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SUMMARY

Lack of trust has become one of the main concerns of users who tend to utilize one or multiple Cloud
providers. Trustworthy Cloud-based computing and data storage require secure and efficient solutions which
allow clients to remotely store and process their data in the Cloud. User-side encryption is an established
method to secure the user data on the Cloud. However, using encryption, we lose processing capabilities,
such as searching, over the Cloud data. In this paper, we present RESeED, a tool that provides user-
transparent and Cloud-agnostic regular-expression search functionality over encrypted data across multiple
Clouds. Upon a client’s intent to upload a new document to the Cloud, RESeED analyzes the document’s
content and updates its data structures accordingly. Then, it encrypts and transfers the document to the Cloud.
RESeED provides the regular-expression search functionality over encrypted data by translating the search
queries on-the-fly to finite automata and analyzing concise and secure representations of the data before
asking the Cloud to download the encrypted documents. RESeED’s parallel architecture enables efficient
search over large-scale (and potentially big data scale) data-sets. We evaluate the performance of RESeED
experimentally and demonstrate its scalability and correctness using real-world data-sets from arXiv.org
and IETF. Our results show that RESeED produces accurate query responses with a reasonable ('6%)
storage overhead. The results also demonstrate that for many search queries, RESeED performs faster in
compare to the grep utility that functions on unencrypted data.
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1. INTRODUCTION

Cloud providers offer scalable storage solutions to users and relieve the burden and costs of
managing a data center. In spite of the advantages offered by storage Clouds, there is an increasing
concern over the confidentiality of the user data in these environments [1–8]. A proven solution
to the confidentiality concerns is the user-side cryptographic techniques for the data [9]. However,
such techniques limit the Cloud users from several aspects. One limitation is that the cryptographic
techniques usually are not transparent to end-users [10, 11]. More importantly, these techniques
restrict functionalities such as searching and processing the users’ data [12]. Although there are
solutions for searching over encrypted data (e.g., [13]), they do not scale for complicated search
queries, such as regular-expression-based queries.
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Figure 1. Motivating Scenario: An organization that utilizes multiple Clouds to store its sensitive data. The
organization uses a trusted gateway that facilitates transparent access to the Clouds and provides regular-

expression based search functionality for the end-users.

Our motivation, in this research, is an organization that owns an increasing volume of data
documents (also termed documents in this paper) with sensitive information. For the sake of the
fault tolerance and availability, the organization tends to utilize multiple Clouds (a.k.a. multi-
Cloud [2, 14]) to store the documents. An example of such organization is a hospital that owns
patients’ health records. Another example, is a bank that keeps clients’ credit history reports. The
organization requires security for the documents and the ability to flexibly search their contents
within a short time. It also expects user-transparency, meaning that the users should not be involved
in any details of the encryption, decryption, storing, and searching data from multiple Clouds.

To address the above-mentioned requirements, our collaborators at Fortinet Ltd.† are working
on a trusted user-side gateway that transparently encrypts all the data before transferring them
to a destination Cloud (see Figure 1). The gateway requires a scalable system to flexibly search
(particularly, regular-expression-based search) on the encrypted stored data.

Existing techniques for searching on encrypted Cloud data fall short in two primary ways.
First, for real-world deployment, they require the Cloud provider cooperation to implement their
algorithms [15] that could be a significant barrier in practice [16, 17]. Second, they mostly
concentrate on the simplest categories of search, i.e., keyword search (e.g., [18, 19]). Although
recent advances have extended the capability of encrypted keyword search, allowing searches for
ranges, subsets, and conjunctions [20, 21], one powerful tool which has remained elusive is the
ability to apply regular-expression-based search on encrypted data. A solution using current methods
(e.g., [22]) remains impossible in practice due to the exponential explosion of the space required
for the storage of the resulting ciphertexts.

In this paper, we present RESeED, a system that offers a scalable and user-transparent
functionality for regular-expression search over encrypted documents stored in multiple Clouds.
RESeED achieves this objective without any need for the Cloud provider to cooperate, or change
their infrastructures (i.e., it is Cloud-agnostic). The search system resides on the trusted gateway
and provides a lightweight user interface that is accessible from users’ terminals, such as laptops
or smart-phones (see Figure 1). RESeED clients are able to upload data files (i.e., documents) to a
storage Cloud, remotely search for encrypted documents using regular-expressions, and download
the documents that matches these queries.

†http://www.fortinet.com/
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To the best of our knowledge, RESeED is the first solution to provide regular-expression
searchability over the encrypted data. It is also the first system that makes use of two
search techniques simultaneously, namely, database techniques [23], such as local indexing, and
cryptographic techniques, such as symmetric encryption [24], to satisfy the requirements of
deployment efficiency. RESeED is user-transparent and implements the necessary encryption and
decryption steps in the background so that the users see only plain-text data on their terminals.

As the size of data is rapidly increasing and forming big data scale data-sets hosted on the Cloud
(e.g., [25–28]), RESeED needs to be scalable so that it can maintain its efficiency with the increasing
size of the data-sets. For this purpose, in this research, we have proposed and implemented a parallel
architecture for RESeED that enables it to perform the regular-expression search on large-scale data-
sets in a short time.

Experimental results, generated from a working prototype of RESeED on real-world data-
sets, demonstrates the correctness and performance of the proposed method. In summary, the
contributions of this research are the following.

• We introduce a novel solution which processes regular-expression based searches over
encrypted data. Our solution operates based on two novel data structures. We process searches
over these data structures using algorithms to transform the query into a domain covered by
our new data structures.

• We propose the parallel architecture of RESeED that enables a scalable regular-expression
search for large-scale data-sets.

• We implement the first practically deployable solution to the search over encrypted data
problem and evaluate it on real-world data-sets.

• We demonstrate the efficacy, scalability, and correctness of our results on a real setting
scenario. Demonstrating the low overhead incurred, even when compared with existing
solutions, and demonstrating efficacy, in some cases beating the run time of existing tools
for regular-expression search over unencrypted data.

