
Cost-Efficient Cloud-Based Video
Streaming Through Measuring

Hotness
Mahmoud Darwich†‡, Mohsen Amini Salehi‡, Ege Beyazit†,

Magdy Bayoumi†

†The Center for Advanced Computer Studies,
‡High Performance Cloud Computing (HPCC) Laboratory

School of Computing and Informatics
University of Louisiana at Lafayette, LA 70503, USA

Email: mdarwich@navajotech.edu, {amini, exb6143, mab0778}@louisiana.edu

Video streaming providers generally have to store several formats of the same
video and stream the appropriate format based on the characteristics of the
viewer’s device. This approach, called pre-transcoding, incurs a significant
cost to the stream providers that rely on cloud services. Furthermore, pre-
transcoding proven to be inefficient due to the long-tail access pattern to video
streams. To reduce the incurred cost, we propose to pre-transcode only frequently-
accessed videos (called hot videos) and partially pre-transcode others, depending
on their hotness degree. Therefore, we need to measure video stream hotness.
Accordingly, we first provide a model to measure the hotness of video streams.
Then, we develop methods that operate based on the hotness measure and
determine how to pre-transcode videos to minimize the cost of stream providers.
The partial pre-transcoding methods operate at different granularity levels to
capture different patterns in accessing videos. Particularly, one of the methods
operates faster but cannot partially pre-transcode videos with the non-long-tail
access pattern. Experimental results show the efficacy of our proposed methods,
specifically, when a video stream repository includes a high percentage of the
Frequently Accessed Video Streams and a high percentage of videos with the

non-long-tail accesses pattern.

Keywords: Cloud Services, Video On Demand (VOD), Partial Pre-transcoding,
Re-transcoding, Video Streaming, Video Stream Hotness.

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Based on the Global Internet Phenomena Report [1],
video streaming currently constitutes around 64% of
the U.S. Internet traffic and is rocketing to 80%
of the whole Internet traffic by 2019 [2]. Viewers
stream videos on a variety of devices with different
architectural characteristics, from large screen TVs
and desktops to tablets and smart-phones. Video
contents, either in form of Video On Demand (VOD)
(e.g., YouTube1 or Netflix2) or live-streaming (e.g.,
Livestream3), need to be converted (i.e., transcoded)
based on the characteristics of viewers devices (e.g., in
terms of frame rate, resolution, and available network
bandwidth) [3].

1https://www.youtube.com
2https://www.netflix.com
3https://livestreams.com

To make the video streams readily available for
viewers video stream providers commonly carry out
the transcoding operation in an off-line manner. That
is, they transcode and store (termed Pre-transcode)
multiple formats of the same video stream to satisfy
the requirements of viewers with heterogeneous display
devices. In practice, video stream providers, such as
Netflix have to pre-transcode 40 to 50 formats of a single
video stream [4] and store them in their repositories. To
overcome the storage and computational demands of
transcoding, video stream providers extensively utilize
cloud services [5]. Making use of cloud services imposes
a significant cost overhead to video stream providers [6,
7], hence, they are actively seeking solutions to reduce
their incurred cost of using clouds services [8, 9].

To reduce the incurred cost, video stream
providers need to be aware of access patterns to
their video streams. Recent studies show that access-

The Computer Journal, Vol. ??, No. ??, ????

2 M. Darwich

ing video streams in a repository follows a long-tail
distribution [10]. That is, there are few video streams
that are accessed very frequently (known as hot videos)
while there is a huge portion of video streams in the
repository that are rarely accessed. Several research
works have been undertaken (e.g., [6, 7]) to alleviate
the cost overhead of pre-transcoding by transcoding
rarely-accessed videos in an on-demand (i.e., lazy)
manner. In this manner, one or few formats of a
video is pre-transcoded and transcoding is performed
on-the-fly upon request to access a version of a video
that is not already pre-transcoded. This approach
has become feasible with the enormous computational
capacity clouds offer and is known as re-transcoding.

Re-transcoding induces a computational cost that is
generally more expensive than the storage cost [11].
Therefore, the re-transcoding approach would be
beneficial for video stream providers, only if it is applied
on rarely accessed videos (also termed non-hot or cold
video streams). To decide whether or not to pre-
transcode or re-transcode a video stream, we need to
know if the video stream is hot or not. However, the
question arises is what is a hot video stream? Currently,
there is no formal way to determine if a video stream is
hot or, more precisely, there is no formal way to measure
the hotness of a video stream. Therefore, the research
problem in this research is how how can we quantify the
hotness of a given video in a repository?

Once we answer this question, we can decide to
pre-transcode hot video streams and re-transcode non-
hot ones. In addition, we can partially pre-transcode
video streams whose their hotness measure is between
hot and non-hot. The challenge, however, is how
to achieve partial pre-transcoding? That is, which
parts of a video stream should be re-transcoded and
which parts should be pre-transcoded? To address
this challenge, in this paper, we propose video stream
repository management methods (also termed repository
management) to perform pre-transcoding based on the
hotness of the video streams. We also propose a video
stream repository management method that operates
at a finer granularity level and can accurately specify
the parts of the video streams to be pre-transcoded.

The repository management methods that we
propose in this research must be applied on all video
streams in a repository. However, in a large video
stream repository, the repository management methods
impose a large overhead time to execute. We require
a way to alleviate the overhead time of executing
the repository management methods. To address this
challenge, in this research, we propose a method that
partitions hot, non-hot, and partially hot video streams
into separate clusters. The clustering can help to
proactively apply repository management methods only
on one or few clusters, hence, reduce the execution time
overhead of repository management methods.

In summary, the contributions of this paper are as
follows:

• Providing a formal definition for hot videos and a
method to measure the hotness of video streams in
the repository.

• Proposing video stream repository management
methods to reduce the incurred cost of video
stream providers in using cloud services. The
methods choose to either pre-transcode, re-
transcode, or partially pre-transcode video streams
in a repository.

• Proposing video streams clustering methods to
minimize the overhead time of executing video
stream repository management methods.

• Analyzing the impact of video stream repository
management methods on video streams with
different access patterns.

Experimental results demonstrate that our proposed
video streams repository management methods can
reduce the incurred cost of using cloud services
significantly. Thus, the research outcome of this paper
can help video stream providers to reduce their incurred
cost without losing the quality of streaming service they
provided.

Our work differs from the previous work in that
we develop methods that minimize the incurred cost
of cloud services for video streaming by quantifying
the hotness of video streams. We also propose videos
streams clustering in a repository to minimize the
execution time of our methods.

The rest of the paper is organized as follows:
section 2 provides some background on video streaming
and transcoding. Section 3 presents the system
model. Proposed algorithms are described in section 5.
Section 4 presents the quantification of video stream
hotness. In section 6, a clustering method is proposed.
Experiment setup is detailed in section 7. Experimental
results are discussed in section 8, related works are
presented in section 9 and finally section 10 concludes
the paper.

2. BACKGROUND

2.1. Video Stream Structure

A video stream is composed of a set of sequences as
shown in Figure 1. The first block of a sequence is
called a sequence header that contains meta-data about
that sequence and is followed by several Group Of
Pictures (GOP). Each GOP is constructed of a GOP
header followed by several frame types, starting with I
(intra) frame, followed by a P (predicted) and B (bi-
directional) frames. Each frame is further comprised of
slices that are formed from macroblocks (MB) [12].

As each GOP can be processed independently, video
transcoding operation is commonly performed at the
GOP level [12] i.e., each GOP is considered as a unit
for re-transcoding or pre-transcoding.

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 3

FIGURE 1: Video Stream Structure

2.2. Video Transcoding

Originally, Video streams are captured with a particular
format, spatial resolution, frame rate, and bit rate.
Before streaming the videos, they should be adjusted
according to the viewer’s device resolution, frame rate,
and video codec. [3]. These adjustments are generally
termed video transcoding and are explained as follows:

• Bit Rate Adjustment: Video stream providers
usually change the bit rate of video streams to
ensure pleasant streaming [13]. Dynamic bit rate
adjustment of video streams is also known as
Adaptive video streaming [14].

• Spatial Resolution Reduction: This type of
transcoding changes the dimensional size of the
video to fit the screen size of viewers’ devices.
There are algorithms which can be applied to
maintain the quality when transcoding videos [15].

• Temporal Resolution Reduction: Temporal resolu-
tion reduction is used when the viewer’s device sup-
ports low frame rate. This can be done by dropping
some frames of the video [16].

