
Enabling Interactive Video Streaming for Public
Safety Monitoring Through Batch Scheduling

Matin Hosseini
Center of Advanced Computer Studies,
School of Computing and Informatics
University of Louisiana at Lafayette

Email: mx0212@louisiana.edu

Mohsen Amini Salehi
HPCC Laboratory,

School of Computing and Informatics
University of Louisiana at Lafayette

Email: amini@louisiana.edu

Raju Gottumukkala
Informatics Research Institute,

College of Engineering
University of Louisiana at Lafayette

Email: raju@louisiana.edu

Abstract—Public safety officials want to have maximum
situational-awareness though real-time information, such as video
content, for natural disaster management. The video content
can be generated by surveillance cameras or crowd-sourced
(e.g., using smart-phones) and live-streamed to the Incident
Commander. Such video contents need to be processed to adapt
the characteristics of the specialized multi-view display devices.
When a disaster occurs, there is a surge in the number of videos
streamed to the Incident Commander that oversubscribes the
processing servers and the network load. Incident Commanders,
however, need a smooth and uninterrupted viewing experience
specifically for the important events of interest that can change
over time. The challenge is how to enable the Incident Comman-
der to interactively prioritize important video streams to receive
them uninterruptedly while the system is oversubscribed. In such
a system, normal video streams (i.e., non-prioritized ones) should
not be interrupted at the expense of prioritization. To address
this challenge, in this research, we propose a stream-priority
aware resource allocation mechanism to enable interactive video
prioritization without a major impact on the flow of non-
prioritized video streams. The mechanism includes a method to
select appropriate tasks from the arriving ones and a method
to map the selected task to the appropriate video server. Our
simulation results express that the percentage of normal and
prioritized video streaming tasks that have completed on-time
are improved, when compared with baseline scheduling methods.

Index Terms—Priority-aware scheduling method, intractive
video stream prioritization, frame-skipping.

I. INTRODUCTION

At the time of a natural disaster, public safety officials and
Incident Commanders should develop an efficient action plan
to mitigate the consequences of the disaster. Reddy et al.,
[15] identify inefficient information acquisition as one of the
three major challenges in existing natural disaster management
systems.

Live video streaming is extensively utilized by Incident
Commanders to obtain maximum situational-awareness from
disastrous areas. As shown in Figure 1, the videos are captured
and streamed from different sources, such as planted surveil-
lance cameras or crowd-sourced videos (e.g., through smart-
phones). The streamed videos are transmitted over a Software
Defined Network (SDN) to a command center. The video
streams are displayed on specific monitoring devices in the
command center that have the ability to show multiple streams

simultaneously. As such, incoming video streams have to be
converted (also, termed transcoded) on dedicated video stream
servers in a real-time manner to adapt to the characteristics of
the monitoring devices.

Fig. 1. An overview of video surveillance system for natural disaster
management. The system includes network and video processing components.

A problem arises at the time of disaster when several users
start to capture the disaster scene and stream the videos to
the Incident Commander. This causes oversubscription on
the video processing servers. The problem complicats furthur
when some of the servers become unavailable, possibly due to
the disaster. These problems negatively impact the quality of
streaming by creating delay or even interruption in the stream.
Public safety officials, however, need a smooth and uninter-
rupted viewing experience for different events of interest; in
particular, those providing more important information from
the disaster scene [13]. Therefore, they desire to interactively
prioritize important video streams (known as high-priority
streams) to secure a higher level of Quality of Service (QoS)
for them . Also, the rest of video streams (known as normal-
priority streams) should be able to continue streaming.