This paper is organized as follows. Section 2 reviews the most recent work in the literature,
and establishes the need for our solution. Section 3 presents the algorithms used by RESeED for
regular-expression search on encrypted data. Then, Section 4 describes the overall architecture of
the system. Section 5 discusses the details on the Cloud agnosticism and multi-Cloud features
of RESeED which is then followed by Section 6 that provides the security analysis of RESeED.
Section 7 presents the parallel architecture of RESeED and Section 8 presents the empirical results
using real-world data-sets. Finally, Section 9 concludes the paper and lays out our plan for future
work.

2. RELATED WORK

During the last decade, there have been an increasing number of proposed solutions to address the
users privacy and data confidentiality violation concerns while providing the capability to perform
searches over the encrypted data [13, 19, 29, 30]. In storage Clouds, in particular, making use of
encryption techniques ensures that user privacy is not compromised by the Cloud providers [31]
and has established the definition of trustworthy Clouds. However, such solution eliminates any
remote data processing capabilities, such as searching or database queries.

The solutions for keyword searches over a set of encrypted documents [22] are critical for
privacy preserving Clouds and are rapidly growing in importance given the recent users private data
disclosure [32]. Current solutions for searches over encrypted data are categorized into two main
groups. The first group of techniques make use of novel techniques from database research [23],
resulting in search methods for large-scale data centers such as locality sensitive hashing techniques.
Such solutions have shown promising results in real-world settings in terms of the efficiency of
remote query processing on encrypted data. On the negative side, database approaches have been
highly criticized for disclosing sensitive information that (even though indirectly) could potentially
cause data confidentiality and user privacy violations.
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Second, cryptographic algorithms, initiated by the seminal work by Boneh et al. [22], make use of
mathematical primitives such as public key encryption. The major advantage of using cryptographic
techniques is the existence of theoretical proofs that they will not leak sensitive information as
long as the underlying mathematical primitives are not broken. These approaches often suffer from
performance and scalability aspects that limit their real-world deployment significantly.

Searchable encryption has been extensively studied in the context of cryptography [24, 30, 33],
mostly from the perspectives of efficiency improvement and security formalization. Searchable
encryption was first described in [30], but the methods provided are impractical and erode security
due to the necessity of generating every possible key which the search expression can match. To
reduce the search cost, in [33], Goh proposed to use Bloom filters to create per-document searchable
indexes on the source data. However, these previous studies just consider exact keyword search.

One could construct regular-expression based search over encrypted data using the scheme
presented in [20], however, the results prove impractical, requiring ciphertext and token sizes of the
order O(2nw) where n is the number of documents and w is the number of tokens in the documents.

Wang et al., [34] studied the problem of similarity search over the outsourced encrypted Cloud
data. They considered edit distance as the similarity metric and applied a suppressing technique
to build a storage-efficient similarity keyword set from a given collection of documents. Based on
the keyword set, they provided a symbolic tree-based searching index that allows for similarity
search with a constant time complexity. In other research [19], privacy-preserving fuzzy search was
proposed for encrypted data in Cloud. They applied a wild-card-based technique to build fuzzy
keyword sets which were then used to implement a fuzzy keyword search scheme.

Ibrahim et al., [29] provided approximate search capability for encrypted Cloud data that was
able to cover misspelling and typographical errors which exist in a search statement and in the source
data. For this purpose, they adapted the metric space [35] method for encrypted data to build a tree-
based index that enables the retrieval of the relevant entries. With this indexing method, similarity
queries can be carried out with a small number of evaluations. Our work contrasts with these studies
due to the fact that our search mechanism allows search on the encrypted Cloud data through the
use of regular-expressions, meaning that the searches enabled by our technique are not limited to a
set of predefined keywords.

A searchable encryption scheme [36] provides a way to encrypt a search index so that its
contents are hidden except to a party that is given appropriate tokens. The Public Key Encryption
with keyword search primitive, introduced by Boneh et al., [22], indexes encrypted documents
using keywords. In particular, public-key systems that support equality (q = a), comparison queries
(q > a) as well as more general queries such as subset queries (q ∈ S). Song et al., [30] presented a
symmetric cryptography setting for searchable encryption architectures for equality tests. Equality
tests in the public-key setting are closely related to Anonymous Identity Based Encryption and
were developed in [13]. In another work [20], Boneh et al., introduce a new primitive called
Hidden Vector Encryption that can be used for performing more general conjunctive queries such
as conjunction of equality tests, conjunction of comparison queries and subset queries. This system
can also be used to support arbitrary conjunctive queries without revealing any information on the
individual conjuncts.

Another direction of research involves the use of homomorphic encryption [37] to further obscure
data from the cloud. The encryption method can be used to obscure information, such as keyword
frequency, while still being able to use them in the mathematical calculations for searching without
decrypting them. In [38] an exclusive-or (XOR) homomorphism encryption approach is proposed
to support secure keyword searching on encrypted data on cloud storage. The approach provides
a new data protection method by encrypting the keyword and randomizing it by applying XOR
operation with a random bit-string for each session to protect access pattern leakage. The approach
can reduce data leakage to service provider due to the homomorphic keys. However, the approach
remains impractical for large-scale data-sets due to its time complexity. In addition, it still remains
in the area of keyword-based search and not regular expressions.

In our previous works [39, 40], a preliminary version of regular expression search system for
encrypted data was provided. The current study extends the preliminary system in four main
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directions. First, it provides an architecture to make the system scalable for big datasets. Second, it
enables a transparent and secure search across multiple clouds. Third, we develop a detailed security
analysis for RESeED. Fourth, we implement the system within the Fortivault gateway.

3. REGULAR-EXPRESSION-BASED SEARCH OVER ENCRYPTED DATA

We introduce a new method for enabling regular-expression search over encrypted documents which
does not suffer from the exponential growth of the stored search keys.

The method presented in this paper operates based on two data structures that require the storage
overhead in the order of O(nw). The following subsections elaborate on how a regular-expression
is searched against a set of encrypted documents.

3.1. Alphabet Division

The key to our method for regular-expression-based search over a set of encrypted data revolves
around the ability to divide the alphabet Σ, of a non-deterministic finite automaton (NFA)
representing some regular-expression r into two disjoint subsets, C, the set of core symbols, and
Ω, the set of separator symbols. Our method works for any language composed of strings from
SC ∈ 2C separated by strings from SΩ ∈ 2Ω.

