
1

The Art of CPU-Pinning:
Evaluating and Improving the Performance of
Virtualization and Containerization Platforms

Davood GhatrehSamani+, Chavit Denninnart+, Josef Bacik∗, Mohsen Amini Salehi+,
+High Performance Cloud Computing (HPCC) lab, University of Louisiana at Lafayette, USA

{davood.ghatrehsamani1,chavit.denninnart1,amini}@louisiana.edu
∗Software Engineer at Facebook Inc.

josef@toxicpanda.com

Abstract—Cloud providers offer a variety of execution plat-
forms in form of bare-metal, VM, and containers. However,
due to the pros and cons of each execution platform, choosing
the appropriate platform for a specific cloud-based application
has become a challenge for solution architects. The possibility
to combine these platforms (e.g., deploying containers within
VMs) offers new capacities that makes the challenge even further
complicated. However, there is a little study in the literature on
the pros and cons of deploying different application types on
various execution platforms. In particular, evaluation of diverse
hardware configurations and different CPU provisioning meth-
ods, such as CPU pinning, have not been sufficiently studied in the
literature. In this work, the performance overhead of container,
VM, and bare-metal execution platforms are measured and
analyzed for four categories of real-world applications, namely
video processing, parallel processing (MPI), web processing,
and No-SQL, respectively representing CPU intensive, parallel
processing, and two IO intensive processes. Our analyses reveal a
set of interesting and sometimes counterintuitive findings that can
be used as best practices by the solution architects to efficiently
deploy cloud-based applications. Here are some notable mentions:
(A) Under specific circumstances, containers can impose a higher
overhead than VMs; (B) Containers on top of VMs can mitigate
the overhead of VMs for certain applications; (C) Containers
with a large number of cores impose a lower overhead than
those with a few cores.

Index Terms—Virtualization, Container, performance over-
head, CPU pinning.

I. Introduction
Hardware virtualization in form of virtual machines (VMs)

is an indispensable part of cloud computing technology that of-
fers isolation, manageability, consolidation, and reliability [1]
to cloud-based applications. However, performance overhead,
resulted from several abstraction layers in the hypervisor [2]–
[5], has historically been a side-effect of the virtualization
technology. More recently, a lightweight virtualization tech-
nology, known as containerization, that provides abstraction
at the application layer has gained popularity in the cloud era.
Numerous cloud services, such as serverless computing [6], [7]
(e.g., AWS Lambda [8], Azure Service Fabric [9]), are offered
based on containers. However, we note that containerization is
even making a deeper shift in application deployment, such as
those used to manage critical layers of IT infrastructure. For in-
stance, containers are being utilized in storage appliances (e.g.,
EMC Unity [10]) to reduce the fail-over time and improve

their availability. In addition to negligible imposed overhead,
containers are more storage-efficient, have shorter cloning
and application deployment time, faster scale out, and of-
fer Continuous Integration/Continuous Delivery (CI/CD) [11].
Nonetheless, conflicts between processes sharing the kernel
and lack of cross middleware portability are known drawbacks
of the containerization [12].

The pros and cons of each virtualization technology in
addition to the possibility of deploying an application on bare-
metal (e.g., Dedicated EC2 instances in AWS) has offered
cloud solution architects a range of execution platforms (i.e.,
bare-metal, VMs, containers, and containers on top of VMs)
to deploy a certain application on the cloud. In particular,
each application has its own characteristics that can reap the
benefits of a certain type of execution platform and undergoes
a different overhead. For instance, database servers are known
to take advantage of bare-metal platforms, due to high volume
of disk operations [13], whereas web servers benefit from
virtualized platforms (i.e., VMs, containers, and containers
within VMs) that offer a higher portability [12], [14], [15].

It is challenging for a cloud solution architect to efficiently
deploy a certain application via choosing a proper execution
platform. In a multi-tier application, this can potentially lead to
choosing distinct execution platforms for deployment of each
application tier [16]. The challenge becomes further compli-
cated when we know that the overhead of each execution plat-
form can remarkably vary, depending on the way the execution
platform is configured on the underlying hardware resources.
Specifically, CPU provisioning for virtualized platforms can
be configured either through CPU-quota or CPU-set (a.k.a
CPU pinning) [17]. In the former, at each scheduling event,
the middleware of the host machine decides about allocating
the proper CPU core(s) to each VM/container, whereas, in
the latter, certain CPU cores are statically bound to each
VM/container by the solution architect. Our hypothesis is that
CPU pinning can drastically reduce the overhead of virtualized
platforms. However, it is noteworthy that extensive CPU
pinning incurs a higher cost and makes the host management
more challenging.

The goal of this study is to unveil the imposed overhead
of each virtualization platform for different application types
commonly deployed on the cloud. Further, we study the impact



2

of various CPU provisioning configurations for the underlying
hardware resources.

To achieve the goal, we conduct an extensive performance
evaluation on the following four application types that exhibit
different processing characteristics and are commonly used in
the cloud: (A) FFmpeg [18] is a video transcoding application
that exhibits a CPU-bound behavior; (B) MPI [19] applications
that represent parallel processing behavior; (C) WordPress [20]
is a web-based system representing many short tasks with
IO-bound behavior; (D) Apache Cassandra [21] is a NoSQL
database management system representing an extensive IO-
bound behavior within a single large process.

Each application type is deployed under various resource
configurations (a.k.a instance type) on our private cloud.
Specifically, we evaluate the imposed overhead of different
execution platforms using different number of CPU cores and
under two circumstances—when CPU pinning is in place and
when it is not. In summary, the contributions of this paper are
as follows:

• Measuring and analyzing the imposed overhead of dif-
ferent execution platforms for widely-used cloud-based
applications.

• Analyzing the impact of altering resource configurations,
including number of CPU cores and CPU pinning, on the
imposed overhead of different execution platforms.

• Proposing a set of best practices for deploying different
application types in different virtualization platforms.

This paper is structured as follows. Section II provides an ar-
chitectural view of virtualization platforms and describes CPU
provisioning models. Section III describes the applications,
our testbed, and analyzes the overhead of different platforms
under various configurations. In Section IV, we perform a
cross-application overhead analysis of the imposed overhead
across different application types. Section V presents the most
relevant works in the literature for benchmarking virtualization
platforms and the use of pinning. Then, in Section VI, we
summarize the lessons learnt and provide a set of best practices
to efficiently configure cloud platforms.

II. Background
A. Overview

Virtualization platforms emulate and isolate compute, stor-
age, and network resources within a host. Current virtual-
ization platforms are categorized based on the level of ab-
straction they provide. In particular, VMs provide a hardware
layer abstraction, known as hardware virtualization, whereas
containers enable abstraction from the operating system (OS)
layer, known as OS virtualization [22].

