
Tutorial: Object as a Service (OaaS) Serverless
Cloud Computing Paradigm

Pawissanutt Lertpongrujikorn , Mohsen Amini Salehi
High Performance Cloud Computing (HPCC) Lab, University of North Texas

pawissanuttlert pongru jikorn@my.unt.edu,mohsen.aminisalehi@unt.edu

Abstract—While the first generation of cloud computing
systems mitigated the job of system administrators, the next
generation of cloud computing systems is emerging to mitigate
the burden for cloud developers—facilitating the development
of cloud-native applications. This paradigm shift is primarily
happening by offering higher-level serverless abstractions, such
as Function as a Service (FaaS). Although FaaS has successfully
abstracted developers from the cloud resource management
details, it falls short in abstracting the management of both data
(i.e., state) and the non-functional aspects, such as Quality of
Service (QoS) requirements. The lack of such abstractions implies
developer intervention and is counterproductive to the objective
of mitigating the burden of cloud-native application development.
To further streamline cloud-native application development, we
present Object-as-a-Service (OaaS)—a serverless paradigm that
borrows the object-oriented programming concepts to encap-
sulate application logic and data in addition to non-functional
requirements into a single deployment package, thereby stream-
lining provider-agnostic cloud-native application development.
We realized the OaaS paradigm through the development of an
open-source platform called Oparaca. In this tutorial, we will
present the concept and design of the OaaS paradigm and its
implementation—the Oparaca platform. Then, we give a tutorial
on developing and deploying the application on the Oparaca
platform and discuss its benefits and its optimal configurations
to avoid potential overheads.

Index Terms—FaaS, Serverless paradigm, Cloud computing,
Cloud-native programming, Abstraction.

I. INTRODUCTION

The emergence of cloud technology has drastically trans-
formed the application development process. With cloud in-
frastructure, provisioning can now be done in a few minutes,
as opposed to the weeks or months it used to take. Over the
past decade, cloud services have replaced mundane tasks with
software automation. The current state-of-the-art, serverless
platform utilizes the function-as-a-service (FaaS) paradigm to
enable developers to build applications by simply writing code
in the form of a function and uploading it to the platform. The
system then automates the process of building, deploying, and
auto-scaling the application, making the overall development
process more effortless and mitigating the burden for pro-
grammers and cloud solution architects. Major public cloud
providers offer FaaS services (e.g., AWS Lambda, Google
Cloud Function, Azure Function), and several open-source
platforms for on-premise FaaS deployments are emerging
(e.g., OpenFaaS, Knative). In the backend, the serverless
platform hides the complexity of resource management and
deploys the function seamlessly in a scalable manner. FaaS is
proven to reduce development and operation costs via imple-

Manual and Repetitive Refinement

Application Logic

FaaS Platform

Function

State
Management

Developer Workflow
Orchestrator

Workflow 
Definitions

Data
Storage

Source Code

Deployment

Cloud

(a) Function as a Service (FaaS)

OaaS Platform

Data
Storage

Developer

Application
Logic

Dataflow ManagementDataflow
Definitions

State Management

Function

Non-functional
Requirements

Requirement-driven
Optimization

Source Code

Cloud

(b) Object as a Service (OaaS)

Fig. 1: A bird-eye view of FaaS vs. OaaS.

menting scale-to-zero and charging the user in a pay-as-you-
go manner. Thus, it aligns with modern software development
paradigms, such as CI/CD and DevOps [2].

As the FaaS paradigm is primarily centered around the
notion of stateless functions, it naturally does not deal with the
data. However, in practice, most use cases need to maintain
some form of (structured or unstructured) state and keep
them in the external data store. Thus, often the developers
have to intervene and undergo the burden of managing the
application data using separate cloud services (e.g., AWS S3).
For instance, in a video streaming application [4], developers
must maintain video files, metadata, and access control in
addition to developing functions.

