
Streamlining Cloud-Native Application Development and

Deployment with Robust Encapsulation

Pawissanutt Lertpongrujikorn1,∗, Hai Duc Nguyen2,∗, and Mohsen Amini Salehi1
1 HPCC Lab, University of North Texas, USA

2Argonne National Laboratory and University of Chicago, USA
{pawissanutt.lertpongrujikorn, mohsen.aminisalehi}@unt.edu, ndhai@cs.uchicago.edu

ABSTRACT

Current Serverless abstractions (e.g., FaaS) poorly support
non-functional requirements (e.g., QoS and constraints), are
provider-dependent, and are incompatible with other cloud ab-
stractions (e.g., databases). As a result, application developers
have to undergo numerous rounds of development and manual
deployment refinements to finally achieve their desired quality
and efficiency. In this paper, we present Object-as-a-Service
(OaaS)—a novel serverless paradigm that borrows the object-
oriented programming concepts to encapsulate business logic,
data, and non-functional requirements into a single deploy-
ment package, thereby streamlining provider-agnostic cloud-
native application development. We also propose a declarative
interface for the non-functional requirements of applications
that relieves developers from daunting refinements to meet
their desired QoS and deployment constraint targets. We real-
ized the OaaS paradigm through a platform called Oparaca
and evaluated it against various real-world applications and
scenarios. The evaluation results demonstrate that Oparaca
can enhance application performance by 60× and improve
reliability by 50× through latency, throughput, and availabil-
ity enforcement—all with remarkably less development and
deployment time and effort.

CCS CONCEPTS

• Computer systems organization → Distributed archi-

tectures; Cloud computing; Self-organizing autonomic

computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-1286-9/24/11. . . $15.00
https://doi.org/10.1145/3698038.3698552

KEYWORDS

serverless, cloud computing, function-as-a-service, object-as-
a-service, cloud-native programming, abstraction

ACM Reference Format:

Pawissanutt Lertpongrujikorn1,∗, Hai Duc Nguyen2,∗, and Mohsen
Amini Salehi1. 2024. Streamlining Cloud-Native Application De-
velopment and Deployment with Robust Encapsulation. In ACM

Symposium on Cloud Computing (SoCC ’24), November 20–22,

2024, Redmond, WA, USA. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3698038.3698552

1 INTRODUCTION

Function-as-a-Service (FaaS), or serverless computing, has
emerged as a transformative paradigm in cloud computing,
redefining how businesses and individuals develop and deploy
applications. Unlike traditional virtualized infrastructure (e.g.,
virtual machines), FaaS enables on-demand code execution in
response to events, eliminating the need to manage servers or
underlying infrastructure. Developers leverage FaaS through
high-level abstractions provided by cloud platforms, allowing
them to focus on writing and running functions rather than
managing complex systems, thereby significantly enhancing
productivity.

Unfortunately, beyond hiding complexity, FaaS plays a
very limited role in other aspects. Primarily, FaaS functions
only offer resource and computation abstraction, which is in-
sufficient for a complete application deployment [23, 45, 81].
Developers must rely on additional cloud services, such as
databases [3, 5] and orchestrators [4, 15], to manage applica-
tion states and workflows. Yet, there are limited integration
supports among these abstractions. In stateful applications,
for example, FaaS performance depends on data locality, but
current FaaS implementations provide no means to help FaaS
functions cooperate with cloud data abstractions in this regard,
negatively affecting productivity and efficiency. Furthermore,
the FaaS abstraction is implemented by cloud providers, who
usually prioritize system metrics, such as resource utiliza-
tion, which can result in unpredictable and uncontrollable
quality degradation on the application side [71]. This leads
to counterproductive interactions between developers and

*These authors contributed equally to this work

https://doi.org/10.1145/3698038.3698552
https://doi.org/10.1145/3698038.3698552

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

Application logic

Workflow Management

Application data

FaaS Abstraction

Workflow Abstraction

Data Abstraction(e.g., DBMS)

Source code Cloud

Refinement

Developer

(a) FaaS-based application

Application logic

Application data

Non-functional Requirements

Non-functional Req. Enforcement

Workflow
Mgmt

Data
Abstraction

Source code Cloud

Developer
FaaS

OaaS Abstraction

(b) OaaS-based application

Figure 1: OaaS extends the FaaS abstraction to encap-

sulate everything into a single deployment with built-in

non-functional enforcement, boosting productivity and

efficiency.

the cloud, such as over-provisioning and over-subscription
[74, 99]. These limitations force developers to manually re-
configure their deployments through multiple rounds of refine-
ment for their non-functional requirements (e.g., Quality of
Service, a.k.a. QoS). The process lacks proper guidance and
relies heavily on resource-domain expertise and experience
[50], making cloud application development and deployment
complex and costly [73] (see Figure 1a).

To resolve the problem, we propose Object-as-a-Service
(OaaS) abstraction, a new cloud computing paradigm that bor-
rows the concepts of object-oriented programming to let the
cloud applications include their logic (i.e., functions), data
(i.e., state), and non-functional requirements into a single
deployment package (see Figure 1b). The OaaS abstraction
allows developers to unify the application functionality im-
plementations into single packages, eliminating the multi-
abstraction barriers that hinder productivity and efficiency.
The abstraction also comes with a “non-functional require-
ment interface” that allows applications to declare the ex-
pected QoS requirements and constraints as high-level and
measurable metrics. Developers can use the interface to ex-
press their requirements, and then the cloud provider will
enforce them automatically, removing the need for repeated
refinements. This unlocks new opportunities for cloud op-
timization. With OaaS deployment, the cloud providers are
given a clear set of optimization objectives (from the “non-
functional interface”) with a rich set of information (from the
“object”) so that they will know the right direction to optimize
their system metrics while still be able to meet their customer
requirements.

We implement Oparaca, an open-source platform that re-
alizes ideas of OaaS to simplify application deployment.

Oparaca integrates various object deployment and manage-
ment approaches, each specialized for specific object struc-
tures and requirement combinations, and then optimizes them
for different deployment scenarios. Thus, making object de-
ployment portable and efficient. We systematically evaluate
Oparaca versus state-of-the-art solutions through various ex-
periments on real Cloud testbeds. We found that Oparaca
often outperforms the other baseline approaches in efficiently
meeting the targeted performance objectives (e.g., through-
put) of multiple services for different application types. In
contrast, other baselines struggle due to resource contention
issues arising from the lack of service-specific awareness of
the targeted performance objective.

In sum, the contributions of this research are as follows:

• Object-as-a-Service (OaaS) abstraction that exploits the
Object-oriented programming concepts to encapsulate func-
tional and non-functional requirements into one deploy-
ment package, enhancing application development and de-
ployment productivity.

• A non-functional requirements interface that lets develop-
ers express their non-functional requirements in a human-
friendly and measurable manner, thus enabling applica-
tion portability and opportunities for cooperative cloud-
application interactions.

• Oparaca – an OaaS prototype implementation that enables
simple, scalable, and QoS-aware applications development.

• Evaluating and analyzing the Oparaca from the QoS en-
forcement, efficiency, and productivity perspectives. By
leveraging the OaaS abstraction, applications can improve
their performance by 60× and availability by 50× with
much less deployment time and effort.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the issues of the current FaaS abstraction
that make delivering efficient solutions complicated and ex-
pensive. We show how OaaS abstraction resolves these issues
in Section 3 and with more details in Sections 4. Section 5
evaluates Oparaca against state-of-the-art solutions under var-
ious scenarios. We briefly present related work in Section 6
and summarize the paper in Section 7.

2 MOTIVATION AND PROBLEM

STATEMENT

Figure 2a shows a typical life cycle of a FaaS-based applica-
tion that consists of three primary phases:

• Development: The application developers design suitable
logic/algorithms and data structure for the application and
then encapsulate them into separated deployment packages

(e.g., FaaS deployments, database schema, etc.).
• Deployment and Execution: cloud provider receives de-

ployment packages and executes them separately across
their infrastructure through service providers (e.g., FaaS

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Development Refinement

DataLogic
Non-functional

Requirements

FaaS

Abstraction

𝝀 Deployment and execution

Evaluation

Reconfiguration

𝝀
Data

Abstraction
Cloud Infrastructure

𝝀 𝝀… …

FaaS

Provider

Data

Service

Provider

Deploy & Exec

…

Application =

Refinement round (RR) #1 RR #N

①
Limited

abstraction

integration

Limited cloud-developer coordination②

(a) Current FaaS-based application life cycle and its problems

Development

DataLogic
Non-functional

Requirements

𝝀
Deployment

OaaS Abstraction Cloud Infrastructure

Runtime Manager

Application =

① Unified OaaS abstraction

App-friendly non-functional

requirement interface
②

OaaS Provider (Oparaca)

Monitor
QoS

Enforcer

𝝀
Object

Non-functional

Requirement

Interface

𝝀
Class Runtime

Non-function requirement driven

cloud-developer coordination
③

(b) OaaS and non-functional requirements abstraction

Figure 2: Limited non-functional support from the cloud introduces repeated and complex refinement processes for

quality of service. In contrast, the OaaS abstraction outsources the refinement to the cloud provider with a well-defined

set of information and refinement objectives. Thus making the application development and deployment more productive.

and data service providers). Each one is implemented and
optimized specifically for a cloud service abstraction (e.g.,
AWS Lambda for FaaS abstraction, MySQL for Relational
DB, etc.).

• Refinement: Applications typically have non-functional re-
quirements specifying their QoS (e.g., desired throughput,
availability, etc.) and execution constraints (e.g., budget,
Carbon footprint, jurisdiction, etc.). To ensure these require-
ments, developers have to evaluate them against monitored
data. Refinement, which includes reconfiguring and rede-
ploying the application packages, is needed if any of these
requirements fail to be met.

In practice, the refinement phase consists of multiple rounds
of reconfiguration and deployments that cost a lot of time and
effort [50, 73]. This is because current FaaS implementations

and their supportive services offer limited supports that make

it complicated and expensive to deliver efficient cloud ap-

plications. The problem manifests in many aspects of cloud
application life cycles, as outlined below.

