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Abstract

In heterogeneous distributed computing (HC) systems, diversity can exist in both
computational resources and arriving tasks. In an inconsistently heterogeneous com-
puting system, task types have different execution times on heterogeneous machines.
A method is required to map arriving tasks to machines based on machine availability
and performance, maximizing the number of tasks meeting deadlines (defined as ro-
bustness). For tasks with hard deadlines (e.g., those in live video streaming), tasks that
miss their deadlines are dropped. The problem investigated in this research is maximiz-
ing the robustness of an oversubscribed HC system. A way to maximize this robustness
is to prune (i.e., defer or drop) tasks with low probability of meeting their deadlines to
increase the probability of other tasks meeting their deadlines. In this paper, we first
provide a mathematical model to estimate a task’s probability of meeting its deadline in
the presence of task dropping. We then investigate methods for engaging probabilistic
dropping. We propose methods to dynamically determine task dropping and defer-
ring threshold probabilities. Next, we develop a pruning system and a pruning-aware
mapping heuristic, which we extend to engender fairness across various task types.
We present the pruning mechanism as an independent component that can be applied
to any mapping heuristic to improve the system robustness. To reduce overhead of
the pruning mechanism, we propose approximation methods that remarkably reduce
the number of mathematical calculations and improve the practicality of deploying the
mechanism in heterogeneous or even homogeneous computing systems. We show the
cost and energy gains of the pruning mechanism. Simulation results, harnessing a se-
lection of mapping heuristics, show efficacy of the pruning mechanism in improving
robustness (on average by '22%) and cost in an oversubscribed HC system by up to
'33%.
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1. Introduction

A Heterogeneous Computing (HC) system can be described by two types of hetero-
geneity: inconsistent and consistent [1,2]. Inconsistent machine heterogeneity refers to
differences in machine architecture (e.g., CPU versus GPU versus FPGA [3,4,5]). Con-
sistent machine heterogeneity describes the differences among machines of a certain
architecture (e.g., different clock speeds). Compute services offered by cloud providers
are a good example of an HC system. Amazon cloud [6] offers inconsistent heterogene-
ity in form of various Virtual Machine (VM) types, such as CPU-Optimized, Memory-
Optimized, Disk-Optimized, and Accelerated Computing (GPU and FPGA). Within
each type, various VMs are offered with consistent performance scaling with price [6].
Moreover, both consistent and inconsistent heterogeneity can exist in arriving tasks.
For example, an HC system dedicated to processing live video streams is responsi-
ble for many categorically different types of tasks: changing video stream resolution,
changing the compression standard, changing video bit-rate [2]. Each of these task
types can be consistently heterogeneous within itself (e.g., it takes longer to change
resolution of 10 seconds of video, compared to 5).

Many HC systems (e.g., [7,8]) present both consistent and inconsistent heterogene-
ity in machines used and task types processed [9]. These systems present cases where
each task type can execute differently on each machine type, where machine type A
performs task type 1 faster than machine type B does, but is slower than other machine
types for task type 2. Specifically, compute intensive tasks run faster on (i.e., matches
better with) a GPU machine whereas tasks with memory and disk accesses bottlenecks
(e.g., in-memory databases [10,11,12]) runs faster on a CPU-based machine.

All of this heterogeneity results in uncertainty for a given task’s execution time,
thus, inefficiency of resource allocation [1]. Accordingly, a major challenge in HC sys-
tems is to assign tasks to machines to optimize performance goal of the system [1]. We
define robustness as the degree to which a system can maintain performance in the face
of uncertainty [13]. The overall goal of this study is to maximize the robustness of an
HC system.

Each task is considered to have a hard individual deadline, past which, no value
remains in executing the task. Hence, tasks are dropped (i.e., removed) from the system
when their deadline passes [14,15]. When the HC system is under load, such that it is
impossible for all tasks to complete before their deadlines, the system is considered
oversubscribed. The performance metric based on which we measure robustness of an
HC system is the number of tasks that meet their deadlines in the system. Therefore, the
specific goal of this study is to maximize the number of tasks meeting their deadlines
in the HC system (referred to as task success) in the face of uncertain execution times
in an oversubscribed system. A model of machine and task heterogeneity [16] must be
available to the resource allocation system, and the system must harness this awareness
to overcome with the uncertainty of the HC system.

When tasks have hard deadlines, time spent executing tasks that are ultimately
dropped is wasted time. This wasted time cascades down the queue of tasks, delaying
the execution of other tasks, and increasing the number of missed tasks in the future—
decreasing system robustness. To mitigate this, tasks with a low probability of success
should not be mapped, and if they are, they should be dropped before execution [17]. If
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probabilistically pruning these unlikely-to-succeed tasks yields more tasks completing
on-time in oversubscribed HC systems, how do we maximize the robustness gained
thereby?

To address this question, in this research, we propose a pruning mechanism [18] (as
depicted in Figure 1) that is composed of two methods, namely deferring and dropping.
Task deferring deals with postponing assignment of unlikely-to-succeed tasks to a next
mapping event with the hope that the tasks can be mapped to a machine that provides
a higher chance of success for them. Alternatively, when the system is oversubscribed,
the pruning mechanism transitions to a more aggressive mode and drops the tasks that
are unlikely to succeed. Before determining deferring and dropping details, we need
to model the impact of task dropping on the probability of success for the tasks sched-
uled to execute after the dropped task. Then, we determine the appropriate probability
for dropping and deferring. We propose a method to dynamically determine when the
resource allocation system should transition to a more aggressive mode and engage in
task dropping. We compare and analyze robustness obtained from deploying our pro-
posed pruning mechanism against an HC system that either does not perform pruning
or has a basic pruning implemented.
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Figure 1: Pruning mechanism. Heterogeneous tasks are mapped to heterogeneous machines in batches. In
each mapping, the pruner drops or defers tasks based on their probability of success.

Maximizing robustness of HC systems in terms number of tasks meeting their dead-
lines can potentially cause bias towards executing certain task types and affects fairness
of the system. As such, we develop a mapping method to maintain fairness while max-
imizing robustness.

Our hypothesis is that the proposed pruning mechanism not only improves robust-
ness of an HC system, but can impact the incurred cost and energy consumption of
using resources. The former is particularly important for users who deploy hetero-
geneous cloud VMs [19], whereas the latter can be appealing to the administrators of
High Performance Computing (HPC) systems. As such, we investigate the impact of
the proposed probabilistic pruning mechanism on the incurred cost and energy con-
sumption of using heterogeneous cloud VMs and compare it against common mapping
methods. Due to generality of the pruning idea, we implement it as an independent
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mechanism that can be applied to mapping heuristics of any type of (homogeneous or
heterogeneous) computing system to improve its robustness.

Naively implementing the theory behind the pruning decisions imposes a signifi-
cant overhead to decide the fate of a given task. As such, to make the pruning mech-
anism practical, we develop methods based on approximation and caching that effec-
tively mitigate the mechanism’s overhead, without major impact on the effectiveness
of pruning.

In summary, the main contribution of this paper is to provide a pruning mechanism
that improves robustness, cost, and energy efficiency of HC systems. More detailed
contributions of this paper are as follows:

• Mathematically modeling impact of task dropping on the probability of other
tasks.

• Developing a method to determine probabilistic dropping and deferring thresh-
olds.

• Proposing a method to engage task dropping in response to oversubscription.

• Developing a pruning-aware and a fairness-aware mapping heuristic for an HC
system.

• Developing a generic pruning mechanism that can be applied to existing HC
systems.

Simulation results approve our hypotheses and show that the pruning mechanism
can enhance robustness and the incurred cost. Importantly, the mechanism is more ef-
fective under higher oversubscription levels. This rest of this paper is organized as fol-
lows. Section 2 situates this work in relation to existing literature. Section 3 establishes
the problem and describes our system model. Then, Section 5 presents theories for the
probabilistic task pruning mechanisms. Section 6 summarizes the pruning mechanism
and introduces two probabilistic-based mapping heuristics. Section 7 goes into detail
on how to reduce the scheduling overhead when using probabilistic-based mapping
heuristics and task pruning mechanisms. In Section 8, We describe baseline heuris-
tics, along with the constraints and parameters of the experiment. Section 9 presents
and analyzes the simulation results. Finally, Section 10 concludes the paper and offers
direction for future works.

