
system-level (containerization), and hardware-level (virtualization). The layer-view of each isolation platform for the
serverless functions is provided in Figure 4 [47]. The software stack of each platform implies the overhead imposed
by that platform. In this figure, the left-most boxes serve as the legend—dedicating a color for each layer. The white
space(s) in each isolation platform express the absence of the corresponding layer(s), represented on the left-most
side. For example, On the Hypervisor (blue color) and Host OS Kernel (dark gray color) level, the existence of these
two colors on the VM column implies that both of these layers exist in the VM technology. Similarly, for Micro-VM
and Uni-Kernel, it is blue only (without gray) meaning that only the Hypervisor exists (without Host OS Kernel).

Guest OS Libs

Bare-Metal ContainerUniKernelMicro-VMVM

Host OS Libs

Function FunctionFunction Function Function
+ Libs

Virtualization

Hardware

Guest OS Kernel

Host OS
Kernel

Container
Function

Hypervisor

container
engine

F IGURE 4 A bird-eye view of the underlying layers of various isolation platforms for serverless functions. From left to
right, respectively, there are functions on bare-metal (e.g., via WebAssembly), various forms of VMs, and a container. The
number of layers implies the overhead of each isolation platform.

WebAssembly: WebAssembly (a.k.a. Wasm) is an open standard that enables the generation of portable binary
code from various high-level programming languages and interfaces the binary code with the underlying host environ-
ment. The binary can be executed both as a standalone code or within aWeb browser. WebAssembly and, particularly,
its software-fault isolation (SFI) feature [37] provides software-level isolation that can be used by serverless function
solutions. FAASM [37] is an instance of a serverless framework that executes functions on WebAssembly. Also, in
Kruslet [48], containers are replaced with WebAssembly in the context of the Kubernetes orchestrator [49]. Kruslet
listens to the Kubernetes event stream and upon receiving a task request, it executes the task on WebAssembly
runtime [2], instead of creating (container) pods.

Using Wasm in a WebAssembly-based serverless platform eases function migration across devices, edge, and

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 9

cloud. Since Wasm runtime is available on web browsers, the same packaged serverless function not only can be
executed on the cloud server, but also on the end-users’ web browsers. This allows the web application to have
an adaptive function scheduling such that in a certain scenario (e.g., user device has low battery or limited comput-
ing power), the function is executed on the cloud, whereas, in other scenarios (e.g., low bandwidth) the function is
executed locally on the device.

AlthoughWebAssembly can satisfy the needs of small-size functions, in many use cases, a specific environmental
setup, such as software packages and libraries, is required. Just-in-time preparation of these dependencies for each
function execution is time-consuming. Moreover, making use of WebAssembly implies compiling the functions to
WebAssembly which curbs the generality of the serverless solution. Therefore, for the sake of generality and to
maintain cost- and time-efficient preparation of functions, container or lightweight virtual machine (VM) technologies
are more commonly used in the serverless domain.

Language runtime: Similar to using WebAssembly, the language runtime can also be used as a lightweight exe-
cution environment. Dukic et al. [50] demonstrate overhead reduction via co-locating concurrent instances of the
same function within the same runtime. However, it limits supported language and requires application modifications.
Bruno et al. [51] develop a virtualized polyglot language runtime for serverless applications, called Graalvisor, using
Truffle [52], an interpreter-writing framework, to relax language limitations.

Containerization: The most common way to package and isolate the function is through containerization [53].
In this technology, a function is encapsulated within a widely-accepted container standard, termed Open Container
Initiative (OCI) format [54], which is supported in all modern containerization solutions. Any programming language
and/or software dependency can be supported, thus, the desired generality of serverless is accomplished. Unlike
VMs that emulate the entire operating system stack, containers share the host kernel, thereby, both the memory
and storage footprints are reduced. This pattern of reusing the kernel is extended to other layers within the container
image. Specifically, container images have a layered structure that encourages reusing software packages across these
images. Container engines use a method, called union mounting, through which a container is formed dynamically
(i.e., on-demand) via fetching its (read-only) layers at the runtime. Further details about union mounting are discussed
in Section 4.3.

Virtualization: Virtualization is the traditional method of providing strong isolation in cloud computing [55]. Due
to including the whole operating system and application stack in the VM image, in general, VMs suffer from high
memory and storage footprints. In addition, VMs introduce a high startup delay [56] to boot up, hence, they are
not a perfect fit for frequent starts and terminations inherent to the serverless functions [23]. As such, VMs are
usually employed as the underlying platform of the serverless frameworks, rather than an isolator of each function.
In this case, function isolation within the VM is offered either via application-level solutions (e.g., WebAssembly) or
containers.

Micro-VM: Although VMs are generally not ideal isolators for functions, there are some notable efforts to cus-
tomize VMs for functions. Firecracker [7] is an AWS open-source project that provides a lightweight VM (a.k.a. micro-
VM) with high isolation and low startup delay. It is being used by the AWS FaaS and serverless platforms (e.g., AWS
Lambda and AWS Fargate). Firecracker works similar to other full VM technologies that offer an isolated operating
system environment to the user. However, unlike other KVM-based VMs [57] that sit in the user space on top of
QEMU [58] (a machine emulator that enables VMs), Firecracker directly communicates with the KVM layer via a cus-
tomized emulation stack. While such a highly simplified emulation stack is sufficient for ordinary tasks, it lacks some
notable features, such as libraries to support GPU and specialized CPU instructions. As a result, serverless platforms
that use Firecracker, such as AWS Lambda, are currently unable to provide services demanding advanced facilities, e.g.,
those needed for GPU-based machine learning algorithms [59]. Another downside of Firecracker is its deployment

10 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

Memory Cost Startup Delay Security Main Pro Main Limitation

WebAssembly Low Short Software-fault Isolation Wasm runtime available on web browsers Limited language and library support

Low Short Software-fault Isolation Ultra lean for an application-level isolation Limited language and library support

Containerization Low Short Containerization Built-in container image partial reusing Container platform security threats

VM High Long VM Memory Isolation Accelerator access; Proven isolation High startup overhead

Micro-VM Low Short VM Memory Isolation Ultra lean for a VM-based isolation

Unikernel Low to Medium * Depends * VM Memory Isolation Better compatibility than Micro-VM

Language
runtime

*Unsuitable for task that
require large software dependencies

* Stores library within the function image,
thus, memory footprint may increase

TABLE 2 Comparison of isolation techniques with respect to their memory cost, startup latency, security, and their main
pros and limitations for serverless platform.

inflexibility because it only has to be deployed on top of the KVM hypervisor.
Unikernel [60] is another lightweight VM-based technology. Similar to micro-VMs (see Table 2 which compares

all the aforementioned isolation techniques), it bypasses the user space of the hypervisor. Moreover, it bypasses the
user space of the guest operating system too. Thus, to run a function inside Unikernel, required guest OS libraries
have to be incorporated at the application level. That is, the applications that are deployed within Unikernel have to
encapsulate all their required libraries. Storing libraries on each function image causes substantial data redundancy and
overhead. As such, Unikernel utilization becomes limited to small functions that do not require large dependencies.

2.5 | Cold Start vs Warm Start Functions

In a container-based serverless platform, a functioning container that resides in the memory to be launched rapidly is
generally referred to as a warm start container. In contrast, a function that must be loaded from the storage system in
an on-demandmanner is referred to as a cold start container [5]. The cold start function involves loading the container
image that (depending on the container size) imposes a nontrivial time overhead and can potentially dominate the
function execution time [5]. The overall cold start overhead of a function can be approximated by multiplying the
function invocation frequency and the cold start overhead.

Note that, calculating the cold start overhead can be further complicated when other system factors, such as
elasticity and storage location, are taken into consideration. Importantly, there can be a lower-level cold start in
which a function has to undergo the elasticity overhead and wait for the underlying VM (or hardware) to be made
available before it can be loaded into its memory. Depending on the storage location, the cold start overhead can
be subdivided into multiple tiers of cold, namely local storage cold and repository cold. In the former, the function
container can be retrieved from the local storage, whereas, in the latter, the function must be retrieved from remote
storage (e.g., on a central cloud), which implies a more substantial overhead. These factors show that in an efficient
serverless system, the BaaS subsystem must handle the cold/warm start of each function based on its characteristics.
In Section 5.6.2, we discuss multiple approaches to strategically manage the containers and mitigate the cold start
frequency.

2.6 | Serverless Cloud Solutions

In this part, we first survey various commercial and open-source serverless cloud systems, and then, compare them (in
Table 3) based on the aspects described in the previous sections. We note that, in addition to the platforms listed in
Table 3, there have been several other serverless computing projects (e.g., Fission Workflow [61], Kubeless [62], and

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 11

AWS Lambda ✗ ✓ Firecracker ✗ ✓

AWS Fargate ✗ ✓ ✓ ✓

✗ ✓ ✗ ✓

✗ ✓ ✓ ✓

✗ ✗ ✗ ✗

✗ ✓ ✓ ✓

✗ ✓ OpenWhisk ✗ ✗

OpenFaaS ✓ ✓ ✗ ✗

✓ ✓ ✗ ✗

✓ ✗ Kubernetes ✗ ✗

Oracle Fn ✗ ✓ Container ✓ ✓

Knative ✓ ✓ ✓ ✓

Nuclio ✓ ✓ ✓ ✓

ƒuncX ✓ ✗ ✗ ✗

Se
rv
er
le
ss

Sy
st
em

O
pe

n-
So

ur
ce

Co
nt
ai
ne

r
Fe
ed

Fo
rm

at

Su
pp

or
te
d

Pr
og

ra
m
m
in
g

La
ng
ua
ge
si
n

Fu
nc
tio

n
Fe
ed

Fo
rm

at

Un
de

rly
in
g

Pl
at
fo
rm

St
at
ef
ul

Fu
nc
tio

n
St
ar
t

W
or
kfl

ow
Su

pp
or
t

JS, Python, Go, Java,
Ruby, .NET, PowerShell

Cold/
Warm

Function Feed Format
not supported

Container on
Firecracker

Warm

Microsoft
Azure Functions

JS, Python, Java,
.NET, PowerShell

Kubernetes
/Azure Arc

Cold/
Warm

Microsoft
Durable Function

JS, Python, Java,
.NET, PowerShell

Kubernetes
/Azure Arc

Warm

Google
Cloud Functions

JS, Python, Go, Java,
PHP, Ruby, .NET

Google
App Engine

Cold/
Warm

Google
Cloud Run

JS, Python, Go, Java,
PHP, Ruby, .NET, Kotlin

Kubernetes
Cold/
Warm

IBM
Cloud Functions

JS, Python, Go, Java,
PHP, Ruby, .NET,

Cold/
Warm

JS, Python, Go, Java,
PHP, Ruby, .NET,

Kubernetes/
OpenShift

Cold/
Warm

Apache
OpenWhisk

JS, Python, Go, Java,
PHP, Ruby, .NET,

Kubernetes/
OpenShift/
Docker

Cold/
Warm

Platform9
Fission

JS, Python, Go, Java, PHP,
Ruby, .NET, Rust, Swift

Cold/
Warm

JS, Python, Go, Java,
Ruby, .NET

Cold/
Warm

JS, Python, Go,
Java, Rust

Kubernetes
Cold/
Warm

JS, Python, Go, Java,
.NET, Shell

Kubernetes/
Docker

Cold/
Warm

Python
Kubernetes/

Docker
Cold/
Warm

TABLE 3 Comparison of the major serverless computing platforms.

Iron Function [63]) that were discontinued, thus, we have excluded them from the comparison table. Because pro-
gramming languages have an impact on function efficiency [64,65], in Table 3, we include the list of language runtimes
that are officially supported by each serverless system to help function developers in choosing a feasible system and
language for their function. Lastly, in Section 2.6.3, we leverage our observations from the studied serverless systems
and design a generic architecture that includes the main components of the serverless systems.

2.6.1 | Public Serverless Cloud Platforms

FaaS and serverless computing have commercially been made available via AWS Lambda service [66] for the first time
in 2014. AWS Lambda executes each function based on a user-defined trigger and charges the user only for the actual
resource usage time (i.e., the function execution time). The Lambda service arguably pioneered and shaped other FaaS
services. Nowadays, Amazon also offers other serverless computing services—most notably AWS Step Functions [67]
and AWS Fargate [68]. AWS Step Functions is a workflow service that can chain a sequence of Lambda functions
and other AWS services to build a serverless application. It manages the workflow in terms of scheduling, failure,
and parallelization so that the users can focus on the higher-level business logic. Alternatively, AWS Fargate operates
based on containers rather than functions. It is an example of a serverless service that is not built from a FaaS platform.

After AWS, multiple competing serverless computing cloud services, such as Azure Functions [69], Google Cloud

12 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

Functions [70], and IBM Cloud Functions [71] have emerged. These services are consistently evolving with different
sets of features. Notably, recently, Microsoft Azure released Durable Functions [72] to extend the Azure Function
service to support stateful workflows.

2.6.2 | Private Serverless Cloud Platforms

Although public serverless platforms are increasingly popular, they come with the vendor lock-in risk and the trust-
worthiness issue that is inherent to public clouds. Therefore, multiple open-source projects have been developed to
allow serverless deployment on self-hosted servers [73]. The details of stateful serverless platforms are described
in Section 2.3. OpenFaaS [74] and Apache OpenWhisk [75] are two popular open-source serverless platforms that
dominate the private serverless cloud market.

OpenFaaS handles each function as a container that is deployed through Kubernetes. Therefore, a user can
develop functions in the programming language of her choice. A packaging script creates a container image with the
user’s function encapsulated in it. Each function container is stored and managed in the Docker Registry [76] and
also in the function store. While OpenFaaS is open-source and free to use, OpenFaaS PRO [74] is developed for
commercial purposes.

OpenWhisk is another popular open-source serverless cloud platform backed by the Apache foundation [77].
In comparison with OpenFaaS, OpenWhisk has a bigger developer community and many more features. Similar to
OpenFaaS, the OpenWhisk project is also based on Kubernetes. It also utilizes many features from other open-source
products, such as Kafka [78], CouchDB [79], Nginx [80], Redis [9], and Zookeeper [81]. This allows the OpenWhisk
to be very scalable and, at the same time, feature-rich. However, this makes the learning curve of deploying and
managing OpenWhisk steeper. OpenWhisk is also offered commercially on IBM Cloud Functions [71]. Fission [82]
is another serverless platform heavily based on Kubernetes. However, in comparison with Kubeless, Fission has less
dependency on Kubernetes as they implement their own functionmanagement components, whereas, Kubeless relies
on Kubernetes components and extends only the required features that are missing to become a serverless platform.

