
J. Parallel Distrib. Comput. 97 (2016) 96–111
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Stochastic-based robust dynamic resource allocation for independent
tasks in a heterogeneous computing system
Mohsen Amini Salehi a,∗, Jay Smith b, Anthony A. Maciejewski c, Howard Jay Siegel c,
Edwin K.P. Chong c, Jonathan Apodaca c, Luis D. Briceño d, Timothy Renner e,
Vladimir Shestak b, Joshua Ladd f, Andrew Sutton e, David Janovy g, Sudha Govindasamy d,
Amin Alqudah h,i, Rinku Dewri j, Puneet Prakash k

a High Performance Cloud Computing (HPCC) Laboratory, School of Computing and Informatics, University of Louisiana, Lafayette, LA 70503, USA
b Lagrange Systems, Boulder, CO 80302, USA
c Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
d Intel Inc., USA
e Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
f Mellanox Technologies Inc., USA
g BHGrid Inc., USA
h Department of Electrical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
i Department of Computer Engineering, Yarmouk University, Jordan
j Department of Computer Science, University of Denver, USA
k Environmental System Research Institute (Esri), USA

h i g h l i g h t s

• Calculating stochastic task completion time in heterogeneous system with task dropping.
• A model to quantify resource allocation robustness and propose mapping heuristics.
• Evaluating immediate and batch mappings and optimizing queue-size limit of batch mode.
• Analyzing impact of over-subscription level on immediate and batch allocation modes.
• Providing a model in the batch mode to run mapping events before machines become idle.

a r t i c l e i n f o

Article history:
Received 8 May 2015
Received in revised form
12 May 2016
Accepted 16 June 2016
Available online 27 June 2016

Keywords:
Dynamic resource allocation
Heterogeneous computing
Robustness
Scheduling
Stochastic models

a b s t r a c t

Heterogeneous parallel and distributed computing systems frequently must operate in environments
where there is uncertainty in system parameters. Robustness can be defined as the degree to which
a system can function correctly in the presence of parameter values different from those assumed. In
such an environment, the execution time of any given task may fluctuate substantially due to factors
such as the content of data to be processed. Determining a resource allocation that is robust against this
uncertainty is an important area of research. In this study, we define a stochastic robustness measure to
facilitate resource allocation decisions in a dynamic environment where tasks are subject to individual
hard deadlines and each task requires some input data to start execution. In this environment, the tasks
that cannot meet their deadlines are dropped (i.e., discarded). We define methods to determine the
stochastic completion times of tasks in the presence of the task dropping. The stochastic task completion
time is used in the definition of the stochastic robustness measure. Based on this stochastic robustness
measure, we design novel resource allocation techniques that work in immediate and batch modes,
with the goal of maximizing the number of tasks that meet their individual deadlines. We compare

∗ Corresponding author. Fax: +1 337 482 5791.
E-mail addresses: amini@louisiana.edu (M. Amini Salehi), jay@lagrangesystems.com (J. Smith), aam@colostate.edu (A.A. Maciejewski), hj@colostate.edu (H.J. Siegel),

edwin.chong@colostate.edu (E.K.P. Chong), jonathan.apodaca@colostate.edu (J. Apodaca), luis.d.briceno.guerrero@intel.com (L.D. Briceño), timothy.renner@gmail.com
(T. Renner), vladimir@lagrangesystems.com (V. Shestak), joshual@mellanox.com (J. Ladd), sutton@cs.colostate.edu (A. Sutton), djanovy@bhgrid.com (D. Janovy),
sudha.govindasamy@intel.com (S. Govindasamy), amin.alqudah@yu.edu.jo (A. Alqudah), rdewri@cs.du.edu (R. Dewri), puneet_prakash@esri.com (P. Prakash).
http://dx.doi.org/10.1016/j.jpdc.2016.06.008
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.06.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.06.008&domain=pdf
mailto:amini@louisiana.edu
mailto:jay@lagrangesystems.com
mailto:aam@colostate.edu
mailto:hj@colostate.edu
mailto:edwin.chong@colostate.edu
mailto:jonathan.apodaca@colostate.edu
mailto:luis.d.briceno.guerrero@intel.com
mailto:timothy.renner@gmail.com
mailto:vladimir@lagrangesystems.com
mailto:joshual@mellanox.com
mailto:sutton@cs.colostate.edu
mailto:djanovy@bhgrid.com
mailto:sudha.govindasamy@intel.com
mailto:amin.alqudah@yu.edu.jo
mailto:rdewri@cs.du.edu
mailto:puneet_prakash@esri.com
http://dx.doi.org/10.1016/j.jpdc.2016.06.008


M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 97

the performance of our technique against several well-known approaches taken from the literature and
adapted to our environment. Simulation results of this study demonstrate the suitability of our new
technique in a dynamic heterogeneous computing system.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Heterogeneous parallel and distributed computing systems
frequently operate in environments where uncertainty in task
execution time is common. For instance, the execution time of
a task can depend on the data to be processed. We represent
each task’s execution time on each machine as a probability mass
function (pmf). Robustness can be defined as the degree to which
a system can maintain a given level of performance even with this
uncertainty [7,3,38].

One challenge to make a robust system is how to measure and
quantify robustness in the system. To address this challenge, one
contribution of this research is to design a dynamic stochastic
robustnessmeasure for heterogeneous computing (HC) systems. In
particular, we investigate a robustness measure for an HC system
that evaluates a dynamic (on-line) resource allocation.

A mapping event is defined as the time when the resource
allocation procedure is executed to map (i.e., assign and schedule)
tasks tomachines. After a task ismapped to amachine, its required
input data is staged (i.e., loaded) to the correspondingmachine and
then the task can start execution.

A dynamic resource manager can operate either in immediate
or batch mode [30]. The difference between these resource
management approaches is in the way they map arriving tasks to
machines. In the immediate mode, shown in Fig. 1(a), each task
is mapped to one of M machines immediately upon its arrival. In
contrast, in one variation of the batch mode, shown in Fig. 1(b), a
limited number of tasks are mapped to each machine and the rest
of them are saved at the resource manager for assignment during
the next mapping event, along with newly arriving tasks. These
tasks saved at the resource manager and the newly arrived tasks
form the set of unmapped tasks. We investigate the performance
of both immediate and batch operation modes on HC systems.

In this study, each task has an individual hard deadline.We con-
sider an HC suite of machines that is oversubscribed. By oversub-
scribed we mean that the arrival rate of tasks, in general, is such
that the system is not able to complete all tasks by their individual
deadlines. Therefore, the research problem we investigate in this
work is: How to maximize the number of tasks that are completed
by their individual deadlines in an oversubscribed HC system? Ac-
cordingly, the performance measure that we consider is the num-
ber of tasks that are completed by their individual deadlines.

In this system, because there is no value in executing a task
after its deadline, the task is dropped (i.e., discarded) if it misses
its deadline. Dropping can also take place as a result of task
failure [34]. Dropping a task affects the completion time of the
tasks queued behind the dropped task. Hence, we provide a
method to determine the stochastic completion time of the tasks
in the presence of the dropping. Then, we use the stochastic task
completion time to provide a mathematical model to measure the
robustness of a resource allocation.

Dropping the tasks in batch mode, where the number of tasks
that are mapped to eachmachine is limited, can potentially lead to
the state where there is no task in a machine queue, thus wasting
the computational capacity of the machine. To avoid this state, we
schedule mapping events to occur before a machine becomes idle.
Additionally, the limit on the number of tasks that are mapped
to each machine (i.e., machine queue-size limit) is influential on
the performance of the batch mode resource allocation. Therefore,
another contribution of this study is to verify the proper queue-size
limit for a batch mode resource allocation.

In general, the problem of resource allocation in the field
of heterogeneous parallel and distributed computing is NP-
complete (e.g., [10,19]); hence, the development of heuristic
techniques to find near-optimal solutions represents a large body
of research (e.g., [20,6,43,2,9,33,25,26]). Therefore, based on the
analysis of the stochastic robustness measure, we design resource
allocation heuristics that are capable of allocating a dynamically
arriving set of tasks to a dedicated HC system. We compare
our robustness-based resource allocation approach against several
resource allocation techniques taken from the literature and
adapted to this environment. We compare the performance of
the mapping heuristics via simulation which allows to evaluate a
variety of working conditions. The results of our simulation study
demonstrate the efficacy of our robustness-based approach.

We are interested in resource allocation techniques that can
tolerate higher levels of over-subscription. Thus, as a contribution
of this study, we analyze how different resource allocation
techniques perform when the over-subscription level increases in
the HC system. Additionally, an ideal resource allocation technique
should perform well when tasks have data requirements to start
their execution. Hence, another contribution of this study is to
analyze the behavior of different resource allocation techniques
when tasks require input data.

In summary, this study makes the following contributions:

• Determining the stochastic task completion time in a system
where tasks are dropped if they miss their deadlines.

• Using stochastic task completion time to provide a mathemat-
ical model for quantifying the robustness of a resource alloca-
tion.

• Designing and analyzing novel resource allocation techniques
that operate based on our proposed robustness measure.

• Planning mapping events in the batch mode in a way that the
computational capacity of machines is not wasted.

• Investigating the performance impact of various queue-size
limits for different batch mode resource allocation techniques.

• Analyzing the impact of the over-subscription levels on the
performance of different resource allocation techniques.

• Analyzing the behavior of various resource allocation tech-
niques when tasks have data dependencies.

In the next section, we present the system model. A review
of the related work is given in Section 3. Section 4 describes our
mathematical model of robustness in a dynamic environment.
Section 5 examines how machine idling can be avoided in the
batchmode resource allocation approach. The heuristic techniques
for this environment are given in Section 6. The details of the
simulation setup used to evaluate our heuristics are discussed in
Section 7. Section 8 provides the results of our simulation study
and Section 9 concludes the paper.



98 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
(a) Immediate. (b) Batch.

Fig. 1. Dynamic resource allocation that (a) maps arriving tasks to machines immediately upon arrival, and (b) maps a limited number of tasks to each machine and queues
the rest of arriving tasks at the resource manager.
2. Systemmodel and problem statement

This research was motivated by an inconsistent heterogeneous
distributed computing system used for image processing [38],
similar to those deployed at DigitalGlobe [13]. An inconsistent
HC system includes a mixture of different machines to execute
tasks with various computational needs. In particular, in such a
system, each task may have different execution times on different
machines of the system. For instance,machine Amay be faster than
machine B for task 1 but slower than othermachines for task 2. This
is because each task’s execution time depends on how the task’s
computational needs interact with the machine’s capabilities. It
is worth noting that this is a general model and includes HC
systems with different types of machines, such as those that
consist of CPUs and GPUs [40]. Although the methods discussed in
this research are designed for inconsistent HC systems, they also
work in distributed computing systems where only a portion of
machines are heterogeneous.