2. Related Works

Mapping tasks in HC systems have been shown to be an NP-complete problem [20,21].
As such, there are multiple prior efforts that achieve sub-optimal solutions. Here are
some notable mentions where they are either being similar or have some influence on
our work.

To model task execution times, Shestak et al. [13], instead of using a scalar value,
lay the groundwork for the use of probability mass functions (aka PMF). The method
for convolution of execution times to form completion times for a queue of tasks is es-
tablished. Our work builds upon their use of PMFs and robustness measurement, while
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also adding the conditions of probabilistically drop executing tasks and pending tasks.
Khemka et al. [14] investigate resource allocation in oversubscribed heterogeneous sys-
tems. They test task utility functions based on priority, utility class, and urgency. They
use a matrix with deterministic execution times, whereas we model the times proba-
bilistically. Also, unlike our approach of probabilistically determining if a task should
be dropped, their task dropping occurs only after a task’s utility goes below a static
threshold. In [22], Salehi et al. model the stochastic nature of the heterogeneous task
types on heterogeneous machine types using a matrix of probability mass functions
(PMFs) to improve robustness of dynamic resource allocation. A mathematical model
for calculating the completion time of stochastically modeled tasks in the presence of
task dropping is provided. However, Salehi et al. only consider dropping tasks after
their deadlines have passed.

Delimitrou and Kozyrakis [23] propose Paragon which is an immediate (i.e., not
batch) dynamic scheduling system for heterogeneous data centers. They use singu-
lar value decomposition of historical data to classify incoming tasks based on their
heterogeneity. The classifications are used in a greedy algorithm to select a list of
candidate resources based on interference, and then from that, the best fit based on
heterogeneity [24]. Unlike our work that considers probabilistic execution times for de-
cision making, their mapping heuristics operates based on scalar execution times. The
performance metrics are also different, as their tasks do not have deadline to consider,
Paragon is only concerned about system throughput.

In [25], Li et al. introduce the affinity (i.e., match) of heterogeneous cloud VMs to
change coding of video streams. They observed that depending on their content types,
video files have different performances on heterogeneous VM types. Particularly, they
notice that slow-motion video contents gain from compute intensive VMs, such as
GPUs, whereas fast-motion videos do not gain much from such VMs. They concluded
that categorizing videos based on their content types and deploying an inconsistently
heterogeneous set of cloud VMs can reduce the incurred cost of using cloud without
compromising quality. In another work [2], Li et al. dynamically composes an incon-
sistently HC system to process a heterogeneous set of video streaming tasks. However,
they do not consider the case of task dropping.

Malawski et al. [26] evaluate dynamic mapping of deadline- and cost-constrained
tasks in cloud. They support dropping workflows that would result in a loss of high
priority tasks completion, however, their metrics to quantify and evaluate each task’s
worthiness are different. Unlike our work, they focus on homogeneous cloud VMs.
Tetrisched [27] is a mapping method for consistent HC systems used for YARN and
MapReduce. It operates based on mixed integer linear programming and considers
task execution time on different machines types. Our system uses a similar set of
information to for mapping, however, it also leverages task deferring to find a better
match for tasks and considers task dropping to alleviate oversubscription and improve
robustness.

3. System Model

The motivation for this research comes from an HC system used for processing
live video streaming services [28,29] (e.g., YouTube Live and Twitch.tv [30]). In these
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services, video content is initially captured in a certain format and then processed (aka
transcoded) to support diverse viewers’ display devices [31]. As there is no value in
executing live video streaming tasks that have missed their individual deadlines, they
are dropped [32] from the HC system. It has been shown that, in such a system, deploy-
ing an inconsistently HC system helps processing inconsistently heterogeneous task
types (e.g., tasks to change resolution and tasks to change compression standard) and
ensuring an uninterrupted streaming experience [25]. Figure 1 shows an overview of
the system. Tasks are queued upon arrival and are mapped to available heterogeneous
machines (m1,m2, ...,mn) in batches.

To capture the stochastic nature in execution time of each task type (e.g., those
arising from data-size differences in tasks), we use Probability Mass Functions (PMF).
In an inconsistently HC system, the execution time PMF of different task types on
different machine types are maintained in a matrix called a Probabilistic Execution
Time (PET) [1,22]. As we consider the HC system is deployed to offer a specific service
(e.g., video streaming), the type of arriving task requests are limited and known. As
such, the PET matrix has a limited and constant size. In practice, the PMFs of the PET
matrix can be built from historic execution time information of each task type on each
machine type and modeling them via a histogram in an offline manner [33]. Thus, we
assume that such a PET matrix is available in our HC system.

In our system, as seen in Figure 1, heterogeneous tasks dynamically arrive into a
batch queue of unmapped tasks with no prior knowledge of the timing or order. The
intensity of tasks arriving to the HC system (i.e., oversubscription level) also varies. To
limit the compound uncertainty and maintain accuracy of mapping decisions, machines
use limited-size local queues to process their assigned tasks in a first-come-first-serve
(FCFS) manner (called machine queue). Such machine queues need to be large enough
to not cause machine idling between mapping events. However, excessively large ma-
chine queues compounds the uncertainty in completion time that leads to imprecise
mapping decisions. A mapping event occurs upon arrival of a new task or when a task
gets completed. Before the mapping event, tasks that have missed their deadlines are
dropped (removed) from the system. Then, the mapping event attempts to map tasks
from the batch queue. This happens until either the machine queues are full, or there
are no more unmapped tasks. We assume that once a task is mapped to a machine,
its data is transferred to that machine and it cannot be remapped due to data transfer
overhead. It is assumed that each task is independent and executes in isolation on a
machine, with no preemption and no multitasking [34,35].

To map tasks to machines, the mapper creates a temporary queue (aka, virtual
queue) of machine-task mappings and calculates the completion time distribution of
each unmapped task on heterogeneous machines, as explained in the next section.

4. Calculating Task Completion Time in the Presence of Task Dropping

Upon dropping a task in a given machine queue, the completion time PMF of those
tasks behind the dropped tasks is improved. Intuitively, dropping a task, whose dead-
line has passed or has a low chance of success, enables the tasks behind it to begin
execution sooner, thus, increasing their probability of success and subsequently, over-
all robustness of the HC system. Each task in queue compounds the uncertainty in the
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completion time of the tasks behind it in the queue. Dropping a task excludes its PET
from the convolution process, reducing the compound uncertainty as well.

The pruning mechanism we propose in this research should be able to calculate
the impact of dropping a task on the probability of success (i.e., success chance) of
tasks behind the dropped tasks. In this section, we provide the mathematical model
to calculate the completion time and probability of meeting deadline of a task located
behind a dropped task.

Recall that each entry (i, j) of PET matrix is a PMF represents the execution time of
task i’s task type on a machine type j. In fact, PET (i, j) is a set of impulses, denoted
Ei j, where ei j(t) represents execution time probability of a single impulse at time t.
Similarly, completion time PMF of task i on machine j, denoted PCT (i, j), is a set
of impulses, denoted Ci j, where ci j(t) is an impulse representing the probability of
completing task i on machine j at time t.

Let i be a task with deadline δi arrives at time α and is given a start time on idle ma-
chine j. In this case, the impulses in PET (i, j) are shifted by α to form its PCT (i, j) [22].
Then, the success chance of task i on machine j is the probability of completing i before
its deadline, denoted pi j(δi), and is calculated based on Equation 1.

pi j(δi) =
t≤δi

∑
t=α

ci j(t) (1)

In case machine j is not idle (i.e., it has executing or pending tasks) and task i
arrives, the PCT of the last task in machine j (i.e., PCT (i− 1, j)) and PET (i, j) are
convolved to form PCT (i, j). This new PMF accounts for execution times of all tasks
ahead of task i in the machine queue j. For example, in Figure 2, an arriving task i with
δi = 7 is assigned to machine j. Then, PET (i, j) is convolved with the PCT of the last
task on machine queue j to form PCT (i, j).
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Figure 2: Probabilistic Execution Time (PET) of arriving task i is convolved with the Probabilistic Comple-
tion Time (PCT) of the last task on machine j to form PCT (i, j).