Intuitively, strings from SΩ are collections of white space and other separator characters, while
strings from SC are words, numbers, or other important symbols (also termed tokens in this paper)
that users tend to search. Based on a survey of the uses of regular-expressions in practice [41–44],
given an alphabet where such a division is possible, searches for phrases in the language most often
take this form. This appears to be the case even for languages other than natural languages (e.g.,
genome sequences are composed of sets of codons which can be divided into start and stop codons,
and the core codons which code for amino acids). However, we focus on the application of this
method to a natural language within this paper.

It is worth noting that the choice of the subdivision of Σ into C and Ω is partially subjective.
While it does not effect the correctness of our results, it can effect the quality of the partition for
usability reasons. As such, in our implementation, we define the division by allowing users to define
the set Ω, and then defining C = Σ \ Ω.

3.2. Algorithm for Regular-Expression Search

In order to apply regular-expression-based search to a document, we first perform two operations
on the document creating two data structures. The first is to extract every unique string si ∈ 2SC , or
the set of unique tokens. The second is to create a fuzzy representation of the order of the strings in
the document, by hashing each token to a code of b bits, and storing them in the order in which they
appear in the document.

For the set of all documents, we create a single column store, Ξ, which indexes the set of unique
tokens found in all documents, and indicating the documents in which they can be found. The
column store can be generated using the PEKS token for each keyword, as described in [22].

For each document, denoted Fi, we also create a unique order store, Oi, from the ordered set of
fuzzy tokens. The order store is simply an ordered list of the fuzzy hashes of b bits for each token,
with each hash appearing in the same order as the original token appeared in the original document.

Using these data structures, we can perform a search, via the procedure demonstrated in
Algorithm 1. Based on this algorithm, the regular-expression r is first converted into a non-
deterministic finite automaton (NFA), denoted n0. Then, in step 3, this automaton is partitioned
into a set of NFAs defined by a transformation we call an ω-transformation. It partitions a regular-
expression NFA n0 into a set of NFAs, denoted N ′, by operating on transitions on symbols in Ω.
The result of ω-Transformation for the example of back[\s]?pack regular-expression is shown in
Figure 2. As we can see in this example, based on the appearance of Ω, the regular-expression
NFA (n0) is decomposed to three NFAs (called A, B, and C). In this example, Ω1 ∈ Ω represents a
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Algorithm 1 Regular-Expression Search

1: procedure REGEXP(r,Ξ) . Where r contains the regular-expression, and Ξ is the column
store.

2: n0 ← REGEXPTONFA(r)
3: N ′ ← ωTRANSFORM(n0)
4: marking← () . A bit matrix for each document, and each NFA in N ′, initially all 0
5: for n′i ∈ N ′ do
6: di ← NFATODFA(n′i)
7: for token ∈ Ξ do
8: if di ACCEPTS token then
9: F ← FILES(token)

10: MARK(F, marking)
11: end if
12: end for
13: end for
14: P ← FINDPATHS(n0, N

′, marking)
15: matches← ∅
16: Φ← FILES(marking)
17: for fi ∈ Φ do
18: Oi ← GETORDERSTORE(fi)
19: if P ACCEPTS Oi

20: then matches← matches ∪ (fi)
21: end for
22: return matches
23: end procedure

Decomposed automaton A 

Decomposed automaton B 

Decomposed automaton C 

Ω1

Ω1

Ω2

Figure 2. Example of an ω-transformation on an automaton for the regular-expression back[\s]?pack. The
regular expression is decomposed to three NFAs namely, A, B, and C, based on Ω1 ∈ Ω that represents
a separator for start of the regular expression and Ω2 ∈ Ω which represents for [\s]? (shown as ω) in the

original regular expression.

separator for start of the regular expression and Ω2 ∈ Ω represents for [\s]? in the original regular
expression. Details of ω-transformation algorithm is explained in subsection 3.3.

Once N ′ is obtained, for each token in the column store, Ξ, we check for containment in each
NFA (steps 7 to 9 in Algorithm 1). We maintain a bit matrix, marking, that indicates for each
document, if a token matched any NFA in N ′. Once this matrix is obtained in step 10, we check the
marking for each document, in step 14, to see which NFAs are satisfied in each document.

Although marking matrix determines which documents contain matching tokens with the
search query, it cannot determine if the tokens are appeared in the expected order in the documents
or not. To verify whether a series of NFAs satisfy r (i.e., if the tokens are appeared in the expected
order), an additional structure, called path-NFA, is created that operates on the order store of the
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Ω1

Ω2

Accept 

A B 

C 

Figure 3. Path-NFA for the regular-expression back[\s]?pack. Transitions refer to the NFAs constructed in
Figure 2.

documents in marking. The path-NFA, denoted P , is a finite automata that acts on NFAs in N ′ for
transitions and accepts if those transitions represent a valid path through n0. That is, path-NFA P
is used to assure that a given document contains the necessary tokens to form a path from the start
state of n0 to one of the original accepting states.

The path-NFA has the same start and final states as n0. For the example of back[\s]?pack regular-
expression (in Figure 2) that has three NFAs A, B, and C, the path-NFA is shown in Figure 3.

We then obtain the order store, Oi, for each document fi ∈ Φ, in step 18, where such a path could
exist, and check to see if there exists a string in Oi that is accepted by P . If there is, then we indicate
a match and mark the matching encrypted document as part of the set of documents which contain
a match for the original regular-expression r (step 20 in Algorithm 1).

3.3. ω-Transformation Algorithm

To match a regular-expression against the tokens in the column store, a transformation on the
original non-deterministic finite automaton (NFA), n0, is required. The ω-transformation generates
a set of automata, N ′ from n0 by operating on the transitions labeled with elements of Ω in n0.
Intuitively, the new set of NFAs (N ′) are the set of NFAs which match strings in C separated by
strings in Ω, and are thus suitable for searching our column store for matches on individual tokens.

