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Abstract—Security and confidentiality of big data stored in the
cloud are important concerns for many organizations to adopt
cloud services. One common approach to address the concerns
is client-side encryption where data is encrypted on the client
machine before being stored in the cloud. Having encrypted
data in the cloud, however, limits the ability of data clustering,
which is a crucial part of many data analytics applications,
such as search systems. To overcome the limitation, in this
paper, we present an approach named ClustCrypt for efficient
topic-based clustering of encrypted unstructured big data in the
cloud. ClustCrypt dynamically estimates the optimal number of
clusters based on the statistical characteristics of encrypted data.
It also provides clustering approach for encrypted data. We
deploy ClustCrypt within the context of a secure cloud-based
semantic search system (S3BD). Experimental results obtained
from evaluating ClustCrypt on three datasets demonstrate on av-
erage 60% improvement on clusters’ coherency. ClustCrypt also
decreases the search-time overhead by up to 78% and increases
the accuracy of search results by up to 35%.

Index Terms—Clustering; big data; privacy; unstructured
data; cloud services;

I. INTRODUCTION

Many organizations own high volume of unstructured doc-
uments in forms of reports, emails, or web pages. The size of
these data is expected to reach 44 zetabytes within the next
two years [7]. Cloud providers offer scalable and convenient
services to store, process, and analyze the massive volume of
data, which is also known as big data. As such, organizations
use cloud services to relieve from the burden of storing large
volume of data locally. However, the outsourced contents (doc-
uments) often contain private or sensitive information (e.g.,
criminal or financial reports [38]) that need to be protected
against internal and external cloud attackers. In fact, data
security and privacy concerns have made many organizations
reluctant to use cloud. For instance, in 2018, more than 14
million Verizon customers’ accounts information were leaked
from their cloud repository [3]. In another instance, confiden-
tial information of more than three billion Yahoo users were
exposed [2]. In [6], numerous similar data privacy violation
incidents are reported. These incidents vividly highlight the
importance of this issue in the cloud era.

An ideal privacy preserving cloud solution is expected to
enable organizations to securely utilize cloud services, while
providing access and search ability only to authorized users.
Such a solution should be lightweight and users can have it
on their thin-clients (e.g., smartphones) with storage, energy,
and data processing constraints. Client-side encryption [35],
in which documents are encrypted with private keys before
outsourcing them to the cloud, is a promising approach to

achieve data privacy. However, the ability to process and
search the encrypted documents is lost.

Searchable Encryption systems (e.g., [15], [31]) have been
developed to enable privacy preserving search ability over
encrypted data. Such systems predominantly extract keywords
(aka tokens) from documents and leverage them to carry out
the search operation. The extracted keywords and the docu-
ments they appeared in are mapped to an index structure [15],
[35], which is then traversed against a search query to find rel-
evant documents. A problem arises for big datasets where the
index becomes the processing bottleneck to conduct real-time
search operation [21]. For instance, in S3C [35] search tool,
for a 100-petabyte dataset the index size grows to ≈ 300 GB.
Traversing such a large index affects searching timeliness and
can be potentially impacted by hardware limitations [32]. To
resolve the bottleneck, the index structure can be partitioned
to several clusters [12], [36]. Then, for a given search query,
the search space is pruned and limited to the clusters that are
relevant to the query.

Although numerous data clustering methods exist, they are
not appropriate for encrypted big data because of the following
challenges: First, in the encrypted domain the original data is
not available. Therefore, prior works (e.g., [12], [36], [37])
suggest making use of statistical characteristics as the clus-
tering metric for encrypted data. For instance, in S3BD [21],
which is a search system for encrypted big data, keywords’
co-occurrences in a document set is used to cluster keywords.
However, in S3BD, a constant number of clusters (k) is
considered, regardless of the dataset characteristics. Second,
complexity of the clustering methods (e.g., K-means [13])
make them unscalable for big data [8].

To address these two challenges, in this research, we
investigate how to optimally and scalably cluster keywords
in encrypted big datasets?. The outcome of this research is
ClustCrypt that enhances clustering of encrypted keywords by
estimating the appropriate number of clusters (k) and distribut-
ing keywords across them. Unlike traditional k-means-based
clustering approaches, where (k) is chosen arbitrarily [13],
ClustCrypt estimates k by probabilistically inferring the un-
derlying semantic similarity among the encrypted tokens. The
probabilistic calculation measures the tendency for each token
to be separate from others. It is noteworthy that ClustCrypt has
the advantage of improving the search quality and timeliness
without implying any architectural changes to the existing
systems. We develop ClustCrypt and evaluate it on three
different datasets. We compare and analyze the the number
and coherency of resulting clusters against baseline and state-



of-the-art clustering approaches that operate on plain-text data.
In summary, contributions of this paper are as follows:
• Estimating the appropriate number of clusters (k) for a

given encrypted dataset based on its characteristics.
• Proposing a method to distribute encrypted keywords to

relevant clusters.
• Evaluating clusters in terms of coherency and their impact

on the search results.
The rest of the paper is organized as follows. In Sections II

and III, we discuss related works and background. We explain
ClustCrypt in Section IV. Then, in Section V, we discuss
the threat model and provide security analysis of ClustCrypt.
Sections VI and VII explain results and conclusion.