The completion time impulses are generated differently based on the way task drop-
ping is permitted in a system. Three scenarios are possible: (A) Task dropping is not
permitted; (B) Only pending tasks can be dropped; and (C) Any task, including the exe-
cuting one, can be dropped. We note that the initial idea of calculating these completion
time PMFs were proposed in [22]. However, in the following, we mathematically model
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and provide the closed form solution for calculating completion time PMFs. Consider-
ing the space limit, interested readers can refer to [22] for further explanations.

(A) Task dropping is not permitted, i.e., when all mapped tasks must execute to
completion, Equation 2 is used to calculate the impulses, denoted cNoDrop

i j (t), of Ci j
from the convolution of PET (i, j) and PCT (i−1, j).

cNoDrop
i j (t) =

k<t

∑
k=1

[ei j(k)·cNoDrop
(i−1) j (t− k)] (2)

(B) Only pending tasks can be dropped. In this case, the impulses in PCT (i−1, j)
that occur after the deadline of task i are not considered in calculating PCT (i, j), as that
would indicate task i is dropped due to its deadline passing. Therefore, the formulation
changes to reflect the impact of truncated PCT (i− 1, j) in the convolution process.
Owing to the complexity of calculating PCT (i, j), in this circumstance, we develop
a helper function, denoted f (t,k), as shown in Equation 3, that helps Equation 4 to
discard impulses from PCT (i− 1, j) ≥ δi. To calculate impulse ci j(t), note that if
t < δi, then t− k < δi. In this case, Equations 4 and 3 operate the same as Equation 2.
However, for cases where t ≥ δi, we use the helper Equation 3 to generate an impulse
by discarding impulses of PCT (i−1, j)≥ δi. Later, in Equation 4, we add impulses in
i−1 that occur after δi to account for when task i−1 completes at or after δi.

f (t,k) =


0, ∀(t− k)≥ δi

ei j(k)·cpend
(i−1) j(t− k), ∀(t− k)< δi

(3)

cpend
i j (t) =


k<t
∑

k=1
f (t,k)+ cpend

(i−1) j(t), ∀t ≥ δi

k<t
∑

k=1
f (t,k), ∀t < δi

(4)

(C) All tasks (including executing one) can be dropped. In fact, in this case, the
completion time impulses are obtained similar to Equation 4. However, the special case
happens when t = δi because at this time, if task i has not completed, it is dropped. For
the purposes of calculating PCT (i, j) using Equation 5, PCT (i−1, j) is guaranteed to
be complete by its deadline. Therefore, as Equation 5 shows, all the impulses after δi
are aggregated into the impulse at t = δi. We should note that, the discarded impulses,
i.e., those of task i− 1 that occur at or after δi, must be added to Ci j, to indicate the
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probabilities that task i−1 completes after task i’s deadline.

cevict
i j (t) =



k<∞

∑
k=t

cpend
i j (k)+ cevict

(i−1) j(t), t = δi

cevict
(i−1) j(t), ∀t > δi

k<t
∑

k=1
f (t,k), ∀t < δi

(5)

We note that, calculating completion time and probability of success based on the
proposed theory at each mapping event poses a non-negligible overhead to the system.
Therefore, in section 7, we propose methods based on approximate computing to miti-
gate this overhead and making pruning a practical component of a resource allocation
system.

5. Maximizing Robustness via Pruning Mechanism

5.1. Overview

In the beginning of the mapping event, if the system is identified as oversubscribed,
the pruning mechanism (aka pruner) examines machine queues. Beginning at the ex-
ecuting task (queue head), for each task in a queue, the success probability (success
chance) is calculated. Tasks whose chance of success values are less than or equal to
the dropping threshold are removed from the system. Then, the mapping method de-
termines the best mapping for tasks in the batch queue. Prior to assigning the tasks
to machines, the tasks with low chance of success are deferred (i.e., not assigned to
machines) and returned to the batch queue to be considered during the next mapping
events. This is in an effort to increase robustness of the system by waiting for a ma-
chine with better match to become available for processing the deferred task. To design
the pruner for an HC system, three sets of questions regarding deferring and dropping
operations are posed that need to be addressed.

First, a set of questions surround the probability thresholds at which tasks are
dropped or deferred. How to identify these thresholds are described in Sections 5.2–
5.3. A related question that arises is, should a system-level probability threshold be
applied for task dropping? Or, should there be individual considerations based on the
characteristics of each task? If so, what characteristics should be considered, and how
should they be used in the final determination?

Second, there is the matter of when to begin task dropping, and when to cease.
That is, how to dynamically determine the system is oversubscribed and transition
the pruner to a more aggressive mode to drop unlikely-to-succeed tasks such that the
overall system robustness is improved. The answer to this question is provided in
Section 5.4.

Pruning can potentially lead to unfair scheduling across tasks types—constantly
pruning compute-intensive and urgent task types in favor of other tasks to maximize
the overall robustness. Hence, the third question is how the unfairness across task types
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can be prevented? Should the system prioritize task types that have been pruned? If so,
how much of a concession should be made? We address this question in Section 6.

5.2. Determining Task Dropping Probability

5.2.1. Dynamic Per-Task Dropping Probability Threshold
At its simplest, the task dropper can apply uniform dropping threshold for all tasks

in a machine queue. However, a deeper analysis tells us that not all tasks have the same
effects on the probability of on-time completion for the tasks behind them in queue.
This difference can be taken into account to make the best decision about which tasks
should stay and which are dropped.

In addition to determining task’s chance of success, other features of completion
time PMF can be valuable in making decisions about probabilistic task dropping. We
identify two task-level characteristics that further influence the chance of success of
tasks located behind a given task i: (A) the position of task i in machine queue, and (B)
the shape (i.e., skewness) of completion time PMF of task i.

In fact, the closer a task is to execution (i.e., to the head of machine queue), the
more tasks are affected by its completion time. For instance, with a machine queue
size of six, an executing task affects the completion time of five tasks queued behind it,
where the execution time of a task at the end of the queue affects no tasks. Therefore,
the system should apply a higher dropping threshold for tasks close to queue head.

Skewness is defined as the measure of asymmetry in a probability distribution and
is calculated based on Equation 6, as explained in [36]. In this equation, N is the sample
size of a given PMF, Yi is an observation, Ȳ is the mean of observations, and σ is the
standard deviation of the observations. A negative skewness value means the tail is
on the left side of a distribution whereas a positive value means that the tale is on the
right side. Generally, |S| ≥ 1 is considered highly skewed, thus, we define s as bounded
skewness and we have −1≤ s≤ 1.

S =

√
N(N−1)
N−2

× ∑
n
i=1 (Yi− Ȳ )3/N

σ3 (6)

A negatively skewed PMF has the majority of probability occurring on the right
side of PMF. Alternatively, because the bulk of a probability is biased to the left side of
a PMF, a positive skew implies that a task is completed sooner than later. The middle
PMFs in Figure 3 each represents a completion time with a success chance of 0.75,
however, they show different types of skewness. Using this information, we can see
that two tasks with the same success chance can have different impacts on the success
chance of tasks behind them in queue. Tasks that are more likely to complete sooner
(i.e., positive skewness) propagate that positive impact to tasks behind them in queue.
The opposite is true for negatively skewed tasks. Reasonably, we can favor tasks with
positive skewness in task dropping. Figure 3 shows the effects of different types of
skews on the completion times of tasks behind them in queue. Subfigure 3b shows
the negative effects of negative skew whereas Subfigure 3c shows the positive effect of
positive skew on the success chance of the next task in the queue.

Using the skewness and queue position, the system can adjust a base dropping
threshold dynamically, for each task in a machine queue. The adjusted dropping thresh-
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old for a given task i, denoted φi, is calculated based on Equation 7. To favor tasks with
positively skewed completion time PMF, we negate the skewness (si). To account for
position of task i in machine queue, denoted κi, we divide the negated skewness by the
position. Addition of 1 is just to avoid division by zero and ρ is a parameter to scale
the adjusted dropping threshold. Ideally, this will allow more tasks to complete before
their deadline, leading to a higher robustness in an HC system.