Algorithm 2 shows the pseudo code for ω-transformation. Based on this algorithm, each state in
the original NFA with an incoming transition labeled with a symbol from Ω is added to the set of
start states (steps 9 to 14 in Algorithm 2). Then, each state with an outgoing transition from Ω is
added to the set of accepting states (steps 15 to 19 in Algorithm 2). In the next step, we remove from
n0 all transitions labeled with symbols from Ω for each start state (step 21) and generate a new NFA
from those states reachable from the new start state, as shown in Figure 2.

4. RESeED ARCHITECTURE

4.1. Overview

The modular design of the whole RESeED system is demonstrated in Figure 4. The User Interface
(also termed UI) provides all the functionalities of the RESeED to different types of terminals (e.g.,
smart phones, laptops, etc.). It also interacts with the internal components of the system.

The Cloud Allocator module includes the Cloud selection policy and decides the storage Cloud
provider in a multi-Cloud scenario to upload a given document. The RESeED core receives the
search query from the UI and carries out the main search functionality based on the method
described in Section 3. This includes the production and translation of all automata and takes care
of creating and updating the column store and the order store. Detailed architecture of the RESeED
core is described in the Subsection 4.2.

Storage Cloud Interface provides the abstraction layer to access various Clouds. To add the ability
of working with a new Cloud, this interface should be implemented for that Cloud. We have already
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Algorithm 2 ω-Transformation

1: procedure ωTRANSFORMATION(n0)
2: Let Tn0

be the transitions in n0

3: Let Sn0
be the states in n0

4: Let Ω the set of separators
5: SStart ← ∅
6: TΩ ← ∅
7: N ′ ← ∅
8: for Each state si ∈ Sn0

do
9: for Each incoming transition of si, tj ∈ Tn0

do
10: if tj has label lk ∈ Ω then
11: Add si to SStart
12: Add tj to TΩ

13: end if
14: end for
15: for Each outgoing transition of si, tj ∈ Tn0

do
16: if tj has label lk ∈ Ω then
17: set si to an accepting state
18: end if
19: end for
20: end for
21: Tn0

← Tn0
\ TΩ

22: for each si ∈ Sstart do
23: generate the automaton n′i from the reachable states of si
24: if si is an accepting state
25: then remove si from accepting states of n′i
26: Add n′i to N ′

27: end for
28: return N ′
29: end procedure

C
lo

ud
 

A
llo

ca
to

r 

Amazon 
S3 

User Interface 

Storage Cloud 
Interface 

RESeED  
Core 

Dropbox 
Local 

Storage 
(Emulator) 

Figure 4. Modular Overview of the RESeED System.

implemented the interface for Dropbox‡ and Amazon S3§ storage Clouds. Also, for development
and testing purposes, we have implemented the interface in an emulated mode that stores documents
on the local storage.

‡http://www.dropbox.com/
§http://aws.amazon.com/s3/
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Figure 5. High-level Architecture of the RESeED Core.

4.2. RESeED Core

The high-level architecture of the RESeED core is illustrated in Figure 5. As we can see in this
figure, the RESeED core has two main functionalities namely, uploading a new document (described
in Subsection 4.2.1) and searching and downloading results (described in Subsection 4.2.2).

4.2.1. Uploading a New Document When a new document F is uploaded, its tokens are extracted
by the document parser and the column store is updated accordingly. That is, for each extracted
token, the column store is searched to see if the token already exists or not. If not, then the token and
the document name are appended to the column store. In case the token already exists in the column
store, we just insert the document name to the list of documents where the token has appeared. The
current version of RESeED accepts the pdf and txt document formats for upload. For example,
let the column store be as shown in Figure 6(a), before a new document fn is uploaded. Also, let
the content of document fn as follows: The quick brown fox jumps. Then, the updated
column store is as shown in Figure 6(b).

jumps : f1 

is : f2,f1,f3 

the : f3 

fox : f3 

(a) Initial column
store

jumps : f1,fn 

is : f2,f1,f3 

the : f3,fn 

fox : f3,fn 

quick : fn 

brown : fn 

(b) Updated col-
umn store

Figure 6. Column store is updated with new tokens upon uploading a new document to a Cloud provider.

In the next step, all the tokens of the new document are hashed to create the order store. In our
implementation, the tokens are hashed using the SHA-1 [45] hash function. We take the first b bytes¶

of the 20 bytes produced by the SHA-1 and discard the remainder. The string of these resulting bytes
produced for a given document F creates the order store that contains the hashes of all of the tokens
contained in F in the order that they appear.

¶In our experiments, b = 3.
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It is worth noting that RESeED also provides an off-line upload mode that is appropriate to index
large-scale batch of documents that have been transferred through channels other than the RESeED.

Once the column store and order store are updated, the document is encrypted and uploaded to the
appropriate storage Cloud through the Storage Cloud Interface component of the RESeED system
(see Figure 4).

4.2.2. Searching and Downloading Results Contents of the documents uploaded to the Cloud are
searched based on the user search query. The queries are constructed using regular-expressions
formatted with the syntax shown in Table I. Queries are processed based on the conversion of the
regular-expression to an NFA, which is then partitioned to a set of NFAs based on ω-transformation
to match sub-expressions. After that, matching against order store occurs based on path-NFA (see
Section 3.2).

Table I. Regular-expression symbols used in this paper and their meanings.

Symbol Definition Example
. any character; Character . is shown as \. x.y matches xay
* zero or more repetition of a character x* matches xxx
+ one or more repetition of a character x+ matches xxx
? zero or one repetition of a character x? matches x
| OR statement x|y matches x and matches y
\s any delimiter character x\sy matches x y
\w any alphabetic character \w matches any letter in a-z and A-Z
\d any numeric character \d matches any letter in 0-9

In the implementation, each NFA is represented by a transition table given by a square adjacency
matrix, and a start and end state.

Once the list of documents that match the input search query are found, they are displayed to the
user. These documents can then be downloaded and decrypted for the user.

It is noteworthy that due to the nature of the implementation, the language of this program differs
slightly from the grep utility regular-expression search. In fact, our current implementation is
similar to the grep utility with w flag. Table I describes the regular-expression language we use in
the RESeED system.