• Video Compression Standard Conversion: Apply-
ing compression standards on videos to reduce
their size so as to be streamed smoothly and
stored in small size. There are several compres-
sion techniques—from MPEG2 [17], to H.264 [18],
and to the most recent one, HEVC [19].

2.3. Cloud Services for Video Stream
Transcoding

Cloud providers offer various services in an on-demand
manner and charge their users in a pay-as-you-go
manner [11]. A cloud-based video stream provider
generally utilizes the following cloud services:

• Computational Services: In clouds, computational
services are generally provided through Virtual
Machines (VMs) and users are charged based on
the amount of time using them (generally, on an
hourly basis).

• Storage Services: Users of storage services are

charged based the volume of their stored data on
the cloud.

• Content Delivery Network (CDN) services: CDN is
a technology that reduces the delay to access static
content types, including video streams, through the
Internet [20]. CDN replicates the content (e.g.,
video content) in different geographical areas to
minimize the network travel time of content to
users [20, 21]. Generally, video stream providers
utilize CDNs to deliver video streams to viewers
with the minimum delay [22,23].
Typically, cloud-based video streaming platforms
consist of storage servers for storing videos,
transcoding servers for tasks processing, and edge
servers (i.e., CDNs) for delivering transcoded
video streams to viewers [24, 25]. In fact,
CDN services are required, in addition to storage
services to perform pre-transcoded cloud-based
video streaming. However, the CDN cost is
not applied when we provide on-demand video
transcoding service.

Amazon Web Services4 is a major cloud provider
and offers all the foregoing cloud services in a reliable
manner [26]. Although this study is independent of
AWS technology and can work on any of cloud provider,
we consider AWS services, charging model, and costs for
our evaluations.

Amazon Elastic Compute Cloud (Amazon EC2)
provides computational services in form of VMs.
It offers various types of VMs to cover different
computational demands. General purpose t2-small

VM type is the most common service used for different
type of processing and we utilize this VM type for our
evaluations as well. The hourly cost of t2-small VM
is $0.026. Amazon Simple Storage Service (Amazon
S3) is the storage service of Amazon cloud. Amazon
S3 costs $0.03 for each Gigabyte of stored data in a
month. Amazon also offers the CDN service (called
CloudFront5). It delivers the content to users (i.e.,
viewers) through a worldwide network of data centers
with the minimum delay [27]. Amazon charges $0.085
for each Gigabyte of data uses CloudFront for the first
10 TB per month.

3. SYSTEM MODEL

For the sake of clarity, the symbols that are used in this
paper are summarized in Table 1.

3.1. Access Pattern to a Video Stream

Performing pre-transcoding or re-transcoding on a
video stream depends on the access pattern to the
stream. Therefore, it is crucial to understand the access
pattern to video streams. We define video access rate
as the number of times the video stream is requested by

4https://aws.amazon.com/
5https://aws.amazon.com/cloudfront/

The Computer Journal, Vol. ??, No. ??, ????

4 M. Darwich

0 200 400 600 800 1,000 1,200 1,400
0

2

4

6

8

10
×106

GOP number (location) in a video stream

n
u
m

b
er

o
f

v
ie

w
s

(a)

0 200 400 600 800 1,000 1,200 1,400
0

2

4

6

8

10
×106

GOP number (location) in a video stream

n
u
m

b
er

o
f

v
ie

w
s

(b)

FIGURE 2: different shapes of non-long access for different video streams

the viewer within a time period. However, it does not
determine if the requested video stream is watched to
end of it or not. In fact, recent studies (e.g., [28])
reveal that, in a video stream, the beginning GOPs
are watched more frequently than the rest of the video
stream. Miranda et al. [28] show that the distribution of
views within a video stream provider generally follows a
long-tail distribution. More specifically, they show that
the distribution of accesses to GOPs of a video stream
can be expressed by the Power-law [29] model. Based
on this model, for a video stream with video access rate
υi, we can estimate the access rate to the GOPs of the
video stream. Let Gij the jth GOP in video stream i.
Then, the estimated GOP access rate for Gij , denoted
εij , is calculated based on Equation 1. In this equation,
α is called the power coefficient and its value is 0.1.

εij = υi · j−α (1)

Although GOP access rate for most of the video
streams in a repository follows a long-tail pattern, there
are video streams whose GOPs’ access rate do not follow
this pattern [30]. In these video streams, some scenes
(GOPs), located in the middle or end of the video
stream, are accessed more frequently than other scenes.
An example of scenes with tremendously higher access
rate can be found in a soccer match where a player
scores a goal. We define this type of video streams to
have called non-long-tail access pattern.

Figure 2 represents the difference in GOP access
rate of a video stream with a long-tail access pattern
versus a video with non-long-tail access pattern. In
Sub-figure 2a, we notice that the GOP access rate
consistently decreases for GOPs later in the stream
whereas, Sub-figure 2b demonstrates that GOP access
rate can be significantly different regardless of the
position of the GOP in the video stream.

Symbols Description

mi Total number of GOPs in video i
Gij GOP number j of video i
υi Number of views for video i
εij Estimated number of views for Gij

ψij Real number of views for Gij

PS Price of storing data in cloud (per GB)
PT Price of using VM for (per hour)
CSi Cost of storing video stream i
CTi Cost of transcoding video stream i
τi Transcoding time of video stream i
τij Transcoding time of Gij

CSij Cost of storing Gij

CTij Cost of transcoding Gij

Rij Storage to transcoding cost ratio of Gij

Hi Hotness of video i
hij Hotness of GOP Gij

TABLE 1: Symbols used in proposed methods

3.2. Repository of Video Streams

Video stream providers keep enormous repositories of
video streams [31]. For instance, the size of the
repository of YouTube is estimated to reach over one
billion GB [32]. In fact, storing video repositories in the
cloud has become one of the main costs of video stream
providers [33]. One main reason to maintain a large size
repository is to store several formats (pre-transcoding)
of the same videos.

However, recent studies show that access patterns
to videos in a video repository follow a long-tail
distribution [28]. This means that few video streams in
the repository are watched very frequently (these videos
are known as hot videos), while the rest of video streams
which are rarely watched. It has been reported that
in YouTube provider only 5% of videos are frequently
accessed and the rest are rarely watched [34].

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 5

Considering the long-tail access pattern to video
streams in a repository, we do not need to pre-transcode
all formats for all videos in the repository. Ideally,
we should only pre-transcode frequently accessed (hot)
video streams and the rest of streams need to be re-
transcoded upon requesting them by viewers. However,
currently, there is not any method to precisely identify
hot videos or to measure the degree of hotness in a
repository. In particular, a method is required to
measure (quantify) the hotness for a video stream.
Then, based on the hotness measure, we can make an
appropriate decision either to the pre-transcoding or re-
transcoding the video stream.

4. QUANTIFYING HOTNESS OF VIDEO
STREAMS

4.1. Overview

Our proposed method for quantifying hotness of a
video stream relies on the cost of performing pre-
transcoding and re-transcoding of the video stream.
Thus, in this section, we first introduce methods to
calculate these costs on the cloud. Then, we introduce
our method to quantify video stream hotness in Sub-
section 4.4.

4.2. Cost of Pre-transcoding

The cost of the pre-transcoding an existing format of a
video stream is the cost of storing that format of the
video stream. Once the video stream is pre-transcoded
and stored, the number of accesses (views) to the video
stream does not change the incurred cost.

In cloud-based video streaming, storage cloud
services (e.g., S3 in Amazon Cloud 6) are used for
storing video streams. Let Si the size of video i in GB
and PS the price of storing one GB of data in the cloud
storage. Then, the cost of pre-transcoding for video i,
denoted CSi , is calculated based on Equation 2.

CSi
= Si · PS (2)

Another cloud service that is commonly used for
storing and delivering video streams is CDN (e.g.,
CloudFront in Amazon Cloud 7). Video stream
providers utilize CDN to minimize the delay in
streaming videos. In this case, the cost of pre-
transcoding a video stream is dependent on the cost
of using storage and CDN, denoted PCDN , and is
calculated based on Equation 3.

CSi = Si · (PS + PCDN) (3)

4.3. Estimated Cost of Re-transcoding

The incurred cost of re-transcoding a video stream
depends on the cost of computational services (often,

6https://aws.amazon.com/s3/
7https://aws.amazon.com/cloudfront/

in form of VM) offered by cloud providers. It also
depends on the time span of utilizing those VMs, which
is generally in an hourly basis. Let PT the cost of using
a VM for an hour, and τi the estimated transcoding
time of video stream i in the same time unit. Then, the
cost of re-transcoding video stream i, denoted CTi , is
obtained using Equation 4.