Apart from the lack of data management, current FaaS
abstractions do not natively support function workflows. To
form a workflow, the developer has to generate an event that
triggers another function in each function. However, config-
uring and managing the chain of events for large workflows
becomes cumbersome. Although function orchestrator services
(e.g., AWS Step Function and Azure Durable Function) can be
employed to mitigate this burden, the lack of built-in workflow
semantics (see Figure 1) in FaaS forces the developer to inter-
vene and employ other cloud services to chain the functions
and navigate the data throughout the workflow manually. In
sum, although FaaS makes the resource management details
transparent from the developer’s perspective, it does not do so
for the data, access control, and workflow.

ar
X

iv
:2

40
7.

17
39

1v
1 

 [
cs

.D
C

] 
 2

4 
Ju

l 2
02

4

https://orcid.org/0009-0003-4106-2347
https://orcid.org/0000-0002-7020-3810
https://hpcclab.org


Last but not least, FaaS has limited performance control sup-
port. Because the cloud provides separate service abstractions
for computing, databases, and other related components (e.g.,
workflow, messaging, etc.), it prevents the opportunity for the
whole application optimization (e.g., data locality, caching,
etc.). Moreover, the cloud lacks coordination between the
cloud and developers. As a result, cloud service is operated
with little knowledge of the application, and developers are
less capable of controlling or “hinting” the system to satisfy
the QoS requirements.

II. OBJECT AS A SERVICE (OAAS) PARADIGM

To overcome these inherent problems of FaaS, we develop a
new paradigm on top of the function abstraction that mitigates
the burden of resource, data, and workflow management from
the developer’s perspective. We borrow the notion of “object”
from object-oriented programming (OOP) and develop a new
abstraction level within the serverless cloud, called Object
as a Service (OaaS) paradigm [9] to enable cloud-native
application developers to unify their logic and data within a
single abstraction.

As shown in Figure 1, unlike FaaS, OaaS segregates the
state management from the developer’s source code and incor-
porates it into the serverless platform to make it transparent
from the developer’s perspective. Each application is defined
as a collection of cloud objects where its data (a.k.a. state) is
modeled as “attributes” with supported data types in current
cloud data abstraction, and its logic is modeled as methods
realized by serverless functions. In this manner, OaaS abstrac-
tion alone is sufficient for the entire cloud-native application
development phase—eliminating the need for multiple distinct
abstractions and the complexities of effectively gluing them.

A. Optimization Opportunities

OaaS offers the notions of inheritance and polymorphism
to establish software reuse across cloud objects [5], thereby
avoiding redundancy and enhancing development productivity.
Beyond these, OaaS transformation unlocks new opportunities
to perform deployment optimizations that would have been dif-
ficult, if not impossible, without it. This is because the object
abstraction provides richer information for optimization and
grants the cloud more control over the deployment to exploit
them. For example, in FaaS, stateless function execution is
decoupled from its data, making it difficult to minimize the
data transmission overhead of functions. In OaaS, however,
application data and logic are encapsulated and managed
under object abstraction. Thus, OaaS can easily find the data
associated with each method and proactively distribute them
across the platform instances close to the deployed method,
thereby minimizing the data transmission overhead.

B. Dataflow abstraction

OaaS incorporates dataflow abstraction with built-in data
navigation between functions. The significant difference be-
tween dataflow abstraction and conventional FaaS workflows
is that dataflow introduces the execution flow via the flow

of data rather than the invocation order. With dataflow ab-
straction, the platform handles parallelism and data navigation
in the background, reducing developer work and introducing
knowledge of data dependency between function invocations
for further optimization. Also, developers can change the flow
of invocation without changing the function code, only by
changing the dataflow definitions.

C. Non-functional requirements interface

Within the OaaS abstraction, a non-functional requirement
interface can be included that lets the developer express
their non-functional requirements in a human-friendly man-
ner. Through the interface, developers can declare their non-
functional requirements for a whole object or even for a
specific part (method). The requirements are defined as high-
level and measurable metrics either in the form of QoS (e.g.,
availability and throughput) requirements or deployment con-
straints (e.g., budget and jurisdiction). During the deployment,
the cloud provider takes these non-functional requirements as
input to its internal services and adjusts their operations to
meet the requirements. The benefits are three-fold:
• Productivity: Developers no longer need to handle low-level

resource configurations for non-functional requirements, im-
proving productivity by simplifying the deployment process.