II. RELATED WORKS

Multiple methods have been provided to estimate the suit-
able number of clusters (k), and clustering processes. De-
termining the optimum number of clusters k is an NP-hard
problem [29]. Hence, research has been undertaken to provide
heuristic methods in which k is approximated and clustering
approaches. In this section, we review such prior studies and
position our work corresponding to them.

Many clustering approaches are independent from the
dataset they are applied on. Such generic clustering methods,
such as k-means, populate a predefined set of k clusters based
on the convergence of center shifting [22], [30]. For a dataset
with n data points, k clusters, I iterations, and m attributes, the
time complexity of k-means is O(n× k× I×m), which is not
scalable for big data [1], [33]. In contrast, after determining k,
ClustCrypt populates clusters by achieving the two following
steps. First, from the set of data points, we find appropriate
centers for each cluster and assign each token to proper cluster.
The overall time complexity of the two steps is O(n2).

Pelleg and Moore [30] proposed a framework, named x-
means clustering, to approximate k via learning methods. The
framework is a modified version of k-means clustering that
starts with one cluster (i.e., k=1) and iteratively subdivides it
maintaining stopping criterion [19]. An optimization function
is used to produce the appropriate k to capture the variety
exists in the data points. At some value of k, when the function
reaches a plateau, it is assumed that the starting point of the
plateau is the optimal k [16]. However, in this framework, it
is difficult to apply the stopping criterion [19], particularly, if
no prior knowledge on dataset is available.

Progeny [20] is a clustering method that constructs new
clusters out of existing ones based on their proposed stability
metric. The measure of stability in this method is based on a
co-occurrence probability matrix that verifies the appropriate
cluster for new data points. The method starts with a range
of possible solutions (i.e., set of k values). The optimal value
of k is determined based on the highest stability score. We
compare ClustCrypt against with this method in Section VI.

Methods utilizing genetic algorithm [24] have shown to
perform well in solving different optimization problems, such
as clustering, by starting with a population of a set of poten-
tial solutions (chromosomes) and evolving towards a nearly
optimal solution. Instead of providing several solutions to a
particular problem, genetic algorithms keep a well balance
between exploration (crossover) of the space of solutions and
the exploitation (mutation) of the promising regions. However,
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it is computationally prohibitive to utilize Genetic algorithms
for clustering, as we need to consider trillions of combinations
generated by tokens of a big dataset.

The idea of topic-based term clustering on an index structure
(i.e., data points) has been extensively studied on plain-text.
Xu and Croft [36] proposed the idea that clusters formed for
a homogeneous index (i.e., an index that all of its terms share
a similar topic) improve the efficacy of a search system in
comparison to standard state-of-the-art information retrieval
systems. The authors used k-means clustering method and
distributed the indexed elements among the clusters using
KL-divergence distance function [10]. Once the clusters are
built, for an incoming search query, they perform pruning
to determine the highest relevant cluster via utilizing the
maximum likelihood estimation theory.

III. BACKGROUND

ClustCrypt is motivated by S3BD, a cloud-based secure
semantic search system, that requires clustering over encrypted
big data [21]. The search system can be used by law-
enforcement agencies to detect criminal activities by searching
over privacy-protected criminal reports.

Figure 1 presents where ClustCrypt is positioned within the
S3BD system. We can see that S3BD is composed of a client
tier and a cloud tier. The client tier is considered trusted and it
provides upload and search functionalities for the users. The
cloud tier is considered honest but curious, therefore, all the
documents and their indexed tokens are stored in encrypted
form. To enable real-time searching, the encrypted indexed
tokens have to be clustered.

In the current version, S3BD repurposes k-means clustering
to restrict the search space and provide real-time search opera-
tion over big data. However, the clustering is carried out based
on a fixed k value, regardless of the dataset characteristics
that limits its search quality. In this research, we propose
an approach that considers the dataset characteristics and
improves clustering of the encrypted keywords. Although we
implemented ClustCrypt clustering approach in the context of
S3BD, the approach is generic and can be deployed in other
systems that require clustering of encrypted data.