In this system, user tasks for processing are sent to a resource
manager for assignment to any one of a collection of dedicatedma-
chines. Each task is compute-intensive and consists of an operation
to be executed (e.g., compression, decompression, rotation) plus
an input file to be processed. The list of available image processing
operations, from which the user can select, is referred to here as
task types. It is limited to a set of frequently requested algorithms,
such as those found in a research lab ormilitary environments (e.g.,
[16,38,40]). A problem arises in trying to complete each task by
its individual deadline because the HC suite is oversubscribed and
there are uncertainties in the tasks’ execution times.

In our system model, tasks arrive dynamically, and the exact
sequence of the arrivals is not known in advance. Each arriving task
request ri requires some input data that has to be loaded from a
shared storage for execution. Additionally, each task ri is assigned
an individual hard deadline for completion, denoted δi. By hard
deadline, we mean that if a task cannot be completed before its
deadline, it is dropped.

Dropping tasks is a common practice in oversubscribed systems
that have a real time or near real time nature (e.g., [23,21,22]). In
these systems, typically, there is no value in executing a task that
has missed its deadline. For instance, in live video streaming [14]
systems, each frame should be transformed (i.e., transcoded) based
on the client’s machine characteristics. The transcoding operation
of each framemust be completedwithin a tight deadline. However,
there is no value in transcoding frames that have missed their
deadlines. Dropping these frames help other frames queued in the
system to be transcoded before their deadlines. Another instance
of task dropping is in systems that process periodically received
data sets (e.g., security surveillance [18] and medical images
processing [32]). Usually, in these systems, sensors periodically
produce data sets. The processing of each data set must be
completed before arrival of the next data set. That is, there is no
value in processing a data set after arrival of the next data set. In
an oversubscribed system, dropping tasks thatmiss their deadlines
reduces the waiting times and increases the likelihood of meeting
deadline for other queued tasks. In addition to these motivations,
dropping is usually unavoidable when a task failure occurs in a
system [34].

Task dropping can occur either at mapping time or before
starting execution on a machine. Also, a currently executing task
canbedropped as soon as itmisses its deadline. However, dropping
tasks while they are executing is not possible in some systems.
For instance, in [38], a stream of images has to be processed
for rasterization and displaying within a tight deadline. In this
system, once the processing of an image is started, it has to be
completed. Dropping of the executing tasks is also not possible for
database transactional tasks (where transactions have to complete
their executions, once started, to maintain the consistency of the
data [17]) and in real time systems [31]. Therefore, in this study,we
consider two scenarios: in the first scenario the currently executing
task is dropped as soon as it misses its deadline and in the second
scenario the executing task cannot be dropped andmust complete
its execution.

The exact execution time of any given task on a given machine
is assumed to be dependent on the characteristics of the data that
is to be processed (including the size and actual content of the
data). Therefore, the execution time for a given task can be highly
variable and, as such, is treated as a random variable. We assume
that a discrete probability distribution, known as a probability
mass function (pmf ), is available for each task type’s execution
time on each machine. That is, each task type is associated
with a set of pmfs, one pmf for each machine in the HC suite,
describing the probability of possible execution times for that task
type. A typical method for creating such distributions relies on a
histogram estimator [41] that produces pmfs based on historical
and analytical techniques [28]. We assume that the collection of
task execution time pmfs has been provided in advance.

The uncertainties in the tasks’ execution times cause resource
allocation decisions to be more difficult. A robust resource
allocation technique takes into account the uncertainties in the
tasks’ execution times [33]. Any claim of robustness for a given
system must answer three fundamental questions [3]:
(a) What behavior makes the system robust? A robust resource

allocation in this environment is one that is capable of
completing tasks by their assigned individual deadlines.

(b) What are the uncertainties that the system is robust against?
The execution time for each task on each machine is a known
source of uncertainty and is represented by a random variable
(pmf).

(c) How is system robustness quantified? The robustness of a
resource allocation can be quantified as the expected number
of tasks that will complete before their individual deadlines, as
predicted at a given point in time.

From this set of requirements, we formulate a robustness measure
for a resource allocation in the system.

Uncertainty in task execution time can impact the completion
times of all tasks that share the same machine for execution [5].



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 99
For example, given multiple tasks allocated to the same machine,
a longer than expected execution time for a task early in the
queue may cause tasks later in the queue to miss their deadlines.
This effect is compounded when multiple tasks take longer
than expected. To mitigate the impacts of task execution time
uncertainty in batch mode, we chose to limit the number of tasks
that can be queued, denoted L, at any single machine (i.e., machine
queue-size limit). Due to the influence of the queue-size limit
on the performance of batch mode heuristics, in this research,
we determine the proper machine queue-size for the batch mode
heuristics.

Another aspect of limiting machine queue-size is the state
where no task remains in the machine queue and the machine
becomes idle. This is particularly important in our system due to
task dropping. The idle machine should wait until the resource
allocation heuristic is executed and the input data for a mapped
task is staged to the selected machine. We refer to these waiting
times as the mapping overhead. To avoid machine idling, in this
research,we performmapping events before themachines become
idle.

In batch mode resource allocation, the remaining tasks that
are not already in a machine queue as well as tasks that have
arrived since the last mapping event form a batch of tasks at the
resource manager (see Fig. 1(b)). Hence, at each time-step1 t(k), we
effectively define a batch of tasks at the resourcemanager, denoted
B(k). Based on this definition, a mapping event in the batch mode
resource allocation occurs due to one of two conditions:

(a) There is at least one task in B(k) and at least one free space is
created in the machine queues (e.g., due to completion of the
currently executing tasks).

(b) There is a free space in the machine queues and a new task
arrives to the batch queue (B(k)).

In contrast, in the immediate mode resource allocation a
mapping event occurs upon arrival of a new task. There is no limit
on machines’ queue-sizes in this case.

For both immediate and batch modes, after a task is mapped,
it is placed in the input queue of its allocated machine (see Fig. 1)
and input data for the task is staged to the machine. Due to the
heterogeneous nature of our system, we consider a different data
staging rate to each machine in the HC system. For this study, due
to the overhead of data transfer, once a task has been queued for
execution on a machine, it cannot be re-allocated to any other
machine.

We assume that the HC suite operates in a non-multi-tasking
mode; i.e., each machine only executes one task at a time, as is the
case with the cores in the ISTeC Cray XT6m system currently in
use at Colorado State University [11]. Additionally, each task’s ex-
ecution time (not completion time) is assumed to be independent,
i.e., there is no inter-task communication. This assumption of in-
dependence is valid for non-multitasking execution mode, which
is commonly considered in the literature (e.g., [15,24,8]).

3. Related work

The problem of workload distribution considered in our
research falls into the category of dynamic resource allocation.
The general problem of dynamically allocating independent tasks
to HC systems was studied in [30]. The primary objective in [30]
was to minimize system makespan, i.e., the total time required
to complete a set of tasks. This objective is different from the

1 In this research, the time of the system is modeled in the form of discrete steps,
each one called a time-step.
primary objective in our current work: to complete each task
before its deadline. Furthermore, in [30] the task execution times
are assumed to be deterministic not stochastic.

Paragon [12] is a scalable immediate mode resource allocation
method for large-scale heterogeneous Cloud datacenters. It uses
historic information of the tasks’ execution times to classify an
unknown arriving task with respect to the machine heterogene-
ity and interference with other co-located tasks. The Paragon’s
classification engine discovers similarities in the tasks’ resource
requirements. It uses singular value decomposition to identify sim-
ilarities between incoming and previously scheduled tasks. Once
an incoming task is classified, a greedy mapping heuristic assigns
it to a machine with the goals of minimizing the task’s comple-
tion time and maximizing the machine utilization. The heuristic
searches for machines whose current load can tolerate the inter-
ference caused by the new task. Then, from the set of candidate
machines, it selects the machine that provides the minimum ex-
ecution time for the arriving task. This work is different from our
research in that it focuses on the scalability of the resource allo-
cation for large-scale datacenters and utilizes a scalar execution
time to estimate the fitness of a machine for a given task. Further-
more, the tasks do not have deadlines, and the performance goal is
different.

Mapping heuristics are proposed in [1] for the immediatemode
resource allocation in anHC system. Theproposedmappingheuris-
tics utilize the arrival rate information of different task types to
decrease waiting times of the tasks and guarantee the stability of
theHC system.However, stochasticity in the tasks’ execution times
is not considered in [1] and further studies are required to exam-
ine the stability of the HC system when such uncertainties exist
in the system. In addition, the proposed heuristics in [1] have the
knowledge of each task type arrival rate distribution whereas our
proposed heuristics do not have any assumption about the arrival
rates distributions.

In [29], a stochastic task mapping technique is provided for HC
systems where uncertainty exists in the tasks’ execution times.
The stochastic taskmapping is formulated as a linear programming
problemwith the goal of creating a balance between themakespan
of each Bag of Tasks (BoT) application with a collective deadline
and the energy consumption of the application. The proposed
mapping technique can improve the weighted probability that
both the deadline and the energy consumption budget constraints
can be met. In contrast, our research goal is to increase the
probability of meeting the individual deadlines of dynamically
arriving tasks. Also, we consider the impact of dropping tasks on
the stochastic completion time of other tasks in the system.

Xu et al. [42] propose a resource allocation method for HC
systems with the goal of minimizing the makespan of a workflow.
Their idea is to incorporate a Genetic Algorithm based technique
to assign priority to each task of the workflow while using the
earliest completion time heuristic to map the tasks to machines.
The Genetic Algorithm based technique prioritizes the tasks in
a way that the makespan of the workflow is minimized. Then,
the mapping heuristic selects the tasks based on their assigned
priorities and maps each of them to the machine that offers the
minimum completion time for that task. The authors assume that
the exact execution time of the tasks are known a priori whereas
we consider stochastic task execution times on eachmachine. Also,
the goal of the resource allocation is different.

Canon et al. [7] investigate static scheduling techniques
to maximize the robustness and minimize the makespan for
workflow applications in an HC environment. They define the
robustness as the stability of the makespan for any realization
of the same schedule for a given workflow. The stability of the
makespan is modeled by the inverse standard deviation of the
makespan distribution. Because the robustness and the makespan



100 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
(a) Execution time distribution. (b) Completion time
distribution for start time of 3.

(c) Renormalized completion
time distribution at time 6.5.

Fig. 2. Execution and completion time distributions for a given task that is being executed in a machine. (a) Execution time distribution of the task. (b) Given that the
task started execution at time 3, the completion time distribution for the task after shifting the task execution time distribution. (c) Completion time distribution after
renormalizing based on the current time of 6.5 by removing impulses that occur before the current time.
are not equivalent objectives, they apply a bi-criteria approach to
find all the Pareto-optimal solutions and investigate the trade-off
between the two metrics. In contrast, we consider the problem of
dynamic resource allocation for independent tasks with the goal of
maximizing the number of tasks that meet their deadlines.