Limited Abstraction Integration. FaaS applications are
formed based on FaaS functions and additional cloud services,
such as databases and workflow orchestrators. However, these
abstractions typically operate independently. This indepen-
dence creates challenges, as even a single functionality may
involve multiple abstractions but lacks the capability to inte-
grate them effectively. In stateful applications, for example,
FaaS functions typically need access to an external database
to read and update its state. This makes the application perfor-
mance strongly depend on efficient data transmission between
the FaaS invocations and the database. Figure 3a illustrates
the end-to-end latency of a FaaS invocation chain modifying
JSON documents from a database (see Section 5.1), varying
the database’s location relative to the function’s containers

10 100 1000
Document/invocation

10−1

100

101

102
La

te
nc

y
(s

)
Local
Datacenter
Internet

(a) Locality Impact

1 2 4
CPU per container

0

2

4

6

8

10

12

14

Ex
ec

. t
im

e
×

Al
lo

ca
te

d
CP

U c = 10
c = 100
c = 1000

(b) Configuration Impact

Figure 3: FaaS limitations (a) prevent applications from

exploiting locality for performance and (b) complicate

deployment refinement.

and the number of JSON documents modified. Clearly, execut-
ing a function on the same machine as the database (“Local”)
is significantly faster than running the function from a differ-
ent machine within the same data center (2×) or across the
Internet (35×). The latency difference increases substantially
as more data is transmitted (e.g., the “Datacenter” to “Local”
latency ratio increases by 1.4× when we increase the num-
ber of modified documents per invocation from 10 to 1000).
Based on the results, FaaS should leverage data locality by
dispatching functions close to the database to minimize end-
to-end latency. Unfortunately, current FaaS abstractions lack
support for such cross-abstraction optimization, forcing devel-
opers to create their own solutions, which is both challenging
and effort-consuming [17, 43, 61, 69, 76, 94].

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

Limited Cloud-Developer Coordination. Developers refine
application deployments through primitive resource-domain
settings, like per-container CPU allocation. On the other hand,
non-functional requirements are typically measured and eval-
uated using application-domain metrics, such as throughput,
latency, and monetary cost. Translating these requirements
into effective FaaS configurations is challenging. Figure 3b
illustrates the resource cost, measured by the average exe-

cution time × CPU allocated to the JSON randomization
deployment under different per-container concurrency and
CPU allocation configurations. Considering only one factor
for cost minimization is insufficient; for instance, with one
CPU per container, varying concurrency (c) can change costs
by up to 4.3×, but doing so has little effect with two CPUs
per container. Configuring these factors together is neces-
sary, but there are no clear insights into how to do so. For
example, increasing concurrency (c) generally allows more
invocations per container, reducing costs. However, setting
the concurrency too high can lead to resource contention,
which prolongs invocation execution and increases costs. The
optimal concurrency thresholds vary with different CPU allo-
cations. With two CPUs per container, c = 1000 is too high,
but it works well for configurations with one or four CPUs
per container. Therefore, configuring such low-level param-
eters to produce a reliable and robust deployment demands
significant effort and expertise (e.g., [14]), often necessitating
numerous rounds of refinement [48, 50, 58].

Worse, the implementation and configuration of FaaS and
supporting cloud abstractions are influenced by the cloud
providers’ objectives, potentially hindering the fulfillment
of application non-functional requirements. For example,
many cloud resource managements employ over-subscription
[11, 30, 56], which implicitly commits more resources to
users than the cloud can actually provide for better utilization.
However, this practice increases the risk of interference when
multiple applications peak simultaneously, leading to uncon-
trollable and unpredictable QoS degradation [21, 24, 80, 99].
To counteract this, many applications request more resources
than they need [74, 78], prompting providers to oversubscribe
even more aggressively [13, 14, 51]. This creates a harmful
cycle of overestimation and mistrust, negatively affecting both
applications and the cloud infrastructure [33].

3 OBJECT-AS-A-SERVICE ABSTRACTION

To establish an agile and cost-efficient application delivery,
the two challenges presented in Section 2 must be properly
addressed. In this section, we propose solutions for each chal-
lenge and then combine them to form a novel approach for
FaaS-based application development and deployment.

3.1 Unified OaaS Abstraction

We extend the FaaS abstraction, called Object as a Service
(OaaS), that borrows the object-oriented programming (OOP)
concepts to unify application logic and data within a single
abstraction. Specifically, each application is defined as a col-
lection of cloud objects where its data (a.k.a. state) is modeled
as “attributes” with supported data types in current cloud data
abstraction, and its logic is modeled as methods realized by
serverless functions. In this manner, OaaS abstraction alone
is sufficient for the entire application development phase—
eliminating the need for multiple distinct abstractions and the
complexities of effectively gluing them.

OaaS also offers the notions of abstract class, inheritance,
and polymorphism to establish software reuse across cloud
objects, thereby reducing redundancy and enhancing devel-
opment productivity at the FaaS workflow level. This is in
contrast to traditional FaaS, which typically limits software
reuse to the function or invocation level (e.g., through shared
libraries). Beyond these, OaaS transformation unlocks new
opportunities for deployment optimizations that were pre-
viously difficult or impossible. This is because the object
abstraction provides richer information for optimization and
grants the cloud greater control over the deployment to exploit
them. For example, OaaS lets application data and logic be
encapsulated and managed together under the object abstrac-
tion. Thus, OaaS can easily find the data associated with each
method and proactively distribute them across the cloud data-
base instances that are close to the deployed method, thereby
minimizing the data transmission overhead.

3.2 Non-functional Requirement Interface

Within the OaaS abstraction, we develop a non-functional
requirement interface that lets the developer express their non-
functional requirements in a human-friendly manner. Through
the interface, developers can declare their non-functional re-
quirements for a whole object or even for a specific part
(attribute or method) of it. The requirements are defined as
high-level and measurable metrics either in the form of QoS
(e.g., availability and throughput) requirements or deploy-
ment constraints (e.g., budget and jurisdiction). During the
deployment, the cloud provider takes these non-functional
requirements as input to its internal services and adjusts their
operations to meet the requirements. The benefits are three-
fold:

• Productivity: applications no longer need to consider low-
level resource configuration for non-functional require-
ments. This relieves the burden of performance optimiza-
tion from their deployment process, thus improving produc-
tivity.

• Portability: as long as the cloud provider supports OaaS, the
application can rely on the object abstraction to maintain its

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Name Value Type Unit Definition

QoS Requirements

Throughput Integer Rps Minimum number of invocations guaranteed to be executed per second

Availability Real Percent The percentage of time an object/function must be available for service.

Locality {Local, None} N/A How function invocations are dispatched with respect to object state location.

Deployment Constraints

Persistent Yes/No N/A Should the data associated with the object persistent

Runtime Req. Dict N/A Specific object runtime configuration. (e.g., choice of FaaS engine)

Budget Integer Credit Object deployment and operation budget. All costs must not exceed this value.
Consistency Enumerate N/A Object consistency model: eventual, sequential, linearization, or none.
Jurisdiction Enumerate N/A Candidate places to deploy an object
Data Encryption Enumerate N/A Specify or disable the encryption algorithm for the stored data

Table 1: Potential Non-functional requirements and constraints. Those with bold font are currently supported by Oparaca.

functionality, meet its QoS and constraint expectations (via
the non-functional requirement interface), and comfortably
deploy across scenarios with minimal changes.

• Cloud-application symbiosis: since applications use cloud
resources for execution, the common sense is that the cloud
should fulfill the non-functional requirement, as it has suf-
ficient knowledge and privilege on the underlying infras-
tructure. With the non-functional requirement interface,
however, the cloud does not take this responsibility alone.
Here, the interface acts as a “glue” to make a symbiosis
between the cloud and the application developer. Specifi-
cally, the requirements declared through the interface are
valuable guidelines for cloud service providers to know
which optimization they should follow so as not to impact
the applications negatively. On the other hand, the interface
is a useful means of communication that lets the developer
actually configure for performance and quality, as opposed
to going through multiple rounds of playing a “trial-and-
error” game with the cloud providers to meet the desired
outcomes.

3.3 Simplified, Refinement-Free Deployment

Based on the ideas above, as shown in Figure 2b, we propose
a novel paradigm to develop and deploy cloud applications.
In this paradigm, cloud applications are modeled as a set of
objects, each can be developed and deployed independently.
An object can possess deployment constraints and QoS re-
quirements declared through the non-functional requirement
interface. The object is deployed and managed on the cloud by
means of the OaaS abstraction. Specifically, an OaaS-based
platform (we call it Oparaca and introduce it in Section 4)
receives the object deployment packages from the developer,
deploys them on the cloud, and also automatically configures
and monitors their resource allocation to meet the defined
non-functional requirements.

The proposed paradigm greatly simplifies the process of de-
livering cloud-native applications. Instead of having multiple
logic/data deployments with multiple rounds of development-
deployment-evaluation that are subjected to many uncertain-
ties caused by the cloud’s shared environment and uncoop-
erative abstraction realization, the application now needs to
deal with only one type of abstraction. Moreover, with the
non-functional requirements serving as the driving force for
the underlying OaaS orchestration, no re-deployment or re-
configuration is needed to meet the desired non-functional
requirements.

4 OPARACA: AN OAAS REALIZATION

In this part, we first describe the design goals of Oparaca—an
open-source platform realizing the ideas of the OaaS para-
digm. Then, we introduce new concepts and interfaces needed
for this realization, and finally, we discuss its development
details.

4.1 Design Goals and Requirements

We use Oparaca as a proof of concept to (1) illustrate how
OaaS can reshape cloud application deployment, making it
more productive and cost-effective; and (2) highlight how
OaaS unlocks new opportunities for a more efficient, collabo-
rative application deployment optimization. To achieve these
objectives, we outline the following requirements and try to
ensure Oparaca meets them throughout the entire design and
implementation process.
(1) Simplicity: Extend the concept of object in OOP to a ser-

vice abstraction that allows application developers to en-
capsulate their application logic, data, and non-functional
requirements into a single deployment entity.

(2) Declaratory: Provide a simple, human-friendly interface
for non-functional requirements that allows developers to

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

express and achieve desired non-functional requirements
with minimum configuration/deployment effort.

(3) Efficiency: Oparaca can enforce application requirements
at comparable cost versus state-of-the-art solutions.

(4) Portability: Oparaca allows applications to deliver proper
functionality with desired QoS anytime, anywhere.

Oparaca is implemented in Java and comprises approxi-
mately 20,000 lines of code. The platform offers a YAML-
based OaaS API for defining objects and their non-functional
requirements. Oparaca operates with FaaS functions at the
container level using Knative and Kubernetes, and it provides
a supported SDK for working with Python. The source code
is available at https://github.com/hpcclab/OaaS.

4.2 OaaS Abstraction Interface

To fulfill the first two requirements (i.e., simplicity and declara-
tory), we provide a deployment interface for OaaS to help
developers define the entities of their cloud-native application
and non-functional requirements akin to OOP concepts. To
that end, the cloud-native application is built on the founda-
tion of classes. Each class defines the structure of independent
executable objects that are responsible for carrying out one
or multiple functionalities. Upon deployment, Oparaca allo-
cates appropriate cloud resources to realize the corresponding
objects of the class and manage them to handle workloads.
Moreover, Oparaca supports inheritance and polymorphism

for its classes.