5. CLOUD AGNOSTICISM AND MULTI-CLOUD

In addition to search over encrypted data, RESeED provides an abstraction layer that offers
user-transparency to the users. That is, users do not need to deal with the complexities of
encrypting documents and storing/retrieving them to/from multiple Cloud providers. RESeED
allocates documents to different Clouds based on a policy called the Cloud selection policy. The
goal of this policy could be increasing the security or availability of the documents. Currently, the
Cloud selection policy is set to minimize the storage cost by utilizing the storage Clouds based on
the storage cost. As a future work, we are planing to extend the selection policy to increase the
security and availability of the users’ documents.

The search functionality of RESeED is independent of the Cloud provider architecture (i.e., it is
Cloud-agnostic) and does not require any adaptation or change in the Cloud provider infrastructure.
The RESeED system just requires primitive operations (e.g., upload, download, and delete) from a
Cloud provider. The implementation of RESeED is pluggable so that any new Cloud storage can
be plugged into that with a minimum implementation effort. RESeED currently supports Dropbox,
Amazon S3 storage Clouds, and the local storage as an emulator used for testing purposes.

RESeED’s search functionality is location-independent (i.e., documents can be searched
regardless of their storage location). Additionally, documents can be moved from one Cloud
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to another without any interruption on the search functionality. The reason for the location-
independence is that RESeED search operates based on the column store and order store data
structures which are updated when the documents are uploaded to a destination Cloud. In the case
of moving/deleting a documents, RESeED updates the tokens in the column store and the location
of the documents on the destination Cloud. The order store for the uploaded documents, however,
does not have any dependence on the documents location.

6. SECURITY ANALYSIS

Our threat model assumes that adversaries may intend to attack the communication streams between
client and the cloud storage. To explain what exactly the attacker could see or do using our system,
we will first provide some definitions.

History: Let D be a collection of documents in the system {d1, d2, . . . , dn}. Let q be the regular
expressions searched by the client {q1, q2, . . . , qn}. A history Hq can then be considered to be the
tuple (D, q). In other words, this is a history of searches and interactions between client and server.

View: The view is whatever the cloud can actually see during any given interaction between client
and the storage cloud. This includes the trapdoor of the file name searched and requested by the
client and the collection of encrypted documents E that are uploaded to the storage cloud. Let
V (Hq) be this view.

Trace: The trace is the precise information leaked about the history H . For our system, this
includes file identifiers that associated with the search results of the trapdoor T . It is our goal to
allow the attacker to infer as little information about Hq as possible.

RESeED provides users with a trustworthy architecture to store their confidentiality-sensitive
data securely in the Cloud while maintaining their ability to search the data for generic regular
expressions. The sole Trusted Computing Base (TCB) in the RESeED framework is the trusted
gateway that has access to all the sensitive information such as the column and order stores and the
plain text data before the upload. Protected trusted gateway is a reasonable threat model in the real
world settings because the user could keep it locally with minimal exposure to external (potentially
untrusted) entities. Moreover, the trusted gateway does not violate the goal of this research, which
is securing users’ data on the cloud.

The View and Trace encompass all that the attacker would be able to see in RESeED. For the
sake of this analysis, we assume that the chosen encryption and hashing methods are secure, and
so E itself will not leak any information. Similarly, T only shows a listing of hashed files names
requested.

An attacker monitoring the process during a search could see the resultant file identifiers that are
requested with the given T . This would show an encrypted history as (E, T ). However, since the
attacker would not be able to discern the query, this data would be of little use.

Despite minimal trusted computing base, adversaries may still intend to intrude RESeED through
man-in-the-middle, compromised honest Cloud providers, and untrusted Cloud providers to attack
the confidentiality of the user data. In these cases, all the adversary could see is a set of encrypted
documents and hence infer or extract users confidential information according to cryptographic
encryption primitives. Such attackers can potentially target the integrity of the user data by
modifying the content of data in E. However, such attacks can be verified in RESeED as the
documents cannot be decrypted at the client side. In fact, we apply symmetric encryption on client’s
data (AES encryption was used in implementation) with keys stored by the user. In the event that
the of encrypted data are altered by an attacker, the data cannot be decrypted at the client’s side by
the keys.

Additionally, the attackers with control over the Cloud infrastructures could potentially observe
the search patterns that the user queries remotely. In particular, they could obtain sequences of
document accesses in the Cloud. It is feasible that the intruders could launch a high-level frequency
attack through investigation of long-term document accesses. Clearly, this assumes that i) the Cloud
data are static and not updated dynamically that is rarely the case in practice; and ii) the Cloud
is used for a long time frequently as such frequency analyses often require a large training data set
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before they could accurately infer useful information. Our assumption is that the updates on the data
files in Cloud are not predictable. However, there are methods (e.g., [46]) that can be used to tackle
frequency attacks when the updates are predictable. Also, note that even a successful frequency
attack does not enable the attackers to access the plain text data and all the attackers gain is the
knowledge of retrieved encrypted documents.

7. SCALABLE RESeED

As the size of data is rapidly increasing and forming big data-scale data-sets hosted on the Cloud
(e.g., [25–27]), one challenge is to come up with scalable data processing methods that can maintain
their efficiency with the increasing size of the data-sets. To address this challenge, we propose and
implement a parallel architecture that enables RESeED to perform the regular-expression search on
large-scale data-sets in a short time.

To parallelize RESeED, we can consider its operation as a workflow with two major steps. The
first step is the column store matching and the second step is the order store matching. Both of these
steps process potentially large data-sets. However, these matching steps are highly prallelizable.

To parallelize matching against column store, we have to modify the way the column store is
constructed. For that purpose, we create multiple independent column stores, each one called a sub-
column store. Then, the tokens in each sub-column store are matched against NFAs inN ′ in parallel.
To obtain the maximum speedup, the number of sub-column stores created should be based on the
number of available processing units (p) and the sub-column stores should have zero intersection
(i.e., Ξ = Ξ1 ∪ Ξ2 ∪ Ξ3... ∪ Ξp and Ξ1 ∩ Ξ2 ∩ Ξ3... ∩ Ξp = ∅).