φi =
−si·ρ
κi +1

(7)

This dynamic adjustment of the probability is done only in the dropping stage of
the pruner. When it comes to deferring tasks, the task position is always the same (i.e.,
the tail of the queue), and it is too early to consider the shape of the tasks PMF, as there
are, as yet, no tasks behind it in queue.

5.3. Determining Task Deferring Probability

We discussed that any task that has a chance of success lower than its specified
dropping threshold has too low of a success chance to warrant risking of allocating it to
a resource. The optimal deferring value, however, is applied to unmapped tasks in the
batch queue and should vary based on the workload characteristics. In fact, deferring
threshold acts as a throttle that controls the flow of incoming tasks to the HC system.
In one hand, a too-high deferring threshold ensures that available machine queue slots
are reserved only for tasks with a high chance of success, but can lead to resource
under-utilization by leaving the computing resource idle. On the other hand, a too-low
deferring threshold allows tasks, potentially with low chance of success, to fill the ma-
chine queue slots—preventing the mapping of high-chance incoming tasks. To avoid
such scenarios, an appropriate deferring threshold should be dynamically determined
based on the characteristics of the workload in the system. In the rest of this section,
we describe our approach to dynamically adjust the deferring threshold based on the
workload characteristics.

Selective factor (denoted ∆) is defined as the ratio of the number of tasks in batch
queue (waiting to be mapped) to the number of empty slots in machine queues. A
high selective factor indicates that there are many unmapped tasks, but not enough
machine queue slots to accommodate them. In this scenario, task mapping should be
more selective and task dropping should be more aggressive to free up machine queue
slots for a better-suited tasks that are waiting to be mapped.

Let υ be the deferring threshold in an HC system with b unmapped tasks in its
batch queue. A competent task is a task whose maximum success chance across all
machines is higher than the υ. That is, competent tasks are those that are not deferred
because they have decent chance of success. Accordingly, task competency level (de-
noted Γ) in a batch queue is defined as the ratio of the number of competent tasks to
the total number of unmapped tasks and is calculated based on Equation 8. High task
competency level (close to 1) implies a high percentage of tasks in the batch queue
are qualified for mapping, but are not mapped due to inadequate slots in the machine
queue. In this case, the deferring threshold should be increased, so that only the highly
competent tasks are considered for mapping. Conversely, a low task competency level
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can be an indication that the task deferring threshold is set too high, i.e., the system is
too selective, such that the majority of the tasks cannot pass the deferring threshold.

Γ =
1
b

b

∑
i=1

{
0, max(pi j(δi))< υ| j ∈ {0..m}
1, max(pi j(δi))≥ υ| j ∈ {0..m}

(8)

5.3.1. Instantaneous Robustness
Instantaneous robustness at a given time is defined as the average of chance of suc-

cess for all tasks exist in the system. Let m be the number of machine queues, q the
number of queue slots in each machine queue, and pi j(δi) is the chance of meeting
the deadline of task i in the machine queue j. Then, instantaneous robustness is cal-
culated based on Equation 9. Our hypothesis is that maintaining a high instantaneous
robustness leads to a high level of overall system robustness. As such, instantaneous
robustness can act as a performance indicator for task deferral and mapping heuristics.
The system should aim to maintain the high instantaneous robustness level and avoid
task mappings that reduce the instantaneous robustness.

ψ =
1

m ·q

m

∑
j=1

q

∑
i=1

pi j(δi) (9)

5.3.2. Deferring Probability Threshold
When the system is not heavily oversubscribed and there are more empty slots

in the machine queue than tasks in the batch queue (i.e., ∆ < 1), the new deferring
threshold (υn) can be reduced from its current value (υc) to allow more task mappings.
Alternatively, when there are more tasks to map than the number of available slots (i.e.,
∆ > 1), we act based on the competency level (Γ). If no task is passing its deferring
threshold (i.e., Γ = 0), it means that the deferring threshold is high and has to be re-
duced. Otherwise, in the case of oversubscription, we set the deferring threshold to
a value near the instantaneous robustness value. The vale of θ is a constant to adjust
the deferring probability threshold. Equation 10 formally expresses the way deferring
probability threshold is dynamically calculated.

υn =



υc−θ, ∆ < 1

ψ−θ, ∆≥ 1,Γ 6= 0

υc−θ, ∆≥ 1,Γ = 0

(10)

5.4. Aggressive Pruning by Dynamically Engaging Task Dropping

To maximize robustness of the system, the aggression of the pruning mechanism
has to be dynamically adjusted in reaction to the level of oversubscription in the HC
system. The pruning mechanism considers the number of tasks missed that their dead-
lines since the past mapping event as an indicator of the oversubscription level in the
system. We use the identified oversubscription level as a toggle that transitions the
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pruner to task dropping mode. However, in this case, the pruner can potentially tog-
gle to dropping mode as a result of an acute spike in task-arrival, and not a sustained
oversubscription state.

To judge the oversubscription state in the system, the pruner operates based on a
moving weighted average number of tasks that missed their deadlines during the past
mapping events. Let dτ the oversubscription level of the HC system at mapping event
τ; and µτ the number of tasks missing their deadline since the past mapping event.
Parameter λ is tunable and is determined based on the relative weight assigned to the
past events. The oversubscription level is the calculated based on Equation 11. In the
experiment section, we analyze the impact of lambda and determine an appropriate
value for it.

dτ = µτ·λ+dτ−1·(1−λ) (11)

Another potential concern is minor fluctuations about the toggle switching the drop-
ping off and then back on. We employ a Schmitt Trigger [37] to prevent minor fluctu-
ations around dropping toggle. We set separate on and off values for the dropping
toggle. Based on our initial experiments, we determined the Schmitt Trigger to have
20% separation between the on and off values. For instance, if oversubscription level
two or higher signals starting dropping, oversubscription value 1.6 or lower signals
stopping it.

6. Pruning Mechanism as Module of a Resource Allocation System

6.1. Overview
In this section, with the goal of maximizing the system robustness, theories pre-

sented in Sections 4 and 5 are leveraged to design a pruning mechanism as a module
of resource allocation system that can work with any mapping heuristic. Then, two
probabilistic mapping heuristics, called Pruning Aware Mapper (PAM) and Fair Prun-
ing Aware Mapper (PAMF) are proposed to work along with the pruning mechanism.

6.2. Task Pruning Mechanism
The overall architecture of the pruning mechanism is shown in Figure 4. The Ac-

counting module receives meta data (e.g., tasks’ deadline, PET, and PCT) from the
resource allocation system. The meta-data are available for other components to uti-
lize. The Toggle module (in either the default or Schmitt trigger configuration) uses the
collected information to measure the oversubscription level of the HC system. It then
decides whether or not it is beneficial to engage the “task dropping”.

With the goal of maximizing the robustness, the Pruner module enacts the the
dropping and deferring sub-modules to prune tasks whose chance of success is lower
than the thresholds specified in the Pruning Configuration. Moreover, dropping and
deferring thresholds are dynamically adjusted during each mapping event to maximize
the system robustness. To this end, the Dropping Threshold Estimator modifies the
dropping threshold based on each task’s skewness and position in the machine queue.
Furthermore, The Deferring Threshold Estimator module adjusts the deferring thresh-
old based on the oversubscription level.
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Figure 4: Components of pruning mechanism. Inputs are mapping metadata and outputs are pruning de-
cisions to apply on mapper (task deferring) or machine queues (task dropping). The pruning system is
packaged as module in resource allocation systems to function in conjunction with mapping heuristic.

The Fairness module is employed to avoid unfair pruning mechanism. This module
detects the suffering task types (i.e., those that are consistently dropped) and adjusts the
pruner to prevent task types being unfairly pruned. The Fairness module is elaborated
in Section 6.3.2. Output of the pruning mechanism is its decision that can be either task
dropping (applied on machine queues) or task pruning (applied on unmapped queue).