As shown in Figure 1, once a user uploads documents, a
keyword extractor is used to extract n keywords (aka tokens)
from the original documents. S3BD fairly treats all documents
and keeps the value of n constant across all documents in a
dataset. Then, the documents and tokens are both encrypted
and sent to the cloud tier. RSA deterministic encryption



technique [21] is used to encrypt documents and extracted
tokens.

Cloud tier maintains a central index structure that includes
key-value pairs. Each key-value pair represents, respectively,
an encrypted token, and the list of documents where the token
appears in, plus the frequency of the token in each one of
those documents. Homomorphic encryption [18] can be used
to encrypt the token frequency information. However, due
to the slow down imposed by processing homomorphically
encrypted data [18] and to practically maintain the real-time
search quality, currently, the frequency information are stored
in unencrypted form. Upon issuing a search query by a user,
the search keywords are encrypted and searched against the
central index in the cloud tier to retrieve relevant documents.
Upon receiving the list of matching documents, the user can
download and decrypt them utilizing his/her private key.

Clusters c1, ...,cn are constructed based on the tokens of
the index structure and to mitigate exhaustively searching
the whole index structure for every single search query. The
clusters are topic-based and they are constructed so that the
union of the k clusters is equivalent to the index structure.
For a given search query, instead of searching the whole
index, the search space is pruned and gets limited to only
those clusters that are topically related to the search query.
The pruning is achieved based on a set of Abstract structures
(denoted a1, ...,an) that are sampled from each one of the
clusters and reside either on the client tier or possibly on
a trusted edge server [32]. Details of the way abstracts are
created described in [21] [11]. Upon issuing a search query,
the most similar abstracts to the search query are chosen and
then, their corresponding clusters are searched.

IV. CLUSTCRYPT: CLUSTERING ENCRYPTED TOKENS

A. Overview

Topic-based clustering partitions indexed tokens based on
their similarity. Due to encryption, however, the indexed
tokens do not carry any semantic information that makes
clustering a challenging task. To overcome this challenge,
clustering is achieved based on statistical semantics. The idea
is to locate tokens that are semantically close to each other in
the same cluster. To achieve this, we first need to know the
number of clusters (k) that should be created to cover topics
exist in token of a given dataset. Then, we find the central
tokens for each cluster and assign the rest of tokens to the
most topically related clusters. In our work, according to S3BD
system, we consider that the frequency and co-occurrences of
all tokens in the dataset are available.

In the rest of this section, we first describe how to estimate
the appropriate (k) for a given set of indexed tokens. Then, in
Sections IV-C and IV-D, we explain the center selection and
token distribution methods.

B. Estimating Number of Clusters (k)

Determining the appropriate number of clusters (k) is im-
portant, because it directly impacts the searching performance.
Depending on the characteristics of a dataset and distribution
of tokens in its documents, the value of k can vary significantly.
Encrypted tokens, extracted from documents, and statistical

data corresponding to them (i.e., tokens’ appearance in docu-
ments and their frequency) are available parameters to estimate
k in the following manner:
Step-1: Building Token-Document Frequency Matrix. We
initialize a token-document matrix A from the index structure.
In the matrix, each row represents a token and each column
represents a document. To be able to follow the method
throughout the paper, we consider an example using five tokens
and six documents in Table I. Although our approach does
not deal with plain-text tokens, for further readability, in this
table, we redundantly show plain-text tokens along with the
encrypted ones. Each entry ai, j of matrix A represents the
frequency of ith token in jth document (denoted as f (i, j)).

TABLE (I) Token-Document Matrix A obtained from index
Word Hash d1 d2 d3 d4 d5 d6
Book Uh5W 30 0 23 4 40 0
Solve /Vdn 5 0 0 60 34 0
Traffic oR1r 0 23 0 30 0 0
Net vJHZ 52 49 0 23 0 26
Enter tH7c 0 45 68 0 3 5

For a big dataset, the matrix size can be prohibitively large
and sparse. To avoid this, we trim it to include only the token
that are influential in building clusters. We define document
co-occurrences as the number of documents containing a
particular token. Then, to build the token-document frequency
matrix (A), we only consider tokens whose document co-
occurrences are either greater than or equal to the mean value
of the document co-occurrences across the whole dataset.
Step-2: Constructing Normalized Matrix. To make the
relationship among tokens and documents quantifiable and
comparable, we need to normalize the token-document fre-
quency matrix. Considering that ai, j represents the strength of
association between token i and document j, the maximum
value in column j of the token-document frequency matrix
represents the token with the highest association with j.

Therefore, for normalization, we divide the value of each
entry of matrix A to the highest value in the corresponding
column of the matrix and the result is stored in a matrix,
called N. The value for each entry ni, j is formally calculated by

ai, j
max
∀i

ai, j
. For the example provided in Table I, the normalized

matrix N is represented in Table II.