Fn Project [83] is an open-source platform that works with Docker containers in its underlying layer. It supports
API-based event triggers (e.g., in form of web requests). Fn Flow [84] is an alternative version of Fn that can support
workflows. Although both projects have attracted limited users from the open-source community, Oracle still offers
them commercial serverless solutions.

Knative [85] is a fast-growing open-source project led by IBM and Google. Similar to Kubeless [62], which has
been discontinued, Knative sits on top of Kubernetes and enables it to handle serverless workloads. According to the
Cloud Native Computing Foundation (CNCF) survey [86], Knative has been the top installable serverless solution in
2020. Knative project includes three main components, namely Build, Serve, and Event. Build is in charge of source
code management, containerization, and making it deployable by Kubernetes. Serve deals with service deployment,
managingmicroservice revisions, routing requests to different versions ofmicroservices, automatic scaling, and scaling
to zero. Finally, Event takes care of creating function triggers and forming workflow pipelines. Knative is one of the
backends supported by KNIX MicroFunctions [87] that is a well-known serverless platform in the academic area
(formerly known as SAND [88]).

Nuclio [89] is another platform that works on top of Kubernetes. It offers popular data science tools integration
and GPU-based machine support. Lastly, the aforementioned solutions that leverage centralized management can
potentially lead to some form of vendor lock-in. Hence, frameworks for decentralized function execution are proposed
[90, 91]. ƒuncX [92] is another open-source FaaS platform for federated ecosystems. It supports function execution
on remote heterogeneous computers and clouds.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 13

Function
Packager

Event
Trigger &
Handler

Execution
Handler &

Scaling

Kubernetes MicroVM Web
Assembly ...

Accounting
& Billing

Function
Repository

Serverless
Management
Components

Function
Execution
Platform

State/Data
Handler

Workflow
Pipeline

Function
Monitoring

Docker

Packaging Execution Trigger

F IGURE 5 Common architectural components of a serverless framework. Note that not all these components exist in
every framework. For example, Function Packager exists only on the frameworks that do not run functions straight from the
source code. The Function Execution Platform shows the list of common execution platforms for functions. However, this list is
not inclusive, as there can be other execution platforms emerging or already deployed in the proprietary systems.

2.6.3 | General Architecture of Serverless Clouds

Considering the common architectural components of the studied serverless platforms, we can design a generic archi-
tecture, depicted in Figure 5, that is composed of an underlying function execution framework and eight components
on top that take care of different aspects of serverless management. The “Packaging” component contains the Func-
tion Packager that wraps the function code into isolated units, such as container image, MicroVM image, and WASM
compiled code [37]. The “Execution” component is considered the engine of the serverless systems and is in charge
of executing and monitoring functions. It also assures that the functions remain scalable and are accessible with low
latency (via warm-starting functions). Particularly, it supports scale-to-zero when the function is unused. The State
Handler module only exists to support stateful functions and is not used in stateless serverless platforms. The “Trigger”
component on one end is used by the developer to declare the conditions for initiating a function call. On the other
end, it connects with the Execution component to execute the task(s) based on the user requirements. TheWorkflow
Pipeline is a high-level tool (e.g., AWS Step functions [67]) that enables developers to create new services by defining
a function chain.

Note that, a given serverless platform may only have a subset of these components, and it may categorize them
sightly differently. For instance, Knative’s main components (Build, Serve, and Event) can be mapped to Packaging,
Execution, and Trigger group of components. Function Packager is only needed if the framework requires function
code to be transformed into the container or other forms of the compiled function. Workflow Pipeline only exists in
the frameworks that support function workflows.

3 | SERVERLESS COMPUTING VS OTHER DISTRIBUTED
COMPUTING PARADIGMS

Many characteristics of serverless systems, including computational reuse and approximate computing, share similari-
ties with other distributed computing paradigms, such as High-Performance Computing (HPC) systems, Grid comput-
ing, and various forms of cloud computing. However, the serverless paradigm exposes characteristics and obstacles
that call for solutions specifically developed for them. In this section, we compare these various distributed computing
paradigms (in Table 4) and discuss those aspects of the serverless demanding new solutions.

Considering Table 4, serverless tasks are usually user-defined (unlike pre-defined tasks in P2P, IaaS, PaaS and SaaS),

14 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

Request nature Task types

HPC Low Reservation User-defined Direct access No

Grid Low Reservation User-defined Direct access No

P2P Can be high On demand task Predefined Direct access No

IaaS Low VM Lease Predefined Virtualized No

PaaS Can be high On demand task Abstracted No

SaaS Generally high Interactive task Predefined Abstracted Can be

Definitely high Interactive task Abstracted

Serverless Generally high User-defined Yes

Task latency
sensitivity

Approx.
hardware

accessibility
Stateless

Predefined
types

Edge-to-
cloud

Generally
predefined

Generally
not

On demand/
Interactive task

Abstracted
Originally

TABLE 4 Characteristics of the tasks and platforms across different distributed system paradigms.

are requested upon the user’s demand (as opposed to time/resource reservation or interactive task), and then are in-
teractively served; as opposed toHPC systems that are reservation-based and offline. Unlike HPC andGrid computing
paradigms, serverless tasks are often latency-sensitive. These characteristics entail having low-latency solutions to
detect reusable tasks in the serverless system and acting upon them, whereas, existing solutions for HPC/Grid sys-
tems (e.g., [93–95]) are designed for large offline tasks. Although the serverless functions are user-defined, they are
stateless and fine-grained (i.e., they are typically single-purpose), rather than complex stateful applications in other
paradigms. These characteristics make the serverless systems potent for task duplication and reusing with proven per-
formance gains [96,97]. While serverless platforms can execute tasks in a pipeline to complete a workflow, each task
in the workflow is often executed on the same unified execution engine. This is different from what commonly occurs
across edge-to-cloud continuum, where the edge generally takes care of the pre-processing and the core processing
happens on the cloud.

The user-defined nature of functions in the serverless paradigm implies that the context-specific solutions have
limited applicability. Moreover, the high-level abstractions offered by the serverless paradigm imply that the resource
allocation and its related optimizations are accomplished by the platform, whereas, approximate computing techniques
often require direct access to the hardware resources. As such, while users in the HPC, Grid, and IaaS systems can
tweak their tasks to exploit the approximator hardware [98] or use Dynamic Voltage Frequency Scaling (DVFS) tech-
niques [99] with some control over the underlying hardware, the serverless paradigm abstracts these aspects from
the user. Hence, if such capability is to be offered, it’d be the serverless platform’s responsibility to provide them as
an abstracted platform feature.

F IGURE 6 Categorizing reusing and approximation techniques that can be used in the serverless paradigm.

Generality and supporting user-defined task-type are themain selling points of the serverless paradigm. However,

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 15

these features also makes it challenging to apply reusing and approximation techniques on a serverless system with a
wide variety of task types. Such techniques, in theory, can be applied either from the serverless platform side, from the
function (application) side, or collaboratively from both sides. As shown in Figure 6, we can categorize the reusing and
approximation techniques of the serverless systems into four types: (1) Global techniques applied at the platform level,
regardless of the application context. For instance, container or container image reusing techniques [100–102] that
can universally improve the performance, regardless of the task types; (2) Selective techniques applied to certain tasks
(contexts) at the platform level. For instance, consider a result caching system [103] that reuses the results of recently
executed tasks. Such techniques are only safe to apply to functions that are truly stateless, such that the function
execution does not have side effects on the internal/external states; (3) Application-specific techniques independent
of the serverless platform. For instance, consider an application that can approximate the output precision according
to the input and context, regardless of the underlying platform; and (4) Application-specific techniques with platform
support. For instance, consider a function that can do approximate computing via ASICs. The function must be
developed to allow such approximation, and the serverless platform must recognize when to assign such function to
the ASICs.

In this survey study, we not only target the first two types of techniques that directly involve the serverless
computing platform, but we also discuss the fourth type, which is application-specific techniques that require support
from the serverless framework.

4 | REUSING OPPORTUNITIES IN THE SERVERLESS CLOUDS

Reusing is defined as a way(s) to reduce resource usage and increase efficiency via deduplicating data or computations
that share a certain level of similarity. Historically, reusing (e.g., in form of caching) has been a fundamental approach
to achieving software and hardware efficiency. In this section, we study reusing in the context of serverless computing
and describe how it can be potentially advantageous for both cloud providers and users. Then, we explore a wide
variety of techniques to carry out computational reuse in the serverless context. A summary of these techniques is
shown in Figure 7.

4.1 | Deterministic Versus Semantic Reusing

Deterministic reusing refers to the set of techniques that can detect reusable computation or data in a definitivemanner
and perform the reusing without altering the results of the involved tasks. That is, these techniques do not require
inferring the semantic similarity between two data or two computations. An example of deterministic reusing is when
a user requests for the re-execution of a stateless video encoding function with identical specifications on the same
video. As the stateless function output depends entirely on its input, a re-execution of a task executed with the same
input arguments yields the same result. Thus, the video result of such task execution can be cached and reused. The
majority of the deterministic reusing techniques operate based on detecting frequently-used computation and/or
data, then caching them to be reused at a later time [104]. The cached data can be stored in different locations, such
as platform-level storage [105], node-level storage [32], or inside the container in case durable containers are utilized
(as described in Section 5.6.2). Accordingly, deterministic reusing techniques can be categorized into data reusing
(a.k.a. caching) and process reusing that are elaborated in the next subsections.

Alternatively, semantic reusing aims to find a semantic relationship between similar (i.e., non-identical) data [106]
and perform reusing on them. In a sense, semantic reusing can be viewed as an approximation approach, due to

16 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

F IGURE 7 Taxonomy of approaches for efficiency in serverless computing platforms. The approaches are classified into
two categories that are based on the computational reuse, and then based on approximate computing. There are approaches in
the intersection of these two, known as approximate reusing.

similarity detection and the fact that the execution results of the involved tasks are not deterministic. However, the
semantic similarity detection is uncertain and prone to misinterpretation, thus, can potentially lead to incorrect results.

An example of semantic reusing can be in an application that provides ambient perception for blind and visually
impaired users by detecting obstacles in their environment (e.g., [107,108]). These users often visit repeated locations
and interact with objects they have previously encountered during their day-to-day activities. The captured pictures of
these objects are digitally different because they are captured from different angles or under different light conditions.
However, these pictures are semantically representing the same objects [94,109]. Accordingly, a reusing mechanism
that can pre-process incoming images and detect whether a semantically similar one has been (or is being) processed
can be helpful.

Further details about different approaches to performing semantic (approximate) reusing are discussed in Sec-
tion 4.4

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 17

4.2 | Data Reusing

Data reusing is defined as the act of saving certain data to be reused at a later time. It is an integral part of different
levels of modern computing systems—from the hardware level to the compiler and execution levels. In the particular
case of serverless computing and FaaS, the fact that tasks are fine-grain (function level) and stateless provides an ideal
opportunity for data reusing via saving (caching) and using the results of function execution again.

Data reusing is predominantly achieved via caching operation. Caching is an optional, but very popular, operation
in the computing systems to mitigate the slowdown resulting from accessing the storage systems, hence, accelerating
the task execution. That is, the system can still function correctly, even if it misses the cached data and retrieves it
from the storage. Since caching is limited and often costly, establishing a trade-off between cost and efficiency in
the caching scheme is of paramount importance. An extensive cache space imposes a significant cost, whereas, an
inadequate cache space leads to missing reusable function results that, in turn, increase the re-computation cost and
the response time [110,111].

Based on the way data is stored and reused, the data reusing techniques fall into the following four categories
that are elaborated in the next parts: (1) Task caching; (2) Intermediate data caching; (3) Function consolidation; and
(4) Incremental computing solution.

Task caching
Task caching is the act of capturing and reusing the result of a task (function) execution. For stateless functions,
this caching technique can be deployed transparently from the user’s perspective. The cached data can be quickly
identified by making use of the hash value of the function call signature that is composed of the function name and
its arguments [112]. The cache table can be either shared across users (i.e., public) or maintained separately for each
user (i.e., private). Unarguably, a public cache table maximizes the likelihood of data reusability across functions of
all users. However, it can be vulnerable to cache poisoning attacks [113]. Alternatively, a private cache table offers
better security via segregating the cache table either based on the user or the function [103].

Intermediate data caching
Intermediate data caching maintains partial results of the execution, rather than the final result. The technique is
usually suited to a workflow with multiple computing steps, in which caching the intermediate result offers a higher
chance of reusability than caching the final result [32,33,111]. For example, consider a two-stage calculation where
the result of the first stage is fed to the second stage. If the first stage only has a few possible input parameters
that take a long time to compute, and the second stage is fast, but has a large domain of possible input parameters,
then, caching the result of the second stage yields a poor cache-hit, whereas, caching the result of the first stage
(intermediate result) leads to a more reusable caching. In a serverless platform, intermediate result caching can
be carried out via a key-value storage for the (stateful) functions [9]. To achieve reusability, this caching technique
requires the function code to explicitly store and retrieve partial results from the caching system. Thus, it is not
transparent from the user’s perspective.

Function consolidation
Another variation of data reusing occurs in the function workflows [93, 114, 115] that includes multiple functions
with data dependencies between them. In such workflows, because each function can be potentially allocated on a
different machine, the overhead of transferring the output of one function to be used as the input of another function
can be significant [114]. Such overhead can be mitigated by fusing functions. That is, two or more functions can be

18 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

consolidated to form one function, such that the whole function is executed together and the data transfer overhead
is eliminated. Let A+B represent a consolidated version of two functions A and B. In A+B, the output data of A can be
reused by being directly fed as the input of B. We note that function consolidation has another benefit of scheduling
one task as opposed to two individual tasks, hence, in Figure 7, it can be also considered under the “task scheduling”
category. However, given the increasing popularity of function workflows in modern software engineering paradigms
and the substantial overhead of data transfer across data centers, we believe that it better fits the “data reusing”
category.