As mentioned earlier, the pruning mechanism is pluggable, that is, it can be added
to any mapping heuristic. In the next part, we explain plugging the pruning mechanism
to two new probabilistic-base mapping heuristics, namely PAM and PAMF.

6.3. Mapping Heuristics with Pruning Mechanism

In this part, two mapping heuristics that work in conjunction with the pruning
mechanism are developed. First, a heuristic called Pruning Aware Mapper (PAM)
leverages the chance of success to probabilistically maximize the robustness of the
system. In this scope, the robustness of the system is defined as the number of tasks
completed on time during the study time. However, only considering the chance of
success to maximize the robustness can result in unfair task type completion. As a re-
sult, a second mapping heuristics is proposed to achieve maximum robustness balanced
with fairness across task types. The heuristics occur in two phases. In the first phase,
for each task, a machine that has the best affinity is determined and a task-machine
pair constructed. PAM considers task-machine affinity implicitly via taking the chance
of success of a task into consideration. Then, the best task-machine pair is selected
for mapping and that task is assigned to its paired machine. Note that the pruning
mechanism can be plugged in mapping heuristics to maximize the system robustness.
The pruning occurs in two steps. First, prior to any mapping decision, the pruner per-
forms task-dropping on machine queues. Next, tasks in the batch queue with chance
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of success lower than the deferring threshold are deferred, leaving the deferred tasks to
remain in the batch queue.

6.3.1. Pruning Aware Mapper (PAM)
In PAM, maximizing the system robustness happens by maximizing each task’s

chance of success. To this end, the PET matrix is used to determine the chance of
success for each task.

Based on our prior observations, the machine offering highest chance of success
is selected for constructing the task-machine pair during the first phase of the PAM
heuristic. Then, in the second phase, the pair with lowest completion time is selected
for mapping. In this way, the system prefers to map tasks having both high chance of
success and short execution time.

6.3.2. Fair Pruning Aware Mapper (PAMF)
Probabilistic task pruning potentially favors task types with shorter execution times,

resulting in unfairness. This is because shorter tasks usually have a higher probability
of completion within their deadlines. PAMF is designed to mitigate such unfair task
pruning. In this mapping heuristic, thresholds (dropping and deferring) are adjusted
for task types unfairly treated.

We define a sufferage value at mapping event e for each task type f , denoted εe f ,
that determines how much to decrease (i.e., relax) the base pruning threshold. Note that
we define 0 as no sufferage. We define fairness factor (denoted ϑ) as a constant value
across all task types in a given HC system by which we change sufferage value of task
types. This fairness factor denotes how quickly any task’s sufferage value changes in
response to missing a deadline. A high factor results in large relaxation of probabilistic
requirements. Updating the sufferage value occurs upon completion of a task in the
system.

A successful completion of a task of type f in mapping event e results in lowering
the sufferage value of task type f by the fairness factor, i.e., εe f = ε(e−1) f −ϑ, whereas
for an unsuccessful task we add the fairness factor, i.e., εe f = ε(e−1) f +ϑ. Note that we
limit sufferage values (εe f ) to be between 0 to 100%. The mapping heuristic determines
the fair pruning threshold for a given task type f at a mapping event e by subtracting
the sufferage value from the base pruning threshold.

This updated pruning threshold enables PAMF creates a more fair distribution of
completed tasks by protecting tasks of unfairly-treated types from pruning. Once we
update pruning thresholds for suffered task types, the rest of PAMF functions as PAM.

7. Practicality of the Pruning Mechanism

One concern when considering the deployment of probabilistic approaches in the
mapping of tasks is the extra computational overhead. Repeated convolutions put
strains on the machine that handle task mapping, especially when tasks are small and
come in large numbers. To ensure a probabilistic task pruning mechanism and PAM are
real-world practical, this section describes some techniques that can be used to mitigate
the scheduling overhead.
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Figure 5: Overview of optimization strategies, (1) PCT of last task in the machine queue is predetermined
before mapping event, (2) and (3) perform PMF compaction (approximation) of last task in machine queue’s
PCT and arrival task’s PET respectively, (4) Chance of success can be calculated by an algorithm with
memoization without a complete convolution.

7.1. Macro-level Memoization to Reduce Redundant Calculations
During the first and second phase of PAM (and most probabilistic mapping heuris-

tics), each and every unmapped task’s execution time PMF (PET) are convolved with
the PCT of the last tasks of each machine queue. Finding PCT is a chain convolution
process that starts from the head of the machine queue. Supposing N tasks in each
of the M machine queues, to find the PCT of B unmapped tasks, there can be up to
B·N·M convolutions. Therefore it is recommended to cache the PCT of the last task in
each machine queue before the mapping event to remove the repetitive convolutions on
the machine queue (this is shown as step (1) in Figure 5). This reduces the number of
convolutions to B·M+N·M where N·M part is cached at the beginning of the mapping
event. Note that this caching is only valid for a single mapping event. Once the current
time passes, this cache is no longer valid.

Once the PCT of the last task in the machine queue is calculated, it is also possible
to perform PMF approximation on the PCT. Which will be explained in the next part.

7.2. Approximation to Reduce Convolutions Overhead
It is well known that the convolution process can impose a significant computation

due to the sheer number of impulses that form the PCT after a chain of compound con-
volutions. Therefore, to alleviate scheduling overhead, some dynamic programming
and approximating techniques are utilized to reduce the time spent in PMF convolution
process. In this part, we first introduce a procedure to reduce the number of impulses.
We then propose a procedure to replace the last step of the convolution process in a
probabilistic mapping heuristic: convolving the PCT of the last task in machine queue
and the PET of each unmapped task. Due to the size of PCTs convolved from the ma-
chine queue, a large number of unmapped tasks can impose a significant computational
overhead, and warrants a customized algorithm.

17



7.2.1. PMF Approximation
Convolution process time relates directly to the number of impulses in the PMF. In

the case that the PMF is too finely detailed, convolution can be a burden with the calcu-
lation of many small impulses. Due to high uncertainty in a heterogeneous computing
system, the extra resolution may not yield significantly better decision making. We
can therefore, in some calculations, use an approximate PMF which has lower number
of impulses than a detailed original PMF. The approximate PMF can be created by
combining multiple impulses in a specific range together as shown in Figure 6. In the
approximation process, in the case that we know the range of minimum and maximum
time impulses to keep in the distribution, the distribution can also be cropped to the
specified range. An example of the case where the relevant range is known is when
the impulses of last task in the machine queue’s PCTs (step (2) in Figure 5) are being
approximated. The maximum time can be set as the longest deadline of the entire un-
mapped task without effecting the chance of success measurement in the task mapping
process.

=

Original PMF PMF approximation (2, 52, 58) Compacted PMF

𝑀𝑎𝑥 = 58𝑀𝑖𝑛 = 52

50 54 5852 56 60 50 54 5852 56 60

𝑆𝑖𝑧𝑒 = 2

50 54 5852 56 6062

Figure 6: An example of impulse approximation process with bucket size of two and minimum and maximum
range set to 52, and 58. Impulses are grouped and combined in 2 time unit interval in the specific range. All
impulses that are more than specified max or less than specified min are combined together.

7.2.2. Micro-level Memoization to Reduce Convolution Overhead
Probabilistic mapping heuristics require calculations of unmapped tasks’ chances

of success to make mapping decisions. To find these probabilities in a straightforward
way, we first compute each unmapped task’s PCT (completion time PMF) by convolv-
ing the unmapped task’s PET against the PCT of the last task of each machine queue
(which can be memorized and approximated, as mentioned earlier). Then we measure
the resulting PCT against the task’s deadline to calculate the chance of success. The
PCT of each unmapped task is only calculated to find the potential mapping probability
and is not reused. Therefore, to speed up the process, instead of calculating an un-
mapped task’s PCT before measuring its chance of success, we propose a process that
directly calculates the success chance from two distributions (PET of the unmapped
task and PCT of the last task in a machine queue) without creating a full PCT of the
unmapped task first.

Assuming that both distributions’ impulses can be iterate through in a sorted or-
der from the earliest time to the latest time (i.e., impulses are sorted by their time).
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The procedure virtually performs a partial convolution on only pairs of impulses that
together represent the resulting time less than the specified deadline. And since the
impulses are sorted in order, some partial results between the iterations (memoc in the
algorithm) can be memorized.