Then, for a given token τ , with a hashed value H(τ), the destination sub-column store is
determined based on Equation 1.

i = H(τ) mod p (1)

Given a hash function that uniformly maps each token to a hashed value, and for a data-set
with large number of tokens, we can assure that the number of tokens in all sub-column stores
are approximately the same. Therefore, the processing load of matching against the column store is
equally distributed across the available processing units.

Once the sub-column stores are constructed, we match the tokens in each sub-column store
against NFAs in N ′ (see Section 3) in parallel. As depicted in Figure 7, each sub-column store
is mapped to a processing unit and its tokens are matched against each NFA and the documents that
match each NFA are identified. In the next phase, for each document, we merge NFAs matched in
different lists. The result of this phase is the list of documents that are matched to all NFAs in N ′,
denoted φ, which is fed to the order store matching step.

This method is similar to the MapReduce [18] programming model that is extensively being used
for big-data-scale processing. In this case, the input to the Map function is each line of the column
store that includes a token and the list of documents, denoted F , where the token is appeared. The
Mapper function processes the token by matching it against each n′i ∈ N ′ and if there is a match, it
emits key-value pairs in form of < fi, n

′
i > for all fi ∈ F . Then, the Reduce function unions all n′i

for document fi that constructs the marking matrix.
For the order store matching step, the pool of documents identified as the result of the column

store matching are processed on the available processing units. Matching each hash document
against the path-NFA (see Section 3) can be accomplished independently on each processing unit.
Therefore, we map the corresponding hash documents of elements in φ to the available processing
units for the order store matching. Finally, the list of documents that include a matching phrase to
the search query are shown to the user.
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Figure 7. Workflow for Parallel Column Store Matching.

8. EVALUATIONS

8.1. Experimental Setup

To experimentally evaluate the performance and correctness of RESeED we tested it on two
different data-sets. The first data-set is the Request For Comments‖ (RFC) document series, a set
of documents which contain technical and organizational notes about the Internet. This data-set
contains 6,942 text files with total size of 357 MB and has been used in previous research works (e.g.,
in [34]). The second data-set is a collection of scientific papers from the arXiv∗∗ repository. This
data-set contains 683,620 PDF files with the total size of 264 GB. All experiments were conducted
on a computer running Linux (Ubuntu 12.04), with 4 Intel Xeon processors (1.80 GHz) and 64 GB
RAM.

We derived a set of ten regular-expressions benchmarks based on those provided by researchers at
IBM Almaden [47], translated into an abbreviated set of regular-expression operators and symbols,
as indicated in Table I. This set of benchmarks was initially compiled for searching Web contents.
We adapted these benchmarks to be semantically interesting and popular for both the RFC and the
arXiv data-sets. The regular-expression benchmarks and their descriptions are listed in Figure 8.
They are sorted based on the time they take to execute. That is, the first benchmark is the fastest and
the last one is the most computationally-heavy regular-expression.

8.2. Finding the Proper Hash-Width

The hash-width (i.e., size of the hashed tokens in the order store) can be of any arbitrary size.
We used SHA-1 hash function to create order store for documents. For each token in the document,
SHA-1 creates a 20-byte-long hashed tokens. However, creating an order store with such hash-width
imposes a considerable storage overhead. To reduce this overhead, we take the first b bytes of the 20
bytes produced by the SHA-1 and discard the remainder. In this case, there exists a chance that our
search algorithm returns documents that do not contain the regular-expression that we are searching
for, resulting in a false positive due to the pigeonhole principle. We define the false positive rate

‖http://www.ietf.org/rfc.html
∗∗http://arxiv.org/
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(A) Words related to Interoperability:
Interopera(b(le|ility)|tion)

(B) All documents that have “Cloud Computing” in their text:
cloud(\s)+computing

(C) Structured Query Language or SQL:
S(tructured)?(\s)+Q(uery)?(\s)+
L(anguage)?

(D) All references to TCP/IP or Transmission Control Protocol
Internet Protocol:
((Transmission(\s)*Control(\s)*
Protocol)|(TCP))(\s)*/?(\s)*
((Internet(\s)*Protocol)|(IP))

(E) All files that reference “Computer Network” book of “Andrew
Stuart Tanenbaum”:
Tanenbaum,(\s)*(A\.|Andrew)((\s)*
S\.|Stuart)?(,)?(\s)*(\")?Computer
(\s)*Networks(\")?

(F) All dates with YYYY/MM/DD format:
(19|20)(\d\d)/(0(1|2|3|4|5|6|7|8|9)
|1(0|1|2))/(0(1|2|3|4|5|6|7|8|9)|
(1|2)\d|3(0|1))

(G) URLs that include Computer Science (cs) or Electrical and
Computer Engineering (ece) and finished by .edu:
http://((\w|\d)+\.)*(cs|ece)\.
(\w|\d|\.)+\.edu

(H) All IEEE conference documents after the year 2000:
(2\d\d\d(\s)+IEEE(\s)+(\w|\s)*)|(IEEE
(\s)+(\w|\s)*2\d\d\d(\s))Conference

(I) Any XML scripts in the documents:
<(\?)?(\s)*(xml|html)(\s)+.*(\?)?>

(J) Documents that include any US city, state, and possibly ZIP code:
(\w)+(\s)*,(\s)*(\w\w)(\s)*\d\d\d\d\d
(-\d\d\d\d)?

Figure 8. Regular-expression benchmarks used for the performance evalua-
tions.

based on Equation 2.

Rate =
f

t
· 100 (2)

where f is the number of false positives and t is the total number of tokens found. While a smaller
hash-width results in a more compact order store, it also results in a higher false positive rate.

We experimentally evaluated the effect of hash-width on the rate of false positives to determine an
ideal hash-width for order store. We generated order stores for each token with hash-widths between
one and 10 bytes and measured the rate of false-positives for the benchmarks listed in Figure 8. We
used the grep utility to confirm the observed rate of false positives returned by our method. The
result of this experiment for the RFC and arXiv data-sets are illustrated in Figure 9. The horizontal
axis shows different hash-widths and the vertical axis shows the mean and 95% confidence interval
of false-positive rate across all benchmarks.