In the current systems, the same QoS is offered to all
video streams [14]. That is, we cannot discriminate video
streams and enforce a higher QoS to more important ones.
Accordingly, our goal in this research is to enable Incident
Commanders to interactively prioritize video streams of their
interest and secure a higher QoS for them. However, normal-
priority video streams should not be interrupted at the expense

of the prioritization.
We define an oversubscribed server as a machine that

cannot complete its assigned tasks on time (i.e., before tasks’
individual deadlines). Such over-subscription causes missing
the deadline of live video stream tasks and delay in viewing
them at the command center. Therefore, the problem we
investigate in this research is: how to schedule tasks of high-
priority streams along with tasks of normal-priority streams
when the processing servers are oversubscribed so that the
QoS for high-priority tasks is guaranteed and normal-priority
tasks can continue streaming? Efficient resource allocation
methods are required to overcome the oversubscription on
video processing servers through efficient mapping of live
video streaming tasks to the servers. The mapping should be
aware of the high-priority video streams and guarantee their
QoS, without any major impact on the QoS (delay) of normal-
priority streams.

The problem of resource allocation for live video streaming
is different from other resource allocation and scheduling
problems in the sense that it has to deal with high-priority ver-
sus normal-priority tasks. In addition, tasks of normal-priority
video streams can be approximately processed to reduce their
execution times. That is, normal-priority video streams have
the flexibility to skip processing of some frames [6]. The ap-
proximate processing of normal-priority video streams (known
as frame-skipping) impacts their viewing quality; however, it
can be tolerated in favor of high-priority ones [6].

Live video streaming tasks have individual deadlines for
processing that must be respected to keep up with the live
streaming. As there is no value in processing live streaming
tasks that miss their deadlines, such tasks are dropped (i.e.,
discarded) from the system. Accordingly, we define QoS
of high-priority and normal-priority video streams based on
the number of tasks that meet their deadlines. As such the
goal of the resource allocation mechanism is to minimize
the percentage of live video streaming tasks that miss their
deadlines.

Our proposed resource allocation mechanism includes a
method to select appropriate tasks from the arriving ones and a
method to map (i.e., assign) the selected task to the appropriate
video servers. The mapping method is aware of the flexibility
in the execution time of normal-priority tasks and uses that to
minimize the number of both high-priority and normal-priority
tasks missing their deadlines.

We evaluate the efficacy of our resource allocation mech-
anism under various circumstances that can possibly occur
during a time of disaster. In particular, we analyze the behavior
of our mechanism when the system is under different oversub-
scription levels and when some of the processing servers are
unavailable. In summary, the key contributions of this paper
are as follows:

• Providing a resource allocation mechanism that is stream-
priority aware and can guarantee QoS of the high priority
video streams when the system is oversubscribed.

• Providing a mapping method that assigns high-priority
video streaming tasks to servers with the minimum impact

on the quality of normal-priority tasks.
• Analyzing the behavior of the proposed resource al-

location mechanism under different circumstances that
can happen at the time of disaster, namely when the
oversubscription level increases, and when some of the
video processing servers are unavailable due to failure.

The rest of paper is organized as follows: section II provides
some related work on video stream transcoding. In section III
we briefly talk about our system model. Our proposed algo-
rithm consisting of task selection algorithm and provisional
mapping will be discussed in section IV. We perform some
experimental result evaluation in section V and finally discuss
conclusion and future work in section VI.

II. RELATED WORK

Several research works have been undertaken in the areas
of video stream processing and natural disaster management.
In this section, we review the recent research works in these
areas and position this research work with respect to them.

A. Video Stream Transcoding
Video stream transcoding generally depends on the type of

video streaming. As we can see in Figure 2, video streaming
can be carried out either in video on-demand (VOD) or live
streaming.

Fig. 2. Various types of video streaming.

Live video streaming can itself be performed in four differ-
ent fashions, namely one-to-one, one-to-many, many-to-many
and many-to-one. One-to-one streaming is mostly used in
video chat services (e.g., Skype and other Video-over-IP appli-
cations [2]). In one-to-many streaming, one server broadcasts
the live content to many viewers (e.g., LiveStreaming1 and
Periscope2). Many-to-many streaming is mostly used in video
conferencing (e.g., GoToMeeting3 and e-learning systems). In
these systems, each participant receives live video streams
from all other participants. In many-to-one video streaming,
several (many) participants stream videos to one centralized
system. Video surveillance services, such as those used in
traffic management [18], or crowd-sourced video streaming
used in natural disaster management, fall in this category.