In [33], a stochastic robustness measure is developed for static
resource allocation in a heterogeneous distributed system, where
all the task arrivals are known before the heuristics begin. In
this method, the mapping heuristic tries to keep the robustness
measure between predefined boundaries. The authors of the paper
have studied an iterative mapping heuristic that starts with a
complete allocation and progressively modifies the order and
evaluates it until a desired performance is reached. Our work is
different than [33] from several aspects. First and the foremost is
the fact that we investigate dynamic (on-line) resource allocation
whereas in [33] a static resource allocation technique is studied.
The allocation heuristic proposed in [33] is an off-line method
and cannot be utilized for dynamic (on-line) systems. The second
difference is that the stochastic robustness measure in [33] is
different from what we consider here. The third difference is that
we investigate and provide amodel for stochastic completion time
of tasks in the presence of task dropping.

4. Mathematical model

4.1. Stochastic task completion time

Wedefine newmethods for determining the completion time of
a given task ri at time-step t(k). This builds on our previous method
in [44]. More specifically, we introduce methods to determine
the task completion time for three different cases. The first case
(explained in Section 4.1.1), is when there is no task dropping.
Thismethodwas initially introduced in [44]. However, we describe
it here because it serves as a basis for other two unexplored
cases where task dropping is allowed. The second case (explained
in Section 4.1.2), determines the task completion time for the
scenariowhere a pending task (i.e., a taskwaiting for execution in a
machine queue) is dropped if the current time exceeds its deadline.
However, in this case, a currently executing task cannot be dropped
and has to complete its execution even if it misses its deadline. The
third case (explained in Section 4.1.3), provides a method for the
task completion time when any task (either pending or executing
task) is dropped if the current time exceeds its deadline.

Let µ(k) denote the set of all tasks that are either queued for
execution or currently executing on any of the M machines in the
HC suite at time-step t(k). Let the ordered list of tasks that were
assigned to machine j in advance of task ri but that have not yet
completed execution as of t(k) be denoted µ(k)ij .
4.1.1. No task dropping
Because the execution time of each task in the system is a

random variable, the distribution of the completion time of task ri
is found as the convolution [27] of the execution time probability
distributions for all tasks either currently executing or pending
execution in advance of task ri on the same machine.

To find the completion time pmf for a currently executing task
z on a given machine j, we must account for impulses (also known
as atoms) in the execution time pmf of task z that would have
occurred prior to the current time-step t(k). For example, if task
z began execution at time-step t(h) (h < k), then we know that
all impulses in the completion time distribution for task z with
values less than t(k) did not occur. Thus, accurately describing the
completion time of task z at time-step t(k) requires that these past
impulses be removed from the pmf and the remaining distribution
be renormalized to 1.

Fig. 2 describes how renormalization of a completion time pmf
is performed for a given task that is currently being executed
in a machine. Fig. 2(a) shows the execution time pmf for the
task. Fig. 2(b) shows the completion time pmf for the task that is
constructed by shifting the execution time pmf based on the task’s
start time (which is 3 in this example). Fig. 2(c) shows that for
renormalization, past impulses (i.e., impulses before the current
time) are removed and the remaining impulses are renormalized
and form the completion time pmf for the task at time 6.5.

We can find the completion time distribution of task ri at time-
step t(k) by convolving the completion time distribution of the
currently executing task on machine j with the execution time
distributions of all pending tasks in µ(k)ij . Finally, the resulting
completion time pmf is convolved with the execution time
distribution for task ri on machine j.

4.1.2. Dropping pending tasks
Dropping a pending task in µ(k)ij influences the completion

time of the tasks queued behind the dropped task on machine j.
However, the method provided in the previous subsection does
not consider the influence of dropping a pending task on the
completion time of the tasks queued behind that.

Intuitively, pending task ri is dropped if task ri−1 is completed at
or after the deadline of task ri. That is, the probability of dropping
for task ri is the sum of probabilities of impulses in the completion
time pmf of task ri−1 that are greater than or equal to δi. Therefore,
in the first step to obtain the completion time pmf for task ri, just
the impulses in the completion time pmf of task ri−1 that are less
than δi are considered for convolutionwith the execution time pmf
of task ri.

Dropping a pending task is equivalent to considering zero
execution time for that task.More specifically, because of dropping,
for all impulses greater than or equal to δi in completion time



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 101
(a) Execution time
distribution of task ri with
δi = 7.

(b) Completion time
distribution of task ri−1 with
δi−1 = 9.

(c) Result of convolution
between the distribution of
task ri with impulses less
than 7 of task ri−1 .

(d) Completion time
distribution for task ri .

Fig. 3. Completion time distribution for a given task ri in a system where pending tasks are dropped if they miss their deadlines. (a) Execution time distribution of task ri
with δi = 7. (b) Completion time distribution of task ri−1 with δi−1 = 9. (c) Distribution resulted from convolving impulses of task ri with impulses less than time 7 of task
ri−1 . (d) Completion time distribution for task ri; obtained from adding impulses greater than or equal to 7 in completion time pmf of task ri−1 in Fig. 3(b), for which task ri
is dropped and has execution time zero, with the distribution in Fig. 3(c).
pmf of ri−1 (i.e., impulses that were excluded from convolution in
the first step), the execution time pmf of ri is an impulse at time
zero with probability 1. Convolving the excluded impulses with
this execution time pmf determines the completion time pmf of
task ri when the excluded impulses in completion timedistribution
of task ri−1 occur and complements the distribution obtained in
step 1. It is worth noting that convolving a given impulse ψ in
the completion time pmf of task ri−1, that occurs at time tψ ≥ δi
with probability pψ , with the impulse at time zero and probability
1, will result into an impulse in the completion time of ri at time
tψ+0with probability 1×pψ . This is equivalent to adding excluded
impulses in the completion time pmf of task ri−1 to the completion
time pmf of task ri. Therefore, in the second step, the impulses in
the completion time pmf of task ri−1 that were excluded from the
convolution in step 1, are added to the obtained distribution and
form the completion time pmf of task ri.

Fig. 3 depicts the details of determining completion time pmf of
ri when pending tasks in µ(k)ij are dropped if they miss their dead-
lines. Fig. 3(a) shows the execution time pmf of a given task ri with
δi = 7. Fig. 3(b) shows the completion time pmf of task ri−1 with
δi−1 = 9. Fig. 3(c) shows the result of convolution between the
impulses that are less than δi = 7 in completion time pmf of task
ri−1 (i.e., impulses at times 5 and 6 in Fig. 3(b)) with the execu-
tion time pmf of task ri. Next, we consider the impact of impulses
that are excluded from convolution in Fig. 3(b) on the completion
time pmf of task ri. Asmentioned earlier (see the above paragraph),
for these excluded impulses in the completion time distribution of
task ri−1, the execution time of task ri is zero. Therefore, the ex-
cluded impulses have to be added to the completion time distribu-
tion of task ri. Thus, in Fig. 3(d) the completion time distribution of
task ri is formed by adding impulses that are greater than or equal
to δi = 7 in the completion time pmf of task ri−1 (impulses at times
7, 8, and 9 in Fig. 3(b)) to the distribution shown in Fig. 3(c).

4.1.3. Dropping pending and executing tasks
The method of determining completion time distribution for

task ri, described in the previous subsection, does not consider
dropping for a currently executing task. That is, if a task starts
executing, it has to be completed even if it misses its deadline
during the execution. In this part, we extend the method provided
in the previous subsection to determine the completion time
distribution of pending task ri for the scenario where a currently
executing task is dropped as soon as it misses its deadline. In
addition, similar to Section 4.1.2, a pending task that misses its
deadline is also dropped and cannot start execution.

To determine the completion time distribution of task ri that is
pending in a machine queue, similar to the previous subsection,
in the first step, impulses in the completion time pmf of task ri−1
(a) Impulses greater than or
equal to δi = 7 in Fig. 3(c) are
summed and form an impulse
at δi = 7.

(b) Completion time
distribution for task ri .

Fig. 4. Completion time distribution of task ri in a system where the currently
executing task is dropped as soon as it misses its deadline. (a) After convolving
the distribution of task ri with impulses less than time 7 in the distribution of task
ri−1 in Fig. 3(c), impulses greater than or equal to the deadline of task ri in the
resulting distribution are summed and form an impulse at δi = 7. (b) Completion
time distribution for task ri; obtained from adding the distribution in Fig. 4(a) with
the excluded impulses of task ri−1 in Fig. 3(b), for which task ri is dropped and has
execution time zero.

that are less than δi are convolved with the execution time pmf
of task ri. Because task ri will not be executed after its deadline,
in the resulting distribution, all the impulses that are greater than
δi would not occur. Therefore, in the second step, the impulses
that are greater than or equal to δi in the resulting distribution are
summed and form an impulse at δi.

Recall from Section 4.1.2 that for all the impulses greater than δi
in the completion time pmf of task ri−1, task ri is dropped and will
have zero execution time. Therefore, in the third step, to consider
zero execution time in the completion time distribution of task ri,
similar to Section 4.1.2, the impulses in the completion time pmf of
task ri−1 that were excluded from the convolution are added to the
obtained distribution in the second step and form the completion
time pmf of task ri.

Fig. 4 extends the example in Fig. 3 to show the details of
determining task completion time for the scenario where the
executing task is dropped as soon as it misses its deadline.
Remember that Fig. 3(c) shows the result of convolution between
the execution time pmf of task ri (in Fig. 3(a)) with impulses lower
than δi = 7 in the completion time distribution of task ri−1 (in
Fig. 3(b)). Then, according to the second step, in Fig. 4(a), the
impulses greater than or equal to δi = 7 in Fig. 3(c) are summed
and form an impulse at the deadline of task ri. Finally, according to
the third step, in Fig. 4(b), the completion time distribution of task
ri, is obtained fromadding the excluded impulses in the completion
time distribution of task ri−1 in Fig. 3(b) (for which the execution
time of task ri is zero) to the distribution in Fig. 4(a).



102 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
It is worth noting that the completion time distribution of the
currently executing task is obtained by removing past impulses
and renormalizing the remaining impulses to 1 (see Section 4.1.1).
Then, all impulses that are greater than or equal to the task’s
deadline in the renormalized distribution are summed and form
an impulse at the deadline of the task.

4.2. Calculating stochastic robustness

The robustness of a resource allocation at time-step t(k) is
defined based on the expected number of tasks that meet their
individual deadlines, predicted at this time-step. We calculate the
total expected number of tasks thatmeet their individual deadlines
by summing over all machines the expected number of tasks on
each machine that meet their individual deadlines.