As we can see in both Figures 9(a) and 9(b), there is a high false-positive rate for a hash-width of
one. However, for a hash-width of two, the false-positive rate drops sharply. We notice that, the drop
of the false-positive rate is sharper for benchmarks that have less fuzziness (i.e., contain specific
words) such as benchmarks (B), (C), and (D). In contrast, the false-positive rate in benchmarks
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(b) arXiv data-set

Figure 9. False positive rate of benchmarks as a function of hash-width.

which have more fuzziness (e.g., benchmark (G) and (J)) tend to drop slower. The reason is that
for such regular-expressions, there are several tokens that can match to the expression and if any of
these matching tokens have a hash collision, then it leads to a false-positive. We observe that with
a hash-width of three bytes the false-positive rate is close to zero on both data-sets. Hence, for the
rest of our evaluations we consider the hash-width of the order store equals to three. We should
note that hash-width three provides the best trade-off for the two evaluated datasets. In practice,
we recommend to perform some initial tests on the applied dataset to find the efficient hash-width.
However, we believe that the hash-width should be more than or equal to three.

8.3. Evaluation of Regular-Expression Benchmarks

To demonstrate the efficacy of RESeED, we evaluated its performance to search on the RFC and
arXiv data-sets and compared the results against the performance of the grep utility [48]. For
each regular-expression in the benchmarks listed in Figure 8, we measured the overall search time
in RESeED, indicating the time to construct the automata and matching against the column store,
and the time to match against the order store. We performed this evaluation on the sequential and
parallel RESeED. We also measured the total time that grep takes to search the same regular-
expression over the unencrypted data-sets. To eliminate any measurement error that can happen
due to other loads in the system, we ran each experiment ten times, reporting the mean and 95%
confidence interval of the results. However, the confidence intervals are so small that they are not
readily visible in many cases in the graph.

A B C D E F G H I J
Benchmarks Searched Using grep and RESeED

0

30

60

90

120

150

180

210

240

270

300

Ti
m

e
(s

)

grep on Unencrypted Data
Column Store Matching
Order Store Matching
Parallel Column Store Matching
Parallel Order Store Matching

(a) RFC data-set

A B C D E F G H I J
Benchmarks Searched Using grep and RESeED

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m

e
(s

)

grep on Unencrypted Data
Column Store Matching
Order Store Matching
Parallel Column Store Matching
Parallel Order Store Matching

(b) arXiv data-set

Figure 10. Time to search for matches for our benchmarks from Figure 8 for the grep utility and RESeED.

Figure 10 shows the result of our evaluations using the benchmarks listed in Figure 8.
The experiment shows the feasibility of searching complicated regular-expressions on the RFC
(Figure 10(a)) and arXiv (Figure 10(b)) data-sets within a limited time. More importantly, the figures
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show that even though RESeED searches on the encrypted data, it performs faster for benchmarks
(A)-(F) than grep. The reason for RESeED outperformance is the fact that it uses the column store
first, searching fewer documents compared to grepwhich scans the whole documents. We note that
for the benchmarks that perform longer than grep (benchmarks (G)-(I) in both figures), RESeED
have their performance bottleneck on matching against the column store. This justifies the essence of
parallel RESeED. Accordingly, we observe that for all of the benchmarks in both data-sets parallel
RESeED significantly reduces the search time for all benchmarks. In fact, parallelization resolves
the performance bottleneck of RESeED and makes it practically performable even on large-size
datasets.

In general, sequential RESeED performs faster than grep when given less fuzzy regular-
expressions or when the list of the order stores that need to be searched is small. In the former
case, matching each entry of the column store against the generated automata is performed quickly
and in the latter case, the number of documents that have to be checked in the order store are few.

In the parallel RESeED, we observe that the parallelization is more effective in evaluating
benchmarks that their search times are dominated by the order store matching. In other words, there
is less parallelization gain where the bottleneck is the column store matching time. The reason is that
in complex regular-expressions, time to match against column store is dominated by the matching
the tokens against NFA not by the number of tokens to be matched.

8.4. RESeED Scalability

In this experiment, we investigate how RESeED scales as the size of the data-set increases. We
evaluated the performance of the RESeED using the benchmarks listed in Figure 8 with different
sample sizes from the arXiv data-set. For that purpose, we constructed data-sets with different sizes
from 1 GB to 200 GB as can be seen in the horizontal axis of Figure 11. For each data-set size,
we repeated the experiment for ten different samples and reported the mean search time for each
benchmark. All of the experiments were executed on the four cores available on our server.

The result of this experiment is shown in Figure 11. The horizontal axis shows different data-set
sizes evaluated and the vertical axis shows the time required to search each benchmark.

This experiment demonstrates that RESeED scales almost linearly, as the size of the data-set
increases. The reason for this performance is the scalable structure of the column store which
enables the effective identification of documents that contain possible accepting paths in the
automaton representing our regular-expression. These feature makes our search method highly
scalable, and well suited for large data-sets.

As illustrated in Figure 11, the search time for less fuzzy benchmarks (i.e., benchmarks (A)-
(E)) increases slower than more fuzzy benchmarks (i.e., (G)-(J)). This is attributed to the extra
time required for the column store matching for more fuzzy benchmarks. That is, as the size of
the data-set increases, the number of entries in the column store grows and it takes more time to
match the whole column store, specially for more fuzzy benchmarks, against a complicated NFA.
Therefore, this experiment also signifies the dominance of matching against the column store step
and its impact on the scalability of RESeED.

8.5. RESeED Speedup

In this experiment, we evaluated the speedup of parallel RESeED as the number of available
processing units increases. For this experiment, we have used the arXiv data set. To access large
number of processing units, we ran this experiment on the Pegasus2 [49] high performance
computing facilities that we have which includes more than 10,000 X86 cores and 18 TB memory.
Each user in this system is allocated up to 16 processing units and 30 GB memory. As Pegaus2
resources are shared amongst different users and there are coexisting workloads, we have executed
each experiment ten times to remove any environmental impact and the mean speedup is reported.