• Portability: incorporating the non-functional requirement
interface with OaaS unlocks portability for cloud-native
applications. That is, as long as the cloud provider supports
OaaS, the application can rely on the object abstraction to
maintain its functionality, meet its QoS and constraint expec-
tations (via the non-functional requirement interface), and
comfortably migrate across different cloud environments.

• Cloud-application symbiosis: The interface fosters a co-
operative relationship between the cloud and application
developers. It provides cloud providers with clear optimiza-
tion guidelines to prevent negative impacts on applications
and offers developers a way to configure performance and
quality without extensive trial and error.

D. Potential usages of OaaS

Typically, applications with unpredictable on-demand work-
loads are most suitable for a serverless platform since they can
fully benefit from an auto-scaling system [6]. This kind of
application is also ideal for OaaS if it has the application data
to manage. For example, a multimedia processing application
that gets triggered when customers upload their files to cloud
storage. With FaaS, developers need to work with at least two
cloud services (FaaS and cloud storage), but developers only
need a single cloud service with OaaS. Suppose developers
want to scale their service to broader audiences, they may work
on configuring the cloud services in multiple regions, which
can be challenging to manage and optimize services since both
services are separated. With OaaS, developers explicitly define
the relation between data and computation to the platform,
which can be used to guide the optimization. The portability
aspect of OaaS can also be exploited to streamline application
deployment on multiple regions.



           

Class
Definition

Class Runtime
Template

Class Runtime
Template

Class
B

Class A
F1 F2 Fn

Obj Obj

Platform/Orchestrator

OaaS

Developer

Platform 
Provider

Class Runtime
Template

Class Definition

1 C.R.
B

Class Runtime A
Optimizer A

QoS
2

. .

...

. . .

...

Driven by
Non-functional 
Requirements

Fig. 2: Realizing objects with class runtime and template:
OaaS maintains templates customized for various deployment
scenarios. For a specific class, Oparaca uses one of its pre-
defined templates to create a class runtime to manage the
deployed classes optimally.

Our current Object as a Service (OaaS) design aims to
abstract data and functional and non-functional requirements
into an object. However, the concept of object abstraction can
be extended to provide even greater benefits. For example,
we can treat the IoT device as an object that exposes various
functions for reconfiguring or accessing the device’s capabili-
ties. Consolidating IoT management within a single platform
simplifies integration with other parts of the application and
streamlines management operations, ultimately enhancing the
overall efficiency and versatility of the system.

III. OPARACA: OAAS-BASED SERVERLESS PLATFORM

To offer the OaaS paradigm, we develop Oparaca (Object
Paradigm on Serverless Cloud Abstraction) platform. In
this section, we will discuss the noteworthy key features of
Oparaca.

A. Streamlining the application development

First, Oparaca offers the class-based development interface
to define the entities of their cloud-native application and
non-functional requirements akin to OOP concepts. To that
end, the cloud-native application is built on the foundation
of classes. Each class defines the structure of independent
executable objects that are responsible for carrying out one
or multiple functionalities. Upon deployment, Oparaca allo-
cates appropriate cloud resources to realize the corresponding
objects of the class by creating the class runtime (Figure 2)
to handle workloads. Moreover, Oparaca supports inheritance
and polymorphism for its classes.

B. Requirement-driven optimization

Oparaca provides developers with a non-functional require-
ment interface to guide the performance optimization of their
applications in high-level abstraction. This is achieved by al-
lowing developers to define their non-functional requirements.
To meet the requirements, Oparaca connects the runtime to
the monitoring system and reacts to changes in workload or
performance by adjusting the allocated resources or system
configuration.