The probability that task ri completes before its deadline (δi)
on machine j, denoted p(rij), is calculated by summing the prob-
abilities of impulses that are less than δi in the task’s completion
time pmf. Let nj the number of tasks assigned to machine j. Then,
the stochastic robustness of thismachine at time-step t(k), denoted
ρ
(k)
j , is calculated as follows:

ρ
(k)
j =

nj
i=1

p(rij). (1)

We define the stochastic robustness of a resource allocation at
a given time-step t(k), denoted ρ(k), as the sum of the robustness
values associated with each machine. This can be stated formally
as follows:

ρ(k) =


∀j

ρ
(k)
j . (2)

5. Avoiding machine idling

Uncertainty in task execution times can affect the completion
times of all tasks that share the same machine for execution.
For instance, given multiple tasks assigned to the same machine,
a longer than expected execution time for a task early in the
queue may cause tasks later in the queue to miss their deadlines.
This effect is compounded when multiple tasks take longer than
expected.

To mitigate the impact of task execution time uncertainty, in
batch mode, we chose to limit the number of tasks that can be
queued at any single machine. Limiting machine queue-size in
an oversubscribed system where tasks are dropped as soon as
they miss their deadlines can potentially lead to a circumstance
where there is no task in a machine and, therefore, the machine
is idle. For instance, machine idling can happen when a currently
executing task is completed and the pending tasks are dropped
because their deadlines were missed. The idle machine should
wait for the mapping overhead. That is, the idle machine should
wait until the resource allocation heuristic is executed and the
input data for a mapped task is staged to the selected machine.
In practice, when the required tasks’ input data are substantial,
the mapping overhead is not negligible and has to be considered
(e.g., [40]). One consequence of ignoring mapping overhead is to
delay task execution and to wait for its input data to be staged.
Another consequence is towaste the computational capacity of the
machine.

One technique often used to avoidmachine idling is to pre-stage
several tasks into the machine queues in advance of execution
(i.e., machine queue-size limit is large). This helps to ensure that
there are tasks in the machine queues that are ready for execution
andmachine idling is avoided. However, a large queue can degrade
the performance of a resource allocation heuristic due to the
compounded uncertainty in the execution time of tasks that share
the same queue. Nonetheless, a short queue-size can potentially
lead to machine idling (e.g., when an executing task is completed
and pending tasks are dropped from machine queue j).

As demonstrated later (in Section 8.1), to obtain the best
performance of a batch mode resource allocation heuristic, we
choose to keep the queue-size short. In this case, each machine
includes one executing task and one pending task (i.e., themachine
queue-size limit is two). However, to avoid machine idling, we
propose to perform mapping events before the machines become
idle. The time for these mapping events is determined based on
the time required for executing the resource allocation heuristic,
denoted th, and the time associated with staging the tasks’ input
data to machine j, denoted tlj. The value of th for a particular
resource allocation heuristic can be determined by analyzing
historic data of its execution time. The value of tlj depends on the
size of input data and the data transfer rate from a shared storage
tomachine j. To ensure that machine idling does not occur, we let s
be the maximum input data size within the set of unmapped tasks
and letΛj be the transfer rate from a shared storage to thememory
of machine j. Then, the worst case time to stage input data for any
unmapped task to machine j is calculated as follows:

tlj =
s
Λj
. (3)

We know that a free slot appears on machine queue j if a
currently executing task is completed (or dropped) or a pending
task is dropped because of missing its deadline. We define earliest
free slot at time step k, denoted e(k)j , as the expected time that
an empty slot appears on machine queue j. Let E[C(r1j)] the
expected completion time of the currently executing task, and δij
the deadline of ith task in machine queue j, then, e(k)j is formally
defined as follows:

e(k)j = min{E[C(r1j)], δ1j, δ2j, . . . , δnjj}. (4)

In the scenario that the currently executing task on machine j
cannot be dropped and has to complete its execution, the deadline
of the currently executing task (i.e., δ1j) is excluded from the
definition of e(k)j in Eq. (4). Based on the minimum value of
the earliest free slot across all machines (i.e., minj(e

(k)
j )), we can

determine the time for the nextmapping event, denoted tmap, using
Eq. (5).

tmap = min
j
(e(k)j )− (th + tlj). (5)

If the time for the next mapping event is less than the current
time, a new mapping event is scheduled immediately after the
current mapping event ends.

6. Heuristics

6.1. Immediate mode heuristics

6.1.1. Minimum expected completion time (MECT)
The Minimum Expected Completion Time (MECT) heuristic

(based on the Minimum Completion Time heuristic, presented in,
e.g., [30,6,43]) ignores the robustness of each allocation. Instead,
it allocates tasks such that its expected completion time is
minimized.

Using the expected execution time for each task, the expected
completion time for any task ri on machine j can be found by
summing the expected execution time of each task in µ(k)ij plus
the time the currently executing task started. If the input queue



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 103
of machine j is empty at the time of evaluation, then the expected
execution time of task ri is summed with the current time to
produce a completion time. Using the expected value of the
completion time for task ri on each machine 1 ≤ j ≤ M , MECT
assigns task ri to the machine that provides the earliest expected
completion time.

6.1.2. Minimum expected execution time (MEET)
TheMinimumExpected Execution time (MEET) heuristic (based

on the Minimum Execution Time heuristic, presented in, e.g.,
[30,6]) also ignores the robustness of each allocation. Instead,
MEET allocates each task to its minimum expected execution time
machine.

In this heuristic, for each task ri that has the expected execution
time of E[rij] on a given machine j, we select the machine k
that provides the minimum expected execution time. The MEET
heuristic can be formally expressed as follows:

k = min
1≤j≤M

(E[rij]). (6)

6.1.3. k-percent best (KPB)
The k-percent best (KPB) heuristic [30] limits the number of

machines that are considered at each task assignment to the
k-percent of the machines with the shortest expected execution
times. Using the expected value of the execution time of task ri on
each machine, identify the k-percent of the machines that provide
the shortest expected task execution times. Next, calculate the
expected completion time for task ri on each machine in the set of
k-percent machines found previously and assign i to the machine
that provides the earliest expected completion time.

The performance of KPB depends on the value of k. When the
value of k approaches 0%, KPB performance tends to MEET. In con-
trast,when the value of k approaches 100%, KPBperforms similar to
MECT. For our simulationswith eightmachines,we noticed that for
the scenario where a currently executing task cannot be dropped,
the value of k = 50% (four of the eight machines) provides the best
performance. However, for the scenario where a currently execut-
ing task is dropped as soon as misses its deadline, the value of k =

62% (five of the eightmachines) provides the best performance. The
reason for the lower value of k in the former scenario is that tasks
are assigned to machines with shorter expected completion times.
Thus, if an executing task misses its deadline, it will complete its
execution quickly and a pending task can start execution.

6.1.4. MaxRobust (MR)
The MaxRobust heuristic tries to maximize the stochastic

robustness of the resource allocation. In this heuristic, upon the
arrival of a new task ri at time-step t(k), similar to KPB, k-percent
of machines with the shortest expected execution times are found.
From these machines, the machine that maximizes ρ(k) at time-
step t(k) is selected. That is, MaxRobust calculates the value of ρ(k)
as if task ri was assigned to the end of the input queue of each
machinem found in the previous phase and then finds themachine
that maximizes ρ(k). In the next step, all machines that result in
ρ(k) within ϵ distance from the maximum ρ(k) are selected. From
this set of machines, the one with the minimum variance [7] in
completion time pmf is selected to assign task ri.

In the simulations, for the scenario where a currently executing
task cannot be dropped, we consider the value of k equal to
50% (i.e., four of the eight machines) and for the scenario where
a currently executing task is dropped as soon as it misses its
deadline, we consider the value of k equal to 62% (i.e., five of the
eight machines). Also, the value of ϵ equal to 0.05 leads to the
best performance for the MR heuristic. A higher value for ϵ leads
to mapping tasks to the machines that offer lower probabilities of
meeting deadlines, thus, reduces the number of tasks that canmeet
their deadlines.

6.2. Batch mode heuristics

6.2.1. Overview
In this part, we describe four batch mode resource allocation

heuristics. The first three heuristics, which serve as baseline
heuristics, operate in two basic phases.

In phase 1, the heuristic identifies the machine that maximizes
the performance objective for each task. In phase 2, the heuris-
tic identifies the task-machine pairing that maximizes the perfor-
mance objective over all task machine pairs identified in phase 1.
Details of each heuristic is described in the following subsections.

6.2.2. MinCompletion-MinCompletion (MM)
This heuristic is based on the concept from Algorithm E in [19].

In the MM heuristic, the performance objective of each phase is to
minimize the expected completion time. At each mapping event
t(k), MM first copies the batch to a separate queue Q and finds the
machine j that provides the minimum expected completion time
for each task in Q (phase 1). From this set of task-machine pairs,
MM selects the pair that provides the overall minimum expected
completion time and provisionally assigns the task to its selected
machine (phase 2).

The process is repeated until all of the tasks in Q have been
provisionally assigned. To complete the mapping event, MM
iterates through all machine queues and for each queue where the
current size is less than L (i.e., queue-size limit), tasks are moved
from the provisional assignment to the available machine queue
until the number of tasks in themachine queue is equal to the limit.
The stopping criteria for the procedure occurs when there are no
tasks left in Q , there are no remaining machines with free slots, or
there are no tasks that get assigned to a machine with a free slot.

6.2.3. MinCompletion-MaxUrgency (MMU)
TheMinCompletion-MaxUrgency (MMU) heuristic is also a two

phase greedy heuristic that operates using expected execution
times and limits the number of tasks pending completion on
each machine to L. We define task urgency as the inverse of the
difference between the expected completion time for the task and
its deadline. Effectively,MMUemphasizes allocating taskswith the
minimum slack. That is, given E[C(rij)] the expected completion
time for the task ri onmachine j, the urgency of task ri is defined as

1
δi − E[C(rij)]

. (7)

In the first phase of MMU, the heuristic identifies the minimum
expected completion time machine for each task in the batch B(k).
In the second phase, based on the task completion times found in
phase 1, MMU selects the assignment whose task urgency is the
greatest, i.e., has the smallest slack. The process is repeated as with
MM.

6.2.4. MinCompletion-SoonestDeadline (MSD)
This heuristic is a variation of the two phase greedy heuristic

where we favor tasks with the soonest deadline. In the first phase,
the heuristic selects the machine that provides the minimum
expected completion time for each task.

In the second phase, from the list of potential task-machine
pairs found in the first phase, the heuristic makes the provisional
assignment for the task that has the soonest deadline. In the
event that two tasks have the same deadline and require the
same machine, ties are broken by assigning the task that has the
minimum expected completion time. The process is repeated as
with MM.



104 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
Fig. 5. Procedure for the MOC heuristic.

6.2.5. Maximum on-time completions (MOC)
This heuristicworks based on the robustnessmeasure proposed

in this study. The procedure of MOC is shown in Fig. 5. In the first
step of this heuristic, pending tasks in the machine queues whose
probability of meeting their individual deadlines are less than a
threshold α are dropped. In the second step, unmapped tasks that
will miss their deadlines by the minimum time needed to stage
their input data to any of the machines are dropped.