TABLE (II) Normalized Token-Document matrix N
Word Hash d1 d2 d3 d4 d5 d6
Book Uh5W 0.58 0 0.34 0.07 1 0
Solve /Vdn 0.1 0 0 1 0.85 0
Traffic oR1r 0 0.47 0 0.5 0 0
Net vJHZ 1 1 0 0.38 0 1
Enter tH7c 0 0.92 1 0 0.08 0.19

Step-3: Building Probabilistic Matrices R and S. The
goal, in this step, is to calculate the topic similarity among
encrypted tokens. For that purpose, we need to calculate the
probability that topic of a token shares similarity with other
tokens. Our hypothesis is that tokens that co-occur across
documents are likely to share the same topic. In addition,
the magnitude of similarity between two given tokens could
be influenced by distribution of the tokens across the dataset.
For instance, specific terms appear only in a few documents
and are not widely distributed throughout the dataset. Such



sparsely distributed tokens have low co-occurrences with other
tokens which increases the diversity of topics in a dataset
and potentially raises the number of required clusters (k). We
leverage the normalized matrix (N) to perform a two-phase
probability calculation that ultimately yields a matrix (denoted
as C) representing token-to-token topic similarity.

In the first phase, we calculate the importance of each
token to each documents. The importance of token ti, in
document d j denoted by τi j and is defined as τi j = ni, j/∑

∀k
ni,k.

Considering each τi j and N, we generate R matrix whose
entries represent the importance of each token across all
documents. In fact, each entry ri, j of R matrix represents the
probability of choosing a document d j, having token ti. That
is, ri, j = P(ti,d j).

In our example, Table III shows the R matrix obtained from
the N matrix (shown in Table II).

TABLE (III) R matrix: Built from N
Word Hash d1 d2 d3 d4 d5 d6
Book Uh5W 0.29 0 0.17 0.04 0.50 0
Solve /Vdn .05 0 0 0.51 0.43 0
Traffic oRir 0 0.48 0 0.52 0 0
Net vJHZ 0.29 0.29 0 0.11 0 0.29
Enter tH7c 0 0.42 0.45 0 0.03 0.09

In the second phase, we calculate the importance of each
document to each token. The importance of document d j for
term ti, denoted by δ ji and is defined as δ ji = n j,i/∑

∀q
nq,i.

Considering each δ ji and N, we generate S matrix whose
entries represent the importance of each document with respect
to each token. In fact, each entry si, j represents the probability
of choosing ti from d j (i.e., we have si, j = P(d j, ti)). In our
example, Table IV shows the S matrix obtained from the N
matrix (shown in Table II).

TABLE (IV) S matrix: Built from N

Docs Book
Uh5W

Solve
/Vdn

Traffic
oRir

Net
vJHZ

Enter
tH7c

d1 0.34 0.06 0 0.60 0
d2 0 0 0.19 0.49 0.38
d3 0.17 0 0 0 0.45
d4 .04 0.51 0.25 0.19 0
d5 0.52 0.44 0 0 0.04
d6 0 0 0 0.84 0.16

Step-4: Determining Number of Clusters. Recall that R
is a token-to-document matrix and S is a document-to-token
matrix. To identify the similarity among the encrypted tokens,
we multiply R and S matrices. As the number of columns
and rows of R and S are equal, it is possible to multiply
matrix R with S. The resultant matrix of multiplying R and
S, denoted as C, is a token-to-token matrix and serves as the
base to determine the number of required clusters. Each entry
ci, j denotes the topic similarity between token i and j. More
specifically, ci, j that indicates the magnitude to which token i
shares similar topic with token j for i 6= j is calculated as
ci, j = ∑

∀i, j
ri, j·s j,i. Table V shows the example of Matrix C

which is used throughout this section.

TABLE (V) C matrix: Multiplication of R & S

Word - Hash Book
Uh5W

Solve
/Vdn

Traffic
oRir

Net
vJHZ

Enter
tH7c

Book- Uh5W 0.39 0.25 0.01 0.18 0.09
Solve- /Vdn 0.26 0.45 0.12 0.12 0.02
Traffic- oRir 0.02 0.26 0.21 0.33 0.18
Net- vJHZ 0.10 0.07 0.08 0.58 0.15
Enter- tH7c 0.09 0.01 0.08 0.28 0.37