The result of this experiment is illustrated in Figure 12. The horizontal axis shows different
number of processing units (cores) that we deployed for this experiment and the vertical axis shows
the speedup obtained for each benchmark based on different number of processing units. For the
sake of readability we have connected the related points with dash lines.
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Figure 11. Scalability of RESeED in terms of time to search benchmark regular-expressions as the size of
the data-set increases.
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Figure 12. Speedup obtained by searching benchmark regular-expressions on different number of processing
units (cores) using parallel RESeED.

As we can see in Figure 12, less fuzzy benchmarks are gaining more speedup as the number of
processing units increases. However, due to the time for matching against the column store and order
store, more fuzzy regular-expressions (e.g., (G)-(J)) are not getting a high speedup by increasing the
degree of parallelism. We observe that within the more fuzzy benchmarks ((G)-(J)), the one that its
search time is more dominated by the order store matching (i.e., benchmark (J), as demonstrated in
Figure 10) gains a better speedup.

We can conclude that parallelizing RESeED is more effective for less fuzzy regular-expressions.
Additionally, we notice that the benchmarks that their search time is heavily depends on the order
store matching (i.e., those that have a large document set to check, such as (F) and (J) benchmarks)
benefit from parallelization better than those that their search time is dominated by the time to search
the column store.

8.6. Analysis of the Overhead

RESeED has two main sources of overhead. In this experiment, we measure and analyze these
overheads.

The first overhead is related to the space complexity of RESeED. To study the space complexity,
we investigate the growth of the column store as the size of the data-set increases. For that purpose,
we measure the number of tokens stored in the column store as documents are added to the data-
set. To measure the imposed overhead accurately, for this experiment, we consider the sequential
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RESeED that creates just one column store. In addition, we study the imposed space overhead of
order store that is also needed to be stored.

Figure 13 illustrates how the size of the column store scales as the size of the RFC and arXiv
data-sets increases. For the sake of comparison, in this figure, we have shown the number of tokens
(i.e., entries) in the column store for the arXiv and RFC data-sets for the first 300 MB of files to
illustrate the trend. We expected the number of tokens in the column store to have a logarithmic
growth as the size of data-set increases [50]. As can be seen in Figure 13, the increase in the size
of the column store includes a linear and a logarithmic component. The logarithmic component is
due to the addition of dictionary words to the column store, whereas the linear component is caused
by unique words which exist within files such as name of the authors of a paper or name of cities.
For the same reason we notice a more logarithmic trend in the number of tokens in the RFC data-set
whereas growth of the number of tokens in the arXiv data-set has a larger linear component due to
more unique names such as author names, university names, names in the references, etc.

However, the size of the column store is small compared to the size of the whole data-set. More
importantly, this overhead becomes less significant as the size of the data-set increases. For instance,
the size of column store in the RFC data-set is 13% of the whole data-set (46.7 MB) whereas it is
only 2% (5.4 GB) of the arXiv data-set. It is noteworthy that the overhead from the column store
is similar to that induced by other searchable encryption techniques which cannot handle regular-
expressions, such as those in [20].

The space overhead of the order store is linearly correlated with the size of the data-set. However,
recall from Section 8.2 that we store a portion of hashed tokens in the order store that drastically
reduces its overhead. Therefore, the exact overhead of the order store with hash-width 3 is 155
MB for the RFC and is approximately 10 GB for the arXiv data-set. We are currently working on
the structure of order store to reduce its overhead further. Another data structure that is utilized in
RESeED is marking. As mentioned earlier, it is an in-memory structure, used to store the file
names and the corresponding NFA that they match with. Our measurements show that this structure
will not take more than 200 MB for the most complicated benchmark evaluated. This can be well
tolerated with the gateway hardware (i.e., Fortivault) in which RESeED is executed.

Figure 13. Column store size as a function of data-set size.

The second overhead pertains to the time taken to update the column store and to generate new
order stores upon the addition of a new document to the data-set. To measure this overhead, we
added files to the RFC and the arXiv data-sets one by one in a randomized order and measured
the time of the update operation. The result of this experiment is shown in Figure 14 for both the
RFC (Sub-figure 14(a)) and the arXiv (Sub-figure 14(b)) data-sets. In this experiment, for the sake
of comparison, we show the update time for only the first 300 MB of added files for both the
RFC and the arXiv data-sets. In both sub-figures as the size of the data-set increases, the time for
the update operation increases linearly. A constant part of this increase is due to the overhead of
generating the order store for each new document. However, the general linear trend is attributed to
the time to insert multiple new entries into the column store. In our implementation, we have used an
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(a) RFC data-set (b) arXiv data-set

Figure 14. Time to update column store for RFC and arXiv data-sets.

unordered set data structure to store the list of appearances of a token in different documents.
The average time complexity of the insert operation for multiple entries (i.e., multiple tokens) in
this data structure in linear based on the number of tokens.

9. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented RESeED, a system that provides capability to process regular-expression
based search over encrypted data residing potentially in multiple Clouds. RESeED improves upon
current state-of-the-art techniques in the search over encrypted data, by providing a highly scalable,
efficient, and accurate solution with low storage and performance overhead. The proposed solution
is user-transparent, and cloud-agnostic. To support searching encrypted data over large-scale (and
potentially big data scale) data-sets, we also proposed and implemented a scalable version of
RESeED that works based on the MapReduce model.

Our experiments with a working prototype of RESeED on real-world data-sets empirically
expresses RESeED’s deployability and practicality. In particular, for several evaluated benchmarks,
we noticed that RESeED can perform search queries on encrypted data faster than the grep utility
that performs the search on unencrypted data.

In future, we plan to extend this research from different aspects. One interesting future direction
is to extend RESeED to search encrypted genome sequences for existence of specific protein
sequences. This work will enable biologists to search for particular protein sequences without
revealing the whole patient’s genome data to them. Another future research direction is to investigate
optimal multi-Cloud allocation policies for the user documents in a way that increases availability
and security of the data across several Clouds.
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http://dataengineering.org/aminis/download/fts/FTS

The manual document on how to run RESeED and its options are available here:
http://dataengineering.org/aminis/download/fts/man.pdf

Details of the test data we used for our experiments are available for use in the following address,
which allows full recreation of our results.
http://dataengineering.org/aminis/download/fts/data
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