CTi
= PT · τi (4)

It is noteworthy that Equation 4 determines the cost
for one time re-transcoding of a video. However, if video
i is re-transcoded γ times, the total incurred cost is
γ·CT .

Estimation of transcoding execution time for video i
(τi in Equation 4) can be achieved based on the past8

execution information of the same video stream. In
particular, the estimated transcoding time of video i
with m GOPs is the sum of transcoding times of all the
GOPs in that video, i.e., τi =

∑m
j=1 τij , where τij is the

transcoding time of Gij .

4.4. Measuring Hotness of a Video Stream

The way we quantify hotness of a video stream is based
on the hotness of its GOPs. Thus, we first define the
hotness in the GOP level and then extend that to the
video stream level.

Formally, we define a hot GOP as a GOP whose
estimated cost of re-transcoding is more than the cost of
pre-transcoding. To calculate the pre-transcoding and
re-transcoding costs at the GOP level, we extend
Equations 2 and 4. Let Sij the size of GOP Gij , then
the pre-transcoding cost of Gij is calculated based on
Equation 5.

CSij = Sij · PS (5)

Similarly, the estimated cost of re-transcoding Gij ,
denoted CTij , is calculated based on Equation 6.

CTij = PT · τij (6)

Using these concepts, we can introduce the GOP
transcoding cost ratio, denoted Rij , based on
Equation 7.

Rij =
CSij

εij · CTij

(7)

where εij is the number of times Gij is viewed. In
video streams with long-tail access pattern, the value
of εij can be estimated based on Equation 1. However,
for video streams with non-long-tail access pattern, the
video stream provider needs to maintain the number of
views to each GOP of a video stream.

GOP Gij has to be pre-transcoded, if the cost of re-
transcoding is more than pre-transcoding (i.e., Rij ≤

8As we are dealing with VOD, we expect that videos have
been viewed, thus, transcoded before. However, this is not the
case when we deal with live stream videos. In that case, such
historic execution information is not available.

The Computer Journal, Vol. ??, No. ??, ????

6 M. Darwich

1). In this case, Gij is called a hot GOP and the value
of its hotness, denoted hij , can be determined based on
Equation 8.

hij =

1 Rij ≤ 1

0 Rij > 1

(8)

We define a hot video stream as a video stream that
needs all of its GOPs be pre-transcoded. However,
considering the long-tail access pattern to the GOPs of a
video stream (see section 3.1), for many video streams,
just a portion of that stream can be hot. That is, a
video stream can be partially hot and only some GOPs
of it need to be pre-transcoded. Hence, we extend the
GOP hotness definition to define the hotness value for
the whole video stream. Formally, the hotness of video
stream i with m GOP denoted Hi is defined based on
Equation 9.

Hi =

∑m
j=1 hij

m
(9)

Based on Equation 9,the value of hotness Hi is 0 ≤
Hi ≤ 1. That means for Hi = 0 the video stream i does
not include any hot GOP and needs to be completely
re-transcoded. Alternatively, Hi = 1 indicates that all
GOPs are hot, hence, the whole video is hot and must
be pre-transcoded.

5. VIDEO STREAM REPOSITORY MAN-
AGEMENT METHODS

5.1. Overview

Based on the hotness measure concept discussed in
the previous section, we propose methods that for
each video in the video stream repository determine
which part or parts should be pre-transcoded so
that the incurred cost of using cloud services is
minimized. These methods are periodically executed
on videos in the video stream providers repository
(e.g., on a monthly basis) and are called partial pre-
transcoding methods .

The methods receive view statistics and other meta-
data of video streams in the repository, such as GOP
size and estimated transcoding time of the GOPs, as
input values. The methods are also aware of cloud
storage and cloud VM unit prices. In particular, one
of the proposed methods (explained in Section 5.2)
operates at the video stream level whereas the other one
(explained in Section 5.3) is more granular and operates
at the GOP level.

5.2. Video-Based Partial Pre-Transcoding
Method

The method operates based on the video hotness
measure and iterates through all video streams in a
repository. For each video, it assumes a long-tail access

pattern to GOPs of the video streams in the repository.
Hence, the method can estimate the number of views
of each GOP by knowing the number access requests
of a video stream. The pseudo-code of the method is
presented in Algorithm 1.

This method calculates pre-transcoding and re-
transcoding costs for each GOP of a video stream based
Equations 5 and 6 (steps 3 and 4). To calculate Rij (in
step 6), we need to estimate the number of views of
Gij (that is in step 5) based on the number of requests
made to video Vi and the long-tail access pattern to
GOPs of Vi. Then, the hotness value of each GOP Gij
is calculated in step 8. The hotness value for the whole
video Vi is calculated based on Equation 9 (step 9).

Once hotness value for video stream Vi is calculated,
we can determine the portion of the video stream that
has to be pre-transcoded. As we assume long-tail access
pattern to the video, the portion of pre-transcoding is
chosen from the beginning of the video stream Vi. Let
Hi the hotness value for video stream Vi with m GOPs,
then χi ← dHi·me determines the number of GOPs that
needs to be pre-transcoded (step 10 in Algorithm 1).

Algorithm 1: Video-Based partial pre-
transcoding method.

Input :
A repository of videos, each video shown

as Vi with m GOPs
Storage size of Gij : Sij
Transcoding time of Gij : τij
re-transcoding unit price: PT
Storage unit price: PS
Number of requests to view Vi : υi

Output: Partially pre-transcoded version for each
video Vi

1 For each video Vi ∈ repository
2 For each GOP Gij ∈ Vi
3 Calculate pre-transcoding cost:

CSij
← Sij · PS

4 Calculate re-transcoding cost:
CTij ← τij · PT

5 Estimated No. of views for Gij :

εij ← υi ·G−α
ij

6 Calculate cost ratio for Gij : Rij ←
CSij

ε·CTij

7 if Rij ≤ 1 then
8 hij ← 1

9 Hotness measure for Vi: Hi ←
∑m

j=1 hij

m
10 No. of GOPs for pre-transcoding:

χi ← dHi ·me
11 Pre-transcode GOPi1 to GOPiχ of Vi

The time complexity of Algorithm 1 is T (n,m) =
c·(n·m) where c is a constant, n is the number of videos
in the repository and m is the number of GOPs in each
video. Hence, the time complexity of the algorithm
1 is O(nm). Similarly, the space complexity of the

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 7

algorithm is O(nm).

5.3. GOP-Based Partial Pre-transcoding
Method

The idea of this method is to identify hot GOPs within a
video stream and pre-transcode only those GOPs. The
rest of non-hot (cold) GOPs are re-transcoded upon
viewer’s request. In this method, we need to know
the number of times each GOP has been viewed during
the last time period. The method does not have any
assumption on the access pattern to GOPs in a video
stream, hence, it can cover video streams whose access
pattern do not follow long-tail access pattern. Similar
to Algorithm 1, the method has to be performed for all
video streams in the repository.

The pseudo-code for this method is shown in
Algorithm 2. In this method, the transcoding cost-ratio
for each GOP Gij is calculated based on Equation 7
(steps 3 to 5). If the value of cost-ratio for a GOP is less
than or equal to one, it implies that the storage (pre-
transcoding) cost for the GOP is less than processing
(re-transcoding) it and the GOP needs to be pre-
transcoded. Otherwise, Gij is re-transcoded.

It is worth noting that, in Algorithm 1, video
stream providers does not need to keep track of all
view information (i.e., meta-data) for each GOP of
the video streams in the repository. In fact, in
Algorithm 1, because we assume viewing GOPs of a
video stream follows a long-tail distribution, we just
need to keep the number of times the video stream is
requested. Then, the view information for each GOP
can be estimated. However, Algorithm 2 requires views
information for each GOP and we need to maintain
meta-data information for all GOPs for each video
stream in the repository.

It is worth noting that both the time and space
complexity of Algorithm 2 is O(nm).

6. REDUCING THE EXECUTION TIME
OVERHEAD OF THE PARTIAL PRE-
TRANSCODING METHOD

The partial pre-transcoding methods mentioned in the
previous section are executed periodically on a video
stream repository. However, for a large video stream
repository, the methods can take a long time to execute.
Thus, the video stream providers have to execute them
infrequently. However, as accessing video streams varies
over time, the hotness of the video streams changes
frequently and partial pre-transcoding methods need to
be deployed more often to cope with the variations.
Therefore, we need a mechanism to apply partial
pre-transcoding methods more efficiently by reducing
their execution times. In this section, we propose
a mechanism that reduces the execution time of the
partial pre-transcoding methods without any major
impact on their performance.