Diagonal entries of C signify the topic similarity of each
tokens with itself and separation from other topics. More
specifically, the value of ci,i indicates the magnitude that term
ti does not share its topic with other terms. Therefore, we
define diagonal entries (ci,i) as separation factor, because
for each token it represents the token’s tendency to stay
separate from other topics to the degree of the coefficient. As
such, summation of the separation factors can approximate the
number of clusters k needed to partition topics of a dataset.
Let m denote the total number of tokens in matrix C. Then,
Equation 1 is used to approximate k for a dataset. We use the
ceiling function to make k an integer value.

k = d
m

∑
i=1

ci,ie (1)

Correctness of k is verified using a hypothesis that states k
within a set should be higher if individual elements of the
set are dissimilar, otherwise k should be lower [14], [17].
Equation 1 is the core part of approximating k. According to
this equation, the highest k could be m when each individual
token represents a topic, otherwise it is lower. Hence, our
approach conforms with the clustering hypothesis.

C. Determining Clusters’ Centers
In k-means clustering, generally, the clusters’ centers are

arbitrarily chosen [9], [23]. Then, based on a distance mea-
sure function (e.g., Euclidean distance [9] or semantic graph
[23]), dataset elements are distributed into clusters. K-means
operates based on iteratively shifting clusters’ centers until
convergence. However, we realized that the extremely large
number of tokens make the iterative center shifting step (and
therefore k-means clustering) prohibitively time consuming for
big data [8]. Accordingly, in this part, we are to propose a big-
data-friendly method to cluster encrypted tokens.

The key to our clustering method is to dismiss the iterative
center shifting step. This change entails initial clusters’ centers
not to be chosen arbitrarily, instead, they have to be chosen
proactively so that they cover various topics of the dataset.
For that purpose, a naı̈ve method can be choosing the top k
tokens from index that have the highest number of associated
documents. Although this approach chooses important (highly
associated) tokens, it selects centers with document and topical
overlap. Alternatively, we propose to choose tokens that not
only have high document association, but also cover diverse
topics exist in the dataset.

We define centrality of a token i, denoted Φi, as a measure
to represent a topic and relatedness to other tokens of the same
topic. Assume that tokens are sorted descendingly based on the
degree of document association. Let U represent the union of
documents associated to the currently chosen centers. Also,
for token i, let Ai represent the set of documents associated
to i. Then, uniqueness [21] of token i, denoted ωi, is defined



as the ratio of the number of documents associated to i but
not present in U (i.e., |Ai−U |) to the number of documents
associated to i and are present in U (i.e., |Ai∩U |). Uniqueness
indicates the potential of a token to represent a topic that has
not been identified by other tokens already chosen as centers.
Particularly, tokens with uniqueness value greater than 1 have
high association to documents that are not covered by the
currently chosen centers, hence, can be chosen as new centers.

Recall that each entry ci, j of matrix C represents the topic
similarity between tokens i and j. Besides, diagonal entry ci,i
measures separation of token i from others. Therefore, the
total similarity token i shares with others can be obtained by
Σ∀ j| j 6=ici, j. Note that for token i, we have Σ∀ jci, j = 1, hence,
the total similarity for token i is equal to 1− ci,i. Centrality
of a token is measured by the uniqueness of the token, the
magnitude of similarity the token shares with others, and the
magnitude of it being isolated. That is, for token i, centrality
is defined as Φi = ωi× ci,i× (1− ci,i).

Algorithm 1: Determining clusters’ centers
Input : k, C matrix, and central index (with tokens

sorted descendingly based on the degree of
document association)

Output: Set centers that includes at most k center tokens
1 Function Choose Center(k,C, Index):
2 centers← /0

3 U ← /0

4 Θ←{( /0, /0)} //Pairs of tokens and centrality values
5 foreach token i ∈ index do
6 ωi← CalculateUniqueness(i,U)
7 if ωi > 1 then
8 U ←U ∪Ai
9 Φi← (ωi× ci,i× (1− ci,i))

10 Add pair (i,Φi) to max-heap Θ based on Φi
11 end
12 end
13 centers← Extract k max pairs from Θ heap
14 return centers
15 end

Algorithm 1 shows the high-level pseudo-code to select
maximum of k centers from the set of indexed tokens of a
dataset. In addition to k, the algorithm receives the central
index and the C matrix as inputs. The algorithm returns a set
of at most k center tokens, denoted centers, as output. We
do not consider the lower bound in this case. The algorithm
intuitively selects at most K- number of cluster centers. In the
beginning, the output set is initialized to null. U represents
the set of documents covered with the chosen centers. A max-
heap structure, denoted Θ, is used to store a pair for each
token and its centrality value. For each token i, the uniqueness
and centrality values are calculated (Steps 5 to 12) and the
corresponding pair is inserted to the heap. Note that tokens
with uniqueness lower than or equal to one do not have the
potential to serve as a cluster center. In the next step, we select
at most k center tokens that have the highest centrality values.