In all of the video-streaming fashions, video transcoding
must be done to adapt the stream based on the characteristics
of the viewers’ devices. In VOD streaming (e.g., Youtube4,

1https://livestream.com
2https://www.periscope.tv/
3https://www.gotomeeting.com/
4https://www.youtube.com

https://livestream.com
https://www.periscope.tv/
https://www.gotomeeting.com/
https://www.youtube.com

Netflix5), generally, transcoding is achieved in an off-line
fashion (known as pre-transcoding). Li et al., [9], [11] provide
an architecture for lazy (i.e., on-the-fly) transcoding of video
streams that are rarely requested by viewers. In all types of
live video streaming, however, transcoding operation has to be
carried out on-the-fly.

Video surveillance processing systems [7] consist of three
parts. First, the live video stream is encoded in the source
(by the capturing device). Second, the encoded video is sent
through the network (e.g., through SDN). Third, the live video
stream is transcoded based on the characteristics of the mon-
itoring device in the Incident Commander. Transcoding can
include operations such as converting the spatial resolution,
frame rate, and codec standard of the video streams [11]. In
addition, it can include other video processing operations such
as manipulating video contents [5] or applying frame-skipping
to drop frames from a video stream and shorten its execution
time [3].

B. QoS-Based Video Stream Processing
At the time of a natural disaster, the Incident Commander

monitoring system is oversubscribed by many live videos
streamed to it. Under these circumstances, meeting the QoS
demands of the live video streams depends on efficient allo-
cation of video streaming task to video processing servers.

Ma et al., [12] propose a resource allocation method
based on the intensity of the video streaming workload. They
dedicate separate queues based on the priority of the video
streams to schedule them on the servers. They allocate faster
processing servers to video streams that are in the higher
priority queue. In this system, the priority of video streams
are determined based on the viewers’ requests. In contrast,
we present a system that supports dynamic prioritization of
video streams based on the Incident Commander preference.
In addition, our proposed system is designed to be robust
against oversubscription of video streams at the time of natural
disaster.

Efficient scheduling of video transcoding tasks is depen-
dent on accurate execution time prediction of the tasks.
Li et al., [10] propose an architecture for one-to-many
live video streaming using cloud services. Their goal is to
minimize the incurred cost of using cloud services and meet
the QoS demands of stream viewers. They define the QoS
demands of viewers in terms of minimizing the streaming
startup delay and drop rate in the live streams. In the scheduler,
the execution time of each transcoding task is predicted based
on the execution time of previous transcoding tasks of the
same video stream. Our work is different from [10] in the
sense that we consider a many-to-one live streaming and the
viewer (i.e., Incident Commander) can interactively change
the priority of the video streams. In addition, we consider
the ability of frame-skipping to shorten the execution time of
low priority transcoding tasks. However, we utilize the method
presented in [10] to predict the execution time of transcoding
tasks.

5https://www.netflix.com

III. SYSTEM MODEL

We consider a disastrous situation where different users
live stream videos to the Incident Commander using different
capturing devices and formats [1]. The video content should
be transcoded based on the characteristics of the monitoring
devices in the command center. The transcoding process can
include changing bit-rate, codec standard, and spatial and
temporal resolution [1]. We assume that, at each moment, there
are N videos are being streamed and transcoded on the video
processing servers.

As depicted in Figure 3, each video stream is composed of
several segments which is further divided into Group Of Pic-
tures (GOP) [11]. Each GOP can be transcoded independently,
as such, we consider it as an independent task. To keep up with
live video streaming, each GOP is assigned an individual hard
deadline. That is, the GOP is dropped (i.e., discarded), if it
misses its deadline.

As we can see in Figure 3, each GoP contains multiple
frames of different types. It starts with an Independent frame
(called I-frame) and followed by Predictive frames (P-frame)
and Bi-directional frames (B-frame) [1]. I-frame contains a
complete image of a scene but P-frames and B-frames keep
only the residues of the frames.