B. Hardware Virtualization (VM)

Hardware virtualization operates based on a hypervisor that
enables one or more isolated guest operating systems (VMs)
on a physical host [23], [24]. KVM [4] is a popular open-
source hypervisor extensively used by cloud providers. For
instance, AWS developed a KVM-based hypervisor called
Nitro [25] and uses it for its C5 VM types. Many datacenter
management platforms have been developed around KVM hy-
pervisor. For instance, Hyper Converged Infrastructure (HCI)
platforms [26] (e.g., Nutanix [27], Maxta [28], and Cloudistics
[29]) that enable integrated software defined datacenters have
adopted KVM as their underlying hypervisor.

KVM hypervisor, depicted in Figure 1a, is part of the host
kernel and works directly with hardware virtualization features
(e.g., Intel-VT and AMD-v [30]) to share the hardware
resources across multiple fully isolated VMs. KVM interfaces
with the user space (e.g., via QEMU) and executes guest OS
commands via ioctls kernel module. Qemu-KVM emulates
hardware devices for VMs and can para-virtualize [30] IO
devices, such as disk and NIC, by using specific drivers
that expedite accessing them. Libvirt is a library to help
external services to interact with KVM/QEMU using its APIs.
virsh and virt-manager are command-line and GUI
interfaces for Libvirt.

C. OS Virtualization (Container)

Container is a lightweight and portable virtualization so-
lution in which the host OS kernel is shared across multiple

(a) Modules of KVM hypervisor. Each VM, called Qemu-KVM,
has a full-stack of the deployed applications and an operating
system. Libvirt provides necessary APIs for managing KVM.

(b) Main modules of Docker. Containers are coupling
of namespace and cgroups modules of the host OS
kernel. Docker daemon interacts with Container daemon
(ContainerD) and runC kernel module to manage containers.

Fig. 1: High level architecture of different virtualization platforms.



3

isolated user-space environments. In contrast to VMs, contain-
ers are transparent from the host OS perspective. That is, the
processes created by a container are visible to the host OS as
native processes, however, the container itself is not a process.
All processes created via a container have access to the same
set of resources and libraries.

Technically speaking, a container is an abstraction created
by the coupling of namespace and cgroups modules of the
host OS. A namespace that is assigned to a container creates
an abstraction for the processes of the container and offers
them an isolated user space, such as network configurations,
storage space, and software packages.

Control Groups (a.k.a cgroups) is a kernel module that
enforces and monitors resource usage limitations for a given
group of processes [31] [32]. Cgroups module of the host OS
is in charge of enforcing resource constraints designated for
a container instance. As an example, for a container instance
with two CPU cores, cgroups oversees its usage not to go
beyond the two cores across the entire host. It is noteworthy
that the way cgroups enforces constraints is a decisive factor
from the performance overhead perspective.

Docker [14] is the most widely adopted container technol-
ogy in the cloud era, hence, we consider it as the container
platform in this study. However, we believe that our findings
can be extrapolated to other containerization techniques that
operates based on cgroups (e.g., Singularity). Figure 1b illus-
trates the architecture of the Docker container. Docker Engine
(DockerD) receives container management requests via its
APIs. The engine is in charge of creating container instances
and enforcing their specifications via containerD service.
ContainerD utilizes runC module of the OS kernel to create
namespace and cgroups for each container instance.

D. CPU Provisioning for Virtualized Platforms

The host OS generally uses time sharing scheduling policies
(e.g., Completely Fair Scheduler (CFS) [33]) that does not
specify a processing unit (e.g., core) to each process. That is,
a VM or a container-based process is assigned to a different
set of CPU cores of the host machine in each quantum, during
their life cycle. In this study, a platform that has its provisioned
CPU cores in this default manner is called to be deployed in
the vanilla mode.

Alternatively, a user can choose the pinning mode, to
manually set the CPU cores allocated to a given process
(either a VM or a container) and override the default host
OS scheduler. We explained the technical details of how to
perform CPU pinning in a web-blog post 1. In this case, the
host OS scheduler allocates the pinned process only to the
specified cores. Note that, unlike vanilla mode that utilizes
all the host CPU cores to cumulatively offer the expected
performance, for a pinned platform, only the designated cores
are utilized and the rest are left idle. As such, the side-effect of
pinning (i.e., not using the host OS scheduling) can appear in a
lower CPU utilization, hence, it should not be used carelessly
for any application.

1How to perform CPU pinning: https://bit.ly/2XrENUM

III. Overhead Analysis of Different Application
Types on a Variety of Virtualized Platforms

A. Evaluation Environment

In this section, we evaluate the performance of four cloud-
based application types (detailed in Table I) on four popular
execution platforms.

Type Version Characteristic
FFmpeg 3.4.6 CPU-bound workload

Open MPI 2.1.1 HPC workload
WordPress 5.3.2 IO-bound web-based workload
Cassandra 2.2 Big Data (NoSQL) workload

TABLE I: Specifications of application types used for evaluation.

The performance metric we measure in the evaluations is
the execution time of each application type. Also, to quantify
the overhead of a certain virtualized platform, we define
overhead ratio as the average execution time offered by a given
virtualized platform to the average execution time of bare-
metal. Table II describes the configuration of instance types
used for the evaluation. The host server is a DELL PowerEdge
R830 with 4×Intel Xeon E5-4628Lv4 processors with 112
homogeneous cores, 384 GB memory (24×16 GB DRAM),
and RAID1 (2×900 GB HDD) storage. Each processor is 1.80
GHz with 35 MB cache and 14 processing cores (28 threads).

Instance Type No. of Cores Memory (GB)
Large 2 8
×Large 4 16
2×Large 8 32
4×Large 16 64
8×Large 32 128
16×Large 64 256

TABLE II: List of instance types used for evaluation.

The four studied execution platforms include bare-metal,
which imposes the minimum overhead and is used as the
baseline, in addition to three variations of virtualized plat-
forms commonly used in the cloud (i.e., VMs, containers,
and containers within VMs). Figure 2 provides a schematic
view of the four execution platforms and Table III elaborate
on the specifications of each platform. The abbreviations
mentioned in the table are used henceforth to represent each
execution platforms. Note that each execution platform can be
instantiated using any instance type of Tabel II.

Abbr. Platform Specifications
BM Bare-Metal Ubuntu 18.04.3, Kernel 5.4.5
VM Virtual Machine Qemu 2.11.1, Libvirt 4

Ubuntu 18.04.3, Kernel 5.4.5
CN Container on Docker 19.03.6,

Bare-Metal Ubuntu 18.04 image
VMCN Container on VM As above

TABLE III: Characteristics of different execution platforms used in
the evaluations. First column shows the abbreviation of the execution
platform used henceforth in the paper.