Algorithm 1: Efficient Calculation of Probability of Success for Task x on
Machine j.

Input: E← PET of an unmappped task x
Input: C← PCT of the last task in the machine queue j
Input: δx← Deadline of task x
Result: Chance of convolved distribution finish before deadline

1 e← First impulse of E;
2 c← First impulse of C;
3 k← e;
4 px j← 0 ;
5 memoc← 0 ;
6 while time(k+1) < δx do
7 k← next impulse after k ;

8 while k 6= e do
9 while time(c)+time(k) < δx do

10 memoc← memoc + chance(c) ;
11 c← next impulse after c;

12 px j← px j +memoc· chance(k);
13 k← previous impulse before k;

14 Return px j;

Algorithm 1 takes input as the distribution E (PET of an unmapped task x), distri-
bution C (cached PCT of the last task in a machine queue j), and the deadline δx for
measuring the chance of success. chance(c) signifies the probability associated with
the impulse c in the distribution C, and time(c) signifies the time value associated with
the impulse c. Line 6-7 finds the last impulse of Distribution E that is less than δx. Line
8 and 13 iterate back from the impulse found from line 7 back to the first impulse. Line
9 to 11 combine all chance from C’s impulses that when pairing them with a specific
impulse of distribution E from line 8 still provides a combined time of less than δx.
Finally, Line 12 sum the multiplication of impulse k from distribution E (line 8) and
the combined chance from lines 9-11. Note that the memoc and impulse c from line 10
and 11 are not reset on any iteration. The value always carry over from one iteration to
the next. The final result is the chance of meeting the deadline δx as if distribution E
and distribution C are convolved together.

A simplified example of the Algorithm 1 is provided in Figure 7. In this example,
task x’s deadline is at the time 13, the procedure runs through distribution E and C in
4 iterations where it considers one of E’s impulse per iteration. Note that the impulse
that has the time 16 is ignored as it is greater than the deadline. During each iteration, it
considers C’s impulses that can combine with the targeted e impulse and still meeting
the deadline. Some partial results are carried over from prior iterations. The right most
column is the px j value after each iteration. And the bottom right most cell contains
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C = Cached PCT of last 
task of a machine queue

E = PET of an unmapped task

Iteration Time 
impulse 
from E

Time impulses from B that 
meet the criteria

Chance of 
impulse 
from E

Chances of impulses 
from C that meet 

the criteria

Sum of the probability to meeting deadline 

1 Impulse 8 Impulse 4 e8 c4 =e8 .(c4)

2 Impulse 6 Impulse (4) , 6 e6 (c4) + c6 =e8 .(c4) +e6 .(c4 + c6)

3 Impulse 4 Impulse (4 , 6) , 8 e4 (c4 + c6 ) +c8 =e8 .(c4) + e6 .(c4 + c6)  
+e4 .(c4 + c6+ c8)

4 Impulse 2 Impulse (4, 6 , 8) , 10 e2 (c4+c6+c8) +c10 =e8 .(c4) + e6 .(c4 + c6)  
+e4 .(c4 + c6+ c8)
+e2 .(c4 + c6+ c8+ c10)

Deadline= 13

6 104 8

c4 c6

c8

c10

4 82 6 16

e2
e4

e6

e8
e16

Figure 7: A simplified example of Procedure 1. E is the PET of an unmapped task, C is PCT of the last task
in a machine queue. The table goes through each iteration from start to finish. Notions in Italic are carried
from their prior iteration. The carry over notion on the two right most column are stored as a scalar value
denoted memoc and px j in the algorithm, respectively.

all the values that constitute the chance of meeting the deadline as if distribution E and
distribution C are convolved together.

Supposing distribution E has p impulses and distribution C has r impulses, the
straightforward convolution requires at least p·r multiplications. Measuring the chance
of success also requires another run through combined impulses. Algorithm 1 is a
combination of the two process together. And it loops through distribution E at most
twice and distribution C at most once (rather than p times). The multiplication happens
at most p time. Hence we reduce the time complexity from p·r to 2· p+r, significantly
speeding up the measurement of the chance of success in probabilistic-based mapping
heuristics.

8. Experimental Setup

8.1. Overview

To conduct a comprehensive performance evaluation, we simulate a computing sys-
tem with eight inconsistently heterogeneous machines (i.e., M = 8). To generate the
probabilistic execution time PMFs (PET), the mean execution time results from twelve
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SPECint benchmarks on a set of eight bare-metal machines1 were determined. These
mean execution times for each benchmark on each system formed the mean values for
our task-machine execution times. The function describing execution time of the tasks
on a machine is assumed to be a unimodal distribution; from a gamma distribution us-
ing the task-machine mean execution time, and with a shape randomly picked from the
range [1:20], 500 execution times were sampled. From these times, a histogram was
generated to produce a discrete probability mass function (PMF). This was repeated for
each task type on each machine, and the resultant eight machine by twelve task type
matrix of PMFs was stored as the PET matrix which remains constant across all of our
experiments. We note that other statistical methods can be explored to learn and tweak
PMF distributions in an online manner.

8.2. Generating Workload

Our simulation is of a finite span of time units, starting and ending in a state where
the system is idle. As the system comes online, and tasks begin to accumulate in
the queue, the system is not in the desired state of oversubscription. The same is
true of the end of the simulation, when the last tasks are finishing, and no more are
arriving to maintain the oversubscribed state. In an effort to minimize the effects of
the non-oversubscribed portion of the simulation from the data, the first and last 100
tasks to complete are removed from the results. Only the remaining tasks from the
oversubscribed portion of the simulation are used in the analysis.

Based on other workload investigations [15,14], a gamma distribution is created with
a mean arrival rate for all task types that is synthesized by dividing the total number
of arriving tasks by the number of task types. The variance of this distribution is 10%
of the mean. Each task type’s mean arrival rate is generated by dividing the number
of time units by the estimated number of tasks of that type. A list of tasks with at-
tendant types, arrivals times, and deadlines is generated by sampling each task type’s
distribution.

Recall that we consider each task to have an individual hard deadline and it has to
be dropped once the deadline is missed. For a given task i, the deadline is calculated as
δi = arri +avgi +(β·avgall), where arri is the arrival time, avgi is the mean execution
time for that task type (range from 50 to 200 ms) , β is a slack coefficient, and avgall is
the mean of all task type’s execution. This slack allows for the tasks to have a chance
of completion in an oversubscribed system.

8.3. Baseline Mapping Heuristics

8.3.1. MinCompletion-MinCompletion (MM)
This heuristic has been extensively used in the literature [38,39,40,22]. In the first

phase of the heuristic, the virtual queue is traversed, and for each task in that queue,
the machine with the minimum expected completion time is found, and a pair is made.
In the second phase, for each machine with a free slot, the provisional mapping pairs

1The 8 machines are: Dell Precision 380 3 GHz Pentium Extreme, Apple iMac 2 GHz Intel Core Duo,
Apple XServe 2 GHz Intel Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P AMD
Athlon 64 FX-60, IBM System P 570 4.7 GHz, SunFire 3800, and IBM BladeCenter HS21XM.
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are examined to find the machine-task pair with the minimum completion time, and the
assignment is made to the machine queues. The process repeats itself until all machine
queues are full, or until the batch queue is exhausted.

8.3.2. MinCompletion-Soonest Deadline (MSD)
Phase one is as in MM. Phase two selects the tasks for each machine with the

soonest deadline. In the event of a tie, the task with the minimum expected completion
time is selected. As with MM, after each machine with an available queue slot receives
a task from the provisional mapping in phase two, the process is repeated until either
the virtual machine queues are full, or the unmapped task queue is empty.

8.3.3. MinCompletion-MaxUrgency (MMU)
Urgency of task i on machine j is defined as Ui j = 1/(δi−E[Ci j]), where δi is the

deadline of task i, E[Ci j] is the expected completion time of task i on machine j.
Phase one of MMU is the same as MM. Using the urgency equation, phase two

selects the task-machine pair that has the greatest urgency, and adds that mapping to
the virtual queue. The process is repeated until either the batch queue is empty, or until
the virtual machine queues are full.