Algorithm 2: GOP-Based partial pre-transcoding

Input :
A repository with videos, each video

shown as Vi with m GOPs
Storage size of Gij : Sij
Transcoding time of Gij : τij
re-transcoding unit price: PT
Storage unit price: PS
Real number of views for Gij : ψij

Output: Partially pre-transcoded version for each
video Vi

1 For each video Vi ∈ repository
2 For each GOP Gij ∈ Vi
3 Calculate pre-transcoding cost:

CSij
← Sij · PS

4 Calculate re-transcoding cost:CTij ← PT · τij
5 Calculate cost ratio: Rii ←

CSij

ψij ·CTij

6 if Rij ≤ 1 then
7 hij = 1
8 pre-transcode Gij
9 else

10 hij = 0
11 re-transcode Gij

Partial pre-transcoding methods impact only video
streams that are partially hot. Therefore, if we can
exclude partially hot video streams and apply the
partial pre-transcoding methods only on them, then the
overall execution time is reduced.

Our proposed mechanism works based on clustering
of video streams according to their number of views.
The goal of clustering is to separate hot videos and cold
videos from the rest of video streams in the repository.

We use the number of views of a video stream as a
clustering parameter. We utilize Jenks Natural Breaks
Optimization algorithm [35], which is a one-dimensional
clustering (grouping) method, to group video streams
that require similar kind of re-transcoding or pre-
transcoding operation. Jenks Natural Breaks is an
iterative algorithm aims to maximize the Goodness Of
Variance (GOV) fit and is defined based on Equation 10.

GOV =
SDV − SDC

SDV
(10)

where SDV is defined as the sum of squared
deviations of views of video streams in a repository and
is calculated based on Equation 11. To maximize GOV,
we only need to minimize the sum of squared deviations
for each cluster.

SDV =

N∑
i=1

(υi − υi)2 (11)

where υi is the number of views of video stream
i; also, N is the total number of video streams in a

The Computer Journal, Vol. ??, No. ??, ????

8 M. Darwich

repository; and υi =
∑N

i=1 υi
N . SDC is defined as the

sum of squared deviations of video stream views across
clusters and is calculated based on Equation 12.

SDC =

c∑
κ=1

(Vκ − Vκ)2 (12)

where c is the number of clusters that are chosen
initially.

Accordingly, the algorithm starts with a random
clustering and iteratively calculates the mean and
squared deviation for each cluster. At the end of each
iteration, the algorithm relocates the elements in the
cluster with the maximum squared deviation to the
cluster with the minimum squared deviation. Then, for
convergence (i.e., termination), the algorithm checks if
the total squared deviation (SDV) for the whole set is
minimized.

Depending on the distribution of views in a
given video stream repository, Jenks Natural Breaks
algorithm splits the repository into a different number
of clusters. However, we need to reorganize the
generated clusters into three groups (i.e., cold, hot,
and partially hot video streams). For that purpose,
we iteratively merge neighboring clusters (i.e., clusters
with succeeding means) generated by Jenks Natural
Breaks and configure them into three clusters. Then,
for each configuration, we estimate the total incurred
cost of pre-transcoding and re-transcoding. The
configuration with the minimum cost is chosen as the
final clustering for the video streams in the repository.

7. EXPERIMENTAL SETUP

7.1. Synthesizing Video Streams

A video stream providers generally has a large video
stream repository9. However, we do not have access to
such repositories for our evaluations. Therefore, in this
work, we synthesized a large repository from a set of
benchmark videos that we have in our local repository.
Our local repository includes 40 videos with various
content types and is available publicly10.

To accurately synthesize video streams, we need
to know the distribution and characteristics of video
streams in terms of GOP size, GOP transcoding time,
and number of GOPs in each video. In order to extract
this meta-data, we transcoded the video streams on
Amazon EC211 and analyzed them.

The result of our analysis, shown in Figure 3a
and 3b, demonstrates that GOP size and number of
GOPs follow a Gaussian distribution. The means and
standard deviations of the Gaussian distributions are
listed in Table 2. We also conducted a regression
analysis on GOP size and its transcoding time and
observed that there is a linear relationship between

9YouTube repository is estimated to be one billion GB [32].
10The videos can be downloaded from: https://goo.gl/TE5iJ5
11https://aws.amazon.com/ec2

GOP size (Kbytes) number of GOPs

Mean 655.08 1262.79
Standard Deviation 201.44 271.46
Total no. of GOPs 124593 130068
Min. GOP size 1.91 580
Max. GOP size 2192.65 2018

TABLE 2: Meta-data of GOP size and number of GOPs
extracted from video streams of our repository.

0 500 1000 1500 2000 2500
GOP size

0.000

0.001

0.002

0.003

0.004

0.005

0.006

(a) GOP size histogram

400 800 1200 1600 2000
number of GOPs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(b) GOPs of video histogram

FIGURE 3: Distribution of GOP size and numbers of GOPs
in video streams of our repository.

them (see Figure 4). As such, we can derive a linear
equation to estimate transcoding time of a GOP based
on its size.

Based on the analyses, we generated the meta-data
for 100,000 videos that form our synthesized repository.

7.2. Synthesizing View Information for Video
Streams

As mentioned earlier, the access pattern to video
streams in a repository follows a long-tail pattern.
Thus, similar to Sharma et al. [10], we use Weibull
distribution to generate the long-tail access pattern to
the video streams of our repository. As the percentage
of Frequently Accessed Video Streams in a repository
is an important parameter in our evaluations, we
change it in our synthesized repository by modifying
the Shape (α) and Scale (β) parameters in the Weibull
distribution. For that purpose, we vary the value of
α in the experiment is between [0.4, 2.4], while β = 1.
Figure 2a shows an instance of a video stream with long-
tail access pattern.

To model video streams that do not follow a long-tail
access pattern in the repository, we modify the long-tail
access pattern for a portion of the video streams. We
determine the number of peak views for a video stream
by generating a random number between [1, 5]. Each
peak view in the video stream has a height and a length
that represent the magnitude of view and the width of
the peak view, respectively. For instance, Figure 2b
depicts a video stream with four peak views, each one
has a different height and length.

We determine the height of each peak view point
by choosing a random number between minimum and
maximum access values of that video. The length of

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 9

0 1 2 3 4 5 6 7
0

5

10

15

20

GOP size (Mb)

tr
a
n

sc
o
d

in
g

ti
m

e
(s

)

data points

3.11 · x + 1.14 lin. regression

FIGURE 4: Linear regression analysis of GOP size and its
transcoding time.

Transcoding Storage CDN

t2-small S3 CloudFront

$0.026 /hour $0.03 GB/month $0.085 GB/month

TABLE 3: Incurred cost of computation, storage, and CDN
in AWS cloud. All costs are in US dollar.

each peak view represents the number of GOPs that are
accessed within that peak view. To generate the length
of each peak view, we used a Normal distribution of
(300, 100).

7.3. Cost of Cloud Services

All experiments of this research are modeled after
Amazon Web Service (AWS) cloud. The costs of AWS
cloud storage, CDN, and computational services (i.e.,
Virtual Machines) used in the experiments are shown
in Table 3.

7.4. Baseline Methods for Comparison

To evaluate our proposed methods, we compare and
analyze them against four other methods. These
methods are either baseline methods, practically used
by video stream providers, or those presented in related
research works in the literature. For the sake accuracy
of our evaluations, all experiments in this research are
conducted 50 times and the mean and 95% of their
confidence intervals are reported.

Fully Pre-Transcoding (FPT): This method pre-
transcodes all video streams and stores them in the
repository prior to be requested. Currently, this method
is widely used by video stream providers to support
different display devices.

Fully Re-Transcoding (FRT): This method re-
transcodes video streams each time they are requested
by viewers. To the best of our knowledge, video stream
providers do not use this method, however, we consider

β = 1

α FAVs

0.4 30%
0.6 25%
1 20%

1.4 15%
1.8 10%
2.4 5%

TABLE 4: Percentage of Frequently Accessed Video
Streams (FAVs) in the synthesized repositories by varying
the Shape parameter (α) in the Weibull distribution.

it in our experiment for comparison purposes.
Video-Level Transcoding (VLT): To reduce the

incurred cost of using cloud services, Jokhio et al. [36]
propose a method to either pre-transcode the whole
video or re-transcode it. The method works based on
the number of views for each video stream. This method
is explained in more details in Section 9.