Fig. 3. A video stream is composed of several segments and each segment
includes several GoPs. Within each GOP, there are I, P, and B frame types.

We assume that, at the time of a disaster, our video
processing servers are oversubscribed due to a massive number
of live video streams or due to network or server outage. We
define an oversubscribed server as a congested server that,
in general, cannot complete all the GOP tasks assigned to
it on time [17]. In this situation, the Incident Commander
desires to interactively prioritize some video streams over
others. Accordingly, arriving GOP tasks are divided into two
categories, namely high-priority and normal-priority GOP
tasks.

The structure of resource allocation system is depicted
in Figure 4. Arriving GOP tasks are queued before being
mapped to a particular machine. To discriminate normal-
priority and high-priority tasks, we dedicate separate queues
for the arriving normal-priority and high-priority tasks. Our
video processing servers are in form of a cluster with k
dedicated and homogeneous machines. Each machine has a
local queue with a limited size to fetch GOP tasks before
their executions start. Once a GOP task is mapped to a local
queue, it cannot be rescheduled on other machines because it

https://www.netflix.com

involves overhead of moving the GOP to another machine. As
we consider a homogeneous cluster, all local queues have the
same limit (i.e., same local queue size).

Fig. 4. Structure of the resource allocation system.

Our objective is to minimize the percentage of high-priority
GOP tasks that are dropped because of missed deadlines
without inducing major task dropping on normal GOPs.
Normal-priority GOP tasks are not in the focus of Incident
Commander. Therefore, although our goal is not to cause
any task dropping on normal-priority GOP tasks, we have the
flexibility to perform frame-skipping [3] on them to decrease
their transcoding time in favor of meeting deadlines of other
high-priority or normal-priority GOP tasks.

IV. PROPOSED RESOURCE ALLOCATION MECHANISM

A. Overview

Because there are two types of tasks (i.e., normal-priority
and high-priority) in the system, as shown in Figure 4, we
consider a dedicated arrival queue for each priority level.
Upon arrival of a GOP task, it is assigned to one of these
arrival queues based on its priority. In the event that a GOP
task is completed, the scheduler method is executed to assign
one or more tasks to the local queue of machines that have a
free slot. The scheduler has two components that work together
to achieve the goal of scheduling. The components of the
scheduler are as follows:

• Task Selection: The job of this component is to determine
which tasks needs to be selected for mapping. For that
purpose, this component determines an appropriate way
to order GOP tasks within each arrival queue.

• Provisional Mapping: For a selected task, this component
determines the appropriate machine queue and provi-
sionally maps the task to it. The component asks Task
Selection for the next appropriate task and provisionally
maps it, until either all the free slots are provisionally
mapped or there is no task left in the arrival queues for
mapping.

Once all the free slots are provisionally mapped, the map-
ping decisions can be finalized. In the following subsections,
we elaborate on the details of these two components.

B. Task selection

Task Selection component, in each iteration, selects a task
and feeds it to the Provisional Mapping component with

the goal of maximizing the likelihood of meeting the tasks’
deadline while considering their priorities. To achieve this
goal, we define the concept of Latest Start Time (LST) as
the latest time that a task can start its execution in a machine
without missing its deadline.

We sort the arrival queues based on the LST of tasks in those
queues. Then, the Task Selection component selects a task
for mapping from the arrival queues based on the following
criteria:

• Higher Priority
• Lower LST
Let th1 be the first task from the high-priority queue and

tn1 the first task in the normal-priority queue. Normally, th1 is
selected by the Task Selection component, unless, the LST of
tn1 is lower than the LST of th1 (i.e., LST (tn1) < LST (th1)).
In this case, tn1 can be selected, but only if it does not cause
the tasks in the high-priority queue to miss their deadlines.
In fact, if the deadline of tn1 is lower than or equal to the
LST of th1, then we can assure that the execution of tn1 does
not violate the deadline of th1. Thus, tn1 can be selected for
mapping earlier than th1. It is worth noting that, if the LST of
th1 can be satisfied, then the LST of all the remaining tasks in
the high-priority queue will be satisfied too. That is, selecting
tn1 does not violate the deadline of any task in the high-priority
queue.