Listing 1: OaaS Deployment for Image Processing

1 classes:
2 - name: Image
3 qos:
4 availability: 99.9
5 constraint:
6 persistent: true
7 keySpecs:
8 - name: image #File Image;
9 functions:

10 - name: resize
11 qos:
12 throughput: 100 #rps
13 #container image
14 image: img/resize
15 - name: changeFormat
16 image: img/change -format
17 - name: detectObject
18 qos:
19 throughput: 100
20 image: img/detect -object
21 - name: LabelledImage
22 parent: Image
23 keySpecs:
24 - name: labels #File labels;
25 functions:
26 - name: analyze
27 qos:
28 throughput: 50

Figure 4: Class diagram for the image processing example.

The developer can translate the class diagram directly to

cloud deployment in Listing 1 through OaaS abstraction.

Class
Definition

Class Runtime
Template

Class Runtime
Template

Class
B

Class A
Fn Fn Fn

Obj Obj

Platform/Orchestrator

OaaS

Developer

Platform
Provider

Class Runtime
Template

Class Definition

C.R.
B

Class Runtime A
Optimizer A

QoS . .

...

. . .

...

Driven by
Non-functional
Requirements

Figure 5: Realizing objects with class runtime and tem-

plate: OaaS maintains templates customized for various

deployment scenarios. For a specific class, Oparaca uses

one of its predefined templates to create a class runtime

to manage the deployed classes optimally.

Within each class, we can define methods and attributes

to encapsulate the application logic and state (that can be
in the form of structured or unstructured data, i.e., BLOB),
respectively. For structured state data, Oparaca allows the de-
veloper to keep the data as a JSON-based document, similar
to the document database [18]. For unstructured data, how-
ever, object storage is employed to store them. We model
each method as a serverless function1. Oparaca shares object
states among methods of the same object following the OOP
encapsulation principles.

In Oparaca, application QoS and constraints are declared
through the non-functional requirement interface. The inter-
face allows the developer to associate a class or its methods
with one or a set of requirements that the cloud provider has
to meet once objects of the assigned class or methods are
deployed successfully. Table 1 shows the list of QoS and
constraints currently supported by Oparaca. Non-functional
requirement declarations are treated as properties of classes
or methods, so they are enforced according to the OOP inher-
itance principles. If a method and its class have conflicting
requirements, then the method-level requirement prevails.

Figure 4 shows the class diagram of an example appli-
cation providing image processing functionalities, such as
resizing and changing the format. A developer can translate

1we use the term function and method interchangeably in this paper

https://github.com/hpcclab/OaaS

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

the diagram directly to OaaS classes. Specifically, OaaS al-
lows images to be wrapped inside the Image class abstract
where the image itself can be defined as a single unstructured
file and its metadata is structured data. The resize function
receives width and height as its inputs and produces a new
image object as its output. The changeFormat function re-
ceives the new format name as input and produces a new
image as the output object. The developer can add a new
class LabelledImage for the image that can have the label
data of image content. This class extends the Image class
with the additional labels data and analyze function. The
Image class also has a detectObject function to perform
object detection to create the labels data and create the La-
belledImage object as an output. The analyze function is
to perform further analysis to label data. Oparaca currently
supports the OaaS Abstraction Interface in YAML format. The
class declaration of the example is in Listing 1.

Based on inheritance, in this example, the LabelledImage
class inherits the non-function parameters from Image class
(i.e., availability=99.9). The resize and changeFormat func-
tions that the class LabelledImage inherit also maintain the
non-functional parameter from class Image.

4.3 Object Realization

4.3.1 Class Runtime and Template. Oparaca uses class run-

time to deploy and manage objects derived from user-defined
classes (Figure 5). To meet the third requirement (i.e., effi-
ciency), the class runtime must be optimized to fulfill the
non-functional requirements within a reasonable cost and
overhead. However, given the non-functional requirements
that Oparaca supports, there is a vast diversity of possible
non-functional requirement combinations that need different
specializations to satisfy. Thus, it is impractical to have a
single design for the class runtime that can efficiently satisfy
all of the requirements.

To resolve the problem, Oparaca introduces class runtime

template, which provides a configurable class runtime design
optimized for a specific set of requirement combinations.
Oparaca maintains a list of different templates to support as
many requirement combinations as possible. When deploying
a class, Oparaca will choose from the list the most suitable
template to realize the class requirement and then follow the
template design to create a dedicated class runtime for this
class. This approach allows Oparaca to satisfy both portability
and efficiency design requirements.

In terms of portability, the class runtime template enables
Oparaca to have freedom and flexibility in realizing objects.
Instead of seeking a one-size-fits-all object realization mech-
anism, Oparaca decomposes the object realization into a set
of sub-problems, each one aiming to find the optimal solu-
tion (i.e., class runtime template) for a specific infrastructure

Primary object dataDeveloper's func

Func 1 Func 2 Func NFunc 2Func 1

Distribured Hash Table

Request Handler

State Manager
Offloader

Obj1
Distribured Hash Table

Request Handler

State Manager
Offloader

Distribured Hash Table

Request Handler

State Manager
Offloader

Obj1 Obj2
Obj2 Obj3Obj3

req → obj1
req → obj2

req → obj3

(FaaS-Engine) Reverse Proxy 1...N

Func 1 Func 2 Func N

Oparaca Copied object data

Structured
(Database)

Data Loader/Writer
Data Loader/Writer

Data Loader/Writer

Invoker
InvokerInvoker

Unstructured
(Object

Storage)

presigned URL

OSS

Data sync.

Figure 6: LTAG (Latency, Throughput, and Availability

Guarantee): An example of a class runtime template de-

signed for enforcing class latency, throughput, and avail-

ability requirements (OSS: Open-source software).

setting and requirement combinations. The approach makes
Oparaca’s implementation modular and flexible. One can up-
grade existing solutions, extend the implementation to include
new non-functional requirements, or even adjust for new in-
frastructure by adding/modifying templates without worrying
about compatibility issues.

In terms of efficiency, Oparaca can use off-the-shelf solu-
tions to implement its class runtime templates. This allows
Oparaca to take advantage of a vast diversity of existing state-
of-the-art solutions, which have been proven to be efficient
in practice, to reliably enforce non-functional requirements
at minimum time, cost, and effort. Further, since class run-
time templates are configurable, depending on specific object
deployment scenarios, the class runtime derived from the tem-
plate can be customized for further efficiency. Oparaca also
allows platform provider to customize the template configu-
rations, selection conditions, and priority for their operation
objective (e.g., resource utilization).

4.3.2 Class Runtime Example. Figure 6 shows LTAG (La-
tency, Throughput, and Availability Guarantee)—a class run-
time template that Oparaca currently uses to enforce class
latency, throughput, and availability requirements. Each class
runtime derived from the template has three modules: invoker,
FaaS engine, and data storages. The invoker is responsible for
handling all of the object-related operations. For each opera-
tion, the invoker finds its corresponding function and offloads
the operation to that function managed by the FaaS engine.
LTAG can maintain the object state in both unstructured and
structured databases.

In the offloading mechanism, the invoker utilizes the pure
function approach that bundles the invocation request and the
object attributes as a standalone task within a FaaS engine.
Each invocation takes the object attributes as input, modifies
them, and then returns the updated attributes as the output

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

to the invoker. The invoker maintains an internal in-memory
distributed hash table (DHT) [34] to keep the object data
(i.e., attributes and metadata) for reducing database access
operation, thereby speeding up the object invocation.

Throughput Enforcement. OaaS currently supports through-
put enforcement by allowing applications to specify a guar-
anteed invocation rate A per FaaS function [73]. Oparaca
ensures that sufficient resources are available so that at least
one invocation can start immediately (i.e., without cold-start
delays) every 1

A
seconds. LTAG customizes the Invokers and

FaaS engine based on Real-time Serverless [71, 73] to esti-
mate and periodically adjust resource allocation for each class
and its functions, ensuring they can handle operation requests
up to the specified rate guarantee.

Latency Enforcement. Recent work on latency QoS aims
to minimize end-to-end latency in a best-effort manner [44,
52, 57, 96, 98], giving no guarantee to construct/realize non-
functional requirements. Besides, other efforts try to keep
latency within a specific target deadline [8, 13, 67, 88, 90],
but this is extremely difficult from the cloud provider’s per-
spective due to the highly dynamic and unpredictable nature
of invocation logic [28, 46, 82], data size [13, 27, 70], and
communication requirements [94]. Thus, to enforce the la-
tency in a feasible and controllable way, OaaS offers guar-
antees to minimize the system overhead of invocation exe-
cutions, focusing on cold-start and communication, enabling
the developers to optimize their functionality execution time
barely based on improving their codes. The developer can
address cold-start via throughput enforcement, as described
above. For communication, OaaS provides a locality guaran-
tee, allowing developers to specify the location for invocation
dispatch. This can be either (i) local: attributes are read and
written as if they are in the same FaaS container executing
the function logic, and (ii) none: no locality restriction.

LTAG enforces the local guarantee by exploiting the class
function-attribute relationships. Specifically, Oparaca uses
consistent hashing, maintained by invokers, to track object
data locations and route invocation requests to the correspond-
ing place.

Availability Enforcement. OaaS provides availability en-
forcement as a reliability guarantee, defining the percentage
of time that an object (or its methods) are available for invoca-
tion execution. LTAG enforces availability through replication.
Specifically, given an object with availability requirement A

(e.g., 99.99%), we enforce A by creating N replicas of the
object with N is defined according to Meroufel and Belalem
[64] as follows.

N = 1− (1−P)A (1)

where P is the stability of the resources used to deploy the
object. LTAG replicates the object data and uses the DHT

Oparaca
Resource Optimizer

Resource
Optimizer

Class Runtimes

Code Execution Module
(FaaS Engine)

Data
Management

Module

Object Module

Container
Orchetrator/Runtime

End-UserDeveloper

OSS Deployment

Monitoring

Class Runtime
Manager

Hash-Aware Load BalancerPackage Manager

Auto optimizationUser request

Figure 7: A bird-eye view of Oparaca’s architecture

to manage them. However, it keeps only one object replica,
called primary, active at a time. To enforce consistency, the
primary object handles all state modifications and then com-
mits the results across all replicas. If the primary replica fails,
Oparaca chooses one of the remaining replicas as the new
primary.

4.4 Oparaca Architecture

Oparaca’s architecture, shown in Figure 7, includes the fol-
lowing key components: (1) Package Manager: responsible
for managing classes registered in Operaca and their corre-
sponding deployment packages. This component also acts as
a gateway and offers APIs to develop and deploy OaaS-based
applications. (2) Class Runtime: turns the class descriptions
and corresponding packages into the actual object deploy-
ments on the cloud. (3) Class Runtime Manager: create dy-
namic class runtime from existing templates (e.g., LTAG). It
is also responsible for class runtime deployment and man-
agement. (4) Monitoring System: gathers the performance
metrics from class runtime. (5) Hash-aware Load Balancer

and Container Runtime: responsible for scheduling and man-
aging function execution. Once a function invocation is issued,
the hash-aware load balancer routes the request to the corre-
sponding class runtime by using consistent hashing that, in
turn, forwards the request to the corresponding container for
execution.