In the third step, for each unmapped task, the machine that
maximizes robustness (ρ(k)) is identified. Then, for each machine j
where the number ofmapped tasks is less than L, MOC identifies all
the tasks within the ϵ distance from the maximum robustness for
thatmachine. From the shortlisted tasks for eachmachine, the task
with theminimumcompletion time is assigned to themachine and
the remaining tasks are returned to B(k). The third step continues
until either there are no tasks left in B(k) or there are no remaining
machines with free slots.

To find the proper choice for α, we evaluated the performance
of MOC with various values. We noticed that when the value of
α equals to 0.2, MOC has its best performance. Lower values of
α do not perform well specifically when the machine queue-size
is long. Also, higher values of α leads to dropping tasks that can
be completed before their deadlines. The value of ϵ equals to
0.05 results in the best performance of the MOC heuristic. Higher
values of ϵ lead tomapping tasks with low probabilities of meeting
deadline.

7. Simulation setup

7.1. Overview

We perform our simulations on a limited set of machines
to constrain the simulation execution times. However, our
proposed methods are applicable on any larger set of machines.
Our simulation environment consisted of eight machines (i.e.,
M = 8) that collectively exhibited ‘‘inconsistent’’ heterogeneous
performance [6]; e.g., machine Amay be better than machine B for
task 1 but not for task 2.

In our simulation study, the task execution time distributions
are assumed to be unimodal. The distributions were generated
based on the Gamma distribution where the mean of the
Gamma distribution was set based on execution time results
for the 12 SPECint benchmark applications for a sample set
of eight machines.2 Using these distributions, we generated
500 random sample execution times for each application on
each machine [4] where the scale parameter of each Gamma
distribution was selected uniformly at random from the range
[1,20]. After generating the sample execution times, we applied a
histogram [41] to the result to produce probability mass functions
that approximate the original probability density functions—one
for each application on eachmachine. Each benchmark application
served as a model for each task type to be executed by the
system, creating an eight machine by twelve task type matrix
of execution time pmfs. To simulate an HC system in a realistic
manner, we considered a heterogeneous rate for staging the tasks’
input data from a shared storage to each machine. Similar to [39],
we simulated the data staging rate to each machine based on a
Gamma distribution with mean = 0.68 Gbps and Coefficient of
Variation (CV ) equal to 0.1.

7.2. Generating workload

The workload arrival rates for the trials are generated based
on the systems investigated by the Extreme Scale Systems Center
(ESSC) at Oak Ridge National Laboratory (ORNL) [23,21]. Each trial
includes a workload of tasks during a 10,000 time-unit period. We
model an oversubscribed system that receives approximately 1200
tasks during the period.

For performance evaluation, we need to analyze the statistical
data based on an oversubscribed system. However, at the
beginning and at the end of the simulation, the queues are not full
and the results do not represent the condition of an oversubscribed
system. Therefore, for the statistical analysis of the results, we
ignore 100 tasks from the beginning and the end of the workload
trials, and the remaining 1000 tasks are utilized for statistical
analysis and plotting graphs.

For generating task arrivals, we start by finding themean arrival
rate of tasks for every task type by sampling from a Gaussian
distribution. The mean for this distribution is determined by
dividing the desired number of tasks by the number of task types
and the variance is 10% of themean. Then, themean arrival rate for
each task type is determined by dividing the estimated number of
tasks of that type into the number of time-units. The actual number
and arrival times of tasks in each task type is generated by sampling
from the arrival rate of that task type.

To capture the bursty behavior of user demand, we consider
an arrival pattern that includes two types of intervals, namely,
baseline and burst intervals. Comparing to the burst intervals, the
baseline intervals have a lower arrival rate and last for a longer
duration, while burst intervals are shorter but have higher arrival
rate. The mean arrival rate for each task type is modified in each
interval to generate the actual arrival rate during that interval. For
each baseline interval, the arrival rate is determined bymultiplying
the mean arrival rate with a number uniformly sampled from the
range [0.5, 0.75]. To obtain the arrival rate during a burst period, the
mean arrival rate is multiplied with a uniformly sampled number
from the range [1.25, 1.5]. The duration of each baseline interval is
obtained by uniformly sampling from the range [180, 300] time-
units, whereas for each burst interval the range is [30, 90] time-
units. Fig. 6 demonstrates an instance of arrival rate patterns for

2 The eight machines chosen to compose the HC suite in our simulation trials
were as follows: Dell Precision 380 3 GHz Pentium Extreme Edition, Apple iMac
2 GHz Intel Core Duo, Apple XServe 2 GHz Intel Core Duo, IBM System X 3455 AMD
Opteron 2347, Shuttle SN25P AMD Athlon 64 FX-60, IBM System P 570 4.7 GHz,
SunFire 3800, and IBM BladeCenter HS21XM.



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 105
Fig. 6. Arrival rate patterns with baseline and burst intervals for four task types.

four task types with their baseline and burst intervals during the
first 1400 time units.

Based on the arrival rate pattern generated for every task
type, the arrival time of the tasks of that type can be generated.
More specifically, arrival times for tasks of a particular type are
generated by sampling from an exponential distribution with
the rate parameter equivalent to the arrival rate during different
intervals. This means that during intervals with higher arrival
rate (i.e., burst intervals) the sampled time from the exponential
distribution is lower, hence, the arrival time of the next task is
closer to the current task’s arrival time.

The deadline for a given task i is generated by summing the
arrival time of the task, denoted arr i, with the average execution
time of the task type on allmachines, denoted avg i, and the average
execution time of all task types on all machines, denoted avgall. We
also consider a coefficient β for avgall that enables us to loosen or
tighten the generated deadlines in the workload trials. Therefore,
the deadline of a given task i is calculated based on Eq. (8).

δi = arr i + avg i + (β · avgall). (8)

The reason that we generate the tasks deadlines in this way is
to provide a fair amount of time for each task to meet its deadline.
For that purpose, in addition to the task average execution time,
we provide an extra (slack) time to cover the waiting times in the
queues, which can be significant in an oversubscribed system. To
provide the same slack time to all tasks, the average execution
time of all task types on all machines are included in generating
the deadlines. In the experiments, the default value of β is 1. In
addition, in Section 8.3, we investigate the impact of deadline
tightness on different mapping heuristics with varying the value
of β .

We expect that the size of input data for each task (e.g., size
of images in an image processing system) follows a Gaussian
distribution. Therefore, in workload trials, size of input data for
each task is generated by sampling from a Gaussian distribution.
For simulation, we have modified tasks’ mean input data size to
investigate the impact of this factor on the performance of different
resource allocation heuristics. In each trial, the variance of the
normal distribution for generating tasks’ input data size is 10% of
the mean.

To study the behavior of different resource allocation heuristics
comprehensively, we investigate the impact of different param-
eters on the performance of resource allocation heuristics. More
specifically, we investigate the impact of varying queue-size limits,
tasks input data size, and the over-subscription level in this envi-
ronment.

For all experiments we use the same task type to machine
execution time pmf, the same arrival rate pattern, and the
same deadline for each type (relative to the task’s arrival time).
Each experiment in this simulation study is carried out on 100
independent workload trials and the average and 95% Confidence
Interval of the results are reported. Each simulation trial includes a
new workload of tasks with different task arrivals, task types, task
required input data size, and task deadlines.

8. Results and analysis

8.1. Identifying optimal machine queue-size limit

In this experiment, we investigate the proper machine queue-
size limit (L) for the batch mode resource allocation. For this
purpose, we examine howdifferent batchmode heuristics perform
when the size of machine queues varies. We define queue-size as
the pending tasks in a machine and the currently executing task
in that machine. For instance, when the machine queue-size in a
system is limited to 2, it means that in each machine queue there
can be an executing task and a pending task waiting for execution
on that machine.

We compare the performance of different heuristics when the
machines’ queue-sizes are short (queue-size limits are 2 and 4)
against when the queue-sizes are large (queue-size limit is 50). It
is worth noting that we have evaluated other queue-sizes between
these extremes to confirm our observations. However, for the sake
of better presentation, we plot simulation results for the three
mentioned queue-size limits. Moreover, we compare performance
of the immediate mode resource allocation heuristics, that have
unlimited machine queue-size, against the batch mode heuristics
with various machine queue-size limits.

In this experiment, the average size of a task’s input data is
64 MB and 1000 tasks are considered for the evaluation. Our
evaluationmetric in this experiment is the percentage of tasks that
are completed before their deadlines. Results of this experiment
for the scenario where the currently executing task cannot be
dropped is demonstrated in Fig. 7(a) and for the scenariowhere the
currently executing task is dropped as soon as itmisses its deadline
is demonstrated in Fig. 7(b).

In Fig. 7(a), we notice that, regardless of the queue-size
limit, both the immediate and batch modes heuristics based
on the defined stochastic robust measure (i.e., MR and MOC)
outperform the other heuristics. We also observe that, in general,
the performance of batch mode heuristics MOC and MM is better
than immediate mode heuristics. For instance, the performance of
MOC when for machine queue-size 2 is on average 78% whereas
the performance of MR is on average 49%. This is because batch
mode resource allocation heuristics work on a group of tasks and
select the best allocations. Furthermore, unallocated tasks of the
batch can be re-mapped during the nextmapping event alongwith
the new arriving tasks. This provides an opportunity for the new
arriving tasks to be allocated earlier than the previously arriving
tasks. Whereas, in the immediate mode, the new arriving tasks
always have to wait in the machine queues for tasks that have
arrived earlier to exit the system.

Both Fig. 7(a) and (b) demonstrate that shorter machine queue-
sizes in MOC and MM lead to more tasks completed on time. The
reason is that, when machine queue-size is short, there is less
compound uncertainty in tasks completion time and, therefore,
heuristics can make better allocation decisions. In contrast, we
notice a slight reduction in the performance of MMU and MSD
whenmachine queue-size is larger (e.g., when queue-size limit is 4
or 50). This is because these heuristics tend to map tasks with fast-
approaching deadlines that are likely tomiss their deadlines and be
dropped. Therefore, when the queue-size is larger, these heuristics
have the opportunity to map more tasks in a machine queue and
if some of them are dropped (due to missing their deadlines) there
are other ready-to-run tasks in the machine queue that can start
execution.



106 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
(a) Executing task must be completed and cannot be dropped.

(b) Executing task is dropped as soon as misses its deadline.

Fig. 7. Percentage of tasks completed on time when immediate and batch
mode resource allocation heuristics with different machine queue-size limits are
considered. The horizontal axis shows the different machine queue-size limits
evaluated. In this experiment, the average task’s input data size is 64 MB and 1000
tasks are considered for the evaluation. Results are averaged over 100 runs and 95%
confidence interval of the results are reported.