Algorithm 1 Pseudo-code for Task Selection
Input:

normal-priority queue (N-Queue)
high-priority queue (P-Queue)

1: Sort P-Queue and N-Queue based on LST
2: P1=P-Queue[1]
3: N1=N-Queue[1]
4: Selected Gop =Compare(P1,N1)
5: if Selected Gop = P1 then
6: Provisional Mapping(P1)
7: else
8:
9: if deadline(Selected Gop)< LST (P1) then

10: Provisional Mapping(N1)
11: else
12: Provisional Mapping(P1)
13: end if
14: end if

Algorithm 1 explains the method for the Task Selection
component. As we can see in the algorithm, first, both queues
are sorted based on their LST values. Ties are broken in favor
of the task with an earlier deadline (Line 1 in Algorithm 1).
Then, the LST of the first task in the two queues are compared
and the one with the lowest LST is selected (Line 4). If the
selected task is from the high-priority queue then we can
proceed with the Provisional Mapping component. Otherwise
(i.e., if the selected task is from the normal-priority queue),
the task is selected to be fed to the Provisional Mapping
component only if the deadline of the selected task is lower

than or equal to the LST of the first task in the high-priority
queue (see Line 9). It is noteworthy that if the deadline of first
task in normal-priority queue is greater than the LST of the
first task task in the high-priority queue, then the task from
the high-priority queue is selected for provisional mapping.

C. Provisional Mapping

1) Estimating Execution Start Time of the Selected Task:
Once a task is selected by the Task Selection component,
we need to determine the appropriate mapping for it. The
appropriate mapping for a task is the machine that provides
the minimum execution start time for it. To obtain the mini-
mum execution start time for the selected task in Provisional
Mapping, a temporary virtual queue is formed to estimate the
start time of the selected task on each machine. The virtual
queue for machine j includes all tasks provisionally mapped
to that machine.

The estimated execution start time of the selected task
on M j is the estimated completion time of the last task
provisionally mapped to M j. As shown in Equation 1, the
estimated completion time of the last task i on machine M j,
denoted Ci j, is the sum of three parts. The first part is the
remaining time for the currently executing task on machine
j, denoted R j.The second part is the sum of the estimated
execution times of N tasks waiting in the local queue of
machine j, denoted eq. The third part is the sum of the
estimated execution times of the i tasks provisionally mapped
to machine j, denoted ev (i.e., tasks in the virtual queue of
machine j).

Ci j = R j +
N

∑
q=1

eq +
i

∑
v=0

ev (1)

In live stream transcoding, because the GOP tasks are
processed (i.e., transcoded) upon generation, the execution
time of the tasks are unknown beforehand. Besides, there is no
historic execution information to use for predicting the tasks
execution times6. However, it has been shown that generated
GOPs in a video stream have approximately the same number
of frames, thus, similar execution times [10]. In fact, execution
time of GOP transcoding tasks in a live stream follow a
Normal distribution N(µ,σ) where µ and σ are the average and
standard deviation of execution time of the previous GOP tasks
in the video stream. Accordingly, the execution time of GOP
tasks waiting in the local queue (eq) and the tasks in the virtual
queue (ev), in Equation 1, can be estimated by sampling from
the Normal distribution. In addition, to calculate the remaining
execution time of the current task on machine j (i.e., R j in
Equation 1), the elapsed execution time of the task is deducted
from the estimated execution time of the task.

2) Rescheduling Using Conservative Backfilling: For a se-
lected task, if the provisional mapping method cannot allocate
it before its deadline, then it has to be dropped. However, if we
reschedule tasks within a virtual queue, then we may be able
to allocate the selected task before its deadline. Therefore, we

6We should note that the historic execution time information is available
in the case of VOD [11].

need a method that can reschedule tasks within a virtual queue
to minimize the number of tasks that miss their deadlines.