Function consolidation can be employed at the programming level via defining less granular functions, however,
doing so is against the microservice-based software engineering methodology and makes the function maintainability
cumbersome. A more efficient approach for function consolidation is to let users maintain their fine-grain functions
and let a framework in the back-end automatically carry out the fusing [50,88,114] process without any user interven-
tion. The main challenge in this approach is how to balance reducing the data transfer overhead against the resource
inefficiency potentially caused by forming coarse-grain (consolidated) functions [114]. The reason for inefficiency (and
potentially resource wastage) is that coarse-grain functions limit the ways tasks can be allocated, thereby, reducing
the flexibility of resource allocation methods. For instance, consider a workflow with two chained functions where
the first one, denoted fm(), is memory-intensive and the second one denoted fc(), is CPU-intensive. These functions
can be efficiently allocated on different machines in a heterogeneous system— fm() on a memory-rich and fc() on a
CPU-rich machine. However, consolidating the two functions requires a machine that is both memory- and CPU-rich.
This can potentially lead to inefficient resource utilization or the incurred cost of accessing such a high-end machine
can be more than the benefit of reducing the data transfer overhead. In summary, we note that an efficient func-
tion consolidation framework must consider the function’s characteristics and bases its decisions on comprehensive
function profiling [23].

Incremental computing
The fourth category of data reusing is the incremental computing technique [106]. Similar to task caching, this tech-
nique also caches the task result. However, the cached content is reusable beyond the tasks with identical input
arguments. Incremental computing utilizes a correction function to adapt (i.e., prune and expand) the cached results
based on the new input. A common use case of incremental computing is in data analytics [106, 116, 117]. For in-
stance, consider a repetitive function (query) that is regularly applied against a database with minor daily changes
(e.g., average number of active users in the past 365 days). A naïve way to handle the query is to thoroughly search
the database every time. Alternatively, an incremental reusing technique retrieves the results of the prior period (e.g.,
365-days result calculated yesterday) and corrects them by pruning the invalid records (e.g., data from 366 days ago)
and adding new results (e.g., data from today) via searching only within the updates in the database since the prior
period. It is noteworthy that incremental reusing is a highly context-specific technique, and currently, it is not imple-
mented within the general-purpose serverless platforms. For instance, Zhang et al. [118] propose a serverless and
FaaS-based platform that takes advantage of incremental computing in the video analytics context. Their use case
employs a deep neural network (DNN) model for video object classification. The model requires frequent updates
to its weights to gain maximum accuracy with the ever-changing datasets. To avoid the excessive cost of re-training
the model frequently, their platform deploys the incremental machine learning [119] technique to keep up with the
gradual changes in the input datasets.

One way to enable incremental computing in future serverless platforms is to allow users to define multiple
auxiliary functions, in addition to the main function. The auxiliary functions can include: a subtract function (to remove
part of the existing results that are not valid for the input argument) and an addition function (to include new results

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 19

to the existing ones and adapt them based on the new function arguments).

4.3 | Container Reusing

Apart from the data reusing, serverless efficiency can be gained via reusing at the sandboxing platform (i.e., container)
level. More specifically, container reusing can be carried out at the container image level that is described in the
following subsection or at the container instance level that is described in Section 5.6.2.

4.3.1 | Container Image Reusing

Union mounting
Union mounting [120] is a well-established approach to reduce the container image footprint and, subsequently, the
container start-up overhead. In union mounting, a container image is stored as multiple separate layers that can
mount together to form an image. In this manner, the same layer can be utilized, i.e., reused, in multiple images
that share a module, thus, the storage overhead of container images is reduced. For instance, two machine learning
functions can share the sameoperating system layer and the samemachine learning framework (e.g.,TensorFlow [121])
layer. Then, they only differ on the application and model layers. Although deduplicating redundant layers is already
widely used by the runtimes, further research works have recently been undertaken to improve the efficiency of
deduplicating [100, 101] and to extend the deduplication idea to reuse similar layers [122]. Notably, Zhao et al. ’s
Duphunter [100] is a replacement layer loading module for the Docker platform. The architecture is more effective in
deduplicating similar layers across multiple docker images with less deduplication overhead than prior designs.

Container image merging
When two ormore functionswhose container images have onlyminor differences are launched from a cold start, union
mounting can capture and reuse several parts of their images. However, from the serverless platform perspective,
these two are separate functions, hence, are treated independently. If these functions are infrequently invoked, they
can get evicted from the memory. To encourage the system to keep these infrequently-used functions in the memory,
a.k.a. warm, one approach is to merge these functions such that they share the same container image. In this case,
the collective invocation frequency of these functions is increased that can avoid the memory eviction for them.

4.4 | Semantic (Approximate) Reusing

While deterministic reusing is only built on the identical data, semantic reusing aims to achieve reusing where the
data are not digitally identical, but the base for reusing is some form of semantic similarity between the data. Semantic
reusing can maintain semantic correctness by producing approximately the same results, while remarkably avoiding
resource wastage and improving users’ satisfaction. That is why this category of reusing is also considered a type of
approximation that is discussed in Section 5. However, the mechanism to detect semantic similarity is not infallible
and, similar to other approximation approaches, can potentially lead to inaccurate results that in certain contexts (e.g.,
video streaming) could be tolerable and still useful. The semantic similarity detection and reusing functions are often
application-specific. However, similarity detection is more efficiently performed at the scheduler level rather than the
application (container) level. To enable wide adoption of semantic reusing, one potential way in the future serverless
platforms is to provide a standardized API for users to define the semantic similarity detection for their function to
be utilized by the platform scheduler.

20 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

In the serverless context, there are four types of similarities that can be leveraged for semantic reusing:

(1) Similar input:
For stateless functions, the result of execution depends only on the input argument. The input is often composed
of multiple parameters. For instance, a video encoding function has the video segment, resolution, frame rate, bit
rate, and codec as its input parameters. By designating certain parameters of the function as approximable, function
reusability can be enhanced [94]. For instance, consider two users who call the transcode function to process the
same video with two different (but approximable) resolutions. In this case, the system can approximate the resolution
arguments and process the function once, instead of twice, and send the results to both users. Such scenarios can be
particularly useful under certain circumstances, such as when the system is oversubscribed or when some users can
tolerate lower QoS, such as free subscribers of a video streaming service.

(2) Similar function:
Following the microservice-based software development principles [4], generally, functions are developed to be short
and single-purpose to ease the continuous deployment (CD) process. Therefore, it is likely that multiple users define
similar functions that try to achieve the same purpose. These functions are semantically the samewhile having distinct
source codes. Let functions A and B be semantically the same and x be an arbitrary input argument. In this case, the
serverless computing system with the function similarity detection mechanism in place can reuse the result of A(x)

for B(x) too. Moreover, since these functions are similar, one of the functions can be replaced by the other one,
rather than keeping both functions available. This saves the number of functions that have to be kept active for rapid
execution.

(3) Similar context:
In this category, the state, a.k.a. context, of a stateful function is to be reused. This is particularly helpful in the
circumstances that the state data is not sensitive and can tolerateminor differences. That is, minor changes in the state
do not significantly impact the results. For instance, consider a function for online learning of an image classification
machine learning (ML) model [123] where the state data is the weights of the ML model. Other functions that intend
to train the same model can reuse the state (weights) of the model from the earlier function, and train it further with
their data. Such reusability makes the ML model converge faster and is more cost- and energy-efficient. A similar
type of reusing can be considered in a serverless federated learning system [124] where the workers reuse a central
model and train it further with their local data.

(4) Reusing prior knowledge:
In a serverless system, function (task) profiling data, collected and summarized from prior executions via automatic
task profilers [125], can be supplied to the task schedulingmodule tomaximize the resource allocation efficiency of the
system [126]. Moreover, for a new user-defined function that lacks prior profiling information, the serverless platform
can reuse prior knowledge of semantically similar functions to estimate the execution time of the new function on
different machine types available in the system. Otherwise, lack of such information causes uninformed scheduling
decisions that negatively impact the users’ perceived QoS. Unlike other forms of semantic reusing that directly impact
the quality of the results, reusing prior knowledge deals with the system parameters, such as utilization and QoS, and
is used to improve them.

Transfer learning is a technique to reuse the knowledge gained while solving one problem and applying it to a
different but related problem [127,128]. Accordingly, transfer learning can be employed to predict the execution time

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 21

of a new function on a given machine type based on the trained networks of other functions on the same machine
type. Moreover, methods can be explored to measure the semantic similarity between the new function and each one
of the existing functions based on the dependencies and libraries shared between them. Then, the weighted average
similarity of the new function with other functions can be used to estimate the execution time of the new function on
that particular machine type. It is worth noting that, once enough execution time information for the new function is
collected, a model specific to that task type can be trained to infer its execution time independent of other task types.
Similarly, when a new machine type is added to a heterogeneous serverless system, the prior profiling information of
functions on other machine types can be leveraged to estimate the expected execution time of the functions on the
new machine type, thereby, utilizing it more efficiently.

5 | APPROXIMATE COMPUTING IN THE SERVERLESS CLOUDS

Approximate computing allows functions (tasks) with unaffordable response time, energy, or cost constraint(s) to be
completed within its constraint(s) [129]. Even the tasks with affordable constraints that can tolerate approximate
results, a.k.a. multi-fidelity tasks [130], can use approximate computing to bring about further resource-saving in the
system. Since approximate computing compromises the precision and/or accuracy of the results, we envision that in
comparison to reusing, employing approximation has less scope in the serverless platforms and is only to meet the
tasks’ constraints that are otherwise unattainable. Some notable use cases of approximate computing in the serverless
systems include:

1) Improving the response time via fast approximate results, before confirming or correcting the results by the exact
computing.

2) Providing an approximate result to reduce the incurred cost.
3) Providing an approximate result only if the system is oversubscribed and cannot perform exact computing in time.

There are various approaches for approximate computing that can improve the efficiency of serverless computing
platforms. We can categorize these approaches into four classes, as shown in the lower part of Figure 7. In this section,
we first position approximation approaches in comparison to the reusing-based approaches and then, discuss the
general requirements for function approximation in the serverless context. Next, we elaborate on the four categories
of approximation in Sections 5.3—5.6.

5.1 | Approximation Versus Reusing

The main difference between approximation and computational/data reusing is the impact on the result accuracy and
precision. Computational reuse accelerates the turnaround time or saves the computing resource without influencing
the task result. Conversely, approximate computing compromises the result accuracy and/or precision in favor of time-
and/or resource-saving.

While approximate computing can be applied to tasks independently, many of the approximation techniques
benefit from reusing information gathered from prior tasks. Such information can be either predefined ahead of time,
e.g., trained ML models, or collected and applied dynamically at the run time, e.g., caching the results of similar tasks.
Approximate computing techniques that directly reuse the result of other similar tasks are also known as approximate
reusing which is discussed in the previous section.

22 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

5.2 | Approximate Computing Requirements

Approximate computing exploits the resilient property of the system by producing inexact but acceptable results at
a lower cost. A resilient system [129] or application should be able to tolerate a certain amount of deviation from
the ideal result [131]. Specifically, an approximate computing technique should not cause deviations that exceed the
application resiliency in both error magnitude and likelihood.

Error magnitude

Error magnitude is defined and measured based on the variation of the obtained result from the ideal result. Appli-
cations’ tolerance to the error magnitude varies based on the context. For example, video processing for live video
conferences can tolerate a higher error magnitude than the video processing for traffic cameras that has to perform
vehicle identification.

Error chance

Another dimension of error quantification is the likelihood of error occurrence. Formally, the likelihood of getting an
overly inaccurate approximation is called the error chance. Certain approximation techniques (e.g.,DVFS [99]) produce
mostly accurate results, however, there is a chance that the error occurred, and the result accuracy is off by far beyond
the acceptable error magnitude. In such approximation techniques, upon detecting an error by a validation function,
a correction function [132] is employed to fix the error retroactively. If the chance of getting an error is considerably
high, then the overhead of correcting the results frequently can exceed the benefits of the approximation.

5.3 | Data-Level Approximation Approaches in Serverless Computing

5.3.1 | Approximate Reusing

Approximate reusing is the same as semantic reusing and is performed via identifying potentially reusable tasks and
using their data to approximate other tasks [133]. Allowing repeated function calls to reuse the result of similar, but
not strictly the same, tasks promotes reusability. The main challenge in approximate reusing is detecting the semantic
task similarity. Applying this type of computational reuse can improve both the user and system metrics unless the
users opt-out of it due to privacy concerns. The feasibility of this approach entirely depends on the feasibility of the
semantic similarity detection system. As such, they are mostly applicable in domain-specific serverless systems, for
example in video streaming [134].

5.3.2 | Data Sampling

For functions that work on a batch of data, such as data analysis works [30,106], it is possible to reduce the input data
size by sampling from the dataset. Various techniques have been explored for data sampling, performing computation
on the samples, and then analyzing the variability and the error rate in comparison to the complete data analysis on
the whole data. For example in the IoT context, ApproxIoT [135] provides a method to sample data from a stream of
unknown data sizes. Sampled data are stored in a size-limited reservoir. New data can randomly replace the existing
ones in the reservoir. We believe this approach of approximate computing can be offered as an optional service for
various special-purpose stateful serverless functions.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 23

5.3.3 | Approximate Data Storage and Data Pruning

Approximate data storage can be achieved via either persisting only a portion of the data or scrambling multiple data
points together. For instance, in a serverless multimedia cloud [8, 96] only base video formats can be persisted, and
other less popular formats can be transcoded lazily—upon receiving a user request. For the content types that are
error sensitive, similar data points can be stored together, i.e., merged, via lossless data compression methods [136],
whereas, for the content types that can tolerate minor errors, e.g.,multimedia and image, lossy compression methods
[137] can be employed to approximate similar data, thereby, carry out a more effective compression.

Instead of involving the user in handling data storage and reusing, the serverless platform can be made aware of
the services that store and deduplicate similar data [138]. By performing the data management at the platform level,
the platform can maximize the likelihood of detecting similar data and performing deduplication. In such a storage
mechanism, the process of retrieving data can also be approximated to reduce the data retrieval overhead. Eventual
consistency [139] can be utilized on the data that is accessed by multiple tasks. Such a relaxed consistency control
incurs a lower cost than a strict data consistency at the price of allowing the task to start with inconsistent data.
Serverless functions are generally short-lived and are easily undoable. Therefore, tasks that start with inconsistent
data can be canceled and restarted with minimal overhead.