8.3.4. Max Ontime Completions (MOC)
The MOC heuristic was developed in [22]. It uses the PET matrix to calculate ro-

bustness of task-machine mappings. The first mapping phase finds, for each task, the
machine offering the highest robustness value. The culling phase clears the virtual
queue of any tasks that fail to meet a pre-defined (30%) robustness threshold. The last
phase finds the three virtual mappings with the highest robustness and permutes them
to find the task-machine pair that maximizes the overall robustness and maps it to that
machine’s virtual queue. The process repeats until either all tasks in the batch queue
are mapped or dropped, or until the virtual machine queues are full.

9. Performance Evaluation

9.1. Overview

A series of simulations were run using the Louisiana Optical Network Infrastruc-
ture (LONI) Queen Bee 2 HPC system [8]. For each set of tests, for each examined
parameter, 30 workload trials were performed using different task arrival times built
from the same arrival rate and pattern, and the mean and 95% confidence interval of
the results is reported. The arrival rates are listed in terms of number of tasks per time
unit.

Each experiment is a set of 30 workload trials, consisting of 1200 tasks per trial.
Each of the experiments investigates high levels of oversubscription where few tasks
complete successfully using baseline heuristics. Due to frequent task mapping events,
each machine in the HC system has a machine-queue size of three, counting the exe-
cuting task and the dropping toggle as one task. We also evaluated the system with the
size of machine-queue equals to six, and the results were consistent with the presented
ones. For each of the experiments, unless otherwise noted, the performance metric
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(and the vertical axis) is the percentage of tasks completed before their deadline (i.e.,
overall robustness).

9.2. Dynamic Engagement of Probabilistic Task Dropping
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Figure 8: Impact of historical oversubscription observations and Schmitt Trigger on determining oversub-
scription level of HC system. Horizental axis represents the value of λ coefficient in Equation 11.

In this experiment, our aim is to appropriately measure the oversubscription level
(see Equation 11) by determining the weight that should be assigned to the number of
deadlines missed in the recent mapping event versus the previous values of the over-
subscription level. We also evaluate the impact of using Schmitt Trigger as opposed
to using a single threshold for dynamic engagement of task dropping. This experiment
was conducted under 25k tasks arriving to the system.

Figure 8 shows that by assigning a higher weight to the number of dropped tasks
in the most recent mapping event, the overall robustness of the system is increased
from 39.9% to 42.5%. This is due in part to the steady nature of task-arrival in our
workload trials with only few sudden spikes. While the maximum robustness is reached
with λ = 0.9 with Schmitt Trigger, enabling Schmitt Trigger alone make the bigger
difference than setting the λ to an optimal value. The system robustness of λ = 1 is
close enough to the result with λ = 0.9, while ignoring the history tracking altogether
which can incur less scheduling overhead.

We can conclude that under high oversubscription levels, the best results come from
taking immediate action when tasks miss their deadlines, and then a steady application
of probabilistic task dropping until the situation is decidedly controlled (i.e., reaching
the lower bound of Schmitt Trigger).

9.3. Evaluating the Mutual Impacts of Deferring and Dropping Thresholds
The goal of this experiment is two-fold: First, it identifies the impact of choosing

a proper initial dropping threshold; Second, it evaluates the impact of deferring thresh-
old on effectiveness of the dropping. For that purpose, we disable dynamic deferring
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threshold and set it statically. Note that, if the workload characteristics is known, it can
be helpful to set deferring threshold statically to reduce the pruning overhead.

A static deferring threshold has to be designated greater than the dropping thresh-
old. Otherwise, a task can be dropped immediately, once it is mapped. Accordingly,
to conduct this evaluation, we add a gap value to the initial dropping threshold (e.g.,
a dropping threshold of 50% would require at least 55% robustness to map a task to
a machine). Three dropping thresholds (25%, 50%, and 75%) are examined and the
5% gap is increased until the deferring threshold reaches 90%. The results, shown in
Figure 9, are generated from a workload with 25k tasks.
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Figure 9: Impact of deferring and dropping thresholds on the system robustness. Dropping threshold is
denoted by line type and color.

Figure 9 validates the experiment assumption, by showing that using a higher de-
ferring threshold leads to higher system robustness. In addition, we observe that if the
deferring threshold is chosen high enough, deferring operation prevails dropping and
diminishes its influence on the system robustness. Specifically, if we choose deferring
threshold at 90%, we obtain a similar system robustness, regardless of the intitial drop-
ping threshold value. It is noteworthy that a higher dropping threshold influences the
incurred cost of using an HC system, because they prevent wasting time processing
unlikely-to-succeed tasks that have been mapped to the system. Based on the experi-
ment, in the rest of evaluations, initial dropping threshold 50% is used.

9.4. Evaluating the Impact of Deferring on Various Types of Workloads

In this experiment, our goal is to evaluate effectiveness of the dynamic deferring
threshold adjustment in various scenarios. First, we examine if the initial value of dy-
namic deferring threshold matters for the ultimate system robustness. For that purpose,
we vary the initial deferring probability threshold and study the system robustness us-
ing PAM heuristic. Specifically, we examined initial deferring thresholds (shown as
Init Def-th) to 50%, 70%, and 90%. Results of the experiment in Figure 10a shows
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Figure 10: Evaluating the impact of dynamic deferring probability on the system robustness on the system
with oversubscription level of 15k and 30k

. (a) The effect of choosing different initial deferring thresholds on the system
robustness. (b) Comparing dynamic deferring probability threshold (denoted with

Dyn- prefix) against the best statically-determined deferring threshold (denoted with
Optimal- prefix) for both steady (stdy) and spiky workloads.

that, as the system adjusts the deferring probability threshold dynamically, the initial
deferring threshold does not make a difference to the final system robustness values
and they are nearly identical, regardless of the initial deferring threshold.

Second, we compare the performance of PAM when it is geared to a pruning mech-
anism that uses dynamic deferring threshold against when the pruning mechanism is
set to the best experimentally-found deferring threshold value. Note that, in the latter
case, the deferring threshold is static and does not change throughout the experiment.
Also, note that the deferring threshold is the best for the examined workload and the
best value might be different for other workloads. To assure the applicability of the
analysis to any workload, we study two types of arriving workloads: (A) Steady task
arrival rate (shown as stdy in the experiment); and (B) Varying arrival rate (shown as
spiky in the experiment). The varying arrival rate workload has the same number of
total tasks arriving to the system as the steady one, but with burst task arrival periods.
That is, within each time interval, the task arrival rate switches between on-peak (i.e.,
high arrival rate) and off-peak (i.e., low arrival rate) periods. In summary, by combin-
ing static and dynamic deferring threshold and steady or spiky workloads, we evaluate
four cases, shown as dyn-stdy, best-stdy, dyn-spiky, and best-spiky, in Figure 10b.

Figure 10b expresses that, in both steady and spiky workloads, the dynamic thresh-
old provides almost the same robustness as to the best-known static deferring threshold.
In addition, comparison between steady and spiky workload reveals that the pruning
mechanism does not suffer significantly from the uncertainties in task arrival rate. That
is, the system shows to be robust against the uncertainties in task arrival rate.

9.5. Evaluating the Impact of Fairness Factor

Our aim is to study if PAMF heuristic (see Section 5) alleviates unfairness. We
test the system using a fairness factor ranging from 0% (i.e., no fairness adjustment) to
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25%. Recall that this fairness factor is the amount by which we modify the sufferage
value for each task type. The sufferage value for a given task type at a given mapping
event is subtracted from the required threshold, in an effort to promote fairness in
completions amongst task types. For each fairness factor, we report: (A) The variance
in percentage of each task type completing on time. The objective is to minimize the
variance among these. (B) The overall robustness of the system, to understand the
robustness we have to compromise to attain fairness. Robustness value is noted above
each bar in Figure 11. We tested oversubscription level of 25k and 30k tasks.
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Figure 11: Evaluating fairness and robustness on the system with 15k and 30k oversubscription level
. Horizontal axis shows fairness factor modifier to the sufferage value. Vertical axis is
the standard deviation of completed task types. Values above bars show robustness.