Bare-metal (BM) execution platform only includes the host
OS and the application. In VM platform, one Ubuntu VM
instance is created (based on KVM hypervisor) to process
requests of the application type in question. Similarly, in

https://bit.ly/2XrENUM


4

Fig. 2: The four execution platforms used for performance evaluation of different application types.

container platform (CN), one Docker container is instantiated
on bare-metal from an Ubuntu image. Lastly, VMCN platform
refers to an execution platform where a Docker container is
instantiated within a VM (with the aforementioned configura-
tions).

Resource contention between coexisting processes in a
host can potentially affect the tasks’ execution times, hence,
introducing noise in our overhead measurement objective. To
avoid such noises, we assure that each application type is
examined in isolation. That is, during the evaluation process,
there is no other coexisting workload in the system.

As for the performance monitoring tools employed in this
study, we used basic Linux utilities, such as top, htop,
iostat and perf, alongside with BCC (BPF Compiler Col-
lection [34]) as a profiling tool to perform kernel tracing and
to track the execution status of processes running inside the
OS. In particular, we used cpudist and offcputime to
monitor and profile the instantaneous status of the processes
in the OS scheduler.

Irrespective of the execution platform, the host OS scheduler
is the ultimate decision maker in allocating processes to
CPU cores [33]. A process (e.g., FFmpeg) can be potentially
assigned to a different set of cores at each scheduling event. It
is important to note that even VMs are considered as processes
from the host OS perspective.

As the scheduling events happen frequently and there are
numerous cores in a typical cloud host, migrating processes
from one core to another at each event is expected to induce
a remarkable overhead in the cloud hosts. Specifically, among
other reasons, migrating a given process induces overheads for
redundant memory access due to cache miss, reestablishing
interrupts for IO operation, and context switching [15], [33].
Even more overheads are involved in migrating virtualized
platforms, e.g., for resource usage accounting activities.

We need to measure and verify the significance of the
induced overhead of different execution platforms on the
overall performance. We envisage that overriding the host
OS scheduler, via CPU pinning techniques, limits process
migrations to a smaller set of CPU cores, hence, reduces the
imposed overhead. As such, to verify the impact of CPU
pinning, we evaluate each execution platform for different
workloads with and without CPU pinning. Note that the
virtualized platforms offer built-in pinning ability (e.g., via
Qemu configuration file for each VM). For BM, we modelled
pinning via limiting the number of available CPU cores on the

host using GRUB configuration in Linux [35].

B. Application-Specific Overhead Analysis

In the following subsections, we concentrate on the char-
acteristics of each application type across different execution
platforms. Later, in Section IV, we provide a collective cross-
application overhead analysis on the root causes of the im-
posed overhead.

1) Video Processing Workload Using FFmpeg

FFmpeg offers a wide variety of video transcoding func-
tions, such as those to change video resolution, bit-rate, frame
rate, and compression standard. Changing the compression
standard (a.k.a codec) is known to be the most CPU-intensive
transcoding operation [36], [37] with small memory footpring
(around 50 MB in our observations). Hence, we employ it in
this study to represent a CPU-intensive workload. This also
makes the overhead of the execution platform more visible
and makes it easier to harvest. FFmpeg is a multi-threaded
application and can utilize up to 16 CPU cores to transcode
a video. Hence, for this evaluation, we do not allocate more
than 16 cores (i.e., 4×large) to each execution platform.

We examine a source video segment2 that has a large
codec transcoding time. The reason that we examine one
video segment is to concentrate on the overhead resulted
from the execution platform and remove any uncertainty in
the analysis, caused by the video characteristics. The source
video segment is 30 MB in High Definition (HD) format. The
codec is changed from AVC (H.264) to HEVC (H.265).
The evaluation was conducted 20 times and the mean and
confidence interval of the results were collected.

Results of the evaluation is shown in Figure 3 where
the vertical axis shows the mean execution time for each
experiment and the horizontal axis shows different instance
types. We note that the confidence interval in many cases were
negligible.

Specific observations and analysis of Figure 3 are enu-
merated in the following list. Note that, we defer further
analysis of these observations to Section IV where we conduct
a comparative study across all application types.

i. VMCN imposes the highest overhead and pinning it
cannot reduce the overhead remarkably. Alternatively, CN
platforms (particularly, pinned CN) are shown to impose

2The video file is free-licensed and is publicly available in the following
address: https://peach.blender.org/download/

https://peach.blender.org/download/


5

Large xLarge 2xLarge 4xLarge
Instance Types

0

20

40

60

80

100

120

140
Av

er
ag

e 
Ex

ec
ut

io
n 

Ti
m

e 
(s

)
Vanilla VM
Pinned VM
Vanilla VMCN
Pinned VMCN
Vanilla CN
Pinned CN
Vanilla BM
Platform Overhead

Fig. 3: Comparing execution time of FFmpeg on different execution
platforms under varying number of CPU cores. Horizontal axis
indicates the number of CPU cores in form of different instance types.

the minimal overhead with respect to BM. Importantly,
we observe that as the number of cores increases, the
overhead of vanilla CN and both VMCN platforms de-
crease.

ii. The imposed overhead of VM platforms (vanilla or
pinned) across all instance types is remarkable to the
extent that causing the execution times to remains at least
twice as much as BM. Unexpectedly, pinning does not
mitigate the imposed overhead for VMs when FFmpeg
application is deployed.

iii. By adding the containerization layer on top of VM (i.e.,
VMCN), even a larger performance overhead is imposed.
The maximum and minimum imposed overhead ratios are
4 and 1, respectively. However, as the number of CPU
cores allocated to the VMCN increases, the overhead
is mitigated drastically, such that for 4×Large, the
overhead imposed by VMCN is almost the same as VM.
Furthermore, overhead ratio of VM and VMCN (vanilla
and pinned) remains almost the same across all instance
types.

iv. Unlike VM and VMCN, pinning CN significantly reduces
the overhead, particularly when containers are allocated
with fewer processing cores (e.g., Large). This suggests
that pinned CN is a suitable virtualization platform for
CPU-bound applications, such as FFmpeg.