Given the interface and architecture, the application life-
time on the cloud now consists of two phases:

(a) Registration: The developer registers their class to
Oparaca. Upon registration, the package manager unpacks
the deployment, extracting the class logic (e.g., functions),
state (e.g., data schema), and non-functional requirements
(e.g., QoS and constraints). The extracted information is then
forwarded to the class runtime manager to find an appropriate

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Chatty Data
Intensive

Compute
Intensive

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

no
rm

al
ize

d
th

ro
ug

hp
ut Knative

Fission
OpenFaaS

Figure 8: Oparaca does not significantly differ in through-

put performance across the FaaS engines.

class runtime template to generate a dedicated class runtime

to handle the object realization for the class.
(b) Execution: Once a class runtime is created, it is re-

sponsible for managing the execution and state of all objects
generated from the associated class. Every interaction with
the application users is handled through the class runtime,
independent from other Oparaca components. To ensure relia-
bility, the class runtime manager periodically collects moni-
toring metrics from class runtime. Based on the information,
Oparaca can adjust the Container Orchestrator/Runtime to
improve efficiency and take administrative actions (e.g., to
recover from failure, etc.) if needed.

Note that the above procedures are performed solely by
Oparaca platform. Application developers do not have to in-
tervene or refine their configuration for both functional and
non-functional requirements. This greatly simplifies applica-
tion deployment.

5 EVALUATION

In this section, we seek to learn the performance of Oparaca
in the following aspects: non-functional requirement enforce-
ment (Section 5.2.1), implementation efficiency (Section 5.2.2),
deployment productivity (Section 5.2.3), and development
productivity (Section 5.2.4).

5.1 Experimental Setup

We prepare the experimental environment on 4 machines
on Chameleon Cloud [47], each with 2 sockets of Intel(R)
Xeon(R) Gold 6240R CPU processors that collectively have
192 cores, 768 GB memory, and SSD SATA storage. We
use 3 machines to install the Kubernetes cluster (RKE2 [40])
for deploying applications. The last machine generates load
using Gatling [22]. Regarding data management, we use
Minio [39] (S3-compatible storage) for unstructured data and
ArangoDB [36] (document database) for structured data.

Workloads. To make sure our evaluation is comprehensive,
we consider the following three classes of applications that
exhibit different behaviors:

• Chatty: characterized by frequent small communications
that impose significant overhead on network transmission
[65]. As a representative workload for the application class,
we utilize JSON randomization [60], which involves a se-
quence of ten invocation requests, each randomly updates
a JSON key-value pair to the document database.

• Data Intensive: characterized by substantial data access
operations [35]. We use an image resizing workload [9, 85],
which resizes images stored in object storage through FaaS
invocations, to represent this class of applications

• Compute Intensive: demand extensive computational re-
sources throughout their lifecycle (e.g., ML [19] and HPC
[72] applications). To represent this class, we use video

transcoding [68, 93], which involves changing the resolu-
tion of a video file stored in object storage.

Approaches. To ensure generality, we integrated Oparaca
with various FaaS engines—Knative [31], Fission [75], and
OpenFaaS [29], all backed by Kubernetes—to host object
functions. Figure 8 shows the maximum throughput achieved
by workloads mentioned above when deployed over Oparaca
using these different FaaS backends under identical resource
configurations (each deployment can scale up to five Kuber-
netes pods, each with 4 CPUs). The throughputs, normalized
to Knative, are nearly equivalent across all FaaS engines for
all three workloads. This confirms that Oparaca can be con-
figured to work with various FaaS engines with negligible
performance differences, making it flexible for deployment
across different cloud environments. Thus, due to space limits,
we report only the experimental results for Oparaca’s Kna-
tive variant. Also, for fair comparison, we use Knative with
various deployment configurations as experiment baselines:
• Knative: Default Knative configuration that declares only

per-container resource requirements (i.e., CPU and mem-
ory) and leaves the rest to the auto-scaling system.

• Knative-con: Default Knative configurations plus applying
per-container concurrency limit to avoid overloading.

• Knative-rts: adopt Real-time Serverless resource manage-
ment [73] to enforce throughput guarantee.

• Oprc is Oparaca, which allows the applications to enforce
their throughput, latency, and availability in their class defi-
nitions. Since Oparaca needs to learn the workload metrics
before properly optimizing the class runtime, we perform
one more extra round of load generating in each experiment.
The first round acts as the warm-up for Oparaca to properly
gather the metrics.

Beyond ensuring a fair comparison, we choose Knative as
a FaaS baseline because it offers a rich set of configuration
options to capture diverse deployment scenarios often unsup-
ported by other engines. Additionally, varying Knative set-
tings demonstrate how current FaaS implementations address

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x104 target throughput (rps)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

x1
04 a

ct
. t

hr
ou

gh
pu

t (
rp

s)

Knative
Knative-con
Knative-rts
Oprc

(a) Chatty

100 200 300 400 500 600 700
target throughput (rps)

100
200
300
400
500
600
700

ac
tu

al
 th

ro
ug

hp
ut

 (r
ps

) Knative
Knative-con
Knative-rts
Oprc

(b) Data Intensive

5 10 15 20 25 30
target throughput (rps)

5

10

15

20

25

ac
tu

al
 th

ro
ug

hp
ut

 (r
ps

) Knative-con
Knative-rts
Oprc

(c) Compute Intensive

Figure 9: Achievable throughput varying target throughput. Oparaca ensures the actual throughput matches the target

one across settings, while the other approaches fail to do so at high throughput targets.

Chatty Data
Intensive

Compute
Intensive

0

25

50

75

100

No
rm

al
ize

d
La

te
nc

y Knative
Oparaca (Local)
Oparaca (Local + Warm)
Ideal

Figure 10: Oparaca can exploit data locality to provide

various latency guarantees.

99
.0

99
.9

99
.9

9

99
.9

99

target availability (%)

10−5

10−3

10−1

101

103

fa
ile

d
re

q.
 (%

)

target result

2

3

4

5

re
pl

ica
s

Figure 11: Successful invocation rate at different avail-

ability targets with availability enforcement. Resource

stability (P) is 94.36% (red line).

non-functional requirements—by adjusting low-level con-
figurations (e.g., per-container concurrency) in a best-effort
manner. Configuring Knative allows us to explore a broad
range of FaaS deployment configurations, whether these ad-
justments are made by developers (if the FaaS engine exposes
the configurations) or by cloud providers (if it does not—for
example, Microsoft Azure doesn’t allow developers to config-
ure per-container concurrency). Thus, although our evaluation
results are specific to Knative, the insights and implications
are generalizable to other FaaS engines.

In the following experiments, Oparaca deploys and man-
ages workloads using class runtime derived from the LTAG
template. Thus, data access is automated via the invoker. In
the Knative variants, however, these applications have to im-
plement direct data access to storage or database manually.

5.2 Experimental Results

5.2.1 Non-functional Requirement Enforcement. We validate
the QoS enforcement capability of Oparaca by deploying
applications mentioned in Section 5.1 using the LTAG class
runtime template as described in Section 4.3.2.

Throughput. To validate Oparaca’s throughput enforcement,
we deployed the three applications with various target through-
puts. Then, we configured the load generator to send the re-
quest at the same rate as the target throughput and measured
the actual throughput on each system. The results are reported
in Figure 9.

Overall, Oparaca can guarantee the throughput for all three
applications. Knative-rts only meets low throughput targets
and fails at higher ones due to over-provisioning. The other
two Knative variances fail to meet the targets since they
only rely on auto-scaling without the awareness of the target
throughput. In the chatty workload, with the high request ar-
rival rate, the internal queue cannot hold requests long enough
to wait for the new pod to be spawned. Meanwhile, in the
compute-intensive application, it takes longer for each request
to be processed, making it easier to time out. Only the data-
intensive application that Knative-con can meet the target
throughput.

The results also demonstrate the complexity of FaaS con-
figuration. Even when utilizing the same backend services
(i.e., Knative), varying FaaS deployment configurations re-
sult in significantly different performance outcomes. Thus,
manual adjustment of FaaS deployment, while daunting, is
often required to achieve the desired throughput. In contrast,
Oparaca simplifies and automates this process with its high-
level interface.

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 400 800 1200 1600 2000
concurrency

0
1
2
3
4
5
6

Th
ro

ug
hp

ut
 (x

10
4 r

ps
)

Knative
Knative-con
Knative-rts
Oprc

(a) Chatty

0 50 100 150 200 250
concurrency

200

400

600

800

Th
ro

ug
hp

ut
 (r

ps
) Knative

Knative-con
Knative-rts
Oprc

(b) Data Intensive

25 50 75 100 125 150 175 200
concurrency

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (r

ps
) Knative-con

Knative-rts
Oprc

(c) Compute Intensive

Figure 12: Achievable throughput under various request concurrency. Concurrency is defined as the number of clients

that concurrently generate requests for the system.

2 4 6 8 10
number of services

0

10−2

10−1

100

tim
eo

ut
 e

rro
r r

at
io Knative

Knative-con
Knative-rts
Oprc

(a) Chatty

2 4 6 8 10
number of services

0

10−2

10−1

100

tim
eo

ut
 e

rro
r r

at
io Knative

Knative-con
Knative-rts
Oprc

(b) Data Intensive

2 4 6 8 10
number of services

0

10−2

10−1

100

tim
eo

ut
 e

rro
r r

at
io Oprc

Knative-rts
Knative-con

(c) Compute Intensive

Figure 13: Error response ratio of different solutions upon deploying them with the different number of services.

Latency. We deployed all three applications over Operaca
under the locality and throughput guarantee. We let the ap-
plications run under bursty loads by configuring the load
generator to remain idle most of the time but occasionally
create sudden bursts that send requests at a rate equal to the
application throughput guarantee for a very short duration.
We compare Oparaca against two baselines: (i) Knative with
the data storage deployed at a separate data center from the
FaaS deployment, representing a typical scenario of FaaS de-
ployment [77], and (ii) Ideal where functions and data storage
are deployed together on a dedicated machine with excessive
resources, representing an ideal execution environment where
the invocation execution latency depends solely on the appli-
cation itself.