D. Clustering Tokens
Once k tokens are chosen as cluster centers, the other tokens

of the index are distributed among the clusters based on the
relatedness (aka distance) between the centers and others.

Established techniques exist to calculate such relatedness (e.g.,
semantic graph [23], Euclidean distance [9]), but they are not
suitable for tokens that are sparsely distributed [9]. Besides,
these are not designed to apply on encrypted data [23].

In S3BD [21], a method based on document co-occurrence
is proposed to measure relatedness and cluster encrypted
tokens. In this method, if two tokens are present in the same
set of documents, they are considered related [21]. We utilize
that to measure the relatedness of tokens with cluster centers
and distribute tokens to the most related cluster. To determine
the relatedness between a particular token and a center, we
need to calculate the contribution and co-occurrences metrics
for the token. Let t be a token in document d of dataset D
with frequency denoted as f (t,d). Then, contribution of d to
t, denoted as κ(d, t), is defined based on Equation 2.

κ(d, t) =
f (t,d)

∑
j∈D

f (t, j)
(2)

Co-occurrence of token t with center token γx in document
d (denoted ρ(t,d,γx)) is defined as a ratio of the sum of
frequencies of t and center γx in d to the total frequencies
of t and γx throughout the dataset. The formal presentation of
co-occurrence is provided in Equation 3.

ρ(t,d,γx) =
f (t,d)+ f (γx,d)

∑
j∈D

( f (t, j)+ f (γx, j))
(3)

Based on the contribution and co-occurrence metrics, relat-
edness between token t and γx (denoted r(γx, t)), is defined as
multiplication of these two metrics (shown in Equation 4).

r(γx, t) = ∑
j∈D

κ( j, t)· log(ρ(t,γx, j)) (4)

In this equation, we iterate through each document j that
is associated with t and consider the contribution of j to t
and also the co-occurrences of token t and center γx through
document j. We utilize the log function to constrain the impact
of the co-occurrence factor.

V. SECURITY ANALYSIS

ClustCrypt is applicable in searchable encryption systems
and, more generally, in encryption-based document retrieval
systems. We envision that the systems utilize ClustCrypt are
composed of at least two tiers (e.g., client and cloud tiers
in Figure 1). Only the actions performed on the client tier
are considered trustworthy and clouds are considered honest
but curious. We consider internal and external attackers desire
to unveil the encrypted tokens and documents. In addition,
attacks are possible in the communication between the client
tier and cloud tier. To explain the threat model, we provide
the following preliminaries:

View: The term ‘view’ denotes the portion that is visible
to the cloud during any given interaction between client and
server. The index and the set of clusters, the encrypted query
(trapdoor) of a given search query (Q′), and the collection of
encrypted documents D′. In some models, Q′ also contains a
particular weight for each term. The search result set for Q′
is considered as Ic. Let V (Ic) be this view.

Trace: It denotes the data exposed about Ic. Our aim is to
minimize the data an attacker can infer from Ic.



The View and Trace enclose all the information that the
attacker would gain. To encrypt the document set we use
probabilistic encryption model that is considered to be one of
the most secure encryption techniques [21]. The probabilistic
encryption does not utilize one-to-one mapping and so, D′
is not prone to dictionary-based attacks [34]. In addition,
each token of the cluster is deterministically encrypted. Each
cluster in the View only shows frequency of the encrypted
tokens in documents in plain-text format. We note that even
the frequency information can be stored in encrypted form
using homomorphic encryption techniques [18], however, due
to practical issues and maintain the real-time behavior of the
system, we consider that as a future study.

If an attacker gains the access to the system, only he could
understand the importance of a particular encrypted token by
observing its frequency, but he/she cannot decrypt the token.

In an extreme scenario, let us assume that an attacker man-
ages access to the key for deterministic encryption from the
user’s side. Theoretically, the attacker could build a dictionary
considering all tokens from the clusters. Eventually, he/she
tries to build a clone document set D′′ utilizing the dictionary.
Although all of the tokens extracted from a particular docu-
ment are sufficient to understand the topic of the document, it
is not possible to unveil the whole document.