2) Parallel Processing Workload Using MPI

Message Passing interface (MPI) [19] is a widely-used high
performance computing (HPC) platform to develop parallel
programs. For the analysis, we examined two MPI appli-
cations, namely MPI Search (for parallel searching of an
integer value) [38] and Prime MPI [39] (to find all prime
numbers within a given range). In these applications, the
communication part dominates the computation part. This is to
enable us concentrating on the impact of various virtualization
platforms on the overall overhead imposed, in circumstances
where intensive communication occurs between cores of the
same virtualized platform. As our observations for both of the
MPI applications were alike, to avoid redundancy, we only

xLarge 2xLarge 4xLarge 8xLarge 16xLarge
Instance Types

0

5

10

15

20

25

30

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Vanilla VM
Pinned VM
Vanilla VMCN
Pinned VMCN
Vanilla CN
Pinned CN
Vanilla BM
Platform Overhead

Fig. 4: Comparing execution time of MPI search on different
execution platforms. Horizontal axis represents the number of CPU
cores in the form of different instance types. Vertical axis shows the
mean execution time (in seconds).

report the results for MPI Search. To remove any randomness
in the results, the evaluations were conducted 20 times and
the mean and confidence interval of the execution times are
reported.

Result of this evaluation is shown in Figure 4. Our obser-
vations and analyses are as follows:

i. Overhead imposed by VMCN platforms (both vanilla
and pinned) is slightly more than VM-based platforms.
Surprisingly, the overhead of CN (vanilla and pinned)
even exceeds the VMCN platforms. A closer observation
reveals that, for the MPI applications, the overhead of
any containerized platform exceeds the ones for the
VM platforms. Although the difference in the imposed
overheads is reduced for larger number of cores, the
overhead ratio remains the same.

ii. From 2×Large onward, we notice that the overhead of
VM platforms (vanilla and pinned) becomes negligible
and the execution times become almost the same as BM.
The reason is that, as we move towards larger instances,
the bottleneck shifts from computation part to the com-
munication part. Because the hypervisor (KVM) provides
an abstraction layer to facilitate inter-core communication
between VM’s cores, the imposed overhead diminishes
and their execution times approach BM. This is unlike
communications within cores of a container that involves
host OS intervention, thus, implies a higher overhead
[2]. It is noteworthy that for smaller instance types, the
bottleneck of VM platforms is in the computation part
that, due to several abstraction layers, incurs a significant
overhead.

3) Web-based Workload Using WordPress

WordPress is a PHP-based content management system
(CMS) that uses Apache Web Server and MySQL database in
the back-end. It is broadly deployed in clouds and known to
be IO intensive [20], because each HTTP request to a website
implies at least network (to read/write from/to the socket) and
disk IO (to perform file/database operations). As such, we



6

consider it as a representation of an IO intensive application,
in which each process receives at least three IO interrupts.

We configured the same WordPress website on all of the
execution platforms. Apache Jmeter [40] is a tool to apply
workload and measure the performance of a web server. We
configured it to generate 1,000 simultaneous web requests (i.e.,
processes) on each execution platform and then, we calculated
the mean execution time (a.k.a response time) of these web
processes. We note that Jmeter itself is a resource intensive
application that can affect our intended performance evalua-
tion. Therefore, we configured it to run on a dedicated server
in the same network. To remove any possible environmental
randomness, we evaluated the workload six times on each
instance type. Then, we report the mean and 95% confidence
interval of response time of all web requests.

Results of this evaluation are shown in Figure 5. The
vertical axis shows the mean execution time of 1,000 web
processes (in Seconds) and the horizontal axis shows different
instance types. Our observations and analyses of the results
are enumerated in the following list:

i. Unlike pinned CN that imposes the lowest overhead,
vanilla CN imposes the highest overhead across all ex-
ecution platforms—twice as much as BM for Large
instance type. However, by increasing the number of
CPU cores, this behavior is changed such that the mean
execution time offered by vanilla CN approaches BM. As
a similar behavior is observed for other application types,
we defer analysis of this observation to Section IV.

ii. Even though VMCN platforms (vanilla and pinned) in-
clude one more layer of virtualization in compare with
VM platforms, they impose a slightly lower overhead.
Further analysis within VM platforms shows that the
pinned VM consistently imposes a lower overhead than
the vanilla VM. Building upon these two observation,
we hypothesize that, for IO intensive applications, both
pinning and containerization are decisive factors in miti-
gating the imposed overhead of the virtualized platform.

xLarge 2xLarge 4xLarge 8xLarge 16xLarge
Instance Types

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Vanilla VM
Pinned VM
Vanilla VMCN
Pinned VMCN
Vanilla CN
Pinned CN
Vanilla BM
Platform Overhead

Fig. 5: Comparing mean response time (aka execution time) of
1,000 web processes on different execution platforms (WordPress
evaluation). The horizontal axis represents the number of CPU cores
in the form of different instance types and the vertical axis shows the
mean execution time (in seconds).

In curtail, the reason that pinning remarkably mitigates
the execution time overhead is a more efficient use of the
cache and the possibility to pin virtualized platforms on
CPU slots based on their IO affinity [41]. Alternatively,
in a non-pinned (i.e., vanilla) scenario, at each time slot,
the virtualized platform is allocated on a different set of
processing cores by the scheduler that may not favor IO
affinity and implies reestablishing the cache. We elaborate
this analysis further in Section IV with respect to other
application types as well.

4) NoSQL Workload using Apache Cassandra

Apache Cassandra [21] is a distributed NoSQL database
extensively used to handle Big Data in the cloud. We evaluate
it in this study as an application type that demands compute,
memory, and IO. We configured Cassandra exclusively on one
execution platform and used its native stress tool, Cassandra-
stress [42] [21], to submit 1,000 synthesized database oper-
ations within one second. A set of 100 threads, each one
simulating one user, were spawned by Cassandra-stress. To
make the imposed overhead stand out, we put Cassandra
under extreme pressure by forcing a quarter of the synthesized
requests as the write operations and the rest as the read
operations. Then, we calculated the average execution time
(a.k.a response time) of all the synthesized operations. To
capture the randomness in the results, caused by the execution
platforms, we conducted the experiment 20 times for each
instance type and the mean and 95% confidence interval of
the results are reported.

Results of this evaluation are shown in Figure 6. Note that,
for the Large instance type, the system is overloaded and
thrashed and the results are out of range. As such, to be able to
concentrate on the imposed overhead of other instance types,
we excluded the results of the Large type. Our observations
and analysis for this experiment are as follows:

i. Vanilla CN imposes the largest overhead—3.5 times
or more with respect to BM. This overhead is even

xLarge 2xLarge 4xLarge 8xLarge 16xLarge
Instance Types

0

25

50

75

100

125

150

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Vanilla VM
Pinned VM
Vanilla VMCN
Pinned VMCN
Vanilla CN
Pinned CN
Vanilla BM
Platform Overhead

Fig. 6: Comparing mean execution time (aka response time) of
Cassandra workload (in seconds) on different execution platforms.
Horizontal axis represents the number of CPU cores in the form of
different instance types. Note that the execution time for the Large
instance type is out of range and unchartable.