Figure 10 shows the average execution time of the three
applications across different deployments. The latency is nor-
malized to the case of the ideal deployment. Knative is the
worst among approaches, with the latency can be as high as
60× the ideal. The reason is two-fold. First, Knative needs
external storage to keep the application data, but the actual
data location is hidden under the storage abstraction, caus-
ing significant data transmission latency. Oparaca does not
have this limitation as it encapsulates the data and invocations
under a unified object abstraction, enabling locality enforce-
ment, i.e., Oparaca (Local), that allows invocations to execute
at the same machine with their data, significantly reducing
the latency by 1.5× (Chatty) to 4× (Data Intensive). Second,

Knative scales resources allocated to FaaS functions based on
concurrency. That makes invocations suffer from cold-start
under bursty loads. Applications can workaround this issue
with Oparaca via throughput guarantee, enforcing the cloud to
execute invocations without cold-start up to a certain rate, i.e.,
Oparaca (Local + Warm). This configuration further reduces
the latency by 1.7× (Compute Intensive) to 46.5× (Chatty)!
Enforcing these two non-functional requirements together
allows applications deployed over Oparaca to minimize their
invocation overhead (as low as 7% of execution time), achiev-
ing invocation execution latency that is very close to the ideal
execution.

Availability. Next, we validate Oparaca’s availability enforce-
ment. We have created a failure emulator that injects failures
by deleting the platform container according to a predefined
Mean Time Between Failures (MTBF). Whenever a failure
is injected, Kubernetes automatically recovers the container.
The emulator then waits for MTBF, which is also supple-
mented by a random value from a normal distribution, before
introducing the next failure. The emulator carries out these op-
erations on each container individually. To select the MTBF,
we use the reference MTBF of the Intel server boards [37]
that have around 50K hours on average. To speed up the ex-
periment process, we scaled this number down by a million,
setting the MTBF to 180s, which makes each container only
operate for 94.36% of the time. We then use 94.36% as the

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

resource stability (P) to configure Oparaca. We deploy the
application according to the different target availability, gen-
erate the load to test the actual application availability with
a rate of 200 requests per second for 1.5 hours, and measure
the ratio of the requests being processed unsuccessfully.

The results of this experiment are reported in Figure 11.
When availability enforcement is on, Oparara deploys classes
and objects with replications, significantly reducing the fail-
ure rate to meet the availability targets. The actual failed
request ratio is slightly lower than each predefined target be-
cause Oparaca adds just enough replicas to meet the target,
minimizing availability enforcement overhead. Notably, in-
creasing the availability from 99% to an exceptional rate of
99.999% (1000× better) incurs only 2.5× extra resource cost.
This is a 50× improvement versus the current industry stan-
dard that necessitates an SLA on availability of 99.95% [2]
with only 1.67× cost increment.

Takeaway: Unlike traditional FaaS deployments, Oparaca

can automatically reconfigure to enforce various non-

functional requirements for different classes of applications,

eliminating the need for manual refinement.

5.2.2 Efficiency of Oparaca. In this subsection, we examine
Oparaca efficiency, running various experiments on a fixed
quantity of resources to see how well the implementation han-
dles various workloads under different operation scenarios.

Function Invocation Efficiency. To evaluate Oparaca in-
vocation efficiency, we compare its maximum throughput
with Knative variants; all are under limited resources. The
throughput measurement takes multiple runs with an increas-
ing number of clients (i.e., concurrency). We measure the
mean throughput achieved in each run and report them in
Figure 12.

In general, the throughput becomes steady after increasing
the concurrency to a certain level. Oparaca provides a higher
throughput compared to other baselines, especially for the
chatty workload (Figure 12a) because Oparaca relies on the
internal in-memory distributed hash table (DHT) to store the
object data; thereby, it speeds up the data access and reduces
the database operation. For the chatty workload, Knative-con

and Knative yield significantly lower throughput compared
to Knative-rts. This is because this workload performs little
computation compared to its network I/O operation, which
makes the Knative auto-scaler inaccurately adapt the acquired
resources to the workload.

For the data-intensive workload (Figure 12b), Knative per-
forms poorly because the auto-scaler cannot accurately adjust
acquired resources to the increasing workload without per-
container concurrency declaration. In contrast, by only declar-
ing per-container concurrency, Knative-con can perform with
a little less performance than Knative-rts.

For the compute-intensive workload (Figure 12c), because
it is computationally intensive and the invocation rate is also
less than the other workloads, all of the solutions can provide
similar performance. Only Knative cannot be used for this
workload because without controlling the concurrency, each
function container has to handle more concurrent invocations
than it can. As a result, they fail to handle requests continually.
Oparaca can perform slightly better than the others because
it eliminates the need to fetch and deserialize the record (i.e.,
metadata) from the database on each function container.

Throughput Enforcement Efficiency. Our primary objective
in this experiment is to examine the resource efficiency of
Oparaca against other baselines and ensure its throughput is
not attained with the cost of lavishly allocating resources. The
other objective is to investigate Oparaca’s behavior in the face
of services with different throughput expectations. To that end,
we configure multiple services of the same type, each with its
own target throughput. To achieve this, we started by testing
on a single service and gradually increasing the number of
services to ten. We set the target throughput of each replicated
service to be 1/10th of the maximum throughput we found
in the previous experiment. We chose these numbers so that
the target throughput is not too low and scaling remains rele-
vant. The experiment is performed by generating invocation
requests to each service, with the request rate capped to the
target throughput, and then measuring the ratio of the number
of timeout errors to the total number of requests.

As shown in Figures 13, overall, Oparaca outperforms other
baselines for almost all workloads. For the chatty workload
(Figure 13a), Oparaca can handle all of the requests with
zero error rate because of its ability to readjust its allocated
resources and its internal DHT structure. Knative-rts also per-
forms well at the beginning; however, after 6 services, the
external document database starts to slow down, leading to
a sharp increase in the error rate. The poorer performance of
Knative and Knative-con is mainly because their independent
scaling of services and lack of awareness of performance
objectives lead to resource contention among co-existing ser-
vices.

For the data-intensive workload (Figure 13b), all baselines
are capable of handling requests up to 9 services. Nonethe-
less, for 10 services, only Knative-rts and Oparaca remain
error-free. Knative-con and Knative still suffer from the re-
source contention. Similarly, for compute-intensive workload
(Figure 13c), Knative-rts and Knative-con only have enough
resources to meet the target throughput up to 8 and 7 services
without any error, respectively. Oparaca, however, can handle
all of the requests for up to 10 services.

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Takeaway: Being cognizant of performance objectives is

crucial for Oparaca to deliver competitive efficiency for

both the user and the system across different applications

while also offering a high-level abstraction to the user.

0

10000
8(44)

1(4)

23(92) 27(108) 26(104) 25(100) 24(96) 24(96)
(a) Chatty

0
200
400
600

th
ro

ug
hp

ut
 (r

ps
)

11(42)

1(4)

13(52) 12(48) 12(48)
(b) Data Intensive

Knative
Oprc

0 1 2 3 4 5 6 7 8
refinement rounds

0

20
39(153)

1(4)

44(176) 37(148) 36(144) 35(140) 36(144)

(c) Compute Intensive

Figure 14: Rounds of refinement for Knative to enforce

the target throughput (green lines) versus Oparaca. Data

points are annotated by #pods(#cores), including in-

voker pods.

Func. 1
frame extraction

Real-time Monitoring
Application

Func. 3
object detection image

sampled
frame

Object
Storage

Func. 2
image resizing

videoupload video
segments

CCTV

labelled
image

Staging

Staging
Staging

Figure 15: The case study of developing video and image

processing for a real-time monitoring system

5.2.3 Deployment Productivity Using Oparaca. To show the
productivity improvement of Serverless application deploy-
ment, we present the experiment on the refinement steps using
Knative on three application deployments with the require-
ment to enforce the throughput of 10k, 400, and 20 requests
per second for chatty, data-intensive, and compute-intensive,
respectively. The manual refinement strategy consists of three
phases. First, we want to find the number of pods that roughly
provide throughput that is equal to our objective. We deploy
the application with a single pod and then perform load test-
ing to find the throughput. Then, we scale it up using the
formula below and repeat this process until the throughput
matches the objective.

podsnext =
throughputtarget

throughputcurrent

× podscurrent

The second phase reduces the pods until they cannot satisfy
the target. The last phase increases the container-level concur-
rency but reduces the number of pods to improve utilization.

As shown in Figure 14, the manual refinement method
needs at least 4 rounds to find the optimal number of pods
to meet the target throughput, while we only need to give
the Oparaca the number, and it will automatically adjust the
deployment when we feed the load. Furthermore, Oparaca im-
proves application performance while reducing the required
resource allocation to meet the target throughput. For IO-
intensive workloads focused on structured data like the chatty
workload, Oparaca reduces resource usage from 100 cores
to 44 cores. This is because OaaS unlocks cross-domain
optimization—in this case, data locality—to speed up invoca-
tion execution time, quickly freeing up FaaS pods for higher
concurrency and significantly reducing resource requirements
compared to Knative. Even for the compute-intensive ap-
plication, where locality is not an issue, Oparaca automatic
refinement still achieves the throughput target at a comparable
cost (153 cores) versus Knative (144 cores, only 6% higher),
which requires much more effort in manual tuning (6 rounds
of refinement versus one).

Takeaway: Oparaca’s OaaS abstraction improves deploy-

ment productivity and performance enforcement effective-

ness.

5.2.4 Development Productivity Using Oparaca. In this part,
we provide two cloud application developments representing
common cloud applications at different scales, non-functional
requirements, and complexities. We will deploy these appli-
cations using the OaaS paradigm and recommended FaaS
deployment practices to demonstrate how OaaS can make
the development of cloud-native serverless applications more
productive.

Case Study # 1. Real-time Monitoring System. Figure 15
shows a CCTV system uploading video segments to object
storage, waiting to be processed by a workflow of function
that includes extractFrame() that splits a video segment
into multiple frames; resizeImg() whose job is to resize the
image frame to be usable by the next function in the pipeline;
and detectObject() is in charge of performing the object
detection on an image and generating label in the JSON format.
These functions must persist their output data so that the
following function in the workflow can consume it. Because
the entire workflow is latency sensitive, the execution rate of
the whole workflow (i.e., throughput) has to be guaranteed.
Developers can calculate the throughput by the number of
cameras and the object detection frequency.
FaaS implementation. The developer must repeat the fol-
lowing steps for each function deployment: (i) Configuring

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

cloud-based object storage, database and maintaining the cre-
dential access token for the functions to use. (ii) Implementing
the functions’ business logic. (iii) Data management within
the functions that itself involves three steps: (a) allocating the
storage addresses to fetch or upload data; (b) authenticating
access to the object storage via the access token; and (c) im-
plementing the fetch and upload operations on the allocated
addresses. Upon implementing these functions, the developer
must connect them as a workflow via a function orchestrator
service (e.g., AWS Step Functions [4]). Finally, upon arrival
of a new video segment, the event triggers the workflow to
put the result into the database, waiting to be processed by
the monitoring system. To ensure the target throughput, de-
velopers have to go through multiple rounds of testing and
refinement to get the final configuration for each function.
OaaS implementation. The developer defines three classes:
• Video class with extractFrame() function that produces
LabeledImage as the output, and wfDetectObject(freq)
workflow function that has a detection frequency as the in-
put. This class also has video file as an unstructured state.