In Fig. 7(a) and (b), we notice that when queue-size limit
is 50, there is no statistically significant difference between the
percentage of tasks that are completed on timeusing theMM,MSD,
and MMU batch mode heuristics (also called baseline heuristics).
The performance of the baseline heuristics for queue-size limit
50 is on average approximately 40% and 65% in Fig. 7(a) and
(b), respectively. The reason is that when the queue-size is large,
the compound uncertainty in tasks execution times increases and
neutralizes the impact of resource allocation heuristics.

In Fig. 7(b), we notice that the performance of immediate
and most of batch mode resource allocation heuristics have
remarkably increased comparing to the corresponding case in
Fig. 7(a). However, performance of MOC in Fig. 7(b) does not vary
significantly in comparison with Fig. 7(a). The reason is that MOC
initially drops tasks that cannotmeet their deadlines and tasks that
are allocated to machines are able to complete their executions
before their deadlines. We can conclude that dropping of the
executing tasks that havemissed their deadlines, in general, favors
the baseline heuristics that do not consider stochasticity in tasks
execution times in their decisions. In fact, dropping of an executing
task that has missed its deadline alleviates the impact of improper
allocation decisions in the baseline resource allocation heuristics.

For further analysis of the experiment results, in addition
to the percentage of tasks that meet their deadlines, we are
interested to see how close to their deadlines the tasks are
completed in different mapping heuristics. We observed that, in
comparison with other heuristics, MOC and MM complete tasks
far earlier than their deadlines, on average approximately 80 and
75 time units, respectively. In the case of MOC, the reason is
that it maps tasks that have the highest probabilities of meeting
their deadlines and therefore it is expected that they complete
earlier than their deadlines. Similarly, the MM heuristic prioritizes
tasks with minimum completion time, which leads to completing
tasks before their deadlines. There is no statistically significant
difference between other heuristics from this perspective. Also, in
the scenario where executing tasks cannot be dropped, for those
tasks that miss their deadlines, we analyze how much after their
deadlines the tasks are completed. We observed that heuristics
that function based on the robustness measure complete the tasks
the earliest.

We analyzed the ratio of tasks thatmeet their deadlines for each
task type. The results show that there is no statistically significant
difference in the percentage of tasks that meet their deadlines
in each task type. For instance, in the MOC heuristic, shown in
Fig. 7(b), when queue size is 2, between 70% and 82% of each task
type meets the deadline. The same patterns occur in the other
heuristics. The reason is that, the mapping heuristics we provide
in this work do not discriminate tasks based on their types.

8.2. Impact of varying input data size and connection speed

In this experiment, we demonstrate the impact of tasks input
data size on the performance of various resource allocation
heuristics. To this end, we generated workload trials where the
average tasks input data sizes vary from 8 to 1024 MB. In this
experiment, the machine queue-size is 2, and 1000 tasks are
considered for the evaluation.

Results of this experiment for the scenario where the currently
executing task cannot be dropped is demonstrated in Fig. 8(a) and
for the scenario where the currently executing task is dropped
as soon as it misses its deadline is demonstrated in Fig. 8(b).
According to Fig. 8(a) and (b), as the average size of tasks’ input
data increases, in general, the performance of all heuristics in the
immediate and batch mode decreases. For instance, performance
of the MM heuristic in Fig. 8(a) when the average task data size
is 8 MB is on average 65% which drops to on average 17.6% when
the average data size is 1024 MB. The reason for the performance
drop is that, when the average tasks’ input data size increases, a
machine becomes idle while data staging for a taskmapped to that
machine has not been completed. To avoid such performance drop,
we repeated the experiment with larger machine queue-sizes of
4 and 5 to pre-stage input data for more tasks. However, we did
not observe any improvement in the performance of the heuristics.
The reason is that the impact of performance degradation resulting
from larger queue-sizes is more influential than the improvement
resulting from pre-staging input data for more tasks.

We observe that the performance of MMU and MSD has
remarkably dropped in both Fig. 8(a) and (b), when the average
tasks’ input data size is 512 or 1024 MB. The reason is that
these heuristics naturally tend to map tasks with fast-approaching
deadlines that have a high probability of being dropped. Therefore,
machines remain idle and newmapped tasks have to wait for their
input data to be staged. This delay in execution leads to missing
tasks deadlines, specifically when tasks’ input data sizes are large.

In Fig. 8(a) and (b), we also can notice that MOC outperforms
other heuristics. Even when the average task’s input data size
is 1024 MB, the MOC heuristic can complete on average 22.3%
of the tasks on time, which is moderately better than MM, and
significantly better than the other heuristics.

To analyze the impact of connection speed in the HC system on
the performance of themapping heuristics, in another experiment,
we vary the average connection speed of the HC system from
0.68 to 10 Gbps. Results of the experiment are averaged over 100
runs and are depicted in Fig. 9. In this figure, the horizontal axis
shows different connection speeds and the vertical axis shows the
performance of each heuristic (i.e., the percentage of tasks that
meet their deadlines). In this experiment, 1000 tasks are evaluated,



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 107
(a) Executing task must be completed and cannot be dropped. (b) Executing task is dropped as soon as it misses its deadline.

Fig. 8. Percentage of tasks completed on timewhen immediate and batchmode resource allocation heuristics are applied and average size of tasks’ required input data vary.
The horizontal axis shows the different input data sizes evaluated. In this experiment, the machine queue-size limit is 2 and 1000 tasks are considered for the evaluation.
Results are averaged over 100 runs.
(a) Executing task must be completed and cannot be dropped. (b) Executing task is dropped as soon as it misses its deadline.

Fig. 9. Percentage of tasks completed on timewhen immediate and batchmode resource allocation heuristics are applied and the average connection speed in theHC system
varies. The horizontal axis shows the different connection speeds evaluated and the vertical axis shows the percentage of tasks that complete on time. In this experiment,
the machine queue-size limit is 2, the tasks’ average input data size is 1024 MB, and 1000 tasks are considered for the evaluation. Results are averaged over 100 runs.
the average input data for each task is 1024 MB, and the machine
queue size is 2.

In both Fig. 9(a) and (b), we observe that as the average
connection speed increases, the performance of the heuristics
improves. For instance, in Fig. 9(a), the performance of MOC
increases from 20% when the connection speed is 0.68 Gbps to
approximately 75% when the connection speed is 10 Gbps. The
reason is that when there is a higher connection speed it takes
less time for tasks to stage their required data into the allocated
machines. Therefore, the execution of the tasks is not delayed. The
results indicate the impact of data dependency on the performance
of HC systems, specifically when the connection speed is low. In
particular, we can see that the MOC and MM heuristics perform
significantly better than other heuristics, even in the presence of
low connection speed. The reason is that these heuristics allocate
tasks that have sufficient time to meet their deadlines. Thus, even
in an HC system with a low connection speed, some tasks can
complete before their deadlines.

8.3. Impact of the over-subscription level

In this experiment, we evaluate the impact of varying the
over-subscription level on the performance of different resource
allocation heuristics. To vary the over-subscription level of the
system, we modified the number of tasks that arrive during the
same simulation period in the workload trials—from 500 to 2500
tasks as shown in Fig. 10. In this experiment, the average task input
data size is 64 MB and the machine queue-size limit is 2.

Results of this experiment for the scenario where the currently
executing task cannot be dropped are demonstrated in Fig. 10(a)
and for the scenario where the currently executing task is dropped
as soon as it misses its deadline are demonstrated in Fig. 10(b).
According to Fig. 10(a), MOC generally outperforms other batch
and immediate mode heuristics. The only exception is when the
HC system receives 500 tasks (i.e., when the over-subscription
level is very low). In this case, the immediate mode heuristics
(except MEET) perform as efficient as the batch mode heuristics.
Specifically, when the system receives 500 tasks, both MOC and
MECT lead to on average 95.7% performance. However, as the
system becomes more oversubscribed (when there are 1000 tasks
and more) the performance of the immediate mode heuristics
drops significantly in comparison to the MOC and MM heuristics.
For instance, in Fig. 10(a), when the system receives 2500 tasks,
MOC performance is on average 40.7% whereas the performance
of MECT drops to on average 1%.

The reason for the performance drop in the immediate mode
heuristics is that, as the over-subscription level increases, more
tasks are queued in each machine, thus, the execution of arriving
tasks is delayed and ultimately theymiss their deadlines. This drop
in the performance shows that the immediate mode heuristics
cannot cope with the increase in the over-subscription level. We
can conclude that when the system is not oversubscribed, an
efficient immediate mode heuristic (e.g., MR or MECT) can provide
an acceptable level of performance without having the complexity
of batch mode resource allocation heuristics.

In Fig. 10(a), we notice that when there are more than 1000
tasks in the system, MOC provides a better performance in
comparison to the other batch or immediate mode heuristics.
For instance, when there are 1500 tasks in the system, the MOC
performance is on average 60% whereas the performance of MM is



108 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
(a) Executing task must be completed and cannot be dropped. (b) Executing task is dropped as soon as it misses its deadline.

Fig. 10. Percentage of tasks completed on time using immediate and batch mode resource allocation heuristics when the over-subscription level varies in the system. The
horizontal axis shows the different number of tasks evaluated. In this experiment, the average task’s input data size is 64 MB and the machine queue-size limit is 2. Results
are averaged over 100 runs and 95% confidence interval of the results are reported.
(a) Executing task must be completed and cannot be dropped. (b) Executing task is dropped as soon as it misses its deadline.

Fig. 11. Percentage of tasks completed on time when immediate and batch mode resource allocation heuristics are applied and the deadline of tasks varies. Higher values
of β , in the horizontal axis, shows looser deadlines for tasks. In this experiment, the machine queue-size limit is 2, the tasks’ average input data size is 64 MB, and 1000 tasks
are considered for the evaluation. Results are averaged over 100 runs.
48%. This can be attributed to the fact that it tries to maximize the
stochastic robustnessmeasure. However, the reasonMMperforms
well is that it prioritizes shorter tasks that complete more quickly.

In Fig. 10(b), we observe that when the over-subscription
level increases to 1500 tasks, performance of the MMU and
MSD heuristics decreases sharply. The reason for this decrease
is that when the over-subscription level of the HC system is
high, allocating urgent tasks (i.e., tasks with tight deadlines) that
cannot complete on time leads to long waiting times and missing
deadlines for other tasks that are inmachine queues or in the batch.
However, in Fig. 10(b), we observe that the performance decrease
of the MMU and MSD heuristics is not as sharp as Fig. 10(a). This
can be attributed to the fact that the currently executing tasks that
miss their deadlines are dropped and, therefore, the tasks that are
waiting either in the unmapped list or in the machine queues have
shorter waiting times and are able to complete on time. We can
conclude that the urgency of tasks is not an appropriate measure
for resource allocation, particularly in circumstances that the
over-subscription level of the HC system is high.

To analyze the performance of the mapping heuristics in an
oversubscribedHC system further, we conduct an experimentwith
various deadlines for tasks. To generate different deadlines for
tasks in theworkload trials, we vary the value of theβ parameter in
Eq. (8) (see Section 7.2 formore details). As shown in the horizontal
axis of Fig. 11, the value of β varies from 0.1 to 2. The vertical axis
shows the percentage of tasks that complete before their deadlines.
In this experiment, 1000 tasks are evaluated, the average task input
data size is 64 MB, and the machine queue-size limit is 2.