GOP-Based Threshold (GBTh): We proposed this
method in our earlier work [37]. The method partially
pre-transcodes a video stream by finding the first GOP
in the video stream (termed threshold GOP) that has its
cost ratio greater than 1. GOPs that are located before
the threshold GOP are pre-transcoded and those after
the threshold GOP are re-transcoded.

8. PERFORMANCE EVALUATIONS

8.1. Impact of Percentage of Frequently Ac-
cessed Video Streams in a Repository

In this experiment, the goal is to evaluate the
performance of our proposed methods under different
access patterns for video streams in the repository.
In particular, we are interested to see the impact
of different methods on the incurred costs when
repositories have different percentages of Frequently
Accessed Video Streams .

For that purpose, we generate several video stream
repositories with varying percentage of Frequently
Accessed Video Streams in each repository. Each
repository includes 100,000 video streams of out which
30% have non-long-tail access pattern. To vary the
percentage of Frequently Accessed Video Streams in
each of the synthesized repositories, we change the
Shape parameter (α) in the Weibull distribution.
The percentage of frequently accessed videos, in each
repository, based on the values of α and β are shown in
Table 4. The average number of views in all synthesized
repositories is 1.99.

Figure 5a shows the total cost incurred by different
methods, explained in Subsection 7.4. The vertical
axis, in Figure 5a, shows the total cost incurred to
the stream provider in US Dollar. The total cost, in
this figure, includes the cost for pre-transcoding and
re-transcoding. The horizontal axis shows repositories
with different percentage of Frequently Accessed Video
Streams .

The Computer Journal, Vol. ??, No. ??, ????

10 M. Darwich

Because the difference of Fully Pre-Transcoding
(FPT) and Fully Re-Transcoding FRT methods with
other methods is significant, for the sake of better
presentation, we do not include them in the figure. In
summary, GBH reduces the incurred cost by 3.76X and
10X when compared with FRT and FPT, respectively.
Interested readers can refer to the Appendix A section
to see the detailed comparison with these methods.
In Figure 5a, we observe that as the percentage
of Frequently Accessed Video Streams rises, the
overall incurred cost increases. In this figure, we
can also observe that GBH method outperforms all
other methods. The reason is that GBH checks the
hotness for every single GOP of the video streams.
GBH outperforms the VLT method [36] by up to 13%,
when 5% of the video streams in the repository are
frequently accessed. However, the difference between
GBH and other methods decreases, as the percentage of
Frequently Accessed Video Streams in the repository
increases. In particular, the outperformance of GBH
over VLT reduces to 6% when 30% of video streams
in the repository are frequently accessed. This is
because when a repository contains a high percentage
of Frequently Accessed Video Streams , most of the
Frequently Accessed Video Streams are pre-transcoded
and partial pre-transcoding methods is applied on
few video streams, hence, reducing its impact. As
we can see in Figure 5a, GBTh method slightly
outperforms VBH. This is because GBTh locates the
GOP threshold for pre-transcodes more precisely than
the VBH method.

In a similar experiment, we consider the case that
the video stream providers uses cloud-based CDN to
distribute video streams to the viewers. Figure 5b shows
the results of the same experiment when the cost of
cloud CDN is included in the total incurred cost of the
provider. We observe that, in general, the incurred
cost has increased due to using CDN. Specifically,
methods, such as VBH, that tend to pre-transcode more
video streams lead to a remarkably higher incurred
cost (between approximately 87% to 100%). In this
experiment, again, GBH incurs the minimum cost
when compared with other methods. In particular,
when 5% of a repository is Frequently Accessed Video
Streams , GBH reduces the total incurred cost by up
to 10% and 15%, when compared with GBTh and
VLT, respectively. This shows two to four percent
more saving in comparison with other methods when
the video stream providers stream their videos through
CDN.

8.2. Impact of Increasing Variance of Number
of Views in a Repository

As mentioned earlier, the pattern of accessing video
streams in a repository follows a long-tail distribution.
However, the intensity of the long-tail distribution
can vary in different repositories and can impact

the incurred cost resulted from various partial pre-
transcoding methods. Therefore, in this experiment,
our aim is to evaluate the behavior of the proposed
partial pre-transcoding methods under different long-
tail patterns. For that purpose, we alter the variance of
the number of views to video streams in the repository.
Higher values of variance express a repository in which
few videos are viewed very frequently while the rest of
video streams are barely viewed. Alternatively, lower
values of variance express a repository in which the
difference between the number of views of cold and
hot videos is low. We alter the values of variance from
1.16×107 to 10.37×107 and create multiple repositories.
Then, for each repository, we estimate the total incurred
cost when different partial pre-transcoding methods are
used. In all repositories, 20% of videos are considered
as hot videos. Also, in all of them, 30% of video streams
have non-long-tail access pattern.

Figure 6 shows the results of the experiment. In this
figure, the horizontal axis shows the variance of the
number of views in different repositories and the vertical
axis shows the total incurred cost (in US Dollar) when
different partial pre-transcoding methods are applied.

In general, we can observe that, in all methods, the
total incurred cost decreases as the variance of views
increases. The reason is that when the variance is
high video streams are either hot or cold. Therefore,
they are either fully pre-transcoded or re-transcoded.
In other words, when the variance of views in a
repository is high, there is not much scope for partial
pre-transcoding methods to function.

We also observe that GBH incurs the minimum
cost when compared to other methods. However,
the difference is more significant when the variance
is lower. In particular, when the variance is 1.16 ×
107 GBH saves 67% and 21% in the total costs
when compared with VBH, and GBTh, respectively.
Alternatively, we observe that when the variance is
10.37 × 107, GBH saves 44% when compared with
VBH and incurs approximately the same cost when
compared with GBTh. The reason for more remarkable
cost-saving, when the variance is low, is that a large
part of the repository has the potential for partial
pre-transcoding. In addition, GBH evaluates each
GOP to see the effectiveness of pre-transcoding or re-
transcoding. Therefore, it can save more cost than the
other methods.

8.3. Impact of Percentage of Video streams
with Non-Long-Tail Access Pattern in the
Repository

As mentioned earlier, the distribution of views within
some video streams does not follow the long-tail
pattern. That is, there are portions of the video streams
that are not necessarily at the beginning of it but receive
a large number of views in comparison with the rest
of the video stream (see Section 3.1). The percentage

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 11

5% 10% 15% 20% 25% 30%

0

200

400

600

800

frequently accessed videos in the repository (%)

to
ta

l
co

st
($

)

VBH

VLT [36]

GBTh [37]

GBH

(a)

5% 10% 15% 20% 25% 30%

0

500

1,000

1,500

2,000

frequently accessed videos in the repository (%)

to
ta

l
co

st
in

cl
u

d
in

g
C

D
N

co
st

($
)

VBH

VLT [36]

GBTh [37]

GBH

(b)

FIGURE 5: (a) Incurred costs of different partial pre-transcoding methods (in US Dollar) when the percentage of Frequently
Accessed Video Streams varies in the repository. (b) Incurred costs of different partial pre-transcoding methods when cloud
storage and cloud CDN is used (in US Dollar). Horizontal axis shows the percentage of Frequently Accessed Video Streams .

1.16 2.59 4.61 7.2 10.37

×107

0

2

4

×103

variance of number of views for video streams

to
ta

l
co

st
($

)

VBH

VLT [36]

GBTh [37]

GBH

FIGURE 6: Incurred costs of different partial pre-
transcoding methods when the variance of number of views
for video streams increases (in US Dollar).

of video streams with the non-long-tail access pattern,
however, can impact the performance of the partial pre-
transcoding methods. Hence, we are interested to see
how different methods perform when the percentage
of video streams with non-long-tail access pattern
increases.

In this experiment, we synthesized repositories that
include different percentages of video streams with non-
long-tail access pattern (see Section 7.2) and measured
the incurred costs resulted from different partial pre-
transcoding methods. Figure 7 shows results of the
experiment. The horizontal axis, in this figure, shows
the percentage of video streams with non-long-tail
access pattern and the vertical axis shows the overall
incurred cost (in US Dollar).