• Image class contains resize function and image file as
an unstructured state (see Listing 1).

• LabeledImage class inherits from the Image class and
has its own objectDetection() function and labels

data (state) in JSON format (see Listing 1).
Upon uploading a new video to the Oparaca platform by

the CCTV system, it creates a “video” object and invokes
video. wfDetectObject(freq) that outputs a LabeledIm-
age object that is consumed by the real-time monitoring ap-
plication. We note that, in developing the class functions, the
developer does not need to be involved in the data locating
and authentication steps. To ensure the application perfor-
mance, developers only need to declare the target throughput
within the class definition (see example in Listing 1); then, the
Oparaca can transparently create the suitable class runtimes
and their configuration.

Case Study # 2. Searchable Document Repository. Retriev-
ing and processing at scale the vast repositories of valuable
documents, images, and media from enterprise customers is a
common practice in the cloud [72, 92]. In this case study, we
first present how the application is deployed with traditional
FaaS on the cloud, the limitations of this approach, and how
to resolve them with OaaS/Oparaca.

FaaS implementation. Figure 16 shows the serverless work-
flow to analyze the document in various formats and update
the metadata to the search engine recommended by AWS [12].
Upon the document uploads to the document bucket (object
storage), the storage triggers the event to invoke extract-
Text() based on the type of the document. If the document is
in PDF or DOCX format, the function extracts the text and sends
the text to be split by the next function splitText(). The

JPG

Entities

Documents
bucket

Func. 1.1
extract text

Func. 1.2
extract text

Func. 1.3
extract text

PDF

DOCX

Func. 2
split text

Text

Staging

Queued
bucket

Text

Text

Func. 3
analyze

Search
engine

Metadata Text analyzer
service

Text

(labels)

(a) FaaS-based [12]

JPG Extractor

Documents
bucket

Extractor:
+ extract()

PDF Extractor

Extractor:
+ extract()

PDF Extractor

Extractor:
+ extract()

PDF Extractor
DOCX Extractor

Extractor:

PDF Extractor

Google Cloud
Natural Language

Analyzer

Analyzer:

AWS Comprehend
Analyzer

extract() analyze()
Search
engine

Text

(b) OaaS-based

Figure 16: The searchable enterprise document repository

implemented based on FaaS and OaaS paradigm.

result will be put into the Queued bucket. Alternatively, if
the document is in JPG format, the extractText() function
analyzes the image to get labels and puts them in the Queued
bucket. In the next step, the analyze() function loads text
from the Queued bucket to analyze it via the external text
analyzer service (e.g., AWS Comprehend) and then saves the
metadata result to the search engine.

The FaaS implementation has two main drawbacks. First,
developers must explicitly manage application state and data
using separate storage services, which increases complexity
and makes it difficult to configure non-functional require-
ments as in the previous case study. Second, functionali-
ties may require numerous and heterogeneous FaaS deploy-
ments—for example, needing separate extraction functions
for each document type, where some (like PDF and DOCX)
require staging and others (like JPG) do not. These drawbacks
complicate development, deployment, and management as
the application evolves to handle various document types
and integrates more functionalities and options (e.g., using
multiple text analyzer services instead of one).
OaaS implementation. To demonstrate the feasibility of
OaaS in production, we transform the given FaaS-based so-
lution into OaaS with minimal effort to resolve the previ-
ously mentioned drawbacks. The transformation involves
three steps.
• Workflow Construction. We encapsulate related FaaS

functions, states, and key data into objects representing

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

two key functionalities: Extractor to extract text from
the document repository and Analyzer to analyze the
extracted text. The two classes form the critical path of the
application processing pipeline, as shown in Figure 16b.

• Object Encapsulation. We apply inheritance and polymor-
phism to promote software reuse by wrapping correspond-
ing FaaS functions and states into classes derived from the
two base classes. This approach hides the need for storage
services behind the object abstraction and outsources their
implementation to the cloud. It also simplifies development,
as developers only need to construct the processing pipeline
once in the base class definitions and then focus on imple-
menting functionalities for specific cases with their derived
classes, avoiding repetitive pipeline construction and im-
plementation whenever a new document type or analyzer
service is added.

• Integration of Non-Functional Requirements. Develop-
ers integrate appropriate non-functional requirements into
the corresponding objects to meet application needs for
performance, availability, and cost. With Oparaca, non-
functionality requirement enforcement, as shown in previ-
ous experiments, is achieved without any additional refine-
ment effort from the developers.

Takeaway: Oparaca accelerates development by abstract-

ing low-level infrastructure concerns and automating run-

time configurations through a high-level interface.

6 RELATED WORKS

6.1 Compute-Data Encapsulation

Combining data and compute abstraction is an active research
direction to deploy stateful applications with FaaS produc-
tively. We can classify studies on this front based on how the
function can access the data.

Unified compute-data abstraction. Many serverless plat-
forms are designed to combine one or more functions and
state data into unified deployment units such as “actor” [86]
or proclets [79]. Functions and state data are co-located when
executed so that functions can access the state data in local
memory. Azure Entity Functions [66] that is based on the con-
cept of virtual actor, Orleans [16]. Kalix [38] uses CRDT [83]
to replicate the state among functions. Similar to OaaS, our
prior works [53–55] and Nubes [63] also rely on the object-
oriented concepts to encapsulate the function and data into
unified deployments.

Datastore abstraction. The serverless platform provides a
datastore API to the function for storing the state. Cloud-
burst [87] offers stateful functions using a shared distributed
key-value database. FAASM [84] allows the function access
to the shared memory via WASM. Crucial [10] allows a func-
tion to access the shared data via the DSO layer (distributed

hash table). Boki [42] enables stateful functions by providing
API access to the distributed logging system. Beldi [95], on
the other hand, provides the database and transaction API
to the state. YuanRong [20] offers a unified interface for the
function to access the external database. Shredder [97] and
Apiary [49] enable the function to be executed within stor-
age/database service in a stored-procedure manner. Kalix [38]
and Apache Flink Stateful Function (StateFun) [7] proactively
package the state within the invocation request payload and
expect the modified state to be returned as part of the response
payload.

Existing works, despite their diversity, focus mainly on data
and compute encapsulation to enhance programmability and
productivity, often neglecting non-functional requirements
like performance and availability. OaaS fills this gap by in-
troducing the new non-functional requirements interface and
enforcing them by leveraging enriched information from the
encapsulation with state-of-the-art solutions, as presented
below.

6.2 Non-functional Requirements

Enforcement

There is a rich body of research has been carried out to im-
prove serverless execution latency. Most of them address
the well-known cold-start problem [26, 82, 91], which ap-
plications cannot easily resolve on their own. Noticeable ap-
proaches include mitigating cold-start penalty [25, 43, 59]
and sandbox recycling [32, 82]. Other efforts in the area focus
on strengthening performance isolation [1, 62] and proper re-
source allocation [13, 14] to keep invocation executing at the
desired speed. Commercial cloud providers let applications
manually configure for throughput through pre-allocation [6],
but this can be costly if the actual FaaS resource demand does
not meet load estimation. Real-time Serverless [73] resolves
the problem by allowing applications to dynamically scale to
actual use under a predefined guaranteed invocation rate.

Enforcing the non-functional requirements becomes more
complicated as applications evolve and become bigger. Many
dedicated studies are addressing different aspects of the prob-
lem. Sequoia [89] proposes a new QoS function scheduling
and allocation framework. Real-time Serverless [71, 73] ex-
tends the FaaS model to enable performance engineering
through configurable guaranteed invocation rates. Aquatope
[99] proposes a QoS-and-uncertainty-aware resource sched-
uler for end-to-end serverless workflows. Astrea [41] pro-
poses an autonomous system that configures and orchestrates
serverless analytic jobs. Pheromone [94] replaces the tradi-
tional invocation-based workflow orchestration with a data-
centric approach to enable locality exploitation across work-
flow execution.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

Despite their significant benefits, the mentioned approaches
address only limited aspects of FaaS applications. Further-
more, most rely on best-effort methods due to limited abstrac-
tion integration and cloud-developer coordination in current
FaaS implementations and programming models (as presented
in Section 2). This limits their practicality, as real-world appli-
cations often have multiple objectives and constraints [72, 73].
In contrast, OaaS’s non-functional requirements API enables
the enforcement of multiple objectives only through declara-
tion with minimal refinement effort, allowing for simple and
reliable application deployment.

7 CONCLUSION

In this paper, we introduced the Object-as-a-Service (OaaS)
paradigm that offers a new cloud service abstraction that bor-
rows principles of object-oriented programming to encapsu-
late application logic, data, and non-functional requirements
into a unified deployment package. The approach not only
greatly simplifies native-cloud application development, but
also enables requirements-driven cloud-developer coordina-
tion that opens the gate for many performance optimization
opportunities. Moreover, OaaS relieves developers from the
complexity of application fine-tuning to meet the desired QoS
and deployment constraints. We also developed a prototype
OaaS platform called Oparaca and evaluated it across various
real-world applications and scenarios. The evaluation shows
that Oparaca can enforce various application QoS with compa-
rable resource efficiency versus other cutting-edge approaches
while significantly reducing the time and effort required for
cloud-native application deployment and development.

In the future, we plan to enhance Oparaca to support ad-
ditional non-functional requirements (e.g., those listed in Ta-
ble 1). We will also expand its object configuration to give
developers more flexibility in choosing data storage, execu-
tion, and orchestration implementations. This work serves as
a starting point for several promising research directions. For
instance, can Oparaca be extended across multiple data cen-
ters to leverage its high-level abstractions and non-functional
requirement enforcement for addressing challenges in dis-
tributed systems, such as resilience and heterogeneity?

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their con-
structive feedback; and Chameleon Cloud for providing re-
sources. This project is supported by National Science Foun-
dation (NSF) through CNS CAREER Award# 2419588.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
Proceedings of the 17th USENIX symposium on networked systems

design and implementation (NSDI 20). 419–434.

[2] Amazon. 2022. AWS Lambda Service Level Agreement. https://aws.
amazon.com/lambda/sla. Online; Accessed on 15 July 2024.

[3] Amazon. 2024. Amazon Relational Database Services. https://aws.
amazon.com/rds/. Online; Accessed on 1 Apr. 2024.

[4] Amazon. 2024. AWS Step Functions | Serverless Microservice Orches-
tration. https://aws.amazon.com/step-functions. Accessed on 23 Jul.
2022.

[5] Amazon. 2024. Cloud Object Storage | Amazon S3 – Amazon Web
Services. https://aws.amazon.com/s3/. Online; Accessed on 12 Nov.
2023.

[6] Amazon. 2024. Configuring provisioned concurrency for a func-
tion. https://docs.aws.amazon.com/lambda/latest/dg/provisioned-
concurrency.html. Online; Accessed on 7 July 2024.