Figure 11 shows that significant improvement in fairness can be attained at the cost
of compromising robustness. In the case of 15k oversubscription level, we observe
that using 10% fairness factor results in a remarkable reduction in standard deviation
of completed tasks that implies increasing fairness. The standard deviation drops from
16% to 13.5%, at the cost of '1% reduction in robustness (from 65% to 64%). This
compromise in robustness is because deferring fewer tasks in an attempt to improve
fairness results in fewer tasks successfully completed overall.

However, in the case of 30k oversubscription level (and to a lesser extent, 20k and
25k cases that are not shown in the figure), the fairness factor makes more significant
differences as the oversubscription increases. This is due to the fact that a higher over-
subscription level provides more tasks to select at each mapping event. Therefore there
is more possibility to bias the mapping to make the task mapping fairer.

Since high fairness factor value significantly impact on robustness in highly over-
subscribed cases, we configure PAMF with 10% fairness factor in the experiments,
which include various oversubscription levels.
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9.6. Evaluating the Impact of Pruning Mechanism on The System Robustness

In this experiment, we compare the overall robustness offered by PAM and PAMF
against baseline heuristics described in Section 8 and those baseline heuristics retrofitted
with probabilistic pruning mechanism. We conducted this evaluation under various
oversubscription levels. However, for presentation clarity, we only show oversubscrip-
tion levels with 15k and 30k tasks. We note that the same pattern is observed with other
oversubscription levels evaluated.
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Figure 12: Comparison of PAM and PAMF against baseline heuristics with and without pruning mechanism.
Vertical axis shows the percentage of task completed on time.

In Figure 12a, we observe that PAM results in a substantial increase in system
robustness in comparison to other heuristics. On oversubscription level of 15k, PAM
scores at nearly 67% robustness and PAMF, trading percentage of tasks completed for
types of tasks completed, results in nearly 64% robustness. MOC, another heuristic that
maps tasks based on the robustness value, is the closest in robustness to PAM, rivaling
PAMF, at nearly 58%. The inability to probabilistically drop tasks leads to wasted
processing and delayed task mapping, thereby lowering robustness. With robustness
under 50%, the performance of MinMin lags behind, as it allocates tasks to machines
no matter how unlikely they are to succeed. The robustness offered by both MSD
and MMU suffers in comparison because these heuristics, instead of maximizing the
performance of the most-likely tasks, prioritize tasks whose deadlines or urgency is
closest (i.e., least likely to succeed tasks). With an oversubscription of 30k tasks, MSD
and MMU perform particularly bad because they mostly map tasks that fail to meet
their deadlines. When comparing PAM and PAMF against the average of the other
four heuristics, PAM and PAMF result in averagely 22% higher robustness.

In Figure 12b, we observe that, for all heuristics, adding the pruning mechanism
to the existing mapping heuristics improves the robustness. The pruning mechanism
makes the largest impact on MSD and MMU. These heuristics occasionally attempt
to map tasks with too tight deadlines, thus, resulting in a low chance of success. By
limiting these heuristics to map tasks whose chance is beyond a certain threshold, their
overall system robustness is significantly improved.
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9.7. Cost and Energy Gains of Probabilistic Task Pruning
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Figure 13: Impact of probabilistic task pruning on the incurred cost and consumed energy of using resources.
Horizontal axes show the oversubscription level and the vertical axes, respectively, show the average incurred
cost and energy consumed per task completed on time.

To investigate the incurred cost of using resources, pricing from Amazon cloud
VMs [6] has been corresponded to the machines in the simulation. Energy consumption
in active and idle states has been roughly estimated based on the machine’s specifica-
tion [41]. Specifically, we assume each machine to consume 70% of their rated power
supply when the machine is active and 25% when it is idle. Each machine’s usage time
is tracked. The price and energy incurred to process the tasks are divided by the per-
centage of tasks completed on time to provide a normalized view of the incurred costs
and consumed energy.

Figure 13a and 13b suggest that in an oversubscribed system, both PAM and PAMF
incur at least 33% lower cost and energy per completed task than MM. We exclude
MMU and MSD from the figure because they are shown to perform poorly in the
prior experiment, which makes their cost per task completion ratio unchartable, when
compared to other heuristics.

While previous tests have shown PAM outperforms other heuristics in terms of
robustness in the face of oversubscription, these results demonstrate that the benefits
are realized in dollar cost and consumed energy as well, due to not processing tasks
needlessly.

9.8. Evaluating the Imposed Overhead

To evaluate task pruning mechanism and PAM’s scheduling overhead. We compare
PAM that is implemented from the concept introduced in Section 6 against PAM that
utilizes computational-reuse and approximation techniques that we introduced in Sec-
tion 7 (called approximate PAM and shown as PAM+APPROX). First, we compare the
task mapping performance in terms of the number of tasks completed on time. Then,
we measured and compared the makespan of the simulation, which is directly related
to the scheduling overhead. For the sake of accuracy, all the measurements have been
carried out on an isolated machine, without any disturbing workload.
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Figure 14: Impact of reusing and approximation techniques of the pruning mechanism and mapping heuris-
tics on the (a) system robustness and (b) imposed overhead. Horizontal axis in both figures shows the
oversubscription level and vertical axis in (a) shows sytem robustness and in (b) shows the percentage of
reduction in the imposed overhead.

Figure 14a shows that there is no statistically and practically significant difference
in the performance of PAM and approximate PAM. This confirms our hypothesis that
computational reuse does not change the mapping results, while the approximation
introduces only minor rounding errors. However, due to the high uncertainty of the
heterogeneous computing system, such approximated rounding induces only minimal
changes to mapping decisions.

Figure 14b shows that the approximate PAM performs drastically faster than the
PAM implementation. The saving is particularly remarkable on the larger oversub-
scription cases such as 30k where approximate PAM cuts the processing time out by
93% when compared to the PAM’s implementation (i.e., approximate PAM is 13.5
times faster than simple PAM). Another point we observe is the growth of execution
time. PAM’s scheduling overhead grows in a more than the linear way in response to
the increase in oversubscription level. However, approximate PAM’s scheduling over-
head is a little lower on 30k than 15k oversubscription level. This is because while more
oversubscribed workload puts more tasks in the batch queue at each moment (which
make each mapping event slower), the higher oversubscription level also means there
are fewer mapping events for the experiment with the same number of tasks arrival.
The fewer mapping events and more load per mapping event cancel each other in the
case of approximate PAM.

10. Conclusion and Future Works

The goal of this research was to improve robustness of HC systems via pruning
tasks with low probability of success. We designed a pruning mechanism as part of re-
source allocation system. For pruning, we determined probability values to either defer
or drop a task whose chance of success is low. We enabled the pruning mechanism to
determine dropping threshold at the task level and dynamically adjust the deferring
threshold based on the characteristics of the arriving workload. We developed a prob-
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abilistic mapping heuristic, PAM, that cooperates with the pruning mechanism. We
showed that PAM can improve system robustness by on average '22%. We upgraded
PAM to accommodate fairness by compromising around four percentage points ro-
bustness. We employed approximate computing in calculation of probabilities in the
system to reduce the scheduling and pruning overheads (by up to 93%) and ensure
that the mechanism can be used practically. We concluded that: (A) when the system
is not oversubscribed, tasks with low chance of success should be deferred (i.e., wait
for more favorable mapping in the next mapping); (B) When the system is sufficiently
oversubscribed, the unlikely-to-succeed tasks must be dropped to alleviate the oversub-
scription and increase the probability of other tasks succeed; (C) The system benefits
from setting higher deferring threshold than dropping threshold. Evaluation results re-
vealed that the pruning mechanism (and PAM) not only improves system robustness
but also reduces the cost and energy of using cloud-based HC systems by '33%.

The idea of pruning developed in this research is generic and can be plugged to
other systems. We plan to extend the probabilistic approach for tasks preemption and its
impact on the convolution process. Finally, as HC systems have various QoS concerns,
domain-specific fairness models should be explored.
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