7

higher than the similar phenomenon we observed for
WordPress (in Figure 5). The reason for this behavior is
the higher volume of IO operations in Cassandra rather
than WordPress. However, the CN overhead diminishes
for instances with larger number of cores. As we had
similar observations for other application types, we defer
further analysis of this phenomenon to Section IV.

ii. In contrast to vanilla CN, pinned CN imposes the lowest
overhead. This confirms our earlier observations on the
positive impact of pinning on IO intensive applications.
Surprisingly, we see that for ×Large—4×Large in-
stance types, pinned CN can even beat BM. The reason
is the BM scheduler is oblivious to IO affinity and the
extreme volume of IO operations makes BM perform
worse than the pinned CN. For the same reason, we can
see that offering a lower execution time is not limited
to only pinned CN, but it is also noticed in any pinned
virtualized platform.

iii. By increasing the number of cores, the impact of pin-
ning is diminished to the extent that for 8×Large and
16×Large instance types, there is no improvement
between the pinned virtualized platforms and their vanilla
counterparts. We believe this is because in virtualized
platforms with larger instance types: (A) there are fewer
scheduling options within the host machine, hence, the
scheduling overhead is mitigated; (B) cache and IO
affinity are improved, because in each scheduling time
slot, it is likely that a virtualized platform is assigned to
the same set of processing cores.

iv. For all VM-based platforms whose instance type is
8×Large and beyond, there is an increased overhead
with respect to BM. As noted in the previous point, for
larger instances, the overhead of IO diminishes, hence,
the execution time is dominated by the CPU processing
time. This makes the situation similar to CPU intensive
application types (e.g., FFmpeg) where VM-based plat-
forms impose a considerable overhead.

IV. Cross-Application Overhead Analysis
Building upon application-specific observations conducted

in the previous section, in this part, we further analyze the
root causes of the imposed overhead by various virtualization
platforms across different application types. We also carry out
additional experiments to verify our findings.

By comparing the results and studying overhead behav-
ior across all application types and execution platforms, the
following two categories of the imposed overhead can be
distinguished:

1) Platform-Type Overhead (PTO)

This kind of overhead pertains to the type of virtualized plat-
form and its ratio remains constant, irrespective of the instance
type it is deployed on. For instance, in both FFmpeg (Figure 3)
and Cassandra (for instance types greater than 4×Large in
Figure 6), the overhead ratio of VM remains the same across
various instance types. This type of overhead is caused by the
abstraction layers of the virtualized platforms and are reflected
when CPU intensive applications (e.g., FFmpeg) are deployed.

As the source of this type of overhead pertains to virutalization
layers, pinning cannot mitigate it drastically. This type of
overhead is a known issue and has been studied in prior works
[4], [43], [44].

2) Platform-Size Overhead (PSO)

This type of overhead is diminished by increasing the num-
ber of cores assigned and is specific to vanilla CN platform.
PSO is observed throughout all the studied application types,
particularly, when a container is assigned a small portion
of the host CPU cores. Our hypothesis is that the ratio of
the container cores to the host cores is a decisive factor on
the magnitude of the imposed overhead. This behavior of
containers has also been identified and reported for Docker
by IBM [45]. In particular, for IO-bound applications, the
overhead even exceeds VM platforms. As an instance, for
Large instance type, the overhead ratio of vanilla CN to
vanilla VM for WordPress application is 2.4 (see Figure 5) and
it is 3.7 for Cassandra (see Figure 6). Importantly, pinning can
considerably mitigate this type of overhead. Since this type of
overhead has not been investigated before, we elaborate on its
root causes in the next subsections.

A. The Impact of Container-to-Host Core Ratio (CHR) on
PSO

To analyze the impact of container size on PSO, for a given
container, we define Container-to-Host Core Ratio (CHR) as
the ratio of its assigned cores to the total number of host
cores. To evaluate the impact of CHR, we choose FFmpeg as
the application type, because it does not impose additional IO
overhead and our analysis is concentrated on PSO. We con-
figure a CN platform of 4×Large type on two homogeneous
hosts, with 16 and 112 cores, respectively. Then, we measure
the mean execution time of the FFmpeg workload (described
in Section III) on these configurations.

Results of this experiment are shown in Figure 7. The first
set of bars represent CHR=1 and the second set represent
CHR=0.14. In addition to the CN platform, we report the

16 cores 112 cores
Hosts with Different Number of Cores

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

CHR=1
CHR=0.14

Vanilla CN
Pinned CN
Vanilla BM
Platform Overhead

Fig. 7: Evaluating the impact of CHR on the overhead of a vanilla
and a pinned CN platform on two homogeneous hosts with 16 and
112 cores. The vertical axis shows the mean execution time (in
seconds) and the horizontal axis shows the host’s number of cores.



8

result for the BM platform with 16 cores. This enables us
to study the overhead of a CN platform that is as big as the
host machine.

In this figure, we observe that although the CN platforms
have the same number of cores, on the larger host (with 112
cores) they impose a higher overhead in compare with the case
that they are deployed on the smaller host. We can conclude
that a container with a lower value of CHR imposes a larger
overhead (PSO) to the system. As illustrated in the figure,
pinning does not imply any statistically significant difference
in the imposed overhead.

Throughout Section III, we repeatedly observed the impact
of increasing CHR on mitigating PSO across different appli-
cation types. That is, for larger CN platforms, the execution
time approaches BM, even more rapidly than other virtualized
platforms.

The question arises in this case is that, for a given container
that processes a certain application type, how to know the
suitable value of CHR? In this work, we address this question
based on our observations for different application types.
However, we note that answering this question theoretically
is an interesting future research work. In WordPress, the PSO
starts to vanish when the CN is configured in the range of
[4×Large , 8×Large] that implies 0.14 < CHR < 0.28.
A similar observation was made in the IBM report for their
proprietary IBM WebSphere web server [45]. Similar analysis
for FFmpeg and Cassandra indicate suitable CHR should be in
the range of 0.07 < CHR < 0.14 and 0.28 < CHR < 0.57,
respectively. From this analysis, we conclude that IO inten-
sive applications require a higher CHR value than the CPU
intensive ones.

The estimated ranges of CHR can be used by cloud ad-
ministrators to configure containers such that their imposed
overhead is minimized. This can potentially benefit both cloud
users (by reducing their incurred cost and response time) and
cloud providers (by lowering their energy consumption).