[7] Apache. 2024. Apache Flink Stateful Functions. https://nightlies.
apache.org/flink/flink-statefun-docs-stable. Online; Accessed on 15
Jul. 2024.

[8] Onur Ascigil, Argyrios G Tasiopoulos, Truong Khoa Phan, Vasilis
Sourlas, Ioannis Psaras, and George Pavlou. 2021. Resource provi-
sioning and allocation in function-as-a-service edge-clouds. IEEE

Transactions on Services Computing 15, 4 (2021), 2410–2424.
[9] David Balla, Markosz Maliosz, and Csaba Simon. 2021. Estimating

function completion time distribution in open source FaaS. In Proceed-

ings of the 10th IEEE International Conference on Cloud Networking

(CloudNet). IEEE, 65–71.
[10] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre

Sutra, and Pedro García-López. 2019. On the FaaS Track: Build-
ing Stateful Distributed Applications with Serverless Architectures. In
Proceedings of the 20th International Middleware Conference (Davis,
CA, USA) (Middleware ’19). Association for Computing Machinery,
41–54.

[11] Salman A Baset, Long Wang, and Chunqiang Tang. 2012. Towards an
understanding of oversubscription in cloud. In Proceedings of the 2nd

USENIX Workshop on Hot Topics in Management of Internet, Cloud,

and Enterprise Networks and Services (Hot-ICE 12).
[12] James Beswick. 2021. Creating a searchable enterprise document repos-

itory. https://aws.amazon.com/blogs/compute/creating-a-searchable-
enterprise-document-repository/. Online; Accessed on 12 Oct 2024.

[13] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. 2022. Cypress: Input size-
sensitive container provisioning and request scheduling for serverless
platforms. In Proceedings of the 13th Symposium on Cloud Computing.
257–272.

[14] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Ro-
drigues. 2023. With great freedom comes great opportunity: Rethinking
resource allocation for serverless functions. In Proceedings of the 18th

European Conference on Computer Systems. 381–397.
[15] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David

Justo, Konstantinos Kallas, Connor McMahon, Christopher S Meik-
lejohn, and Xiangfeng Zhu. 2022. Netherite: Efficient execution of
serverless workflows. Proceedings of the VLDB Endowment 15, 8
(2022), 1591–1604.

[16] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya,
and Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In
Proceedings of the 2nd ACM Symposium on Cloud Computing. 1–14.

[17] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A serverless framework for end-to-end ml
workflows. In Proceedings of the ACM Symposium on Cloud Computing

2019. 13–24.
[18] Inês Carvalho, Filipe Sá, and Jorge Bernardino. 2022. NoSQL Docu-

ment Databases Assessment: Couchbase, CouchDB, and MongoDB.
In Proceedings of the 11th International Conference on Data Science,

https://aws.amazon.com/lambda/sla
https://aws.amazon.com/lambda/sla
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/step-functions
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://nightlies.apache.org/flink/flink-statefun-docs-stable
https://nightlies.apache.org/flink/flink-statefun-docs-stable
https://aws.amazon.com/blogs/compute/creating-a-searchable-enterprise-document-repository/
https://aws.amazon.com/blogs/compute/creating-a-searchable-enterprise-document-repository/

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Technology and Applications - Volume 1: DATA,. INSTICC, SciTePress,
557–564. https://doi.org/10.5220/0011352700003269

[19] Dheeraj Chahal, Ravi Ojha, Manju Ramesh, and Rekha Singhal. 2020.
Migrating large deep learning models to serverless architecture. In
Proceedings of the 31st IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW). IEEE, 111–116.
[20] Qiong Chen, Jianmin Qian, Yulin Che, Ziqi Lin, Jianfeng Wang, Jie

Zhou, Licheng Song, Yi Liang, Jie Wu, Wei Zheng, et al. 2024. Yuan-
rong: A production general-purpose serverless system for distributed
applications in the cloud. In Proceedings of the ACM SIGCOMM 2024

Conference. 843–859.
[21] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten

Hoefler. 2023. rFaaS: Enabling High Performance Serverless with
RDMA and Leases. In Proceedings of the 2023 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 897–
907.

[22] Gatling Corp. 2024. Gatling - Professional Load Testing Tool. https:
//gatling.io/. Online; Accessed on 31 Mar. 2024.

[23] Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi.
2023. Efficiency in the serverless cloud paradigm: A survey on the
reusing and approximation aspects. Software: Practice and Experience

53, 10 (2023), 1853–1886.
[24] Chavit Denninnart and Mohsen Amini Salehi. 2021. Harnessing the

potential of function-reuse in multimedia cloud systems. IEEE Trans-

actions on Parallel and Distributed Systems 33, 3 (2021), 617–629.
[25] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang

Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
startup for serverless computing with initialization-less booting. In
Proceedings of the 25th International Conference on Architectural

Support for Programming Languages and Operating Systems. 467–
481.

[26] Ana Ebrahimi, Mostafa Ghobaei-Arani, and Hadi Saboohi. 2024. Cold
Start Latency Mitigation Mechanisms in Serverless Computing: Taxon-
omy, Review, and Future Directions. Journal of Systems Architecture

(2024), 103115.
[27] Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst,

and Samuel Kounev. 2020. Predicting the costs of serverless workflows.
In Proceedings of the 11th ACM/SPEC international conference on

performance engineering. 265–276.
[28] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,

Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. 2021. The state of serverless applications: Collection, charac-
terization, and community consensus. IEEE Transactions on Software

Engineering 48, 10 (2021), 4152–4166.
[29] Alex Ellis. [n. d.]. OpenFaaS - Serverless Functions Made Simple.

https://www.openfaas.com/. Online; Accessed on 10 Oct. 2024.
[30] Brad Everman, Narmadha Rajendran, Xiaomin Li, and Ziliang Zong.

2021. Improving the cost efficiency of large-scale cloud systems run-
ning hybrid workloads-A case study of Alibaba cluster traces. Sustain-

able Computing: Informatics and Systems 30 (2021), 100528.
[31] Cloud Native Foundation. 2024. Knative. https://knative.dev/. Online;

Accessed on 31 Mar. 2024.
[32] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping

serverless computing alive with greedy-dual caching. In Proceedings of

the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems. 386–400.
[33] Samuel Ginzburg and Michael J Freedman. 2020. Serverless isn’t

server-less: Measuring and exploiting resource variability on cloud
faas platforms. In Proceedings of the 6th International Workshop on

Serverless Computing. 43–48.
[34] Yahya Hassanzadeh-Nazarabadi, Sanaz Taheri-Boshrooyeh, Safa

Otoum, Seyhan Ucar, and Öznur Özkasap. 2021. Dht-based com-
munications survey: architectures and use cases. arXiv preprint

arXiv:2109.10787 (2021).
[35] M Reza HoseinyFarahabady, Javid Taheri, Albert Y Zomaya, and Zahir

Tari. 2021. Data-intensive workload consolidation in serverless (Lamb-
da/FaaS) platforms. In 2021 IEEE 20th International Symposium on

Network Computing and Applications (NCA). IEEE, 1–8.
[36] ArangoDB Inc. 2024. ArangoDB. https://www.arangodb.com. Online;

Accessed on 31 Mar. 2024.
[37] Intel Inc. 2013. MTBF Data for Intel Server Board S1200RP

Family. https://www.intel.com/content/www/us/en/support/articles/
000007550/server-products.html. Online; Accessed on 15 July 2024.

[38] Lightbend Inc. 2024. High performance microservices and APIs |
Kalix.io. https://www.kalix.io. Online; Accessed on 31 Mar. 2024.

[39] MinIO Inc. 2024. MinIO | High Performance, Kubernetes Native Object
Storage. https://min.io/. Online; Accessed on 31 Mar. 2024.

[40] SUSE Inc. 2024. RKE2. https://docs.rke2.io. Online; Accessed on 15
July 2024.

[41] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2022. Astrea:
Auto-serverless analytics towards cost-efficiency and qos-awareness.
IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022),
3833–3849.

[42] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful serverless
computing with shared logs. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles. 691–707.
[43] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scal-

able serverless computing for latency-sensitive, interactive microser-
vices. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems. 152–166.
[44] Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xu-

anzhe Liu, and Xin Jin. 2023. Ditto: Efficient serverless analytics with
elastic parallelism. In Proceedings of the ACM SIGCOMM Conference

2023. 406–419.
[45] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint

arXiv:1902.03383 (2019).
[46] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke

Darlow, Jianfeng Wang, and Adam Barker. 2023. How does it function?
characterizing long-term trends in production serverless workloads.
In Proceedings of the ACM Symposium on Cloud Computing 2023.
443–458.

[47] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex
Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proceedings of the USENIX Annual Technical Conference.
USENIX Association.

[48] Stefan Kehrer, Dominik Zietlow, Jochen Scheffold, and Wolfgang
Blochinger. 2021. Self-tuning serverless task farming using proac-
tive elasticity control. Cluster Computing 24 (2021), 799–817.

[49] Peter Kraft, Qian Li, Kostis Kaffes, Athinagoras Skiadopoulos, Deep-
taanshu Kumar, Danny Cho, Jason Li, Robert Redmond, Nathan Weck-
werth, Brian Xia, et al. 2022. Apiary: A DBMS-Backed Transactional
Function-as-a-Service Framework. arXiv preprint arXiv:2208.13068

(2022).
[50] Jörn Kuhlenkamp, Sebastian Werner, Maria C Borges, Karim El Tal,

and Stefan Tai. 2019. An evaluation of faas platforms as a foundation for
serverless big data processing. In Proceedings of the 12th IEEE/ACM

international conference on utility and cloud computing. 1–9.

https://doi.org/10.5220/0011352700003269
https://gatling.io/
https://gatling.io/
https://www.openfaas.com/
https://knative.dev/
https://www.arangodb.com
https://www.intel.com/content/www/us/en/support/articles/000007550/server-products.html
https://www.intel.com/content/www/us/en/support/articles/000007550/server-products.html
https://www.kalix.io
https://min.io/
https://docs.rke2.io

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Pawissanutt Lertpongrujikorn, Hai Duc Nguyen, and Mohsen Amini Salehi

[51] Alok Gautam Kumbhare, Reza Azimi, Ioannis Manousakis, Anand
Bonde, Felipe Frujeri, Nithish Mahalingam, Pulkit A Misra, Seyyed Ah-
mad Javadi, Bianca Schroeder, Marcus Fontoura, et al. 2021. Prediction-
Based power oversubscription in cloud platforms. In Proceedings of the

USENIX Annual Technical Conference (USENIX ATC 21). 473–487.
[52] Zhengyu Lei, Xiao Shi, Cunchi Lv, Xiaobing Yu, and Xiaofang Zhao.