According to the results, shown in Figure 7, the
amount of incurred cost, in general, rises as the
percentage of video streams with non-long-tail access
pattern increases in the repository. However, the rise of
the VBH method is more significant than others, from
$606 when there is no video stream with non-long-tail
pattern to $1,576 when all video streams have non-long-
tail pattern. The reason for the remarkable increase
is that VBH assumes non-long-tail access pattern for
videos and pre-transcodes from the beginning of the
streams. For the same reason, when less than 30% of

video streams have non-long-tail access pattern, VBH
performs similarly to other methods.

In this experiment, we can also observe that GBH
has the least increase in the incurred cost (from $606
to $874) when compared with other methods. The
reason is that, GBH does not assume any pattern
for the distribution of the number of views within
video streams and sweeps all GOPs within the streams
to figure out if they should be pre-transcoded or re-
transcoded. In particular, the cost-efficiency of GBH
is more remarkable in repositories that have a high
percentage of video streams with the non-long-tail
access pattern. It saves approximately 8% to 10%
in the incurred cost, when compared with GBTh, for
repositories with more than 70% video streams that
have non-long-tail access pattern. We can conclude
that when the percentage of video streams with the
non-long-tail access pattern is high and dominates the
whole repository, it is worthwhile to investigate the cost-
efficiency for each GOP.

8.4. Execution Time Overhead of Partial Pre-
transcoding Method

Although GBH, in general, outperforms other partial
pre-transcoding methods that were studied in the
previous subsections, it imposes the highest execution
time overhead. The reason for its high overhead is
processing each GOP for each video stream in the
repository. Therefore, our goal, in this experiment, is
to measure the effectiveness of the clustering method
(presented in Section 6) on reducing the execution time
overhead of the GBH method.

To measure the effectiveness of the clustering method,
we conduct an experiment by generating repositories
with varying percentage of Frequently Accessed Video
Streams in them. For each repository, we measure the
execution time overhead of the GBH method in two
scenarios: (A) when the clustering method is applied
and (B) without the clustering method.

Figure 8 shows the results of the experiment. The

The Computer Journal, Vol. ??, No. ??, ????

12 M. Darwich

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

0.5

1

1.5

×103

percentage of videos with non-long-tail access in the repository

to
ta

l
co

st
in

($
)

VBH

VLT [36]

GBTh [37]

GBH

FIGURE 7: Incurred costs of different partial pre-transcoding methods (in US Dollar) when the percentage of video streams
with non-long-tail access pattern varies in the repository.

5% 10% 15% 20% 25% 30%

0

10

20

percentage of Frequently Accessed Video Streams in a repository

ex
ec

u
ti

on
ti

m
e

(H
o
u
rs

) Without Clustering

With Clustering

FIGURE 8: Execution time overhead of partial pre-
transcoding methods (in hours) with and without clustering
video streams in the repository.

horizontal axis, in this figure, represents the percentage
of Frequently Accessed Video Streams in the repository
and the vertical axis represents the execution time
overhead of the GBH method. As we expected, when
the clustering method is not applied, the execution
time overhead of GBH does not change for different
percentages of Frequently Accessed Video Streams .
This is because the method is carried out on the GOPs
of each video stream, regardless of its hotness. We
observe that the execution time of GBH decreases
substantially when the clustering method applied. In
particular, for 5% and 30% of Frequently Accessed
Video Streams , the execution time overhead is reduced
by 72% and 59%, respectively. As we move to
repositories with a higher percentage of Frequently
Accessed Video Streams , we observe a slight increase
in the execution time overhead, when the clustering
method is applied. The reason for the increase is
that the distribution of the number of views for video
streams in the repository follows a long-tail distribution.
That is, the frequently accessed videos are located at the
beginning of the curve and the rest of video streams,
which are rarely accessed, are located in the tail of
the curve. When the percentage of the frequently
accessed videos in the repository is low, the number of

partially hot video streams is low too and vice versa.
Accordingly, when the percentage of the frequently
accessed video streams increases, the percentage of the
rarely accessed video streams decreases. GBH method
is particularly applied to the cluster of partially hot
video streams, hence, its execution time increases by
increasing the percentage of frequently accessed video
streams.

9. RELATED WORK

Gao et al. [38] proposed a scheme that partially
transcodes video contents in the Cloud. Their approach
aims to store the first segments of video contents
which are more frequently viewed while transcoding
the remaining video contents upon request.They
demonstrated that their method reduces 30% of the
operational cost in comparison to storing the whole
videos. In another research, Gao et al. [39] proposed
a method based on linear integer programming to
determine the optimal partial pre-transcoding. Our
research is different with these works in the sense that
we provide a method to measure the hotness of video
streams. In addition, we propose, methods that can
cover video streams that do not follow a long-tail access
pattern.

Zhao et al. [40, 41] proposed a trade-off between
computation and storage costs and to minimize the cost
for multi-version videos. They utilized the transcoding
weight graph which is the transcoding relationships
among versions of a video, along with the popularity
of those different versions of the video. Based on
the popularity and transcoding relationships among
different video versions, their method decides which
versions of a video should be stored in the repository
or re-transcoded on-demand. Their results show a
reduction in the incurred cost when compared to storing
all versions of videos.

Jokhio et al. [36] developed a strategy to strike a
trade-off between the computation and storage costs

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 13

of a video. They estimated the computation cost,
the storage cost, and the video popularity information
of individual transcoded videos and then utilized this
information to make decisions on how long a video
should be stored or how frequently it should be re-
transcoded from a given source video. They compared
their proposal to semisynthetic and realistic load
patterns. Their results indicated that their strategy is
more cost-efficient than the two intuitive strategies.

Krishnappa et al. [25] proposed transcoding policies
that transcode video segments that are requested by
users. In order to maintain the quality of videos in
terms of startup delay when applying online policies on
video, they proposed a method to predict the next video
segment that is requested by a user. They implemented
their prediction model by using Markov theory. Their
proposed method shows a high reduction in the cost of
using cloud resources with high accuracy.

In our earlier work [37], we proposed a method to
partially pre-transcode a video stream with the long-
tail access pattern. Our method finds the first GOP
(called threshold GOP) that has its transcoding cost
ratio greater than 1; GOPs located before the threshold
GOP are pre-transcoded and those located after the
threshold GOP are re-transcoded. The method reduces
the cost of video transcoding using clouds services. Our
method is efficient for a repository that contains video
streams with the long-tail access pattern.

Li et al. [42] proposed Cloud-based Video Streaming
Services (CVS2) architecture. It includes a QoS-
aware scheduling component that maps transcoding
tasks to the Virtual Machines (VMs) . To maintain
robustness in the presence of varying streaming
requests, the architecture includes a cost-efficient VM
Provisioner component. Simulation results obtained
under diverse workload conditions demonstrate that
CVS2 architecture can maintain a robust QoS for
viewers while reducing the incurred cost of the
streaming service provider by up to 85%.

Karolewicz and Beben [43] proposed provisioning
methods for VoD service providers offering adaptive
video streaming in a cloud environment. Their
methods minimized costs paid by VoD provider.
They formulated provisioning problem and proposed
optimization and heuristic methods that determine the
best tradeoff between content storage and transcoding.
The results of performance evaluation confirmed that
proposed methods can significantly reduce costs paid
by VoD providers.

Atish et al. [44] developed cost metrics that allow
to compare storage vs. compute costs and suggest
when a transcoding on-the-fly solution can be cost-
effective. They also analyzed how such a solution can
be deployed in a practical storage system using access
pattern information or a variant of the ski-rent online
algorithm when such information is not available.

A joint computing-plus-communication optimization
framework exploiting virtualization technologies was

proposed to address the typical scenario of multimedia
data processing with computationally intensive tasks
and exchange of a big volume of data. The proposed
framework not only ensures users the Quality of
Service (through Service Level Agreements), but also
achieves maximum energy saving and attains green
cloud computing goals in a fully distributed fashion [45].

A paradigm is based on real-time energy-efficient
management of the distributed resources available
at both mobile devices and Internet-connected data
centers was proposed by Baccarelli et al. in [46]. The
proposed paradigm overcomes the resources limitation
imposed by mobile/wireless devices to process the big
data stream.

Hosseini et al. [47] proposed a stream-priority aware
resource allocation mechanism to enable interactive
video prioritization without a major impact on the
flow of nonprioritized video streams. Their mechanism
includes a method to select appropriate tasks from
the arriving ones and a method to map the selected
task to the appropriate video server. Their results
showed that the percentage of normal and prioritized
video streaming tasks that have completed on-time
is improved when compared with baseline scheduling
methods.