B. The Impact of Container Resource Usage Tracking on
PSO

Although CHR explains the diminishing PSO for containers
with larger instances, it does not explain the high PSO of small
vanilla CNs (i.e., those with low CHR) that we observed for
all task types. Recall (from Figures 3, 5, and 6) that pinning
remarkably mitigate the PSO for low-CHR CNs. Accordingly,
our hypothesis is that the high PSO is attributed to CPU
provisioning model.

We observed in our experiments that, for small vanilla CN
(those with 2 cores), OS scheduler allocates all available CPU
cores of the host machine (112 cores) to the CN process. In
this circumstance, cgroups has to assure that the cumulative
CPU usage of the process does not exceed its designated
quota. This means that in each scheduling event, vanilla CN
undergoes the overhead of both OS scheduling (that implies
process migration) and cgroups (for resource usage tracking).
We realized that cgroups is an atomic (kernel space) process
[31] [32] and each invocation of it implies one transition from
the user-mode to the kernel-mode, which incurs a considerable
overhead. Furthermore, we noticed that, in amortizing the

process of a small container across all available CPU cores,
the process footprint on each core is a tiny fraction of the
whole process. Specifically, for small containers, we observed
that the overhead of cgroups tasks reaches to the point that it
dominates the container process. In particular, because cgroups
is an atomic process, the container has to be suspended, until
tracking and aggregating resource usage of the container is
complete.

In contrast to the vanilla mode, CPU pinning avoids the
overhead of host OS scheduling and cgroups. In the presence
of pinning, as the allocated set of processing cores do not
change at each scheduling event, there is less demand for
cgroups invocation, hence, the imposed overhead is mitigated.

C. The Impact of IO Operations on PSO

The comparison of FFmpeg (particularly, ×Large in
Figure 3) against WordPress and Cassandra (particularly,
×Large in Figures 5 and 6) illustrates that, in both WordPress
and Cassandra, the PSO of vanilla CN (i.e., the overhead
part, colored in red) is drastically higher than FFmpeg. As
both WordPress and Cassandra are IO-bound applications, our
hypothesis is that the extra overhead pertains to performing
the IO operations.

As a CPU-bound application, FFmpeg has a predictable
behavior and fully utilizes their CPU quota in each time slot.
In contrast, the IO-bound applications often do not make a
complete use of their CPU quota, because they are interrupted
and switch to the pending state, until they complete their
IO operation. For example, in WordPress, each web request
triggers at least three Interrupt Requests (IRQs): to read from
the network socket; to fetch the requested HTML file from
disk; and to write back to the network socket. Each IRQ
implies the overheads to accomplish a set of scheduling actions
(to enqueue, dequeue, and pick the next task ) and transitioning
to the kernel mode (to perform the IO operation).

Once an interrupt is served, to avoid cache line bouncing
and reestablishing IO channels, OS scheduler makes its best
effort to resume the interrupted tasks on the same set of cores.
However, in the event that the process is assigned to a different
set of cores, a significant overhead is imposed to reload L1
and L2 caches and establish new IO channels. As noted in
the previous section, vanilla CN instances with smaller CHR
are more prone to be allocated on a different set of cores,
hence, experiencing even a more significant overhead, when
compared with larger instances.

D. The Impact of Multitasking on PSO

Analysis of the overhead across different application types,
in particular FFmpeg versus WordPress, brings us to the
hypothesis that the number of processes increases the imposed
PSO. To verify the hypothesis and figure out the importance of
this factor, in this part, we conduct an experiment to analyze
the impact of number of FFmpeg processes on its PSO. The
reason that we compare FFmpeg with itself is to eliminate
the impact of differences in application characteristics and,
instead, single out the impact of number of processes.

For this experiment, we examined FFmpeg on 4×Large
CN instance types to change the codec of the video file used in



9

Section III-B1. We studied two scenarios: (A) the source video
file is a 30-second (large) video; and (B) splitting the same
source video into 30 video files of the same size (one-second
each) and process them in parallel.

Comparing the results in Figure 8 approves our hypothesis
and shows that the number of processes results in increasing
the PSO of CN platforms. This is because, a higher degree of
multitasking increases the overhead imposed by OS scheduler
and cgroups to collect resource usage of CNs.

1 Large Task 30 Small Tasks
Different number of processes running on CN platforms

0

20

40

60

80

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(s
) Vanilla CN

Pinned CN

Fig. 8: Comparing the impact of number of processes on the imposed
overhead of 4×Large CN instance. The vertical axis shows the
mean executing times (in Seconds) and the horizontal axis shows
processing of a source video file in two cases: one large video versus
partitioning it into 30 small videos.

V. Related Work
Container technology has gained a major attention over

the past few years, thus, several research works have been
undertaken to evaluate their performance in contrast to VMs.
Xavier et al. [46] compared the Linux VServer, OpenVZ, and
Linux Containers (LXC) with Xen hypervisor using synthetic
workloads such as LINPACK, STREAM and IOzone. They
observed that containers can provide a near-native performance
for the mentioned workloads. However, this work does not
consider popular cloud applications and platforms. In an-
other study, Shirinbab et al. [42] compare the performance
of Docker, VMware ESXi, and Bare-Metal. They evaluated
the performance of these platforms for Apache Cassandra
database. Their work shows that in terms of disk I/O, con-
tainers incur a performance penalty, specially for disk write
operations.

In [47], authors evaluated the network overhead of Docker
and Singularity containers using HPCG and miniFE work-
loads. Rudyy et al. [48] also compared three different con-
tainer technologies on computational fluid dynamics (CFD)
and concluded Singularity is the suitable container solution
for HPC workloads that provide the same execution time as
Bare-Metal. Mavridis and Karatza [49] studied containers on
VMs configuration. Similar to [46], they evaluated Docker
on top of KVM VMs using well-known benchmarking tools
and explored the overhead in comparison with Bare-Metal.
They concluded adding another virtualization layer that helps

for easier management and system maintenance, but incurs a
performance cost.

Several research works compared containers versus VMs
and Bare-Metal [2]–[5], [42], [46]–[48]. Only few of these
studies explored VMCN configuration, which is a popular
platform in the cloud [49]. In addition, majority of the com-
parisons are performed using synthetic workloads and bench-
marking tools such as LINPACK, STREAM, and NetPerf that
exhibit different behavior than real cloud-based workloads.