2023. Chitu: accelerating serverless workflows with asynchronous state
replication pipelines. In Proceedings of the ACM symposium on cloud

computing 2023. 597–610.
[53] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. 2023. Object

as a service (OaaS): Enabling object abstraction in serverless clouds. In
Proceedings of the 16th International Conference on Cloud Computing

(CLOUD’23). IEEE, 238–248.
[54] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. 2024. Object

as a Service: Simplifying Cloud-Native Development through Server-
less Object Abstraction. arXiv preprint arXiv:2408.04898 (2024).

[55] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. 2024. Tuto-
rial: Object as a Service (OaaS) Serverless Cloud Computing Paradigm.
In Proceedings of the 44th International Conference on Distributed

Computing Systems Workshops (ICDCSW). IEEE, 5–8.
[56] Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu. 2023.

Golgi: Performance-aware, resource-efficient function scheduling for
serverless computing. In Proceedings of the ACM Symposium on Cloud

Computing 2023. 32–47.
[57] Changyuan Lin and Hamzeh Khazaei. 2020. Modeling and optimization

of performance and cost of serverless applications. IEEE Transactions

on Parallel and Distributed Systems 32, 3 (2020), 615–632.
[58] Changyuan Lin, Nima Mahmoudi, Caixiang Fan, and Hamzeh Khazaei.

2022. Fine-grained performance and cost modeling and optimization
for faas applications. IEEE Transactions on Parallel and Distributed

Systems 34, 1 (2022), 180–194.
[59] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi

Liu, Haoyu Wang, and Xin Jin. 2023. Faaslight: General application-
level cold-start latency optimization for function-as-a-service in server-
less computing. ACM Transactions on Software Engineering and

Methodology 32, 5 (2023), 1–29.
[60] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep

Pallickara. 2018. Serverless computing: An investigation of factors
influencing microservice performance. In Proceedings of the 6th IEEE

international conference on cloud engineering (IC2E). IEEE, 159–169.
[61] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huangshi

Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic, Hao-
ran Yang, et al. 2021. {SONIC}: Application-aware data passing for
chained serverless applications. In Proceedings of the USENIX Annual

Technical Conference (USENIX ATC 21). 285–301.
[62] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon

Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
2017. My VM is Lighter (and Safer) than your Container. In Proceed-

ings of the 26th Symposium on Operating Systems Principles. 218–233.
[63] Kinga Anna Marek, Luca De Martini, and Alessandro Margara. 2023.

Nubes: Object-Oriented Programming for Stateful Serverless Func-
tions. In Proceedings of the 9th International Workshop on Serverless

Computing. 30–35.
[64] Bakhta Meroufel and Ghalem Belalem. 2013. Managing data replica-

tion and placement based on availability. AASRI Procedia 5 (2013),
147–155.

[65] Microsoft. 2024. Chatty I/O antipattern. https://learn.microsoft.com/en-
us/azure/architecture/antipatterns/chatty-io/. Online; Accessed on 4
July 2024.

[66] Microsoft. 2024. Durable entities - Azure Functions. https:
//docs.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-entities. Online; Accessed on 31 Mar. 2024.

[67] Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and
Mohammad Shahrad. 2023. Parrotfish: Parametric regression for opti-
mizing serverless functions. In Proceedings of the ACM Symposium on

Cloud Computing 2023. 177–192.
[68] Wilmer Moina-Rivera, Miguel Garcia-Pineda, Jose M Claver, and Juan

Gutiérrez-Aguado. 2023. Event-driven serverless pipelines for video
coding and quality metrics. Journal of Grid Computing 21, 2 (2023),
20.

[69] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:
Interactive data analytics on cold data using serverless cloud infrastruc-
ture. In Proceedings of the ACM SIGMOD International Conference

on Management of Data 2020. 115–130.
[70] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,

Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, et al. 2021. OFC: an opportunistic
caching system for FaaS platforms. In Proceedings of the 16th European

Conference on Computer Systems. 228–244.
[71] Hai Duc Nguyen and Andrew A Chien. 2023. Storm-RTS: Stream

Processing with Stable Performance for Multi-cloud and Cloud-edge. In
Proceedings of the 16th International Conference on Cloud Computing

(CLOUD). IEEE, 45–57.
[72] Hai Duc Nguyen, Zhifei Yang, and Andrew A Chien. 2020. Motivat-

ing high performance serverless workloads. In Proceedings of the 1st

Workshop on High Performance Serverless Computing. 25–32.
[73] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A Chien.

2019. Real-time serverless: Enabling application performance guaran-
tees. In Proceedings of the 5th International Workshop on Serverless

Computing. 1–6.
[74] Manish Pandey and Young Woo Kwon. 2023. Optimizing Memory

Allocation in a Serverless Architecture through Function Scheduling.
In Proceedings of the 23rd International Symposium on Cluster, Cloud

and Internet Computing Workshops (CCGridW). IEEE, 275–277.
[75] Fission Project. 2024. Fission. https://fission.io. https://fission.io

Online; Accessed on 10 Oct. 2024.
[76] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, fast

and slow: Scalable analytics on serverless infrastructure. In Proceedings

of the 16th USENIX symposium on networked systems design and

implementation (NSDI 19). 193–206.
[77] Resilience in AWS Lambda 2024. Resilience in AWS Lambda. https:

//docs.aws.amazon.com/lambda/latest/dg/security-resilience.html. On-
line; Accessed on 14 Oct 2024.

[78] Ran Ribenzaft. 2024. What AWS Lambda’s Performance Stats Re-
veal. https://thenewstack.io/what-aws-lambdas-performance-stats-
reveal/. Online; Accessed on 6 July 2024.

[79] Zhenyuan Ruan, Seo Jin Park, Marcos K Aguilera, Adam Belay, and
Malte Schwarzkopf. 2023. Nu: Achieving {Microsecond-Scale} re-
source fungibility with logical processes. In Proceedings of the 20th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 23). 1409–1427.
[80] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li,

Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy,
Christopher Malone, Jimmy Clidaras, et al. 2020. Data center power
oversubscription with a medium voltage power plane and priority-
aware capping. In Proceedings of the 25th International Conference

on Architectural Support for Programming Languages and Operating

Systems. 497–511.
[81] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Server-

less computing: a survey of opportunities, challenges, and applications.
Comput. Surveys 54, 11s (2022), 1–32.

[82] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:

https://learn.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://fission.io
https://fission.io
https://docs.aws.amazon.com/lambda/latest/dg/security-resilience.html
https://docs.aws.amazon.com/lambda/latest/dg/security-resilience.html
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/

Streamlining Cloud-Native Application Development and Deployment with Robust Encapsulation SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the USENIX Annual Technical Con-

ference (USENIX ATC 20). USENIX Association, 205–218. https:
//www.usenix.org/conference/atc20/presentation/shahrad

[83] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free replicated data types. In Stabilization, Safety, and Se-

curity of Distributed Systems: 13th International Symposium, SSS 2011,

Grenoble, France, October 10-12, 2011. Proceedings 13. Springer,
386–400.

[84] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation
for efficient stateful serverless computing. In USENIX Annual Technical

Conference (USENIX ATC ’20). 419–433.
[85] Khondokar Solaiman and Muhammad Abdullah Adnan. 2020. WLEC:

A not so cold architecture to mitigate cold start problem in serverless
computing. In Proceedings of the 8th IEEE International Conference

on Cloud Engineering (IC2E). IEEE, 144–153.
[86] Jonas Spenger, Paris Carbone, and Philipp Haller. 2024. A Survey of

Actor-Like Programming Models for Serverless Computing. In Active

Object Languages: Current Research Trends. Springer, 123–146.
[87] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann

Schleier-Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M Heller-
stein, and Alexey Tumanov. 2020. Cloudburst: Stateful functions-as-a-
service. Proceedings of the VLDB Endowment (2020).

[88] Mark Szalay, Peter Matray, and Laszlo Toka. 2022. Real-time faas:
Towards a latency bounded serverless cloud. IEEE Transactions on

Cloud Computing 11, 2 (2022), 1636–1650.
[89] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Sid-

dharth Lanka. 2020. Sequoia: Enabling quality-of-service in serverless
computing. In Proceedings of the 11th ACM Symposium on Cloud

Computing. 311–327.
[90] Aastik Verma, Anurag Satpathy, Sajal K Das, and Sourav Kanti Addya.

2024. LEASE: Leveraging Energy-Awareness in Serverless Edge for
Latency-Sensitive IoT Services. In Proceedings of the IEEE Interna-

tional Conference on Pervasive Computing and Communications Work-

shops and other Affiliated Events 2024 (PerCom Workshops). IEEE,
302–307.

[91] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless

Platforms. In Proceedings of the USENIX Annual Technical Confer-

ence (USENIX ATC 18). USENIX Association, Boston, MA, 133–146.
https://www.usenix.org/conference/atc18/presentation/wang-liang

[92] Na Wang, Junsong Fu, Bharat K Bhargava, and Jiwen Zeng. 2018.
Efficient retrieval over documents encrypted by attributes in cloud
computing. IEEE Transactions on Information Forensics and Security

13, 10 (2018), 2653–2667.
[93] Shangrui Wu, Chavit Denninnart, Xiangbo Li, Yang Wang, and

Mohsen Amini Salehi. 2020. Descriptive and predictive analysis of
aggregating functions in serverless clouds: The case of video streaming.
In Proceedings of the 22nd International Conference on High Per-

formance Computing and Communications; IEEE 18th International

Conference on Smart City; IEEE 6th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS). IEEE, 19–26.
[94] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-

lowing the data, not the function: Rethinking function orchestration
in serverless computing. In Proceedings of the 20th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 23).
1489–1504.

[95] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’20). USENIX Association, 1187–1204.
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

[96] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. 2021. Caerus:{NIMBLE} task scheduling for serverless
analytics. In Proceedings of the 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 21). 653–669.
[97] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing

the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing 2019. 1–12.

[98] Xuan Zhang, Hongjun Gu, Guopeng Li, Xin He, and Haisheng Tan.
2023. Online Function Caching in Serverless Edge Computing. In
Proceedings of the 29th International Conference on Parallel and Dis-

tributed Systems (ICPADS). IEEE, 2295–2302.
[99] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022.

Aquatope: Qos-and-uncertainty-aware resource management for multi-
stage serverless workflows. In Proceedings of the 28th ACM Inter-

national Conference on Architectural Support for Programming Lan-

guages and Operating Systems, Volume 1. 1–14.

https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	3 Object-as-a-Service Abstraction
	3.1 Unified OaaS Abstraction
	3.2 Non-functional Requirement Interface
	3.3 Simplified, Refinement-Free Deployment

	4 Oparaca: an OaaS Realization
	4.1 Design Goals and Requirements
	4.2 OaaS Abstraction Interface
	4.3 Object Realization
	4.4 Oparaca Architecture

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Works
	6.1 Compute-Data Encapsulation
	6.2 Non-functional Requirements Enforcement

	7 Conclusion
	References