As we can see in Fig. 11, when the tasks deadlines increase
(i.e., the value of β increases), the performance of the mapping
heuristics rises, in general. We also observe in both Fig. 11(a)
and (b) that the performance difference between the two best
heuristics (MOC and MM) and the other heuristics becomes more
significant when the deadline is loose. The reason is that when
tasks have tight deadlines, regardless of the mapping heuristic
utilized, they cannot complete before their deadlines. However,
when thedeadlines are loose, the tasks havemore time to complete
before their deadlines, and the impact on the performance by
making efficient allocation decisions inmapping heuristics such as
MOC is more visible on the performance.

9. Conclusion and future work

In this paper, we considered the problem of dynamic resource
allocation in an oversubscribed heterogeneous computing system
with the goal of completing tasks before their individual deadlines
and being robust against stochasticity in task execution times. The
tasks are subject to individual hard deadlines and they are dropped
if they cannot meet their deadlines. For a currently executing task
that misses its deadline, we studied two scenarios: (a) it cannot be
dropped (i.e., has to complete its execution) and (b) the currently
executing task is dropped as soon as it misses its deadline.
We assumed that a distribution function is available for the
execution time of each task on each machine from historical data
or experimentation. We investigated immediate and batch mode
resource allocation schemes tomap arriving tasks tomachines.We
proposed methods to determine the stochastic completion times
in the presence of task dropping. Then, the stochastic completion
time was used to define a robustness measure to quantify the
performance of immediate and batch mode resource allocations.
The robustness measure was utilized by the resource allocation
heuristics that were proposed for the system.



M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 109
We observed that MOC, which is a batch mode heuristic that
operates based on the proposed robustness measure, statistically
outperforms other heuristics, specifically in circumstances where
the currently executing task cannot be dropped and has to
be completed. This heuristic can tolerate increases in the
tasks’ input data size and increase in the over-subscription
level better than other evaluated heuristics. In addition, we
noticed that the immediate mode heuristics have acceptable
performance when the over-subscription level is low. Therefore,
in such circumstances, batch mode resource allocation is not
recommended. However, the immediatemode heuristics could not
tolerate an increase in the over-subscription level compared to the
MOC and MM heuristics. We also concluded that the performance
of the MOC and MM heuristics have an inverse relation with the
machine queue-size in batch mode. Therefore, we chose to limit
the machine queue-size to the minimum (one pending task and
one task executing) in each machine.

In the future, we plan to work on resource allocation heuristics
that consider the possibility of delaying the allocation of tasks
to find better allocations later. Also, we are interested in
implementing the stochastic robust resource allocation schemes
in a real system. However, we do not have such infrastructure
available at the time of this study.

Acknowledgments

The authors thank Mark Oxley and Ryan Friese for their useful
comments on this work. This research was supported by the
National Science Foundation (NSF) under grant numbers CNS-
0905399, CNS-0615170, ECCS-0700559, and CCF-1302693, and by
the Colorado State University George T. Abell Endowment. This
research used the CSU ISTeC Cray System supported by NSF Grant
CNS-0923386.

Preliminary versions of portions of thismaterialwere presented
at the IEEE International Parallel and Distributed Processing Sym-
posium [36], International Conference on Parallel Processing [37],
and International Conference on Parallel and Distributed Process-
ing Techniques and Applications [35].

References

[1] I. Al-Azzoni, D.G. Down, Linear programming-based affinity scheduling of
independent tasks on heterogeneous computing systems, IEEE Trans. Parallel
Distrib. Syst. 19 (12) (2008) 1671–1682.

[2] I. Al-Azzoni, D.G. Down, Dynamic scheduling for heterogeneous desktop grids,
J. Parallel Distrib. Comput. 70 (12) (2010) 1231–1240.

[3] S. Ali, A.A. Maciejewski, H.J. Siegel, J. Kim, Measuring the robustness of a
resource allocation, IEEE Trans. Parallel Distrib. Syst. 15 (7) (2004) 630–641.

[4] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, S. Ali, Representing task and
machine heterogeneities for heterogeneous computing systems, Tamkang J.
Sci. Eng. 3 (3) (2000) 195–208. Special Tamkang University 50th Anniversary
Issue, invited.

[5] L. Bölöni, D.C. Marinescu, Robust scheduling of metaprograms, J. Sched. 5 (5)
(2002) 395–412.

[6] T.D. Braun, H.J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A.I. Reuther, J.P.
Robertson, M.D. Theys, B. Yao, D. Hensgen, R.F. Freund, A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems, J. Parallel Distrib. Comput. 61 (6) (2001)
810–837.

[7] L.-C. Canon, E. Jeannot, Evaluation and optimization of the robustness of DAG
schedules in heterogeneous environments, IEEE Trans. Parallel Distrib. Syst. 21
(4) (2010) 532–546.

[8] J. Cao, K. Li, I. Stojmenovic, Optimal power allocation and load distribution for
multiple heterogeneous multicore server processors across clouds and data
centers, IEEE Trans. Comput. 63 (1) (2014) 45–58.

[9] Y. Chen, H.C. Liao, T. Tsai, Online real-time task scheduling in heterogeneous
multicore system-on-a-chip, IEEE Trans. Parallel Distrib. Syst. 24 (1) (2013)
118–130.

[10] E. Coffman, J. Bruno, Computer and Job-Shop Scheduling Theory, JohnWiley &
Sons, New York, NY, 1976.

[11] CSU Information Science and Technology Center. ISTeC CrayHigh Performance
Computing (HPC) System. http://istec.colostate.edu/activities/cray (accessed
21.12.14).
[12] C. Delimitrou, C. Kozyrakis, QoS-aware scheduling in heterogeneous datacen-
ters with Paragon, ACM Trans. Comput. Syst. 31 (4) (2013) 1–34.

[13] Digitalglobe Inc. http://www.digitalglobe.com (accessed 20.07.13).
[14] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, H.

Zhang, Understanding the impact of video quality on user engagement, in:
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM’11, 2011,
pp. 362–373.

[15] A. Dogan, F. Ozguner, Genetic algorithm based scheduling of meta-tasks
with stochastic execution times in heterogeneous computing systems, Cluster
Comput. 7 (2) (2004) 177–190.

[16] L.V. Fulton, L.S. Lasdon, R.R. McDaniel, M.N. Coppola, Two-stage stochastic
optimization for the allocation of medical assets in steady-state combat
operations, J. Def.Model. Simul.: Appl.Methodol. Technol. 7 (2) (2010) 89–102.

[17] N. Guan, W. Yi, Q. Deng, Z. Gu, G. Yu, Schedulability analysis for non-
preemptive fixed-priority multiprocessor scheduling, J. Syst. Archit. 57 (5)
(2011) 536–546.

[18] S. Hengstler, D. Prashanth, S. Fong, H. Aghajan, Mesheye: A hybrid-resolution
smart camera mote for applications in distributed intelligent surveillance, in:
Proceedings of the 6th International Conference on Information Processing in
Sensor Networks, IPSN’07, 2007, pp. 360–369.

[19] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on
non-identical processors, J. ACM 24 (2) (1977) 280–289.

[20] K. Kaya, B. Uçar, C. Aykanat, Heuristics for scheduling file-sharing tasks
on heterogeneous systems with distributed repositories, J. Parallel Distrib.
Comput. 67 (3) (2007) 271–285.

[21] B. Khemka, R. Friese, L.D. Briceño, H.J. Siegel, A.A. Maciejewski, G.A. Koenig,
C. Groer, G. Okonski, M. Hilton, R. Rambharos, S. Poole, Utility functions
and resource management in an oversubscribed heterogeneous computing
environment, IEEE Trans. Comput. 64 (8) (2015) 2394–2407.

[22] B. Khemka, R. Friese, S. Pasricha, A.A. Maciejewski, H.J. Siegel, G.A. Koenig, S.
Powers, M. Hilton, R. Rambharos, S. Poole, Utility driven dynamic resource
management in an oversubscribed energy-constrainedheterogeneous system,
in: Proceedings of the 28th IEEE International Parallel &Distributed Processing
SymposiumWorkshops, IPDPSW’14, 2014, pp. 58–67.

[23] B. Khemka, R. Friese, S. Pasricha, A.A. Maciejewski, H.J. Siegel, G.A.
Koenig, S. Powers, M. Hilton, R. Rambharos, S. Poole, Utility maximizing
dynamic resource management in an oversubscribed energy-constrained
heterogeneous computing system, Sustain. Comput.: Inform. Syst. 5 (2015)
14–30.

[24] A. Kumar, R. Shorey, Performance analysis and scheduling of stochastic fork-
join jobs in a multicomputer system, IEEE Trans. Parallel Distrib. Syst. 4 (10)
(1993) 1147–1164.

[25] Y. Lee, A.Y. Zomaya, A novel state transition method for metaheuristic-based
scheduling in heterogeneous computing systems, IEEE Trans. Parallel Distrib.
Syst. 19 (9) (2008) 1215–1223.

[26] Y.C. Lee, A.Y. Zomaya, Rescheduling for reliable job completion with the
support of clouds, Future Gener. Comput. Syst. 26 (8) (2010) 1192–1199.

[27] A. Leon-Garcia, Probability & Random Processes for Electrical Engineering,
Addison Wesley, Reading, MA, 1989.

[28] Y.A. Li, J.K. Antonio, H.J. Siegel, M. Tan, D.W. Watson, Determining the
execution time distribution for a data parallel program in a heterogeneous
computing environment, J. Parallel Distrib. Comput. 44 (1) (1997) 35–52.

[29] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.

[30] M.Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamicmapping of
a class of independent tasks onto heterogeneous computing systems, J. Parallel
Distrib. Comput. 59 (2) (1999) 107–131.

[31] X. Qin, H. Jiang, A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems, Parallel Comput. 32 (5)
(2006) 331–356.

[32] G. Sharp, N. Kandasamy, H. Singh, M. Folkert, GPU-based streaming
architectures for fast cone-beam CT image reconstruction and demons
deformable registration, Phys. Med. Biol. 52 (19) (2007) 5771–5783.

[33] V. Shestak, J. Smith, A.A. Maciejewski, H.J. Siegel, Stochastic robustness metric
and its use for static resource allocations, J. Parallel Distrib. Comput. 68 (8)
(2008) 1157–1173.

[34] R.F.d. Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community resources for
enabling research in distributed scientific workflows, in: Proceedings of the
10th IEEE International Conference on e-Science, 2014, pp. 177–184.

[35] J. Smith, J. Apodaca, A.A. Maciejewski, H.J. Siegel, Batchmode stochastic-based
robust dynamic resource allocation in a heterogeneous computing system, in:
Proceedings of the 16th International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA’10, 2010, pp. 263–269.