Amini Salehi et al. [48] proposed a stochastic
robustness measure to facilitate resource allocation
decisions in a dynamic environment where tasks are
subject to individual hard deadlines and each task
requires some input data to start execution. they
also proposed methods to determine the stochastic
completion times of tasks in the presence of the task
dropping. Moreover, they designed novel resource
allocation techniques that work in immediate and batch
modes, with the goal of maximizing the number of
tasks that meet their individual deadlines. their results
demonstrated the suitability of the proposed technique
in a dynamic heterogeneous computing system.

10. CONCLUSION AND FUTURE WORK

The goal of this research is to reduce the incurred cost of
cloud-based video streaming through pre-transcoding,
re-transcoding, or partially pre-transcoding of video
streams. For that purpose, we need to measure the
hotness of the video streams. Accordingly, in this paper,
we proposed a method to quantify the hotness of video
streams. The hotness measure then used to develop
repository management methods that are executed
periodically and determine either to pre-transcode, re-
transcode, or partially pre-transcode video streams.

We analyzed the impact of our proposed methods
by synthesizing different repositories with various
characteristics. Experiment results demonstrate that as
the percentage of Frequently Accessed Video Streams
increases in a repository, the GBH method reduces
the total incurred cost (approximately 12%) when
compared to previous works in the area. Furthermore,

The Computer Journal, Vol. ??, No. ??, ????

14 M. Darwich

when the variance in the number of views of video
streams increases, the GBH method reduces the total
incurred cost by up to 10%. We conclude that GBH
is specifically efficient when the repository includes a
high percentage of videos with the non-long-tail access
pattern. Although partial pre-transcoding methods are
executed periodically, their execution time overhead for
large repositories is high. Therefore, in this research,
we also presented a method to cluster video streams
based on their hotness values. Then, a repository
management method is only applied on a small subset
of video streams in the repository. We observed that the
clustering method reduces the execution time overhead
of the repository management methods by up to 71.5%.

In future, we plan to work on the prediction of the
number of views for a video stream by applying machine
learning techniques. The prediction can operate based
on the number of accesses to the video streams in the
past periods. Another future direction of this research is
to perform dynamic video stream summarization based
on the access pattern to GOPs in a video stream.

ACKNOWLEDGMENTS

We are thankful for the comments of Dr. Xiangbo
Li who is an expert in the video streaming industry.
Also, we are thankful the comments of anonymous
reviewers of the paper. This research was supported
by the Louisiana Board of Regents under grant number
LEQSF(2016-19)-RD-A-25. This is a substantially
extended version of a paper presented in the
Proceedings of the 5th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering
(IEEE Mobile Cloud ’17) [37].

REFERENCES

[1] G. I. P. Report. http://www.sandvine.com/trends/

global-internetphenomena/. October, 2016.
[2] C. V. N. Index, Forecast and method-

ology, 2016-2021. https://www.cisco.

com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.html. June,
2017.

[3] Ahmad, I., Wei, X., Sun, Y., and Zhang, Y.-Q. (2005)
Video transcoding: an overview of various techniques
and research issues. IEEE Transactions on multimedia,
7, 793–804.

[4] Netflix. http://techblog.netflix.com/2012/12/

videos-of-netflix-talks-at-aws-reinvent.html.
December, 2012.

[5] Li, X., Amini Salehi, M., and Bayoumi, M. (2015)
Cloud-based video streaming for energy-and compute-
limited thin clients. Stream 2015 Workshop at Indiana
University.

[6] Li, X., Amini Salehi, M., and Bayoumi, M. (2016) Vlsc:
Video live streaming using cloud services. Proceedings
of 5th IEEE International Conference on Big Data and
Cloud Computing (BDCloud ’16), Atlanta, GA, 8-10
October, pp. 595–600. IEEE, USA.

[7] Li, X., Amini Salehi, M., Bayoumi, M., and Buyya,
R. (2016) Cvss: A cost-efficient and qos-aware
video streaming using cloud services. Proceeding of
16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), Cartagena,
Colombia, 16-19 May, pp. 106–115. IEEE, USA.

[8] Li, H., Zhong, L., Liu, J., Li, B., and Xu,
K. (2011) Cost-effective partial migration of vod
services to content clouds. Proceedings of 2011
IEEE International Conference on Cloud Computing
(CLOUD), Cartagena, Colombia, 16-19 May, pp. 203–
210. IEEE, USA.

[9] Amini Salehi, M. and Buyya, R. (2010) Adapting
market-oriented scheduling policies for cloud comput-
ing. Proceedings of the 10th International Conference
on Algorithms and Architectures for Parallel Process-
ing, Busan, South Korea, 21-23 May, ICA3PP ’10,
6081, pp. 351–362. Springer, Berlin, Heidelberg.

[10] Sharma, N., Krishnappa, D. K., Irwin, D., Zink,
M., and Shenoy, P. (2013) Greencache: Augmenting
off-the-grid cellular towers with multimedia caches.
Proceedings of the 4th ACM Multimedia Systems
Conference, Oslo, Norway, February 28 - March 01, pp.
271–280. ACM, New York, NY.

[11] Amazon. https://aws.amazon.com/ec2/pricing/

on-demand/. August, 2017.

[12] Jokhio, F., Deneke, T., Lafond, S., and Lilius, J.
(2011) Analysis of video segmentation for spatial
resolution reduction video transcoding. Proceedings
of the International Symposium on Intelligent Signal
Processing and Communications Systems (ISPACS),,
Chiang Mai, Thailand, Thailand, 7-9 December, pp.
1–6. IEEE, USA.

[13] Werner, O. (1999) Requantization for transcoding of
MPEG-2 intraframes. IEEE Transactions on Image
Processing, 8, 179–191.

[14] Jiang, J., Sekar, V., and Zhang, H. (2014) Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. Proceedings of the
8th International Conference on emerging Networking
Experiments and Technologies, February, pp. 97–108.
IEEE Press Piscataway, NJ.

[15] Bjork, N. and Christopoulos, C. (1998) Transcoder
architectures for video coding. IEEE Transactions on
Consumer Electronics, 44, 88–98.

[16] Goel, S., Ismail, Y., and Bayoumi, M. (2012) High-
speed motion estimation architecture for real-time
video transmission. The Computer Journal, 55, 35–46.

[17] Haskell, B. G., Puri, A., and Netravali, A. N. (Dec.
1996) Digital video: an introduction to MPEG-2.
Springer Science and Business Media.

[18] Wiegand, T., Sullivan, G. J., Bjontegaard, G., and
Luthra, A. (2003) Overview of the h. 264/avc video
coding standard. IEEE Transactions on circuits and
systems for video technology, 13, 560–576.

[19] Sullivan, G. J., Ohm, J.-R., Han, W.-J., and Wiegand,
T. (2012) Overview of the high efficiency video coding
(hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22, 1649–1668.

[20] Vakali, A. and Pallis, G. (2003) Content delivery
networks: Status and trends. IEEE Internet
Computing, 7, 68–74.

The Computer Journal, Vol. ??, No. ??, ????

Cost-Efficient Cloud-Based Video Streaming Through Measuring Hotness 15

[21] Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D.,
and Levy, H. M. (2002) An analysis of internet content
delivery systems. ACM SIGOPS Operating Systems
Review, 36, 315–327.

[22] Akamai. http://www.akamai.com/. August, 2017.

[23] Level3. http://www.leveI3.com/. August, 2017.

[24] Zhuang, Z. and Guo, C. (2012) Building cloud-ready
video transcoding system for content delivery networks
(cdns). Proceeding of Global Communications Confer-
ence (GLOBECOM), Anaheim, CA, 3-7 December, pp.
2048–2053. IEEE, USA.

[25] Krishnappa, D. K., Zink, M., and Sitaraman, R. K.
(2015) Optimizing the video transcoding workflow in
content delivery networks. Proceedings of the 6th ACM
Multimedia Systems Conference, Portland, Oregon, 18
- 20 March, pp. 37–48. ACM, New York, NY.

[26] Amazon. http://aws.amazon.com/. August, 2017.

[27] CloudFront. http://docs.aws.amazon.com/. August,
2017.

[28] Miranda, L. C., Santos, R. L., and Laender,
A. H. (2013) Characterizing video access patterns in
mainstream media portals. Proceedings of the 22nd
International Conference on World Wide Web, Rio de
Janeiro, Brazil, 13-27 May, pp. 1085–1092. ACM, New
York, NY.

[29] Newman, M. E. (2005) Power laws, pareto distributions
and zipf’s law. Contemporary physics, 46, 323–351.