5.4 | Instruction-Level Approximation in Serverless Computing

While instruction-level approximation techniques seem to be very context-specific and are applied at the application
level, they can benefit from the metadata provided by the serverless platform. For example, the serverless platform
can leverage resource utilization information to determine the normal or approximate processing of a given function.

5.4.1 | Precision Scaling and Stochastic Computing

The earliest forms of approximate computing were built by necessity in computer storage systems that could not
store infinite decimal points [140]. Hence, the numbers had to be approximately stored and represented by a close-
enough value. Then, the concept was further developed to a more deliberate dynamic precision scaling [141] where
calculating the precision is scaled based on multiple factors, including the trade-off between computing precision and
energy or turnaround time requirement.

Stochastic computing [142] is a popular collection of techniques to achieve precision scaling via representing a
continuous value in form of a stream of bits. In this case, calculating the precision can be scaled by altering the number
of bits in the bit stream. Making use of stochastic computing often implies designing a domain-specific processing
unit (a.k.a. ASICs) hardware. Since precision scaling requires a specific framework and stochastic computing requires
specialized hardware, these techniques have not yet gained wide adoption in the cloud computing industry. However,
with the increasing prevalence of ASICs and, particularly, the trend in using precision scaling for the ML inference on
the energy-limited edge devices [143], we envisage that these solutions will eventually carry over to the cloud systems
too. As such, serverless solutions to support domain-specific processors that achieve instruction-level approximation
will be demanded shortly to hide the complexity of deploying ASICs across the edge-cloud continuum from the user
perspective. Such solutions will help the users to become solution-oriented and focus on their application logic, rather
than dealing with the operational details of different hardware systems.

24 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

5.4.2 | Loop Perforation and Instruction Replacement

In a serverless computing platform, functions can either be provisioned as containers or, more popularly, as functional
code blocks. The serverless platform can analyze the user code and optimizes them to save the computing resources.
We believe that approximating frameworks such as Approxilyzer [144], proposed by Venkatagiri et al. can be deployed
as an optional service to achieve such optimizations in serverless platforms. Approxilyzer analyzes the machine code
of the function and dynamically replaces parts of the instruction with the approximated version. The aggressiveness
of the approximation can be tuned based on the demanded quality, resiliency, and the approximation overhead.

5.5 | Hardware-Level Approximation In Serverless Computing

When heterogeneous computing is supported in a serverless computing system, specialized hardware that allows
approximate computing at the hardware level can be offered as one of the resource types. The offering can be es-
pecially attractive for use cases, such as big data and machine learning, that are data-intensive and can benefit from
domain-specific machines to offer low latency and real-time services [145]. Moreover, making use of specialized hard-
ware to accomplish approximate computing can effectively reduce the energy consumption and footprint of cloud
datacenters [145].

Two main hardware-level approximation approaches are namely, Dynamic Voltage Frequency Scaling (DVFS) [99]
and approximator hardware. DVFS is a technique that strategically under-volt common hardware systems. Although
such Undervoltage induces errors in the computation, applying it in a controlled manner, such that the error rate is tol-
erable by the applications, can improve the efficiency of the serverless system. For instance, Rahimi et al. [99] propose
to strategically under-volt the GPU in favor of energy efficiency, while employing Hamming distance [146] to allow
more error tolerance at the application level. On the approximator hardware side, certain computations are common
and can greatly benefit from the approximator hardware. A few notable examples of such tasks include stochastic
computing that can greatly accelerate computing by its approximator hardware [98], as explained in the previous sec-
tion; DNN approximate inference that uses specially designed inference hardware [143]; and image encoding using
the approximate encoder hardware [147].

The list of tasks that has approximator hardware support is still expanding, as more use cases are found to ben-
efit from the approximator hardware and more tools to aid approximator hardware emerges [148]. Accordingly, we
envision that the approximator hardware will find its way to the serverless systems in the future and their platform
should be able to accommodate them transparently and efficiently.

5.6 | Scheduling-Level Approximation in Serverless Computing

5.6.1 | Task Scheduling Approaches

Predictive function (task) batching
Although the request turnaround time is one of the main criteria in measuring the performance of serverless clouds,
not every application needs the function to complete as soon as possible. Moreover, even deadline-constraint tasks
often can tolerate some delay, a.k.a. slack, before missing their deadlines. A recent study conducted by Eismann
et al. [149] demonstrates that around 38% of their surveyed serverless applications have no latency requirement and
another 28% of the applications have a few latency-sensitive functions. Only 2% of the applications are real-time
with rigid latency constraints.

To maximize the efficiency of serverless systems, the user or the system should have a way to declare the task

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 25

urgency, possibly in multiple tiers (e.g., urgent vs non-urgent) or as a continuous number, such as a deadline value. In
this case, highly urgent tasks can be scheduled to complete with the minimum turnaround time via warmed containers
or by some form of approximation, whereas, the less urgent ones can potentially wait to aggregate with other similar
arriving requests, thereby, maximizing the container reuse and reducing the incurred cost.

The scheduler must have the ability to predict the cost-benefit of delaying tasks in favor of batching them, such
that each taskwaits as long as possiblewithoutmissing its deadline to share the function container and other resources
with other tasks. Predictive function batching is a viable technique that can be implemented in the existing serverless
systems and multiple research works, though not directly targeting serverless cloud, can be applied to serverless as
well. For instance, Grandslam [150] scheduler dynamically reorders tasks to maximize the task batching and minimize
Service Level Objective violations in an oversubscribed system. Fifer [151] includes a scheduler with mechanisms to
batch tasks and reduce the amount of container usage and cold start overhead within a given latency budget. Unlike
Grandslam, Fifer tries to minimize the resource usage in an underutilized system, rather than trying to meet the tasks’
deadlines in an oversubscribed system. The core idea of these two works can be applied to the serverless engine’s
task scheduler.

Task dropping and deferral
In a serverless system, each task request can be part of a bigger workflow. In some use cases, the workflow includes
optional steps (tasks) whose loss can be tolerated [152]. Such a feature can be exploited at the scheduling level, partic-
ularly, to mitigate resource oversubscription [153] via dropping the optional tasks [154] or deferring their execution
to a later time when the system is less busy [95,153]. One use case that can take advantage of such workflow level
approximation is in video conferencing where the voice quality enhancement task on the received video segments
can be skipped, i.e., dropped, to keep up with the liveness of the streamed video contents [8]. While this technique
is feasible, it is currently not widely adopted on cloud platforms because: (a) dropping tasks intentionally can impact
SLO compliance; and (b) on the cloud, it is commercially viable to scale out and cover the surge in demand, rather
than dropping tasks to fit the resources. However, in an emergency, such as disaster recovery, or the resource- and
energy-limited edge systems, task dropping and deferral techniques can be instrumental to improve the overall per-
formance of the system. Due to the nature of user-defined and time-sensitive task types (with deadline), we believe
that such desperate techniques are not yet practical to be offered on a general-purpose serverless framework.

Predictive task serving
The scheduler of a serverless computing platform can operate proactively and approximately anticipate the arrival of
the user requests. For instance, Roy et al. [155] proposed an approach to predict the function calls via fitting the
invocation trend to a statistical distribution. Such prediction can help the platform to pre-warm function containers
and load their required data in speculation of upcoming task requests. Predictive task serving is done internally on the
large-scale cloud providers [23]. However, the exact details on how they carry it out are often not publicly available.

5.6.2 | Container Scheduling Approaches

Durable container
Prior studies [23, 156] express that, in a serverless system, a certain percentage of functions are invoked frequently.
If warm start execution of these functions incurs a significant loading overhead, then the frequent warm starts can
compound a substantial overhead for the system. A common example of a function with high warm start overhead is
the one that involves an online machine learning model as its state [157]. To solve such inefficiency, certain serverless

26 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

computing platforms allow functions to run as a “durable container”, a.k.a. non-transient container, which means
the container does not terminate after the task completion. These durable containers can maintain the state across
function calls (e.g., updating the machine learning model in the above example) that help to process subsequent tasks
without paying repeated start-up overhead. In the event that there are multiple requests for the same function, the
requests are queued to receive the service. Microsoft Durable Functions [72] and Oracle Fn Flow [84] support this
capability. We envision that the future serverless platforms will auto-detect frequently-used functions and make their
containers permanent without any user intervention.

Predictive warming and cooling

Due to the memory limitations of the servers, not all function containers can be maintained in the memory to rapidly
start the functions’ execution. Infrequently used functions have to be offloaded to the storage to make room for the
frequently-used ones. Such a memory contention across function containers is one of the challenges in the serverless
domain and resolving it entails dealing withmultiple problems: (1) how to reduce the cold start time overhead? (2) how
to keep more containers in a given memory space? (3) how to minimize the number of cold starts through efficient
memory allocation?

The main approach to mitigate the cold start overhead is to alter the transient nature of containers and keep them
in thememory even after the function execution. Another approach is to proactively load the container, i.e., before the
function invocation [158]. In this direction, research has been conducted by Shahrad et al. [23] who studied 14 days
of function invocation patterns in Azure cloud and leveraged that to develop a container memory allocation strategy.
They propose to reduce the number of cold starts via categorizing the functions where each category has its pattern
of pre-warm and keep-alive periods. Right after finishing an invocation, the function is removed from the memory for
the pre-warm period, because the system does not expect to get another invocation of the function shortly. Then,
once the pre-warm period expires, the container is loaded back into the memory (i.e., warmed) to get ready for the
next warm start function invocation. If the function stays in the memory for more than the keep-alive period without
any invocation, then the function is removed from the memory. Such a strategy reduces the number of cold starts
for the majority of the functions, however, there are still some functions whose invocation pattern is unpredictable,
hence, cannot benefit from the predictive memory allocation. Nevertheless, the benefit of correct predictions and
delivering a warm start remarkably exceeds the cold start misprediction plus the solution overhead.

6 | POTENTIAL FUTURE RESEARCH DIRECTIONS

Serverless computing and FaaS are considered as the second generation of cloud computing systems. As such, it is
crucial to know the directions that which this area of distributed computing is evolving. In this section, we discuss
the research directions that have the potential for further exploration and are deemed as the enablers of the next-
generation cloud computing systems. Figure 8 categorizes and summarizes these research directions into the four
following thrusts: (A) providing higher-level abstractions to streamline and accelerate serverless application develop-
ment; (B) improving the performance of serverless systems; (C) extending the serverless paradigm to encompass the
edge-to-cloud continuum; and (D) improving the security aspects of the serverless systems.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 27

F IGURE 8 Topics for future research directions on the serverless cloud.

6.1 | High-level Abstractions for Serverless Computing

6.1.1 | Cloud-Native Programming Language/Framework

As the second generation of cloud technology is evolving based on the serverless paradigm and mitigating the pro-
grammers’ job, we envisage that the technology is approaching the cloud-native programming languages era. In such
programming languages, FaaS concepts will be integrated into the programming languages and compilers can natively
support them. Like that, functions can be defined as cloudable and seamlessly deployed on the cloud by the com-
piler or auto-migrates to the cloud by the run-time system to overcome the resource shortage or to achieve reusing
and approximation. Moreover, these languages can integrate the “programming code” with the “deployment code”,
a.k.a. infrastructure in code [159], that are currently developed separately by different people. In this manner, the
program is analyzed to automatically identify the infrastructure demands and deploy them on the cloud, such that the
likelihood of reusing and approximation are maximized.

These features of the forthcoming cloud-native programming languages will democratize cloud programming,
such that people without cloud knowledge can utilize them in their programs.

6.1.2 | Dataflow Programming Semantics

Although Function-as-a-Service (FaaS) abstraction relieves users from the burden of resource management (e.g., load
balancing and elasticity), it is not truly serverless, because it falls short on abstracting data management and the users

28 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

still have to get involved with other services, such as AWS DynamoDB [160] or AWS SAM [161], to serve desires of
the functions and/or applications [30, 34, 162]. In particular, in some use cases, the data can represent the function
state. For instance, the state of an online-learned Machine Learning (ML) model is updated frequently. Embedding
such a model into the function container image is not practical. Furthermore, ML models are large enough that cannot
be fed as the function arguments, otherwise, the function startup overhead would become substantial.

In this scenario, the ML model is the function’s state that is best to be stored in a synchronized storage service
that can be accessed seamlessly upon the developers’ demand. In this manner, the developers do not need to think
about scattering, reusing and scalability of the state data on various storage or database services, instead, they can
focus on the business logic of the application while the system automatically manages data reusing and caching as it
sees fits. We believe that future serverless platforms will accommodate such dataflow semantics.

6.1.3 | Object-as-a-Service (OaaS): Going Beyond the Function Abstraction

Current serverless and FaaS solutions are not designed for (and cannot natively support) data-centric applications
or state data. The developers have to intervene and undergo the burden of managing the application data using
separate cloud services, e.g.,AWSRDS [163], to persist the state information. Apart from the data aspect, current FaaS
systems do not offer any built-in semantics to limit the access to the internal, a.k.a. private, mechanics of the functions.
However, providing unrestricted access to the developer team has known side effects, such as function invocation in
an unintended context, and data corruption via direct data manipulation. To overcome such side effects, developers
again need to intervene and undergo the burden of configuring external services, such as AWS IAM [164] and API
gateway [165], to enable access control. This makes the development and maintenance of serverless applications
difficult and cumbersome. To ease the management of data and accelerate the development of new services for
them, a higher level of abstraction is desired that, in addition to hiding the resource allocation details, it can hide the
details of access control and preserve its state from the users.

To natively support serverless data-centric application development, we envisage that in the future serverless
platforms, the concept of object can be borrowed from the Object-Oriented Programming, as the first-class citizen to
encapsulate both computing (functions) and state (data) within a single object entity, and offer the notion of Object-
as-a-Service (OaaS) [10]. OaaS will be the next generation of the BaaS part of the serverless system that not only
will handle the state management and persistence with minor user intervention, but also will offer a high level of
abstraction to the user.