To fulfill the variety of Non-functional requirements on
different applications or classes, having the class runtime

shared among them is difficult to manage because of pos-
sible requirements conflicts. To resolve the problem, Oparaca
introduces class runtime template, which provides a config-
urable class runtime design optimized for a specific set of
requirement combinations. When deploying a class, Oparaca
will choose from the list the most suitable template to realize
the class requirement and then follow the template design
to create a dedicated class runtime for this class. Using this
approach, Oparaca can make the class runtime have specific
characteristics based on the requirement. Oparaca also allows
platform provider to customize the template configurations,
selection conditions, and priority for their operation objective
(e.g., resource utilization).

C. Modular and platform-agnostic designs

Oparaca is designed to be modular and platform-agnostic.
Oparaca doesn’t tightly rely on any FaaS system or underly-
ing platform but instead uses the standardized API/protocol
as the abstraction layer. The most important aspect is that
it abstracts developers’ code from the cloud storage. Class
runtime of Oparaca utilizes the semantic of pure function that
bundles the object state and input request into the standalone
invocation task for offloading this task to the code execution
runtime (FaaS engine) and expects the runtime to return with
the modified state. Therefore, the code execution runtime is
entirely decoupled from the state management. By using an
RPC request for offloading a task, any FaaS engine can accept
this task to process and return the output and modified state in
the response body. Although Oparaca currently only provides
comprehensive integration with Knative [7], connecting the
other FaaS engine can be done by configuring the URL.

D. Unstructured data support

Other than the structured data (e.g., JSON) supported by
the previously-mentioned pure function schematic, Oparaca
allows developers to combine the unstructured data (e.g.,
multimedia file) as a part of an object state. To meet the
platform-agnostic objective, Oparaca uses the S3 protocol [1],
a standardizing protocol for object storage for implementing
the data access. This approach is not limited to AWS and can
be implemented using open-source solutions like MinIOand
Ceph,which support S3 API. Oparaca employs the presigned
URL technique to directly allow the developer’s code access
to the file in object storage without sharing the secret key and
avoiding leaking sensitive information.

IV. OAAS TUTORIAL

This tutorial aims to instruct the notion of serverless objects
and the OaaS paradigm. In addition, we will show how to
install and use Oparaca to develop and deploy a cloud-native
application. We design the tutorial to consist of the following
steps:



Listing 1: A simplified version of the YAML class defini-
tion for image processing

1 classes:
2 - name: Image
3 qos:
4 throughput: 100 #rps
5 constraint:
6 persistent: true
7 keySpecs:
8 - name: image #File Image;
9 functions:

10 - name: resize
11 #container image
12 image: img/resize
13 - name: changeFormat
14 image: img/change -format
15 - name: LabelledImage
16 parent: Image
17 functions:
18 - name: detectObject
19 image: img/detect -object

1) Installing the Oparaca platform. In this tutorial, we use
the local Kubernetes [3] as the container orchestrator and
then install Oparaca on top of it.

2) Accessing and managing Oparaca. Oparaca includes the
CLI to facilitate the Oparaca API interaction. This CLI can
be used to manage the deployment, access the deployed
object, and invoke the function on the object.

3) Creating a new function. Oparaca is designed to work
with any framework that accepts and replies to HTTP
requests. In this tutorial, we use Pythoncode.

4) Defining a new class definition. Oparaca allows the
developer to define the class in JSON or YAML. Listing 1
shows The example of defining Image and LabelledImage
class. In the class definition, developers have to define the
state (lines 7-8) and functions (lines 10-14, 18-19). The
non-functional requirements (lines 3-6) are optional.

5) Deploying class and interacting with objects. After
creating the class definition, developers can use the CLI
command to deploy it to the Oparaca platform. Oparaca
then processes the definition to deploy the class runtime.
Developers can use CLI, REST API, or gRPC [8] to
interact with objects.

6) Optimizing the deployment (class runtime). Develop-
ers can guide the optimization by configuring the non-
functional requirements in the class definition.