VI. Summary and Best Practices
In this study, the performance overhead imposed by different

virtualized platforms commonly used in the cloud was studied.
Four popular application types, namely video processing and
parallel processing (MPI), web processing, and No-SQL were
studied. The study revealed that: (A) application character-
istic (i.e., IO-bound versus CPU-bound) is decisive on the
imposed overhead of different virtualization platforms. (B)
CPU pinning can reduce the overhead of virtualized platforms,
particularly for IO-bound applications running on containers.
(C) The proportion of container cores to the host cores (we
named it CHR) plays a significant role on the overhead of
containers. Greater CHR values reduce the overhead. (D)
Although containers are known to impose a lower overhead
than VMs, the opposite was observed for containers with very
low CHRs. (E) Containers on top of VMs (called VMCN)
impose a lower overhead for IO intensive applications. (F)
Increasing the level of multitasking amplifies the overhead of
containers.

In addition, this study provides the following set of Best
Practices that can help cloud architects to efficiently configure
cloud systems based on their application types:

1) Avoid instantiating small vanilla containers (with one
or two cores) for any type of application.

2) For CPU intensive applications (e.g., FFmpeg),
pinned containers impose the least overhead.

3) If VMs are being utilized for CPU-bound applica-
tions, do not bother pinning them. It neither improves
the performance, nor decreases the incurred cost.

4) For IO intensive applications, if pinned container is
not a viable option, then use container within VM
(VMCN). It imposes a lower overhead than a VM or
a vanilla container.

5) To minimize the overhead of containers, for CPU
intensive applications configure them with 0.07 <
CHR < 0.14 and for IO intensive applications use
0.14 < CHR < 0.28. If the application is ultra
IO intensive (e.g., Cassandra), even a higher CHR
(0.28 < CHR < 0.57) is suggested.

In the further, we plan to extend the study to incorporate the
impact of network overhead. In addition, we plan to provide
a mathematical model to measure the overhead of a given



10

virtualization platforms based on the isolation level it offers.

Acknowledgment
We thank reviewers of the manuscript. The research was supported

by the Louisiana Board of Regents under grant number LEQSF
(2017- 20)-RD-B-06, Perceptive Intelligence LLC, and Amazon
Cloud (AWS) research credit.

References
[1] M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda, “Cloud

paradigms and practices for computational and data-enabled science and
engineering,” Computing in Science & Engineering, vol. 15, no. 4, pp.
10–18, Jul. 2013.

[2] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead
comparison between hypervisor and container based virtualization,” in
Proceedings of the 31st IEEE International Conference on Advanced
Information Networking and Applications, ser. AINA ’17, Mar. 2017.

[3] R. Morabito, J. Kjllman, and M. Komu, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in Proceedings of the IEEE
International Conference on Cloud Engineering, Mar. 2015.

[4] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
in Proceedings of the IEEE international symposium on performance
analysis of systems and software, ser. ISPASS ’15, Mar. 2015, pp. 171–
172.

[5] R. K. Barik, R. K. Lenka, R. K. Rahul, and D. Ghose, “Performance
analysis of virtual machines and containers in cloud computing,” in
Proceedings of the IEEE International Conference on Computing, Com-
munication and Automation, ser. ICCCA ’16, Apr. 2016.

[6] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the USENIX
Annual Technical Conference 2018, ser. USENIX ATC 18, Jul. 2018,
pp. 133–146.

[7] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice
performance,” in Proceedings of the IEEE International Conference on
Cloud Engineering, ser. (IC2E ’18), Apr. 2018, pp. 159–169.

[8] Amazon web services. [Online]. Available: https://aws.amazon.com/
lambda/

[9] Azure service fabric, https://azure.microsoft.com/en-us/services/service-
fabric/. [Online]. Available: https://azure.microsoft.com/en-us/services/
service-fabric/

[10] “DELL EMC Unity XT All-Flash Unified Storage,” Accessed on 2020
Mar 14. [Online]. Available: https://www.delltechnologies.com/en-us/
storage/unity.htm

[11] A. F. Nogueira, J. C. Ribeiro, M. Zenha-Rela, and A. Craske, “Improving
la redoute’s ci/cd pipeline and devops processes by applying machine
learning techniques,” in Proceedings of the 11th International Confer-
ence on the Quality of Information and Communications Technology,
ser. QUATIC 18, Sep. 2018, pp. 282–286.

[12] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in iot context:
Horizontal and vertical linux container migration,” in Proceedings of the
Global Internet of Things Summit, ser. GIoTS ’17, Jun. 2017, pp. 1–4.

[13] J. Zhang, G. Wu, X. Hu, and X. Wu, “A distributed cache for hadoop
distributed file system in real-time cloud services,” in Proceedings of
the 13th ACM/IEEE International Conference on Grid Computing, ser.
GRID ’12, Sep. 2012, pp. 12–21.

[14] C. Yu and F. Huan, “Live migration of docker containers through logging
and replay,” in Proceedings of the 3rd International Conference on
Mechatronics and Industrial Informatics, ser. ICMII ’15, Oct. 2015.

[15] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “Lxc container migration
in cloudlets under multipath tcp,” in Proceedings of the 41st IEEE An-
nual Computer Software and Applications Conference, ser. COMPSAC
’17, vol. 2, Jul. 2017, pp. 31–36.

[16] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li,
“Application-aware dynamic fine-grained resource provisioning in a
virtualized cloud data center,” IEEE Transactions on Automation Science
and Engineering, vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[17] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing
the impact of cpu pinning and partial cpu loads on performance and
energy efficiency,” in Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2015, pp. 1–10.

[18] H. Zeng, Z. Zhang, and L. Shi, “Research and implementation of video
codec based on ffmpeg,” in Proceedings of 2nd International Conference
on Network and Information Systems for Computers, ser. ICNISC ’16,
Apr. 2016, pp. 184–188.

[19] W. Gropp, R. Thakur, and E. Lusk, Using MPI-2: Advanced features of
the message passing interface. MIT press, 1999.

[20] S. K. Patel, V. Rathod, and J. B. Prajapati, “Performance analysis of con-
tent management systems-joomla, drupal and wordpress,” International
Journal of Computer Applications, vol. 21, no. 4, pp. 39–43, May 2011.

[21] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs cassan-
dra,” in Proceedings of the International C* Conference on Computer
Science and Software Engineering, Jul. 2013, pp. 14–22.

[22] R. Buyya, C. Vecchiola, and S. Selvi, Mastering Cloud Computing,
Foundations and Applications Programming, Apr. 2013.

[23] M. Amini Salehi, B. Javadi, and R. Buyya, “Resource provisioning
based on leases preemption in InterGrid,” in Proceeding of the 34th
Australasian Computer Science Conference, ser. ACSC ’11, 2011, pp.
25–34.

[24] M. A. Salehi and R. Buyya, “Contention-aware resource management
system in a virtualized grid federation,” in PhD Symposium of the 18th
international conference on High performance computing, ser. HiPC ’11,
Dec. 2011.