Not only do objects in OaaS offer encapsulation and abstraction benefits on top of the function abstraction, but
they also unlock opportunities for built-in optimization features, such as data locality, data reliability, caching software
reusability, and data access control. For instance, a serverless platform can offer the built-in encapsulation semantics
for a cloud-based video streaming system [134]. In this system, video content is defined as an object that has the video
file as its state and is bound to a set of functions that can be invoked by the viewer’s application that can potentially
change the object state. A few examples of such services are as follows: Generating multilingual subtitles for the
safety-related videos; Removing harmful and illicit content from the child-safe video content.

As mentioned in Section 2.3, some stateful serverless solutions are implemented using the actor model. However,
the major drawback of the actor model, considering no further optimization, is the limitation of reusing. OaaS can
overcome this problem by leveraging the immutable data processing model. That is, upon invoking a function of an
object, the OaaS platform outputs a new/updated object state, instead of updating the existing one. Implementing
this semantic makes the function perform a stateless operation and enables the ability to apply approaches of reusing
and approximation.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 29

6.1.4 | Accelerators/ASICs Abstraction

GPU computing gained a massive uptake as Nvidia continuously enhances GPU program-ability by abstracting hard-
ware coding into user-friendly functions in CUDA. The abstraction makes it feasible to port CPU computing only code
into GPU accelerated code. Beyond GPU programming via GPU-specific code, is it possible to abstract serverless
functions into hardware-agnostic code so that the framework can determine and utilize the appropriate hardware
accelerator? For example, a large set of data can be processed one by one in the loop using mobile CPU, processed in
batch using GPU, or approximately processed using approximator ASICs depending on what accelerator is available.
Such capability can go a long way in popularizing heterogeneous computing in serverless clouds.

6.2 | Performance Aspects in Serverless

6.2.1 | Memory Contention

Unlike conventional cloud computing services (e.g., IaaS services) where users are in charge of explicitly running and
terminating the services, in serverless computing, the platform automatically allocates resources and runs the ser-
vices upon request, and then de-allocates them when they are not needed anymore. This automated allocation and
de-allocation of resources are realized via transient isolation platforms, e.g., containers, that also enable charging users
only for the times the services and functions are being used. Ideally, the containers should be loaded from cold storage
just once and then maintained in memory to guarantee fast execution of the functions, which is critical for latency-
sensitive applications [166]. However, in a large-scale serverless cloud, maintaining all the functions in memory is
impractical, owing to both hardware and economic limitations. Hence, there is a memory contention between con-
tainers for memory access. Efficiently resolving this contention and determining the functions that should remain in
memory to maximize function reusing is a challenging problem for the BaaS part of serverless systems.

6.2.2 | Function Workflow Optimization

As mentioned in Section 2.2, serverless functions can be in form of individual functions or as a workflow. Users can
define a function workflow as multiple individual functions whose completion triggers the next function inline or
define function workflow using a certain schema format. Currently, there are no platform-agnostic schema standards
that we believe can be a useful development to maximize cross-platform compatibility, and streamlines cross-platform
workflow migrations.

From the scheduling aspect, big data analytics and map-reduce workflows are observed to perform poorly on
serverless systems [30]. The reason is that the serverless task schedulers are generally not tuned for workflow tasks.
Functions with a large memory footprint are loaded to Perform a small task and then released, rather than being
reused for other batches of data. Serverless tasks are typically expected to have a short start-up time, hence, their
schedulers are designed to be simple and lightweight. However, the next-generation serverless platforms are expected
to consider particular scheduling arrangements for the function workflows. One approach can be scheduling the first
tasks of theworkflowupon arrival with theminimum startup overhead; for the following tasks, the scheduler evaluates
their data dependency with the other tasks and assigns them such that the data transfer overhead is minimized and
function reusing is maximized.

30 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

6.2.3 | Data Locality Optimization

Data locality optimization can reduce the wasted bandwidth and computing resources by minimizing the inter-rack
data transfer to the minimum within the serverless cloud datacenter. Such optimization is critical for effective data
reusing. In a poorly optimized system, the data transfer latency of the reusable datamay outweigh the time required to
recompute such data without reusing. An example of such action is to place containers that frequently communicate
within the same machine or rack, or schedule the tasks to be close to the data source.

While data locality is carried out by the user in the conventional cloud service models, it is the responsibility of
the BaaS in the serverless paradigm. This is because the serverless aims at abstracting the user from the underlying
resource management details and, as part of it, the user should not micromanage data locality. As the user grants full
control of the process and data location to the cloud, the serverless platform has the luxury of optimally allocating
tasks and data free from the user’s constraints. For this reason, it is expected that the future serverless schedulers
will leverage this flexibility to maximize data locality, thereby, reducing their cost and energy consumption.

6.3 | Efficiency via Domain-Specific Serverless Cloud Computing

Along with the rise of domain-specific computing and ASIC hardware, domain-specific programming languages are
also emerging for popular applications, such as machine learning, cryptography, multimedia processing, and even fluid
dynamics [167]. Within this trend, we envision that the next step will be the emergence of domain-specific server-
less cloud platforms for popular applications. A domain-specific serverless system will be equipped with specialized
hardware (ASICs), support of special-purpose programming languages, and built-in domain-specific functions in its
repository. Such platforms will expedite the application development process and shorten the CI/CD cycles. They
will help users become solution-oriented and focus on their specific business logic, rather than spending time on de-
veloping basic services. In addition, they can support more flexible and application-specific billing schemes (e.g., per
successful transaction completion) with even cheaper prices, due to using more efficient specialized hardware.

Importantly, a domain-specific serverless platform creates new scopes for serverless efficiency, via specialized
function reusing and approximation techniques. For instance, a multimedia serverless cloud platform can harness its
built-in knowledge of spatiotemporal multimedia streaming patterns to upraise the likelihood of function reusing.

6.3.1 | Utilizing Accelerator in Serverless Cloud

Serverless computing systems were originally pioneered to create an illusion that there is no server to manage. Fulfill-
ing this aim is viable when the underlying computing resources are either homogeneous or of the same architecture,
a.k.a. consistently heterogeneous [153]. As such, to date, commercial serverless computing providers support only
various forms of CPU-based machines that are auto-provisioned by the BaaS subsystem to match the function de-
sires [168]. However, to accommodate more flexibility and efficiency in FaaS and serverless computing, inconsistently
heterogeneous systems with a combination of CPU, GPU, TPU, FPGA, and other forms of emerging ASICs [89, 168]
(including hardware specifically designed for approximate computing) are desired. With the slow-down in general-
purpose computing and the rise of specialized computing [169], we expect that application-specific hardware becomes
prevalent in serverless systems in the near future [168].

Provided that the user functions can utilize heterogeneous resources through virtualization or heterogeneous-
supported frameworks (e.g., TensorFlow for machine learning tasks, FFmpeg [170, 171] for multimedia processing
tasks), the challenge is how to schedule and provision such functions on the heterogeneous resources efficiently.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 31

While various forms of heterogeneous-aware task scheduler already exist [95,142,153] in the HPC context, serverless
tasks are often of finer granularity. Therefore, a lightweight and low-latency scheduling that is aware of the machine
heterogeneity is desired.

To make informed scheduling decisions in a heterogeneous system, a function execution-time profiler is needed
to provide an estimated execution time of a given function on the heterogeneous machine types [142]. Since each
serverless function recursmultiple times, execution-time profiling can be carried out [23,172]. However, to reduce the
uncertainty in the execution-time prediction, thereby, making more informed scheduling decisions, on different ma-
chine types, function profiling must be performed proactively and in an explorative way to examine the infrequently-
used options and collect their execution time statistics. Importantly, scheduling new user-defined functions, for which
there is no prior execution-time statistics, is more challenging. Methods based on Transfer Learning [157] (i.e., reusing
prior learning to speed up learning a new data set) should be developed to enable inferring the execution time of the
new function based on other existing functions on different machine types. A similar challenge and solution can be
posed upon the addition of new machine types to the serverless system.

6.4 | Performance Aspects in Serverless

6.4.1 | Accelerator Multi-tenancy in Serverless Systems

Accelerator hardware is usually designed to be utilized by one tenant at a time. Even GPU is not originally designed
to support multi-tenancy, although frameworks like Volta-MPS have added the multi-tenancy support to the recent
models of GPU. Due to a serverless payment scheme where users do not pay for under-utilized hardware, it is cost-
prohibitive to allocate the entire accelerator hardware to a single function. Maximizing the accelerator utilization
implies deploying multiple functions sharing the same hardware while allowing authorized data sharing but not leak-
ing sensitive data. This is a logical development needed to enable economical accelerator deployment in serverless
systems [173].

6.4.2 | Task-Centric Scheduling

In the current commercial serverless computing platforms, functions are triggered without a specified deadline or
urgency levels, thus, the scheduler treats tasks with equal priorities. Meanwhile, if task urgency and their demands
are provided to the serverless platform scheduler, the task with low urgency can be executed in batch in favor of
more serverless efficiency (see container reusing in Section 4.3). Such urgency and demands for information are also
helpful for the caching and other components to determine their operational priorities. Moreover, by detecting infea-
sible deadlines, the system can then promptly approximate the task, rather than missing its deadline because of exact
computation. We envision a scheduler that looks into each task’s QoS demand and then schedules them appropri-
ately. However, requiring the user to profile their task’s demand diminished the simplicity of the serverless platform.
Another avenue of exploration is to identify the task urgency and their demands automatically at the platform level
and transparently from the user’s perspective.

32 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

6.5 | Edge-to-Cloud Serverless Platforms

6.5.1 | Seamless Function Call & Service Migration

The main benefits of serverless computing are the ease of use and abstracting of the users from the resource pro-
visioning details. While the current serverless solutions are limited to cloud systems, it is desired to extend their
benefits to the emerging edge-to-cloud systems and hide the complexity of dealing with multiple computing tiers (i.e.,
device, edge, fog, and cloud tiers) from the user perspective. The platform can transparently determine the appropri-
ate tier for the function execution and can seamlessly migrate the execution from one tier to another to overcome
the inherent resource scalability problem of the edge systems [174]. These abilities can improve the system efficiency
and unlock new use cases. For instance, consider the use case of a blind person who uses smart glasses and needs
real-time processing of the observed objects to enter a hotel lobby where few people are playing low-latency online
games using the available edge system. Upon the arrival of the blind person, to make room for the blind application,
the game functions have to be live-migrated to the cloud, so that the gaming is not interrupted. The opposite can
happen when the blind person leaves the place. All these take place while the users have an illusion of everything
being executed on their own devices.

A serverless platform for the edge-to-cloud continuum extends the scope for computational reusability and ap-
proximation to circumstances where a task result that is already cached in another tier can be fetched from there,
instead of executing it locally [175]. Another interesting reusing potential that can be unleashed is in a scenario
where edge devices forward common (reusable) tasks to a central cloud, so that other edge tiers can reuse them by
fetching them from the cloud [176].

6.5.2 | Unified Management

From the service providers’ perspective, it is a daunting task to manage the resources across cloud, fog, edge, and the
device. Multi-tier applications are usually orchestrated to perform different duties on different tasks. For example,
user devices take care of the UI/IO tasks, edge devices aggregate local data and then cloud machines do the heavy
computing part. Such different tasks generally are written specifically to the hardware-specific tier.

What if all the applications—from amobile device, edge to cloud devices—become serverless functions that run on
the same standardized serverless framework that connects to the unifiedmean pane? Then, the function development,
deployment, and migration can be done seamlessly within a single point of control. In addition, rather than each multi-
tier system deploying its own edge devices separately, multiple multi-tier systems can also share the edge to cloud
resources and data, since they all run on the same standardized framework. Such an idea can also be viewed as a CDN
that not only provides static content at the edge but also allow serverless function executions on any local edge and
fog server.

6.6 | Serverless Security and Trustworthiness

6.6.1 | Trustworthiness

Security is one of the criteria for developers in selecting a serverless platform [177]. With numerous components and
the nature of function triggering, serverless computing exposes a large attack surface compared to its predecessors
[178]. Poorly-designed functions meant for internal purposes often lack authentication and can be attacked via a
direct triggering or an injection attack [179]. Meanwhile, the fact that serverless functions are stateless and short-

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 33

lived limits the time available to attackers and the impact of successful attacks. This shifts the attack strategies to
become shorter and more indirect.

Cloud providers offer the shared responsibility model to the customers that make the cloud providers responsible
for the infrastructure security and continuously applying security updates to the low-level software, hence, relieving
some security burdens from the developers. However, this leads to one common problem in cloud computing secu-
rity: the trustworthiness of cloud providers [180]. In the serverless paradigm, the trustworthiness issue is extended to
cover several aspects: From the performance aspect, the developer cannot assure if the serverless platform achieves
the required QoS, such as the number of available containers in the shared pool that are ready to serve the func-
tion’s triggers; From the isolation aspect, the developers cannot understand how the underlying isolation frameworks
(VM/container) are configured for the functions. In particular, in serverless systems, the VMs can be potentially shared
with other cloud users, due to the small function sizes. This increases the risk of being attacked. Some serverless plat-
forms [181] offer built-in CI/CD pipelines to let developers conveniently build their source code to the function. This
feature exposes other attack vectors, because the building steps may contain vulnerabilities (e.g., the vulnerability of
the third-party library) pulled by the platform to build the function image. The topic of platform trustworthiness is
highly critical to the adoption rate of data reusing techniques across users where the risk of data leak or compromise
is a concern.

6.6.2 | Secure Container

Asmentioned earlier, one of the security concerns in the serverless paradigm is the lack of isolation. Containers expose
vulnerabilities, such as privilege escalation from sharing the host kernel. To address the problem, the developers have
choices to use rootless containers, or isolated containers [182] (e.g., gVisor [183] or Kata Containers [184]). We
note that, in practice, there should still be a trade-off between security and efficiency. The secure container offers
high security but relatively low startup latency. On the other hand, relaxing isolation opens up more optimization
opportunities [185]. Section 5.6.2 discusses container instance reusing, which is an example of such relaxation.

6.6.3 | Denial of Wallet

In the area of performance, serverless computing tolerates denial-of-service attacks more than its predecessors, be-
cause of its inherent ability to scale. However, the ability to scale brings a new possibility for attackers to perform
Denial-of-Wallet attacks [186], an attack that forces the financial exhaustion of the application’s owner instead of dis-
abling the service availability. When a service function is being targetted via a Denial-of-Wallet attack, the serverless
platform steps in and triage the running cost down via enacting dropping and deferring low-importance tasks (see
Section 5.6) to preserve the user’s funding and to keep the more important tasks running.