Conservative backfilling [16] is a method that can schedule
a task ahead of already scheduled tasks in a virtual queue,
as long as it does not violate their deadlines. Accordingly,
selected task s can backfill an already allocated task i in the
virtual queue of machine j, if it does not violate the deadline of
task i. Let Di be the deadline of task i and Ci j the completion
time of task i on machine j. Then, backfilling of task s before
task i is feasible, if and only if Di −Ci j ≥ es.

To apply backfilling for selected task s in a virtual queue
of machine j, we start performing the feasibility check from
the last task in the virtual queue. The feasibility check stops
as soon as a feasible slot is found for mapping task s so that
it can meet its deadline.

3) Frame-Skipping in Video Streaming: Execution time
of GOP transcoding tasks can be diminished by skipping
processing a number of frames in the GOPs. Burza et al., [3]
propose a method to skip processing of B frames in a GOP.
Because no other frame in a stream is dependent on the B
frames, skipping them has no influence on the other frames.
The side-effect of skipping B frames is that the video stream
seems to be frozen for a short time. In this way, transcoding
execution time of a GOP task can be reduced by up to 20%
without having interruption in viewing the video stream [6].
Frame-skipping technique in a video stream can be helpful
in meeting the deadlines of normal-priority and high-priority
GOP tasks.

When we cannot allocate a normal-priority task before its
deadline, the task has to be dropped. However, we can apply
the frame-skipping technique to increase the likelihood of
allocating the task before its deadline. Also, if we cannot find
an allocation for a high-priority task, we can apply frame-
skipping on the normal-priority tasks already allocated in
the virtual queues. This will increase the chance of meeting
deadlines for high-priority tasks.

4) Provisional Mapping Method: Based upon the methods
and techniques discussed in Subsections IV-C1 to IV-C3, in
this part, we explain how the Provisional Mapping maps a
selected task to a video processing server. For the sake of
clarity, the flowchart of the Provisional Mapping method is
presented in Figure 5.

As we can see in the flowchart, the selected task is mapped
to the machine with the minimum start time. For that purpose,
we estimate the start time of the selected task i in each virtual
queue based on the method presented in Subsection IV-C1.

If we cannot find any mapping to allocate task i prior to
its deadline, then we try to allocate the task on the machine
that provides the minimum start time using conservative back-
filling, as explained in Subsection IV-C2. If the task cannot
be allocated even by using conservative backfilling, the last
step is to find a time-slot for the task using frame-skipping,
as explained in Subsection IV-C3.

If selected task i is normal-priority , then we apply frame-
skipping task i and then we try to backfill it on the machine
with minimum start time again. If the selected normal-priority

task i cannot be allocated before its deadline, the task is
dropped. Alternatively, if the selected task i is high-priority
and it cannot be allocated before its deadline, then our strategy
is to create space for the task in the virtual queues using
frame-skipping. For that purpose, we apply frame-skipping on
normal-priority tasks in the virtual queues until an allocation
is found. It is worth noting that, in this case, virtual queues
are considered based on the start time they provide for task i.

Finally, if we cannot find any allocation for a high-priority
task even after frame-skipping, then in the virtual queue
that provides the shortest start time for the task, we drop
the normal-priority tasks until the high-priority task can be
allocated before its deadline. In the event that there is no
normal-priority task to drop in favor of the high-priority task
i, it is dropped.

No

High

 Priority

Normal
 Priority

i ← Use Task

Selection to pick up a

task

m ←Find minimum

start time of i on all

machines

Does task i

meet deadline?

Allocate task i

to machine m

Apply Conservative

Backfilling of i on VQ

m

Does task i

meet deadline?

Yes

Frame-skipping

already applied?

Perform Frame-skipping

on task i

Drop the task

Apply frame-skipping on a

virtual queue, ordered based

on minimum start time for

task i. Allocate task i on it

Yes
Yes

No

No
No

Yes

Drop task i

Does task i

meet its

deadline?