[36] J. Smith, L. Briceño, A.A. Maciejewski, H.J. Siegel, T. Renner, V. Shestak, J.
Ladd, A. Sutton, D. Janovy, S. Govindasamy, A. Alqudah, R. Dewri, P. Prakash,
Measuring the robustness of resource allocations in a stochastic dynamic
environment, in: Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium, IPDPS’07, 2007, pp. 1–10.

[37] J. Smith, E.K.P. Chong, A.A. Maciejewski, H.J. Siegel, Stochastic-based robust
dynamic resource allocation in a heterogeneous computing system, in:
Proceedings of the 38th International Conference on Parallel Processing,
ICPP’09, 2009, pp. 188–195.

http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref1
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref2
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref3
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref4
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref5
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref6
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref7
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref8
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref9
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref10
http://istec.colostate.edu/activities/cray
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref12
http://www.digitalglobe.com
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref15
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref16
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref17
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref19
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref20
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref21
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref23
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref24
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref25
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref26
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref27
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref28
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref29
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref30
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref31
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref32
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref33


110 M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111
[38] J. Smith, V. Shestak, H.J. Siegel, S. Price, L. Teklits, P. Sugavanam, Robust
resource allocation in a cluster based imaging system, Parallel Comput. 35 (7)
(2009) 389–400.

[39] B. Sotomayor, R.S.Montero, I.M. Llorente, I. Foster, Resource leasing and the art
of suspending virtual machines, in: Proceedings of the 11th IEEE International
Conference on High Performance Computing and Communications, HPCC’09,
2009, pp. 59–68.

[40] G. Teodoro, T. Pan, T.M. Kurc, J. Kong, L.A.D. Cooper, N. Podhorszki, S.
Klasky, J.H. Saltz, High-throughput analysis of large microscopy image
datasets on CPU–GPU cluster platforms, in: Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium, IPDPS’13, 2013,
pp. 103–114.

[41] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference,
Springer Science+Business Media, New York, NY, 2005.

[42] Y. Xu, K. Li, T.T. Khac, M. Qiu, A multiple priority queueing genetic algorithm
for task scheduling on heterogeneous computing systems, in: Proceedings of
the 14th IEEE International Conference on High Performance Computing and
Communication, HPCC’12, 2012, pp. 639–646.

[43] V. Yarmolenko, J. Duato, D.K. Panda, P. Sadayappan, Characterization and
enhancement of dynamic mapping heuristics for heterogeneous systems, in:
Proceedings of the International Workshop on Parallel Processing, ICPP’00,
2000, pp. 437–444.

[44] B.D. Young, J. Apodaca, L.D. Briceño, J. Smith, S. Pasricha, A.A. Maciejewski,
H.J. Siegel, B. Khemka, S. Bahirat, A. Ramirez, Y. Zou, Deadline and energy
constrained dynamic resource allocation in a heterogeneous computing
environment, J. Supercomput. 63 (2) (2013) 326–347.

Mohsen Amini Salehi received his Ph.D. in Computing
and Information Systems from Melbourne University,
Australia, in 2012. He is currently an Assistant Professor
at the School of Computing and Informatics at University
of Louisiana Lafayette, Louisiana, USA. He is also the
director of High Performance Cloud Computing (HPCC)
laboratory within the school. Since 2004, he has worked
on different aspects of Distributed and Cloud computing
including heterogeneity, load balancing, virtualization,
resource allocation, energy-efficiency, and security. Hehas
more than 30 peer reviewed publications in these areas.

His complete vita is available at: http://www.cacs.louisiana.edu/~amini/.

Jay Smith co-founded Webscale Networks in 2012 and
currently serves as the Chief Technology Officer of the
Company. Jay received his Ph.D. in Electrical and Computer
Engineering from Colorado State University in 2008. Jay
has co-authored over 30 peer reviewed articles in the
area of parallel and distributed computing systems. In
addition to his academic publications, while at I.B.M., Jay
received over 20 patents and numerous corporate awards
for the quality of those patents. Jay left I.B.M. as a Master
Inventor in 2008 to focus on High Performance Computing
at DigitalGlobe. There, Jay pioneered the application of

GPGPU processing within DigitalGlobe. Jay’s research interests include high
performance computing and resource management. He is a member of both the
IEEE and the ACM.

Anthony A. Maciejewski received the BSEE, M.S., and
Ph.D. degrees from The Ohio State University in 1982,
1984, and 1987. From 1988 to 2001 he was a professor
of Electrical and Computer Engineering at Purdue Uni-
versity, West Lafayette. He is currently a Professor and
Department Head of Electrical and Computer Engineer-
ing at Colorado State University. He is a Fellow of the
IEEE,with research interests that include robotics and high
performance computing. A complete vita is available at:
http://www.engr.colostate.edu/~aam.

Howard Jay (‘‘H.J.’’) Siegel has been the Abell Endowed
Chair Distinguished Professor of Electrical and Computer
Engineering at Colorado State University (CSU) since 2001,
where he is also a Professor of Computer Science. From
1976 to 2001, he was a professor at Purdue University.
Prof. Siegel is a Fellow of the IEEE and a Fellow of the
ACM.He received two B.S. degrees from theMassachusetts
Institute of Technology (MIT), and the M.A., M.S.E., and
Ph.D. degrees from Princeton University. He has co-
authored over 420 technical papers, which have been
cited over 15,000 times. He has consulted for industry and

government. For more information, please see www.engr.colostate.edu/~hj.
Edwin K.P. Chong received the B.E. degree with First Class
Honors from the University of Adelaide, South Australia, in
1987; and the M.A. and Ph.D. degrees in 1989 and 1991,
respectively, both from Princeton University, where he
held an IBM Fellowship. He joined the School of Electrical
and Computer Engineering at Purdue University in 1991,
where he was named a University Faculty Scholar in 1999.
Since August 2001, he has been a Professor of Electrical
and Computer Engineering and Professor of Mathematics
at Colorado State University. He is an IEEE Fellow and
received a Distinguished Member Award in 2010.

Jonathan Apodaca is an undergraduate student at Col-
orado State University pursuing a Bachelors degree in
Computer Science. His specific interests range from scal-
able Web-Design to compiler structure

Luis Diego Briceño received the B.S. degree in electrical
and electronic engineering from the university of Costa
Rica, San Jose, and the Ph.D. degree in electrical and com-
puter engineering from Colorado State University, Fort
Collins, USA. His research interests include heterogeneous
parallel and distributed computing.

Vladimir Shestak received his Ph.D. from the Electrical
and Computer Engineering Department at Colorado State
University in 2008. His research interests include resource
managementwithin distributed computing systems, algo-
rithm parallelization, and computer network design and
optimization. During his academic career, he published
one book, five journal papers, and twelve conference pa-
pers. Over the last 15 years he has worked as an advisory
software engineer for high-tech industry leaders such as
Cisco, IBM and Ricoh. Vladimir has filed 12 US patents.

Joshua Ladd is the Director of High Performance Comput-
ing R&D at Mellanox Technologies where he is responsi-
ble for all aspects ofMellanox’s extreme-scalemiddleware
program. Prior to joining Mellanox, he was a research sci-
entist in the Computer Science and Mathematics Division
at Oak Ridge National Laboratory where he conducted ba-
sic research and software development of new tools and
algorithms that enable the most productive possible use
of current and emerging extreme scale high performance
computers. His research has resulted in several peer re-
viewed papers, an R&D100 award, and a high performance

collective communication middleware package, HCOLL. HCOLL is now a key en-
abling technology ofMellanox’s commercial HPCmiddleware and is utilized in pro-
duction on many of the world’s largest HPC systems. He received his B.S., M.S., and
Ph.D. in mathematics from Colorado State University in 2001, 2004, and 2008 re-
spectively.

Sudha Govindasamy is a Product Development Engineer
at Intel Corporation (Santa Clara, CA). In the past, she has
worked as a Product Test Engineer at Micron Technology
(Manassa, VA), where she developed and maintained
test programs for wafer level testing of products and
supporting internal and external groups on DOE to
improve yield and overall product performance. She holds
an M.S. degree in Electrical Engineering from Colorado
State University (Ft. Collins, CO) and a B.E. degree in
Electronics and Communication from Anna University
(Chennai, India).

http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref38
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref41
http://refhub.elsevier.com/S0743-7315(16)30073-9/sbref44
http://www.cacs.louisiana.edu/%7Eamini/
http://www.engr.colostate.edu/%7Eaam
http://www.engr.colostate.edu/%7Ehj


M. Amini Salehi et al. / J. Parallel Distrib. Comput. 97 (2016) 96–111 111
Dr. Amin Alqudah: Received His Bachelur degree from
Hijjawi College/Yarmouk University in 1999. Worked as
Lab instructor in Hijjawi College from 1999 till 2003.
Received his M.Sc. and Ph.D. degrees in Electrical and
Computer Engineering from the University of Colorado,
USA in 2005, and from Colorado State University, USA
in 2009, respectively. Worked from 2009 till 2015 as
an assistant professor with the Department of Computer
Engineering, Hijjawi Faculty for Engineering Technology,
Yarmouk University, Jordan. He is currently affiliated
with the college of engineering at Prince Sattam Bin

Abdulaziz University, KSA as an associate professor in the electrical engineering
department. His research interests include Image Processing, Neural Networks,
Machine Learning, adaptive signal processing, and many others. Dr Alqudah is a
member of IEEE.
Rinku Dewri is an Associate Professor of Computer
Science at University of Denver. He obtained his Ph.D.
in Computer Science from Colorado State University.
His current research interests are in privacy of data
sharing, privacy in mobile local search, privacy in clinical
informatics, security of enterprise networks, and multi-
criteria decision making. He is involved with the Colorado
Research Institute for Security and Privacy (CRISP) at DU.


	Stochastic-based robust dynamic resource allocation for independent tasks in a heterogeneous computing system
	Introduction
	System model and problem statement
	Related work
	Mathematical model
	Stochastic task completion time
	No task dropping
	Dropping pending tasks
	Dropping pending and executing tasks

	Calculating stochastic robustness

	Avoiding machine idling
	Heuristics
	Immediate mode heuristics
	Minimum expected completion time (MECT)
	Minimum expected execution time (MEET)
	 k -percent best (KPB)
	MaxRobust (MR)

	Batch mode heuristics
	Overview
	MinCompletion-MinCompletion (MM)
	MinCompletion-MaxUrgency (MMU)
	MinCompletion-SoonestDeadline (MSD)
	Maximum on-time completions (MOC)


	Simulation setup
	Overview
	Generating workload

	Results and analysis
	Identifying optimal machine queue-size limit
	Impact of varying input data size and connection speed
	Impact of the over-subscription level

	Conclusion and future work
	Acknowledgments
	References