The source code, documents, example applications, and
deployment scripts of Oparaca are publicly available at the
GitHub repository: https://github.com/hpcclab/OaaS

V. EVALUATION

In one of our experimental evaluations, we study the
scalability of Oparaca by scaling out the workers from 3—
12 VMs. We compare Oparaca (oprc) with Knative as a
baseline and add two other versions of Oparaca: oprc-bypass
that uses a standard Kubernetes deployment as its underlying
function execution instead of Knative; Second is oprc-bypass-
nonpersist that only keeps object data in memory to measure

3 6 9 12
no. workers (#VMs)

0

2

4

6

8

x1
04  o

ps
 p

er
 se

c knative
oprc
oprc-bypass
oprc-bypass-nonpersist

Fig. 3: Evaluating the scalability of Oparaca against Knative
baseline in JSON randomization application.

if Oparaca is not bottlenecked by the database write operation.
According to Figure 3, the throughput of Knative plateaus after
reaching 6 VMs is attributed to the database write operation
throughput bottleneck. Conversely, Oparaca exhibits the poten-
tial for higher throughput due to its reliance on the distributed
in-memory hash table to consolidate data for batch write
operations. Despite not showcasing linear scalability due to the
database write performance limitations, Oparaca significantly
improves maximum throughput compared to traditional FaaS
systems.

VI. CONCLUSION AND FUTURE WORK

The Object-as-a-Service (OaaS) paradigm introduces a new
cloud service abstraction that applies principles of object-
oriented programming to combine application logic, data, and
non-functional requirements into a single deployment package.
This approach simplifies native-cloud application development
and facilitates requirements-driven coordination among cloud
developers, creating opportunities for performance optimiza-
tion. In the tutorial, we demonstrate how to install Oparaca,
prototype of OaaS, and develop applications with it. In the
future, We plan to develop Oparaca to support application
deployment across multiple data centers, thereby unlocking the
opportunity for non-functional requirements such as latency
and jurisdiction.

REFERENCES

[1] Amazon. Cloud Object Storage | Amazon S3 – Amazon Web Services.
https://aws.amazon.com/s3/. Online; Accessed on 21 May. 2024.

[2] S. Bangera. DevOps for Serverless Applications: Design, deploy, and
monitor your serverless applications using DevOps practices. 2018.

[3] Cloud Native Foundation. Kubernetes. https://kubernetes.io/. Online;
Accessed on 21 May. 2024.

[4] Chavit Denninnart and Mohsen Amini Salehi. Smse: A serverless
platform for multimedia cloud systems. Concurrency and Computation:
Practice and Experience, 36(4):e7922, 2024.

[5] Chavit Denninnart and Mohsen Amini Salehi. Harnessing the potential
of function-reuse in multimedia cloud systems. IEEE Transactions on
Parallel and Distributed Systems, 33(3):617–629, 2021.

[6] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. A review of serverless use cases and their characteristics. arXiv
preprint arXiv:2008.11110, 2020.

[7] Cloud Native Foundation. Knative. https://knative.dev/. Online; Accessed
on 21 May. 2024.

[8] gRPC Authors. gRPC. https://grpc.io. Online; Accessed 21 May. 2024.
[9] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. Object as a

service (oaas): Enabling object abstraction in serverless clouds. In 2023
IEEE 16th International Conference on Cloud Computing (CLOUD),
pages 238–248. IEEE, 2023.

https://github.com/hpcclab/OaaS
https://aws.amazon.com/s3/
https://kubernetes.io/
https://knative.dev/
https://grpc.io

	Introduction
	Object as a Service (OaaS) Paradigm
	Optimization Opportunities
	Dataflow abstraction
	Non-functional requirements interface
	Potential usages of OaaS

	Oparaca: OaaS-Based Serverless Platform
	Streamlining the application development
	Requirement-driven optimization
	Modular and platform-agnostic designs
	Unstructured data support

	OaaS Tutorial
	Evaluation
	Conclusion and Future Work
	References