VI. PERFORMANCE EVALUATION

A. Experimental Setup and Datasets
We implemented ClustCrypt within the S3BD context to

cluster tokens in its central index. For evaluation, we compare
and analyze the quality of clustering against other approaches
that are both in encrypted and unencrypted domains. Our
implementation of ClustCrypt is publicly available in https://
git.io/fjf5X. For experiment, we used two 10-core 2.8 GHz E5
Xeon processors with 64 GB memory. To assure effectiveness
of ClustCrypt, we evaluate it using three distinct datasets.
These are selected based on their volume and characteristics
of their data. To evaluate performance of ClustCrypt with big
data, we use a subset of the Amazon Common Crawl Corpus
(ACCC) dataset [4]. The whole dataset size ≈150 terabytes.
The dataset is not domain-specific and contains different web
contents, such as blogs and social media contents. Due to
the limited processing capability of our available machine,
we sampled from the dataset and randomly selected 6,119
documents that form a ≈500 GB document set. The second
dataset, named Request For Comments (RFC), is domain-
specific and includes documents about Internet and communi-
cation networks. RFC includes 2,000 documents and the size is
≈ 247 MB. The third dataset is called BBC that is not domain-
specific and includes popular news in various fields such as
technology, politics, sports, and business. It contains 1000
documents and is ≈ 5 MB. The reason for choosing this small
dataset is that, unlike ACCC and RFC, each document of BBC
is short and we can verify clusters’ coherency manually. For
each dataset, the documents are passed through Maui keyword
extractor [26] to identify keywords semantically represent the
document.

To evaluate ClustCrypt, we instrument the pre-trained
Google News Word2vec [27] model that determines the simi-
larity between any two words. The model is a 300-dimension
vector representation of three million words and phrases.
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Fig. (2) Cluster coherency of ClustCrypt against encrypted
(Progeny) and unencrypted (Baseline and Wordnet) approaches

Word2vec system requires a text dataset as input to build a
vocabulary from the input dataset and learns vector represen-
tation of words. The model uses cosine similarity and provides
the similarity score (−1 ≤ similarity score ≤ 1) for any two
given tokens. We note that Word2vec model operates only
on unencrypted tokens. Hence, to utilize Word2vec, we had
to cluster the unencrypted tokens. That means, for evaluation
purposes, we build the central index using plain-text tokens
but ClustCrypt assumes tokens to be encrypted and does not
use the plain-text form.

The performance metric that we use to evaluate the quality
of topic-based clustering is overall cluster coherency. It rep-
resents how tokens in a cluster are related to a certain topic.
For a given cluster, coherence is calculated based on mean
of semantic similarity across all possible pairs of tokens in
that cluster. Then, the mean of coherency across all clusters
is defined as the overall cluster coherency.

B. Experimental Results

1) Clusters’ Coherency: In this experiment, we determine
the coherency of clusters resulted from ClustCrypt and com-
pare it against those obtained from three other approaches. One
is the conventional k-means (termed baseline). The second is
an enhanced k-means, known as Wordnet [5], that generates
a synonym set (termed Wordnet synsets) based on the input
documents [28]. Then, k-means clustering is performed on
the set of synsets. Token distribution in Wordnet is performed
using edge counting method proposed by Wu & Palmer [28].
Both of these approaches operate on unencrypted data. The
third approach is Progeny [20], which is a cluster estimation
approach. To make Progeny comparable with others, we input
its estimated k to Algorithm 1 to select clusters’ centers.

Figure 2 shows results of the evaluation on the datasets. We
note that both in baseline and Wordnet, k values are randomly
chosen. We calculate and present clusters’ coherency for all
considered k values. Thus, for these two approaches, we have
multiple data points in the figure. In contrast, ClustCrypt and
Progeny are not iterative and have one data point. Using
ClustCrypt, we obtain 133, 65, and 69 as k values for BBC, RFC,
and ACCC, respectively. As ACCC is the largest and not domain
specific, it yields the highest k. On the contrary, although RFC



is not the smallest dataset, because it is domain specific, it
yields the lowest k. We observe that ClustCrypt results into
the highest coherency for the RFC dataset. Progeny estimates
42, 225, and 340 clusters for BBC, RFC, and ACCC, respectively.
However, after using Algorithm 1 for center selection and
clustering, only 42, 65, and 69 clusters are built. According to
the figure, Wordnet clusters have the highest coherency metric.
In fact, it is difficult for an encrypted clustering approach
(ClustCrypt) to outperform the unencrypted ones, because they
do not have access to the semantic dictionary [28]. In contrast,
in ClustCrypt, as the original meaning of data is unavailable,
we populate clusters based on the co-occurrences. We observe
that ClustCrypt competes with the baseline approach. In partic-
ular, in compare to the baseline approach, ClustCrypt provides
a higher coherency for RFC and BBC datasets.