7 | SUMMARY

It is envisioned that the future generation of highly scalable applications will predominantly rely on the serverless
computing paradigm, hence, comprehensively studying the anatomy of this paradigm and identifying the scopes for
efficiency can bring about major benefits to the users, developers, and providers. Accordingly, in this paper, we
explored the ways to make the serverless computing paradigm efficient via investigating two main thrusts, namely
computational reuse, and approximate computing. We started by characterizing the internal mechanics and studying

34 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

different dimensions of serverless systems. Then, we surveyed the current state of the serverless and FaaS solu-
tions (summarized in Table 3). Next, we categorized various approaches of reusing and approximation, respectively.
An overview of these approaches is shown in Figure 7. In sum, we state that the characteristics of the serverless
paradigm, where functions are compact, single-purpose, and portable, create a unique scope for efficiency, mostly via
computational reuse, and then via approximate computing.

In this paper, we also outlined several potential directions (summarized in Figure 8) that can push the envelope of
the serverless paradigm toward the next generation of cloud computing systems. In summary, four prominent direc-
tions that we discussed as the future of the serverless paradigm are as follows: (A) Enabling higher-level abstractions,
such as Object-as-a-Service and cloud-native programming languages, within the serverless paradigm; (B) Improving
the performance of serverless clouds via exploiting the extensive function reusing and approximation opportunities
exist in these systems; (C) Extending the serverless platforms beyond cloud infrastructure to cover multi-tier edge-to-
cloud continuum, and (D) Extending the serverless abilities towards cloud-native serverless security.

Acknowledgments

We would like to thank the anonymous reviewers of the paper, and members of the HPCC Lab, particularly Davood
G. Samani and Pawissanutt Lertpongrujikorn, who brainstormed with us on this paper. This research is supported by
the National Science Foundation (NSF) under awards# CNS-2047144 and CNS-2007209.

References

[1] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica,
and D. A. Patterson, “What serverless computing is and should become: The next phase of cloud computing,”
Communications of the ACM, vol. 64, no. 5, pp. 76–84, 2021.

[2] P. G. Lopez, A. Slominski, M. Behrendt, and B. Metzler, “Serverless predictions: 2021-2030,” arXiv preprint
arXiv:2104.03075, 2021.

[3] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Software, vol. 33, no. 3, pp. 94–100, 2016.

[4] S. Arachchi and I. Perera, “Continuous integration and continuous delivery pipeline automation for agile soft-
ware project management,” in Proceedings of the Moratuwa Engineering Research Conference, ser. MERCon ’18.
IEEE, May 2018, pp. 156–161.

[5] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless computing: An investigation of factors
influencing microservice performance,” in Proceedings of the IEEE International Conference on Cloud Engineering,
ser. IC2E ’18. IEEE, Apr. 2018, pp. 159–169.

[6] Amazon, “Amazon Athena - Serverless Interactive Query Service - Amazon Web Services,” online;
Accessed on 4 May 2022. [Online]. Available: https://aws.amazon.com/athena/?whats-new-cards.sort-
by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc

[7] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker:
Lightweight virtualization for serverless applications,” in Proceedings of the 17th usenix symposium on networked
systems design and implementation, ser. nsdi ’20, Aug. 2020, pp. 419–434.

[8] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-efficient and robust on-demand video stream
transcoding using heterogeneous cloud services,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 29, no. 3, pp. 556–571, Mar. 2018.

https://aws.amazon.com/athena/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/athena/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 35

[9] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.

[10] P. Lertpongrujikorn and M. Amini Salehi, “Object as a service (oaas): Enabling object abstraction in serverless
clouds,” in Proceedings of the 16th IEEE Cloud Conference, Jul. 2023.

[11] M. Nazari, S. Goodarzy, E. Keller, E. Rozner, and S. Mishra, “Optimizing and extending serverless platforms: A
survey,” in Proceedings of the Eighth International Conference on Software Defined Systems (SDS). IEEE, 2021, pp.
1–8.

[12] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless computing survey: A technical primer for
design architecture,” ACM Computing Surveys (CSUR), 2021.

[13] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. Abad, and A. Iosup, “The state of
serverless applications: Collection, characterization, and community consensus,” IEEE Transactions on Software
Engineering, 2021.

[14] A. Raza, I. Matta, N. Akhtar, V. Kalavari, and V. Isahagian, “Function-as-a-service: From an application devel-
oper’s perspective,” JSys, vol. 1, no. 1, pp. 1–20, 2021.

[15] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on resource management in serverless computing
environments: Taxonomy and future directions,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–36,
2022.

[16] Y. Li, Y. Lin, Y.Wang, K. Ye, and C.-Z. Xu, “Serverless computing: State-of-the-art, challenges and opportunities,”
IEEE Transactions on Services Computing, 2022.

[17] A. Chakraborty, M. Kumar, N. Chaurasia, and S. S. Gill, “Journey from cloud of things to fog of things: Survey,
new trends, and research directions,” Software: Practice and Experience, vol. 53, no. 2, pp. 496–551, 2023.

[18] C. N. C. Foundation, “CNCF Annual Survey 20212,” online; Accessed on 14 Mar. 2023. [Online]. Available:
https://www.cncf.io/reports/cncf-annual-survey-2022/

[19] Datadog, “The State of Serverless,” online; Accessed on 14 Mar. 2023. [Online]. Available: https:
//www.datadoghq.com/state-of-serverless/

[20] IBM, “Serverless in the Enterprise, 2021,” online; Accessed on 6 Apr. 2022. [Online]. Available:
https://www.ibm.com/downloads/cas/ZJLWQOAQ

[21] J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation: A multivocal literature review,” Jour-
nal of Systems and Software, vol. 170, p. 110708, Dec. 2020.

[22] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of serverless platforms,” in
Proceedings of the USENIX Annual Technical Conference, ser. USENIX ATC ’18, Jul. 2018, pp. 133–146.

[23] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini, “Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud
provider,” in Proceedings of the USENIX Annual Technical Conference, ser. USENIX ATC ’20. USENIX Association,
Jul. 2020, pp. 205–218.

[24] serverlessworkflow.io, “serverlessworkflow/specification,” online; Accessed on 21 Mar. 2023. [Online].
Available: https://github.com/serverlessworkflow/specification/blob/main/specification.md#Workflow-
Definition-Structure

[25] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon, C. S. Meiklejohn, and X. Zhu,
“Netherite: Efficient execution of serverless workflows,” Proceedings of the VLDB Endowment, vol. 15, no. 8, pp.
1591–1604, 2022.

[26] R. S. Bird and P. L. Wadler, Functional Programming. Prentice Hall, 1988.

https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://www.ibm.com/downloads/cas/ZJLWQOAQ
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Workflow-Definition-Structure
https://github.com/serverlessworkflow/specification/blob/main/specification.md#Workflow-Definition-Structure

36 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

[27] M. B. Josephs, “Functional programming with side-effects,” Science of computer programming, vol. 7, pp. 279–
296, 1986.

[28] S. Zobaed, M. E. Haque, M. F. Rabby, andM. A. Salehi, “Senspick: Sense picking for word sense disambiguation,”
in Proceedings of the 15th IEEE International Conference on Semantic Computing (ICSC). IEEE, Jan. 2021, pp. 318–
324.

[29] A. Jain, A. F. Baarzi, N. Alfares, G. Kesidis, B. Urgaonkar, and M. Kandemir, “Spiitserve: Efficiently splitting
complex workloads across faas and iaas,” in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC
’19, Nov. 2019, p. 487.

[30] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on serverless infrastructure,”
in Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation, ser. NSDI ’19,
Feb. 2019, pp. 193–206.

[31] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon, C. S. Meiklejohn, and X. Zhu,
“Netherite: Efficient execution of serverless workflows,” Proceedings of the VLDB Endowment, vol. 15, no. 8, pp.
1591–1604, 2022.

[32] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M. Hellerstein, and A. Tumanov, “Cloudburst:
Stateful functions-as-a-service,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2438—-2452, Jul.
2020.

[33] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling tiered cloud storage in anna,” The VLDB Journal, pp.
1–19, Sep. 2020.

[34] J. Schleier-Smith, L. Holz, N. Pemberton, and J. M. Hellerstein, “A faas file system for serverless computing,”
arXiv preprint arXiv:2009.09845, 2020.

[35] X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and S. Devadas, “Sundial: Harmonizing concurrency control and
caching in a distributed oltp databasemanagement system,” Proceedings of the VLDB Endowment, vol. 11, no. 10,
pp. 1289–1302, Sep. 2018.

[36] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Hellerstein, and J. M. Faleiro, “A fault-tolerance shim
for serverless computing,” in Proceedings of the 15th European Conference on Computer Systems, Apr. 2020, pp.
1–15.

[37] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless computing,” in Pro-
ceedings of the USENIX Annual Technical Conference, ser. USENIX ATC ’20. USENIX Association, Jul. 2020, pp.
419–433.

[38] P. Kraft, Q. Li, K. Kaffes, A. Skiadopoulos, D. Kumar, D. Cho, J. Li, R. Redmond, N. Weckwerth, B. Xia et al.,
“Apiary: A dbms-backed transactional function-as-a-service framework,” arXiv preprint arXiv:2208.13068, 2022.

[39] C. Hewitt, “Actor model of computation: Scalable robust information systems,” arXiv preprint arXiv:1008.1459,
2010.

[40] Microsoft, “Durable entities - Azure Functions | Microsoft Docs,” online; Accessed on 4 May 2022.
[Online]. Available: https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
entities?tabs=csharp

[41] L. Inc., “High Performance Microservices and APIs | Kalix.io,” online; Accessed on 21 Mar. 2023. [Online].
Available: https://www.kalix.io

[42] Apache, “Apache Flink: Stateful Computations over Data Streams,” online; Accessed on 4 May 2022. [Online].
Available: https://flink.apache.org/

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://www.kalix.io
https://flink.apache.org/

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 37

[43] G.McGrath and P. R. Brenner, “Serverless computing: Design, implementation, and performance,” in Proceedings
of the 37th IEEE International Conference on Distributed Computing SystemsWorkshops, ser. ICDCSW ’17. IEEE,
Jun. 2017, pp. 405–410.

[44] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless computing for container-based architectures,”
Future Generation Computer Systems, vol. 83, pp. 50–59, Jun. 2018.

[45] V. Kjorveziroski, S. Filiposka, and A. Mishev, “Evaluating webassembly for orchestrated deployment of server-
less functions,” in Proceedings of the 30th Telecommunications Forum (TELFOR). IEEE, 2022, pp. 1–4.

[46] J. Carreira, S. Kohli, R. Bruno, and P. Fonseca, “From warm to hot starts: Leveraging runtimes for the serverless
era,” in Proceedings of the Workshop on Hot Topics in Operating Systems, 2021, pp. 58–64.

[47] D. G. Samani and M. Amini Salehi, “Exploring the impact of virtualization on the usability of the deep learn-
ing applications,” in Proceedings of the 22th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, ser. CCGrid ’22, May 2022.

[48] krustlet.dev, “Kubernetes Rust Kubelet,” online; Accessed on 21 Mar. 2023. [Online]. Available: https:
//github.com/krustlet/krustlet

[49] G. Sayfan,Mastering Kubernetes: Level up Your Container Orchestration Skills with Kubernetes to Build, Run, Secure,
and Observe Large-Scale Distributed Apps. Packt Publishing Ltd, 2020.

[50] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas on a diet,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 45–59.

[51] R. Bruno, S. Ivanenko, S. Wang, J. Stevanovic, and V. Jovanovic, “Graalvisor: Virtualized polyglot runtime for
serverless applications,” arXiv preprint arXiv:2212.10131, 2022.

[52] C. Wimmer and T. Würthinger, “Truffle: A self-optimizing runtime system,” in Proceedings of the 3rd annual
conference on Systems, programming, and applications: software for humanity, 2012, pp. 13–14.

[53] S. Wu, Z. Tao, H. Fan, Z. Huang, X. Zhang, H. Jin, C. Yu, and C. Cao, “Container lifecycle-aware scheduling for
serverless computing,” Software: Practice and Experience, vol. 52, no. 2, pp. 337–352, 2022.

[54] O. C. Initiative, “About the Open Container Initiative,” online; Accessed on 21 Mar. 2023. [Online]. Available:
https://opencontainers.org/about/overview/

[55] M. Amini Salehi, A. N. Toosi, and R. Buyya, “Contention management in federated virtualized distributed sys-
tems: implementation and evaluation,” Software: Practice and Experience, vol. 44, no. 3, pp. 353–368, 2014.

[56] D. Ghatrehsamani, C. Denninnart, J. Bacik, andM. Amini Salehi, “The art of cpu-pinning: Evaluating and improv-
ing the performance of virtualization and containerization platforms,” in Proceedings of the 49th International
Conference on Parallel Processing, ser. ICPP ’20, Aug. 2020, pp. 1–11.

[57] D. Kumar and A. F. F. Magloire, “Hypervisor based performance characterization: Xen/kvm,” April 2018.

[58] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of USENIX annual technical conference,
FREENIX Track, vol. 41, no. 46, 2005, pp. 10–5555.

[59] M. Zhang, C. Krintz, and R. Wolski, “Edge-adaptable serverless acceleration for machine learning internet of
things applications,” Software: Practice and Experience, vol. 51, no. 9, pp. 1852–1867, 2021.

[60] G. Gain, C. Soldani, F. Huici, and L. Mathy, “Want more unikernels? inflate them!” in Proceedings of the 13th
Symposium on Cloud Computing, 2022, pp. 510–525.

[61] fission.io, “fission-workflow,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://github.com/fissi
on/fission-workflows

https://github.com/krustlet/krustlet
https://github.com/krustlet/krustlet
https://opencontainers.org/about/overview/
https://github.com/fission/fission-workflows
https://github.com/fission/fission-workflows

38 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

[62] Bitnami, “Kubeless,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://github.com/vmware-
archive/kubeless

[63] Iron.io, “Iron.io - DevOps Sp;itopm from Startups to Enterprise,” online; Accessed on 21 Mar. 2023. [Online].
Available: https://www.iron.io/

[64] D. Jackson and G. Clynch, “An investigation of the impact of language runtime on the performance and cost
of serverless functions,” in Proceedings of the IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). IEEE, 2018, pp. 154–160.