[30] Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y.,
and Moon, S. (2007) I tube, you tube, everybody
tubes: analyzing the world’s largest user generated
content video system. Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, San
Diego, California, 24-26 October, pp. 1–14. ACM, New
York, NY.

[31] Gill, P., Arlitt, M., Li, Z., and Mahanti, A. (2007)
Youtube traffic characterization: a view from the edge.
Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, San Diego, California, 24-26
October, pp. 15–28. ACM, New York, NY.

[32] Quora. http://www.quora.com/. August 2016.

[33] Zhang, Q., Cheng, L., and Boutaba, R. (2010) Cloud
computing: state-of-the-art and research challenges.
Journal of internet services and applications, 1, 7–18.

[34] tubefilter. http://http://www.tubefilter.com/.
2016.

[35] Jenks, G. F. (1967) The data model concept
in statistical mapping. International yearbook of
cartography, 7, 186–190.

[36] Jokhio, F., Ashraf, A., Lafond, S., and Lilius,
J. (2013) A computation and storage trade-off
strategy for cost-efficient video transcoding in the
cloud. Proceeding of 39th EUROMICRO Conference
on Software Engineering and Advanced Applications
(SEAA), Santander, Spain, 4-6 September, pp. 365–
372. IEEE, USA.

[37] Darwich, M., Beyazit, E., Amini Salehi, M., and Bay-
oumi, M. (2017) Cost efficient repository management
for cloud-based on-demand video streaming. Proceed-
ings of 5th IEEE Internationa Conference on Mobile
Cloud Computing, Services, and Engineering (Mobile-
Cloud), San Francisco, CA, 6-8 April, pp. 1–6. IEEE,
USA.

[38] Gao, G., Zhang, W., Wen, Y., Wang, Z., and Zhu,
W. (2015) Towards cost-efficient video transcoding
in media cloud: Insights learned from user viewing
patterns. IEEE Transactions on Multimedia, 17, 1286–
1296.

[39] Gao, G., Zhang, W., Wen, Y., Wang, Z., Zhu,
W., and Tan, Y. P. (2014) Cost optimal video
transcoding in media cloud: Insights from user viewing
pattern. Proceedings of IEEE International Conference
on Multimedia and Expo (ICME), Chengdu, China, 14-
18 July, pp. 1–6. IEEE, USA.

[40] Zhao, H., Zheng, Q., Zhang, W., Du, B., and Chen,
Y. (2015) A version-aware computation and storage
trade-off strategy for multi-version vod systems in the
cloud. Proceeding of IEEE Symposium onComputers
and Communication (ISCC), Larnaca, Cyprus, 6-9
July, pp. 943–948. IEEE, USA.

[41] Zhao, H., Zheng, Q., Zhang, W., Du, B., and Li, H.
(2017) A segment-based storage and transcoding trade-
off strategy for multi-version vod systems in the cloud.
IEEE Transactions on Multimedia, 19, 149–159.

[42] Li, X., Amini Salehi, M., Bayoumi, M., Tzeng,
N., and Buyya, R. (2018) Cost-efficient and robust
on-demand video transcoding using heterogeneous
cloud services. IEEE Transactions on Parallel and
Distributed Systems, 29, 556 – 571.

[43] Karolewicz, K. and Bben, A. (2017) Cloud-based
adaptive video streaming: Content storage vs.
transcoding optimization methods. Proceedings of the
IEEE Symposium on Computers and Communications
(ISCC), Heraklion, Greece, 3-6 July, pp. 523–528.
IEEE, USA.

[44] Kathpal, A., Kulkarni, M., and Bakre, A. (2012)
Analyzing compute vs. storage tradeoff for video-aware
storage efficiency. Presented as part of the 4th USENIX
Workshop on Hot Topics in Storage and File Systems,
Boston, MA, 13-14 June. USENIX, Berkeley, CA.

[45] Shojafar, M., Canali, C., Lancellotti, R., and Abawajy,
J. (2016) Adaptive computing-plus-communication
optimization framework for multimedia processing
in cloud systems. IEEE Transactions on Cloud
Computing, PP, 1–1.

[46] Baccarelli, E., Cordeschi, N., Mei, A., Panella,
M., Shojafar, M., and Stefa, J. (2016) Energy-
efficient dynamic traffic offloading and reconfiguration
of networked data centers for big data stream mobile
computing: review, challenges, and a case study. IEEE
Network, 30, 54–61.

[47] Hosseini, M., Amini Salehi, M., and Gottumukkala, R.
(2017) Enabling interactive video stream prioritization
for public safety monitoring through effective batch
scheduling. Proceedings of the 19th IEEE International
Conference on High Performance Computing and
Communications, Bangkok, Thailand, 18-20 December,
pp. 474 – 481. IEEE, USA.

[48] Amini Salehi, M., Smith, J., Maciejewski, A. A.,
Siegel, H. J., Chong, E. K., Apodaca, J., Briceño,
L. D., Renner, T., Shestak, V., Ladd, J., et al. (2016)
Stochastic-based robust dynamic resource allocation
for independent tasks in a heterogeneous computing
system. Journal of Parallel and Distributed Computing,
97, 96–111.

The Computer Journal, Vol. ??, No. ??, ????

16 M. Darwich

[49] Li, X., Joshi, Y., Darwich, M., Landreneau, B.,
Amini Salehi, M., and Bayoumi, M. (2017) Performance
analysis and modeling of video transcoding using
heterogeneous cloud services. IEEE Transactions on
Parallel and Distributed Systems, pp. 1–12.

[50] Belkin, M. and Niyogi, P. (2001) Laplacian eigenmaps
and spectral techniques for embedding and clustering.
Advances in Neural Information Processing Systems
(NIPS), Vancouver, British Columbia, Canada, 03 - 08
December, pp. 585–591. ACM, MIT Press Cambridge,
MA.

APPENDIX A.

The following tables show a comparison of the incurred
costs of using cloud resources when applying proposed
partial methods and baseline methods on video streams
in a repository. Particularly, we show a comparison
of the incurred cost of using cloud resources when
applying two methods (Full Pre-Transcoding and Full
Pre-Transcoding), which we didn’t include in previous
bar charts figures, because applying these two methods
incurs very high costs compared to other methods, and
the comparison becomes clear.

% FAVs FPT FRT VLT GBH VBH GBTh

5% 3199 5136 2093 739 930 791
10% 3199 5157 2290 727 903 775
15% 3199 5290 2735 719 879 764
20% 3199 5810 3130 719 852 757
25% 3199 8735 5592 764 853 792
30% 3199 19040 13155 850 910 870

TABLE A.1: Incurred costs of different partial pre-
transcoding methods (in US Dollar) when the percentage of
Frequently Accessed Video Streams varies in the repository.

% FAVs FPT FRT VLT GBH VBH GBTh

5% 12261 5047 2735 1147 1653 1259
10% 12261 5157 2725 1137 1633 1239
15% 12261 5290 1230 1130 1610 1230
20% 12261 5810 1243 1148 1600 1247
25% 12261 8735 1395 1312 1690 1403
30% 12261 19040 13157 1680 1951 1753

TABLE A.2: Incurred costs of different partial pre-
transcoding methods when cloud storage and cloud CDN
is used (in US Dollar)

Variance FPT FRT VLT GBH VBH GBTh

1.16× 107 3199 67236 2356 1721 4035 2172
2.59× 107 3199 96303 1701 1410 2825 1565
4.61× 107 3199 126280 1374 1203 2234 1261
7.2× 107 3199 156621 1178 1056 1891 1079

10.37× 107 3199 187144 1047 945 1672 958

TABLE A.3: Incurred costs of different partial pre-
transcoding methods when the variance of number of views
for video streams increases (in US Dollar).

% videos with non-long tail access FPT FRT VLT GBH VBH GBTh

0% 3199 2338 1323 613 606 611
10% 3199 5363 2780 642 655 649
20% 3199 5618 2959 675 732 697
30% 3199 5810 3129 719 852 757
40% 3199 6082 3775 751 1033 802
50% 3199 6245 4163 774 1184 835
60% 3199 6323 4238 799 1258 871
70% 3199 6492 4441 823 1413 903
80% 3199 6548 4489 841 1468 928
90% 3199 6618 4528 856 1530 948
100% 3199 6661 4579 874 1576 973

TABLE A.4: Incurred costs of different partial pre-
transcoding methods (in US Dollar) when the percentage
of video streams with non-long-tail access pattern varies in
the repository.

The Computer Journal, Vol. ??, No. ??, ????