2) Analyzing the Impact of Dynamic Clustering: One goal
of this research is to enhance performance of S3BD secure
search system. As such, we implemented ClustCrypt within
the context of S3BD and compared the coherency of resulting
clusters with its original clustering approach, which is a pre-
determined value for k = 10. Also, the center selection is only
based on co-occurrences. In this experiment, we intend to
evaluate the improvement that ClustCrypt achieves, when it
is used within S3BD on the three aforementioned datasets. In
this experiment, k estimated for BBC, RFC and ACCC are 69,
65, and 133, respectively.
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Fig. (3) Comparing the impact of dynamic clustering of
ClustCrypt with static clustering in S3BD secure search system

Figure 3 shows that for all the studied datasets, clusters
generated by ClustCrypt have remarkably higher coherency
than the original static approach. This shows determining
number of cluster dynamically based on dataset characteristics
and choosing center tokens based on the centrality concept is
effective. Such efficiency leads to more accurate and relevant
semantic search results on big data, because tokens in clusters
are more related to the topic of the cluster. For further analysis,
next experiments concentrate on the impact of ClustCrypt on
the quality of search results.

3) Analyzing the Impact of ClustCrypt on Search Systems:
Quality of clustering tokens impacts both the accuracy and
response time (i.e., search time) of the search systems like
S3BD. In fact, the aim of this study is to improve the clusters’
coherency that impacts the search accuracy by retrieving more
relevant documents. To evaluate the clustering impact, in this
part, we compare and analyze how the search accuracy of
S3BD system is affected by utilizing ClustCrypt’s clusters
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Fig. (4) Search relevancy comparison based on TSAP@10 scoring
metric: ClustCrypt vs. original S3BD clustering

against the circumstance where the original static clustering is
utilized. Then, we study the impact of clustering on the search
time too. For evaluation, we generated a set of 10 benchmark
search queries for each dataset, as listed in Table VI.

ACCC BBC RFC
Orlando Magic News Update Internet
Samsung Galaxy Top Movies TCP
Baseball routine Recent Attacks Fiber Doctor
Recommendation Endangered Animals Wifi
North America Score Updates IoT
Tennis Tournament Champions League Radio Frequency
Holy Martyr World Health Issue UDP
Library People and Business Edge Computing
Stardock China Market Encryption schemes
Orthodox Church European Stock Exchange Broadcasting

TABLE (VI) Benchmark search queries for evaluated datasets

Impact on relevancy of the search results: To measure the
relevancy of search results for each query, we use TREC-Style
Average Precision scoring method [25]. This method works
based on the recall-precision concept and score is calculated
by ∑

N
i=0 ri/N, where ri denotes the score for ith retrieved

document and N is the cutoff number (number of search
results) that we consider as 10. Therefore, we call it TSAP@10.

We measure TSAP@10 score only for the RFC dataset
and its benchmark queries. The reason is that it is domain-
specific and feasible to determine the relevancy of the re-
trieved documents. To compare the relevancy provided by
ClustCrypt against original S3BD clustering, we search the
benchmark queries using S3BD. In Figure 4, the relevancy
scores (vertical axis) of each query (horizontal axis) by
utilizing the two approaches are represented. According to
the Figure, for most of the queries, the TSAP@10 scores
obtained by ClustCrypt clusters offer the higher relevancy. For
two queries, the same TSAP@10 score is offered, because
the retrieved document lists are equivalent for them. Also,
ClustCrypt clusters provide score for news update and China
Market benchmark queries, whereas original S3BD clusters do
not retrieve any relevant documents for them.

Impact on the search time: Figure 5 presents the overall
search time of the benchmark queries for each dataset. This
figure indicates that, in addition to providing more accurate
results, ClustCrypt also offers a shorter search time. Longer
search time impacts scalability and real-time quality of the
search operation on big data. However, we can observe that in



compare to the clusters generated by original S3BD approach,
ClustCrypt is more scalable in terms of real-time search
operation.
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Fig. (5) Search time of ClustCrypt versus original S3BD clustering

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we developed ClustCrypt, to efficiently per-
form topic-based clustering of unstructured encrypted big
data in the cloud. ClustCrypt approximates the number of
clusters for a given dataset with reduced time complexity,
compared to conventional clustering approaches. Utilizing
statistical meta-data, we obtain the probabilistic tendency of
each token being segregated from others and use it to estimate
the number of clusters. We leveraged the probabilistic analysis
to determine center tokens and disseminate encrypted tokens
to relevant clusters. Experimental results show that clustering
using ClustCrypt provides on average 60% more coherency,
comparing to conventional approaches used for encrypted data.
We concluded that it is difficult for encrypted clustering to out-
perform plain-text clustering. However, ClustCrypt performs
closer to the benchmark than other encryption-based cluster-
ing approaches. From the searchable encryption perspective,
ClustCrypt helps to provide more relevant search results.
In future, we plan to extend ClustCrypt to cluster growing
datasets (e.g., social networks). Also, we will investigate
cluster pruning mechanisms to improve the search accuracy.
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