[65] D. Bortolini and R. R. Obelheiro, “Investigating performance and cost in function-as-a-service platforms,” in
Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 14th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2019). Springer, 2019, pp. 174–185.

[66] Amazon, “AWS Lambda - Serverless Compute - Amazon Web Services,” online; Accessed on 21 Mar. 2023.
[Online]. Available: https://aws.amazon.com/lambda/

[67] ——, “AWS Step Functions| Serverless Microservice Orchestration | Amazon Web Services,” online; Accessed
on 21 Mar. 2023. [Online]. Available: https://aws.amazon.com/step-functions

[68] ——, “Serverless Compute Engine - AWS Fargate- Amazon Web Services,” online; Accessed on 21 Mar. 2023.
[Online]. Available: https://aws.amazon.com/fargate/

[69] Microsoft, “Azure Functions Serverless Compute | Microsoft Azure,” online; Accessed on 21 Mar. 2023.
[Online]. Available: https://azure.microsoft.com/en-us/services/functions/

[70] G. Cloud, “Cloud Functions | Google Cloud,” online; Accessed on 21 Mar. 2023. [Online]. Available:
https://cloud.google.com/functions/

[71] IBM, “IBM Cloud Functions,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://www.ibm.com/cl
oud/functions

[72] Microsoft, “Durable Functions Overview - Azure | Microsoft Docs,” online; Accessed on 21 Mar. 2023.
[Online]. Available: https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
overview?tabs=csharp

[73] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Analyzing open-source serverless platforms: Characteristics
and performance,” arXiv preprint arXiv:2106.03601, 2021.

[74] A. Ellis, “OpenFaaS – Serverless Functions Made Simple,” Online; Accessed on 21 Mar. 2023. [Online].
Available: https://www.openfaas.com/

[75] A. S. Foundation, “Apache OpenWhisk is a Serverless, Open Source Cloud Platform,” Online; Accessed on 21
Mar. 2023. [Online]. Available: https://openwhisk.apache.org/

[76] D. Inc., “Docker Registry | Docker Documentation,” online; Accessed on 21 Mar. 2023. [Online]. Available:
https://docs.docker.com/registry/

[77] Apache, “Apache Foundation,” online; Accessed on 21Mar. 2023. [Online]. Available: https://www.apache.org/

[78] ——, “Apache Kafka,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://kafka.apache.org/

[79] ——, “Apache CouchDB,” http://couchdb.apache.org/, online; Accessed on 29 Aug. 2021.

[80] I. F5, “NGINX | High Performance Load Balancerm Web Serverm & Reverse Proxy,” online; Accessed on 21
Mar. 2023. [Online]. Available: https://www.nginx.com/

[81] Apache, “Apache Zookeeper,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://zookeeper.apac
he.org/

https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless
https://www.iron.io/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://www.openfaas.com/
https://openwhisk.apache.org/
https://docs.docker.com/registry/
https://www.apache.org/
https://kafka.apache.org/
https://www.nginx.com/
https://zookeeper.apache.org/
https://zookeeper.apache.org/

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 39

[82] fission.io, “Fission: Serverless Functions for Kubernetes,” online; Accessed on 29 Aug. 2021. [Online].
Available: https://github.com/fission/fission

[83] Oracle, “Fn Project - The Container Native Serverless Framework,” online; Accessed on 21 Mar. 2023. [Online].
Available: https://fnproject.io/

[84] ——, “Fn Flow,” online; Accessed on 21 Mar. 2023. [Online]. Available: https://github.com/fnproject/flow

[85] C. N. Foundation, “Knative,” online; Accessed on 08 Oct. 2021. [Online]. Available: knative.dev

[86] C. N. C. Foundation, “The Cloud Native Computing Foundation (CNCF) Survey,” online; Accessed on 21 Mar.
2023. [Online]. Available: https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.
pdf

[87] knix.io, “KNIXMicroFunctions,” online; Accessed on 21Mar. 2023. [Online]. Available: https://github.com/knix-
microfunctions/knix

[88] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “{SAND}: Towards {High-
Performance} serverless computing,” in Proceedings of the Usenix Annual Technical Conference, ser. USENIX ATC
’18, 2018, pp. 923–935.

[89] nuclio.io, “Nuclio: Serverless Platform for Automated Data Science,” online; Accessed on 21 Mar. 2023.
[Online]. Available: https://nuclio.io/

[90] M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo, “Dfaas: Decentralized function-as-a-service for federated
edge computing,” in Proceedings of the 10th IEEE International Conference on Cloud Networking (CloudNet). IEEE,
2021, pp. 1–4.

[91] S. Ghaemi, H. Khazaei, and P. Musilek, “Chainfaas: An open blockchain-based serverless platform,” IEEE Access,
vol. 8, pp. 131760–131778, 2020.

[92] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T. J. Skluzacek, K. Nagaitsev, A. Woodard, B. Blaiszik, J. Bryan, D. S. Katz,
I. Foster, and K. Chard, “ƒuncx: Federated function as a service for science,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 4948–4963, 2022.

[93] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A balanced scheduler with data reuse and replication
for scientificworkflows in cloud computing systems,” Future Generation Computer Systems, vol. 74, pp. 168–178,
Sep. 2017.

[94] P. Guo and W. Hu, “Potluck: Cross-application approximate deduplication for computation-intensive mobile
applications,” in Proceedings of the 23rd International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Mar. 2018, pp. 271–284.

[95] C. Denninnart, J. Gentry, and M. Amini Salehi, “Improving robustness of heterogeneous serverless comput-
ing systems via probabilistic task pruning,” in Proceedings of the 33rd IEEE International Parallel and Distributed
Processing SymposiumWorkshops, ser. IPDPSW ’19. IEEE, Jun. 2019, pp. 6–15.

[96] C. Denninnart andM. A. Salehi, “Harnessing the potential of function-reuse inmultimedia cloud systems,” Trans-
actions on Parallel and Distributed Systems (TPDS), vol. 31, no. 3, pp. 617—-629, 2021.

[97] C. Denninnart, M. Amini Salehi, A. N. Toosi, and X. Li, “Leveraging computational reuse for cost- and qos-
efficient task scheduling in clouds,” in Proceedings of the 16th International Conference on Service-Oriented Com-
puting, ser. ICSOC ’18, Nov. 2018, pp. 828–836.

[98] H. Sim, S. Kenzhegulov, and J. Lee, “Dps: Dynamic precision scaling for stochastic computing-based deep neural
networks,” in Proceedings of the 55th Annual Design Automation Conference, Jun. 2018, pp. 1–6.

https://github.com/fission/fission
https://fnproject.io/
https://github.com/fnproject/flow
knative.dev
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://github.com/knix-microfunctions/knix
https://github.com/knix-microfunctions/knix
https://nuclio.io/

40 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

[99] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and R. K. Gupta, “Approximate associative memristive memory
for energy-efficient gpus,” in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, ser.
Data ’15. IEEE, Mar. 2015, pp. 1497–1502.

[100] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis, L. Rupprecht, A. Anwar, and A. R. Butt,
“Duphunter: Flexible high-performance deduplication for docker registries,” in Proceedings of theUSENIXAnnual
Technical Conference, ser. USENIX ATC ’20, Jul. 2020, pp. 769–783.

[101] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel, “Cimplifier: Automatically debloating containers,”
in Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, Aug. 2017, pp. 476–486.

[102] V. Vassiliadis, M. A. Johnston, and J. L. McDonagh, “Fast, transparent, and high-fidelity memoization cache-keys
for computational workflows,” in Proceedings of the IEEE International Conference on Services Computing (SCC).
IEEE, 2022, pp. 174–184.

[103] Y. Tang and J. Yang, “Secure Deduplication of General Computations,” in Proceedings of the USENIX Annual
Technical Conference, ser. USENIC ATC’ 15, Jul. 2015, pp. 319–331.

[104] C. Denninnart, Cost- and QoS-Efficient Serverless Cloud Computing. University of Louisiana at Lafayette, 2020.

[105] J. Zhang, A. Wang, X. Ma, B. Carver, N. J. Newman, A. Anwar, L. Rupprecht, D. Skourtis, V. Tarasov, F. Yan et al.,
“Infinistore: Elastic serverless cloud storage,” arXiv preprint arXiv:2209.01496, 2022.

[106] D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues, “Incapprox: A data analytics system for
incremental approximate computing,” in Proceedings of the 25th International Conference on World Wide Web,
Apr. 2016, pp. 1133–1144.

[107] A. Mokhtari, P. Jamshidi, and M. Amini Salehi, “Felare: Fair scheduling of machine learning applications on
heterogeneous edge systems,” in Proceedings of the 15th IEEE Cloud Conference, Jul. 2022.

[108] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards wearable cognitive assistance,”
in Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, ser. Mo-
biSys ’14, Jun. 2014, pp. 68–81.

[109] P. Guo, B. Hu, R. Li, andW. Hu, “FoggyCache: Cross-Device Approximate Computation Reuse,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’18. Association
for Computing Machinery, Oct. 2018, pp. 19–34.

[110] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure and efficient cloud data deduplication with
randomized tag,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 3, pp. 532–543, Mar. 2017.

[111] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, andM. Zhao, “Cloudcache: On-demand flash cachemanagement
for cloud computing,” in Proceedings of the 14th USENIX Conference on File and Storage Technologies, ser. FAST
’16, Mar. 2016, pp. 355–369.

[112] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore key-value storage,” in Proceedings of the
7th ACM European Conference on Computer Systems, Apr. 2012, pp. 183–196.

[113] C. Wallenta, J. Kim, P. J. Bentley, and S. Hailes, “Detecting interest cache poisoning in sensor networks using
an artificial immune algorithm,” Applied Intelligence, vol. 32, no. 1, pp. 1–26, 2010.

[114] X. Wang, G. Li, X. Dong, J. Li, L. Liu, and X. Feng, “Accelerating deep learning inference with cross-layer data
reuse on gpus,” in Proceedings of the European Conference on Parallel Processing, ser. Euro-Par ’20. Springer,
Aug. 2020, pp. 219–233.

[115] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing Work in Large-Scale Computations,” in Proceedings
of 1st USENIX workshop on Hot Topics in Cloud Computing, ser. HotCloud ’09, Jun. 2009.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 41

[116] D. Tiwari and Y. Solihin, “MapReuse : Reusing Computation in an In-Memory MapReduce System,” in Proceed-
ings of the 28th IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS ’14, May 2014, pp.
61–71.

[117] M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi, “Constrained few-shot class-
incremental learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 9057–9067.

[118] H. Zhang, M. Shen, Y. Huang, Y. Wen, Y. Luo, G. Gao, and K. Guan, “A serverless cloud-fog platform for dnn-
based video analytics with incremental learning,” arXiv preprint arXiv:2102.03012, 2021.

[119] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale incremental learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 374–382.

[120] Z. Huang, S. Wu, S. Jiang, and H. Jin, “Fastbuild: Accelerating docker image building for efficient development
and deployment of container,” in Proceedings of the 35th Symposium on Mass Storage Systems and Technologies,
ser. MSST ’19. IEEE, May 2019, pp. 28–37.

[121] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Ten-
sorflow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX symposium on operating
systems design and implementation, ser. (OSDI ’16), Nov. 2016, pp. 265–283.

[122] N. Saurabh, J. Remmers, D. Kimovski, R. Prodan, and J. G. Barbosa, “Semantics-aware virtual machine image
management in iaas clouds,” in Proceedings of the IEEE International Parallel andDistributed Processing Symposium,
ser. IPDPS ’19. IEEE, May 2019, pp. 418–427.

[123] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.

[124] Y. Qu, H. Dai, Y. Zhuang, J. Chen, C. Dong, F. Wu, and S. Guo, “Decentralized federated learning for uav net-
works: Architecture, challenges, and opportunities,” IEEE Network, vol. 35, no. 6, pp. 156–162, 2021.

[125] S. Seneviratne and D. C. Levy, “Task profiling model for load profile prediction,” Future Generation Computer
Systems, vol. 27, no. 3, pp. 245–255, 2011.

[126] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Thamsen, “Auctionwhisk: Using an auction-inspired
approach for function placement in serverless fog platforms,” Software: Practice and Experience, vol. 52, no. 5,
pp. 1143–1169, 2022.

[127] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” in Proceedings of the
International conference on artificial neural networks, Oct. 2018, pp. 270–279.

[128] W. Li, R. Huang, J. Li, Y. Liao, Z. Chen, G. He, R. Yan, and K. Gryllias, “A perspective survey on deep transfer
learning for fault diagnosis in industrial scenarios: Theories, applications and challenges,” Mechanical Systems
and Signal Processing, vol. 167, p. 108487, 2022.

[129] H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W. S. Lee, and V. Raghunathan, “Energy-efficient system design for
iot devices,” in Proceedings of the 21th Asia and South Pacific Design Automation Conference, ser. ASP-DAC ’16.
IEEE, Jan. 2016, pp. 298–301.

[130] M. Satyanarayanan and D. Narayanan, “Multi-fidelity algorithms for interactive mobile applications,” Wireless
Networks, vol. 7, no. 6, pp. 601–607, 2001.

[131] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and characterization of inherent appli-
cation resilience for approximate computing,” in Proceedings of the 50th Annual Design Automation Conference,
May 2013, pp. 1–9.

42 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

[132] A. Hepworth, K. Tew, M. Trent, D. Ricks, C. G. Jensen, andW. E. Red, “Model consistency and conflict resolution
with data preservation in multi-user computer aided design,” Journal of Computing and Information Science in
Engineering, vol. 14, no. 2, 2014.

[133] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-based approximation for data parallel
applications,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 35–50, Apr. 2014.

[134] C. Denninnart and M. A. Salehi, “SMSE: A Serverless Platform for Multimedia Cloud Systems,” arXiv preprint
arXiv:2201.01940, 2022.

[135] Z.Wen, P. Bhatotia, R. Chen,M. Lee et al., “Approxiot: Approximate analytics for edge computing,” in Proceedings
of the 38th IEEE International Conference on Distributed Computing Systems, ser. ICDCS ’18. IEEE, Jul. 2018, pp.
411–421.