[25] Amazon, “AWS Nitro System,” Accessed on 2020 Mar. 14. [Online].
Available: https://aws.amazon.com/ec2/nitro/

[26] “HCI: Hyper Converge Infrastructure,” Accessed on 2020 Jan.
09. [Online]. Available: https://en.wikipedia.org/wiki/Hyper-converged
infrastructure

[27] “Nutanix: Hyper converge infrastructure,” Accessed on 2020 Jan. 09.
[Online]. Available: https://www.nutanix.com/

[28] “Maxta: Hyper converge infrastructure,” Accessed on 2020 Jan. 09.
[Online]. Available: https://www.maxta.com/

[29] “Cloudistics: Hyper converge infrastructure,” Accessed on 2020 Jan.
09. [Online]. Available: https://www.cloudistics.com/

[30] Y. Goto, “Kernel-based virtual machine technology,” Fujitsu Scientific
and Technical Journal, vol. 47, no. 3, pp. 362–368, Jul. 2011.

[31] “Cgroup in kernel.org.” [Online]. Available: https://www.kernel.org/
doc/Documentation/cgroup-v1/cgroups.txt

[32] J. Bacik, “IO and cgroups, the current and future work.” Boston, MA:
USENIX Association, Feb. 2019.

[33] C. Wong, I. Tan, R. Kumari, J. Lam, and W. Fun, “Fairness and
interactive performance of o (1) and cfs linux kernel schedulers,” in
Proceedings of the International Symposium on Information Technology,
vol. 4, Aug. 2008, pp. 1–8.

[34] “BPF Compiler Collection (BCC), kernel tracing tool,” Accessed on
2020 Jan. 09. [Online]. Available: https://github.com/iovisor/bcc

[35] W. Marshall, “Boot with grub,” Linux Journal, vol. 2001, no. 85es, pp.
8–es, 2001.

[36] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-
Efficient and Robust On-Demand Video Stream Transcoding Using
Heterogeneous Cloud Services,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 29, no. 3, pp. 556–571, Mar. 2018.

[37] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and
M. Bayoumi, “Performance analysis and modeling of video transcoding
using heterogeneous cloud services,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, p. 910922, Apr. 2019.

[38] “SEARCH MPI: Parallel integer search,” Accessed on 2020 Jan. 09.
[Online]. Available: https://people.sc.fsu.edu/∼jburkardt/c src/search
mpi/search mpi.html

[39] “PRIME MPI: Parallel prime search withing a specific range,”
Accessed on 2020 Jan. 09. [Online]. Available: https://people.sc.fsu.
edu/∼jburkardt/c src/prime mpi/prime mpi.html

[40] “Apache Jmeter, load and performance test tool for many different
applications/server/protocol types,” Accessed on 2020 Jan. 09. [Online].
Available: https://jmeter.apache.org/

[41] Z. Guo and Q. Hao, “Optimization of KVM Network Based on CPU
Affinity on Multi-Cores,” in Proceedings of the International Conference
of Information Technology, Computer Engineering and Management
Sciences - Volume 04, ser. ICM 11, Sep. 2011, p. 347351.

[42] S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance evaluation
of container and virtual machine running cassandra workload,” in
Proceedings of the 3rd International Conference of Cloud Computing
Technologies and Applications, ser. CloudTech ’17, Oct. 2017, pp. 1–8.

[43] M. A. Salehi, B. Javadi, and R. Buyya, “Resource provisioning based
on preempting virtual machines in distributed systems,” Concurrency
and Computation: Practice and Experience (CCPE), vol. 26, no. 2, pp.
412–433, Feb. 2014.

[44] M. A. Salehi, A. N. Toosi, and R. Buyya, “Contention management
in federated virtualized distributed systems: implementation and eval-
uation,” Software: Practice and Experience (SPE), vol. 44, no. 3, pp.
353–368, Mar. 2014.

[45] “IBM Knowledge Center, Websphere Commerce, Docker
Performance Tuning,” Accessed on 2020 Jan. 09. [Online].
Available: https://www.ibm.com/support/knowledgecenter/en/SSZLC2
9.0.0/com.ibm.commerce.admin.doc/concepts/cpmdockertune.htm

[46] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments,” in Proceedings of

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://www.delltechnologies.com/en-us/storage/unity.htm
https://www.delltechnologies.com/en-us/storage/unity.htm
https://aws.amazon.com/ec2/nitro/
https://en.wikipedia.org/wiki/Hyper-converged_infrastructure
https://en.wikipedia.org/wiki/Hyper-converged_infrastructure
https://www.nutanix.com/
https://www.maxta.com/
https://www.cloudistics.com/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://github.com/iovisor/bcc
https://people.sc.fsu.edu/~jburkardt/c_src/search_mpi/search_mpi.html
https://people.sc.fsu.edu/~jburkardt/c_src/search_mpi/search_mpi.html
https://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.html
https://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.html
https://jmeter.apache.org/
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_9.0.0/com.ibm.commerce.admin.doc/concepts/cpmdockertune.htm
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_9.0.0/com.ibm.commerce.admin.doc/concepts/cpmdockertune.htm


11

the 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, Feb. 2013, pp. 233–240.

[47] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Evaluation of
docker containers for scientific workloads in the cloud,” in Proceedings
of the Practice and Experience on Advanced Research Computing, Jul.
2018, p. 11.

[48] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, and
M. Vázquez, “Containers in hpc: A scalability and portability study in

production biological simulations,” in Proceedings of the International
Parallel and Distributed Processing Symposium, ser. IPDPS ’19, May
2019, pp. 567–577.

[49] I. Mavridis and H. Karatza, “Performance and overhead study of
containers running on top of virtual machines,” in Proceedings of the
19th Conference on Business Informatics, ser. CBI ’17, vol. 2, Jul. 2017,

pp. 32–38.


	Introduction
	Background
	Overview
	Hardware Virtualization (VM)
	OS Virtualization (Container)
	CPU Provisioning for Virtualized Platforms

	Overhead Analysis of Different Application Types on a Variety of Virtualized Platforms
	Evaluation Environment
	Application-Specific Overhead Analysis
	Video Processing Workload Using FFmpeg
	Parallel Processing Workload Using MPI
	Web-based Workload Using WordPress
	NoSQL Workload using Apache Cassandra


	Cross-Application Overhead Analysis
	The Impact of Container-to-Host Core Ratio (CHR) on PSO
	The Impact of Container Resource Usage Tracking on PSO
	The Impact of IO Operations on PSO
	The Impact of Multitasking on PSO

	Related Work
	Summary and Best Practices
	References