[136] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression techniques: Review, comparison and anal-
ysis,” in Proceedings of the 2nd International Conference on Electrical, Computer and Communication Technologies,
ser. ICECCT ’17. IEEE, Feb. 2017, pp. 1–8.

[137] X. Zheng, R. Zarcone, D. Paiton, J. Sohn,W.Wan, B. Olshausen, and H.-S. P.Wong, “Error-resilient analog image
storage and compression with analog-valued rram arrays: An adaptive joint source-channel coding approach,”
in Proceedings of the IEEE International Electron Devices Meeting, ser. IEDM ’18. IEEE, Dec. 2018, pp. 3–5.

[138] J. Paulo and J. Pereira, “Distributed Exact Deduplication for Primary Storage Infrastructures,” in Proceedings
of the 14th IFIP International Conference on Distributed Applications and Interoperable Systems, Jun. 2014, pp.
52–66.

[139] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M.Najafzadeh, andM. Shapiro, “Putting consistency
back into eventual consistency,” in Proceedings of the 10th European Conference on Computer Systems, Apr. 2015,
pp. 1–16.

[140] P. Pokhilko, E. Epifanovsky, and A. I. Krylov, “Double precision is not needed for many-body calculations: Emer-
gent conventional wisdom,” Journal of chemical theory and computation, vol. 14, no. 8, pp. 4088–4096, 2018.

[141] A. R. Zamani, I. Petri, J. Diaz-Montes, O. Rana, and M. Parashar, “Edge-supported approximate analysis for long
running computations,” in Proceedings of the 5th IEEE International Conference on Future Internet of Things and
Cloud, ser. Ficloud ’17. IEEE, Aug. 2017, pp. 321–328.

[142] M. A. Salehi, J. Smith, A. A.Maciejewski, H. J. Siegel, E. K. Chong, J. Apodaca, L. D. Briceno, T. Renner, V. Shestak,
J. Ladd et al., “Stochastic-based robust dynamic resource allocation for independent tasks in a heterogeneous
computing system,” Journal of Parallel and Distributed Computing, vol. 97, pp. 96–111, 2016.

[143] S. Vogel, A. Guntoro, andG. Ascheid, “Efficient hardware acceleration for approximate inference of bitwise deep
neural networks,” in Proceedings of the Conference on Design and Architectures for Signal and Image Processing, ser.
DASIP ’17. IEEE, Sep. 2017, pp. 1–6.

[144] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxilyzer: Towards a systematic framework for
instruction-level approximate computing and its application to hardware resiliency,” in Proceedings of the 49th
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’16. IEEE, Oct. 2016, pp. 1–14.

[145] Z. Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, and C. Wu, “Leveraging the error resilience of machine-
learning applications for designing highly energy efficient accelerators,” in Proceedings of the 19th Asia and South
Pacific Design Automation Conference, ser. ASP-DAC ’14. IEEE, Jan. 2014, pp. 201–206.

[146] A. Bookstein, V. A. Kulyukin, and T. Raita, “Generalized hamming distance,” Information Retrieval, vol. 5, no. 4,
pp. 353–375, 2002.

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 43

[147] F. S. Snigdha, D. Sengupta, J. Hu, and S. S. Sapatnekar, “Optimal design of jpeg hardware under the approximate
computing paradigm,” in Proceedings of the 53nd ACM/EDAC/IEEE Design Automation Conference, ser. DAC ’16.
IEEE, Jun. 2016, pp. 1–6.

[148] A. Yazdanbakhsh, D.Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethuraman, K. Ramkrishnan, N. Ravin-
dran, R. Jariwala, A. Rahimi et al., “Axilog: Language support for approximate hardware design,” in Proceedings of
the Design, Automation & Test in Europe Conference & Exhibition, ser. DATE ’15. IEEE, Mar. 2015, pp. 812–817.

[149] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. Abad, and A. Iosup, “Serverless
applications: Why, when, and how?” IEEE Software, 2020.

[150] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang, “Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks,” in Proceedings of the 14th EuroSys Conference, Mar. 2019, pp. 1–16.

[151] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kandemir, and C. R. Das, “Fifer: Tackling resource
underutilization in the serverless era,” in Proceedings of the 21st International Middleware Conference, Dec. 2020,
pp. 280–295.

[152] D. Yin and T. Kosar, “Data-aware approximate workflow scheduling,” arXiv preprint arXiv:1805.10499, 2018.

[153] J. Gentry, C. Denninnart, and M. A. Salehi, “Robust dynamic resource allocation via probabilistic task prun-
ing in heterogeneous computing systems,” in Proceedings of the 33rd IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’19. IEEE, Jun. 2019, pp. 375–384.

[154] A. Mokhtari, C. Denninnart, and M. A. Salehi, “Autonomous task dropping mechanism to achieve robustness
in heterogeneous computing systems,” in Proceedings of the 34th IEEE International Parallel and Distributed Pro-
cessing SymposiumWorkshops, ser. IPDPSW ’20. IEEE, May 2020, pp. 17–26.

[155] R. B. Roy, T. Patel, and D. Tiwari, “Daydream: Executing dynamic scientific workflows on serverless platforms
with hot starts,” in Proceedings of the International Conference on High Performance Computing, Networking, Stor-
age and Analysis. IEEE Press, 2022.

[156] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup, “A review
of serverless use cases and their characteristics,” arXiv preprint arXiv:2008.11110, 2020.

[157] L. Torrey and J. Shavlik, “Transfer learning,” inHandbook of Research onMachine Learning Applications and Trends:
Algorithms, Methods, and Techniques. IGI global, 2010, pp. 242–264.

[158] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading cold starts in serverless function chain de-
ployments,” in Proceedings of the 21st International Middleware Conference, 2020, pp. 356–370.

[159] V. Tankov, D. Valchuk, Y. Golubev, and T. Bryksin, “Infrastructure in code: Towards developer-friendly cloud
applications,” in Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2021, pp. 1166–1170.

[160] Amazon, “Fast NoSQL Key-Value Database - Amazon DynamoDB | Amazon Web Services,” online; Accessed
on 21 Mar. 2023. [Online]. Available: https://aws.amazon.com/dynamodb

[161] ——, “AWS Serverless Application Model | Amazon Web Services,” online; Accessed on 21 Mar. 2023. [Online].
Available: https://aws.amazon.com/serverless/sam/

[162] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic ephemeral storage for
serverless analytics,” in Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implemen-
tation, ser. OSDI ’18, Oct. 2018, pp. 427–444.

[163] Amazon, “Amazon RDS | Cloud Relational Database | Amazon Web Services,” online; Accessed on 21 Mar.
2023. [Online]. Available: https://aws.amazon.com/rds

https://aws.amazon.com/dynamodb
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/rds

44 Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi

[164] ——, “AWS Identity and Access Management (IAM),” online; Accessed on 4 May 2022. [Online]. Available:
https://aws.amazon.com/iam/

[165] ——, “Amazon API Gateway — Amazon Web Services,” online; Accessed on 4 May 2022. [Online]. Available:
https://aws.amazon.com/api-gateway/

[166] L. Baresi, D. F. Mendonça, and M. Garriga, “Empowering low-latency applications through a serverless edge
computing architecture,” in Proceedings of the European Conference on Service-Oriented and Cloud Computing.
Springer, Sep. 2017, pp. 196–210.

[167] K. F. A. Friebel, S. Soldavini, G. Hempel, C. Pilato, and J. Castrillon, “From domain-specific languages to memory-
optimized accelerators for fluid dynamics,” in Proceedings of the FPGA for HPCWorkshop, held in conjunction with
IEEE Cluster 2021, Sep. 2021.

[168] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A heterogeneous & serverless framework for
auto-tuning video analytics pipelines,” in Proceedings of the ACM Symposium on Cloud Computing, 2021, pp. 1–
17.

[169] N. C. Thompson and S. Spanuth, “The decline of computers as a general purpose technology,” Communications
of the ACM, vol. 64, no. 3, pp. 64–72, 2021.

[170] FFmpeg, “FFmpeg,” online; Accessed on 2 Apr. 2023. [Online]. Available: https://ffmpeg.org

[171] H. Zeng, Z. Zhang, and L. Shi, “Research and implementation of video codec based on ffmpeg,” in Proceedings
of 2nd International Conference on Network and Information Systems for Computers (ICNISC), Apr. 2016, pp. 184–
188.

[172] S. Wu, C. Denninnart, X. Li, Y. Wang, and M. A. Salehi, “Descriptive and predictive analysis of aggregating func-
tions in serverless clouds: the case of video streaming,” in Proceedings of the 22nd IEEE International Conference
on High Performance Computing and Communications. IEEE, Dec. 2020, pp. 19–26.

[173] S. Risco and G.Moltó, “Gpu-enabled serverless workflows for efficient multimedia processing,” Applied Sciences,
vol. 11, no. 4, p. 1438, Feb. 2021.

[174] C. Li, J. Bai, Y. Ge, and L. Youlong, “Heterogeneity-aware elastic provisioning in cloud-assisted edge computing
systems,” Future Generation Computer Systems (FGCS), vol. 112, pp. 1106 – 1121, 2020.

[175] V. Veillon, C. Denninnart, and M. A. Salehi, “F-fdn: Federation of fog computing systems for low latency video
streaming,” in Proceedings of the 3rd IEEE International Conference on Fog and Edge Computing, ser. ICFEC ’19,
May 2019, pp. 1–9.

[176] M. Satyanarayanan, G. Klas, M. Silva, and S. Mangiante, “The seminal role of edge-native applications,” in Pro-
ceedings of the IEEE International Conference on Edge Computing, ser. EDGE ’19. IEEE, Jul. 2019, pp. 33–40.

[177] K. Kritikos and P. Skrzypek, “A review of serverless frameworks,” in Proceedings of the IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE, 2018, pp. 161–168.

[178] E. Marin, D. Perino, and R. Di Pietro, “Serverless computing: A security perspective,” Journal of Cloud Computing,
vol. 11, no. 1, pp. 1–12, 2022.

[179] O. W. A. S. Project, “OWASP Top 10 (2017) Interpretation for Serverless,” online; Accessed on 30 Mar. 2022.
[Online]. Available: https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf

[180] M. Amini Salehi, T. Caldwell, A. Fernandez, E. Mickiewicz, E. W. D. Rozier, S. Zonouz, and D. Redberg, “Reseed:
A secure regular-expression search tool for storage clouds,” Software: Practice and Experience, vol. 47, no. 9, pp.
1221–1241, 2017.

https://aws.amazon.com/iam/
https://aws.amazon.com/api-gateway/
https://ffmpeg.org
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf

Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi 45

[181] Amazon, “Serverless CI/CD for the Enterprise on AWS,” online; Accessed on 1 Jun 2022. [Online]. Available:
https://aws.amazon.com/quickstart/architecture/serverless-cicd-for-enterprise

[182] R. Containers, “Rootless Containers | Rootless Containers,” online; Accessed on 30 Mar. 2022. [Online].
Available: https://rootlesscontaine.rs/

[183] Google, “gVisor,” online; Accessed on 30 Mar. 2022. [Online]. Available: https://github.com/google/gvisor

[184] K. Containers, “Kata Containers - Open Source Container Runtime Software | Kata Containers,” online;
Accessed on 30 Mar. 2022. [Online]. Available: https://katacontainers.io/

[185] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “SOCK: Rapid task
provisioning with Serverless-Optimized containers,” in Proceedings of the USENIX Annual Technical Conference,
ser. USENIX ATC ’18. Boston, MA: USENIX Association, Jul. 2018, pp. 57–70.

[186] D. Kelly, F. G. Glavin, and E. Barrett, “Denial of wallet—defining a looming threat to serverless computing,”
Journal of Information Security and Applications, vol. 60, p. 102843, 2021.

https://aws.amazon.com/quickstart/architecture/serverless-cicd-for-enterprise
https://rootlesscontaine.rs/
https://github.com/google/gvisor
https://katacontainers.io/

	Introduction
	Serverless Computing Paradigm
	Scope for Efficiency in the Serverless Computing Paradigm
	Positioning of This Survey Study
	Paper Structure

	Nuts and Bolts of the Serverless Computing Paradigm
	Introducing Serverless Computing
	Functions Triggers in Serverless Computing
	The Matter of ``Function State'' in Serverless Computing
	Function Isolation in Serverless Computing
	Cold Start vs Warm Start Functions
	Serverless Cloud Solutions
	Public Serverless Cloud Platforms
	Private Serverless Cloud Platforms
	General Architecture of Serverless Clouds

	Serverless Computing VS Other Distributed Computing Paradigms
	Reusing Opportunities in the Serverless Clouds
	Deterministic Versus Semantic Reusing
	Data Reusing
	Container Reusing
	Container Image Reusing

	Semantic (Approximate) Reusing

	Approximate Computing in the Serverless Clouds
	Approximation Versus Reusing
	Approximate Computing Requirements
	Data-Level Approximation Approaches in Serverless Computing
	Approximate Reusing
	Data Sampling
	Approximate Data Storage and Data Pruning

	Instruction-Level Approximation in Serverless Computing
	Precision Scaling and Stochastic Computing
	Loop Perforation and Instruction Replacement

	Hardware-Level Approximation In Serverless Computing
	Scheduling-Level Approximation in Serverless Computing
	Task Scheduling Approaches
	Container Scheduling Approaches

	Potential Future Research Directions
	High-level Abstractions for Serverless Computing
	Cloud-Native Programming Language/Framework
	Dataflow Programming Semantics
	Object-as-a-Service (OaaS): Going Beyond the Function Abstraction
	Accelerators/ASICs Abstraction

	Performance Aspects in Serverless
	Memory Contention
	Function Workflow Optimization
	Data Locality Optimization

	Efficiency via Domain-Specific Serverless Cloud Computing
	Utilizing Accelerator in Serverless Cloud

	Performance Aspects in Serverless
	Accelerator Multi-tenancy in Serverless Systems
	Task-Centric Scheduling

	Edge-to-Cloud Serverless Platforms
	Seamless Function Call & Service Migration
	Unified Management

	Serverless Security and Trustworthiness
	Trustworthiness
	Secure Container
	Denial of Wallet

	Summary