Drop normal priority

tasks in VQ m to make

a space for task i; else

drop task i.

Yes

No

Fig. 5. Provisional mapping algorithm, allocate the selected task to the
machine.

V. PERFORMANCE EVALUATION

A. Experimental setup

We used CloudSim [4], a discrete event simulator, to model
and evaluate our proposed methods. To simulate live video
streaming, we used video streams in a benchmark7 used in
previous research works [9], [11].

To simulate the live video streams arriving to the system, we
consider Poisson distribution (with λ = 0.01) for start times of
the video streams.We consider different number of GOP for
simulating disastrous time. GOPs within a video stream are

7The benchmark is available publicly at https://goo.gl/TE5iJ5

generated and sent on a periodic basis, denoted δ. However,
each GOP (task) has a different network delay before arriving
to the video processing servers. As such, arrival time of task
i, denoted ri, is calculated as: ri = ri−1 +δ+ εi. We consider
GOP tasks generated every 100 ms [10] and the network delay
for task i (that is, εi) is generated by sampling from a Normal
distribution N(0,10).

The performance metric in the experiments is minimizing
the number of GOP tasks that missed their deadlines (i.e.,
dropped). In particular, we evaluate how different scheduling
methods perform in terms of number of high-priority and
normal-priority tasks dropped.

For the sake of accuracy and to remove any randomness
from the results, each experiment has been conducted 10 times
and the mean and 95% of confidence interval of the results
are reported.

B. The Impact of High Priority Tasks

The main goal of this research is to enable prioritizing some
video streams interactively, particularly when the system is
oversubscribed. Accordingly, we are interested in seeing how
the system performs when different portion of the incoming
streams are marked as high-priority .

For that purpose, in this experiment, we consider a scenario
in which the Incident Commander requests different percent-
ages of video streams as high-priority while the processing
servers are oversubscribed. To simulate an oversubscribed
system, we consider 400 GOP tasks from videos captured by
different users arrive to the system with 5 processing servers.
The portion of high-priority GOP tasks range from 10% to
50% of the whole workload. It is worth noting that, as we
increase the percentage of high-priority tasks, the total number
of tasks remain constant. That is, the percentage of normal-
priority tasks reduces as we increase the percentage of high-
priority tasks.

Figure 6 illustrates the percentage of GOP tasks dropped
from high-priority and normal-priority categories when our
proposed method is applied. As we can see in the figure, by
increasing the percentage of high-priority tasks, the percentage
of normal-priority tasks that missed their deadlines increases to
keep the precedence of high-priority tasks. We can observe that
the percentage of high-priority tasks missing their deadlines
does not vary significantly. In particular, percentage of high-
priority tasks missing their deadlines remain constant when
they construct 10% to 20% or when between 30% to 50% of
the tasks. The reason for increments in the percentage of high-
priority tasks missing their deadlines is that by decreasing the
number of normal-priority tasks, there are less opportunities
for frame-skipping in favor of allocating high-priority tasks.
Thus, the high-priority tasks cannot be allocated and miss their
deadlines.
C. The Impact of Frame-Skipping

The goal of this experiment is to investigate the impact
of frames-skipping method on the performance of the whole
system in terms of number of tasks that can meet their
deadlines. For that purpose, we study the behavior of the

https://goo.gl/TE5iJ5

Fig. 6. The impact of percentage of high-priority tasks on the normal-
priority and high-priority tasks missing their deadlines. Horizontal axis shows
the percentage of high-priority GOP tasks and the vertical axis show the
percentage of high-priority and normal-priority GOP tasks missing their
deadlines.

system under different oversubscription levels. In particular,
we considered 200 to 800 GOP tasks arriving to the system
within the same time period. To evaluate the impact of frame-
skipping method, we compared the percentage of tasks that
miss their deadlines when our proposed scheduling is equipped
with the frame-skipping method against the situation in which
it does not use it. In addition, to study the performance of
our proposed scheduling method, we compare its performance
against Earliest Deadline First (EDF) scheduling method. EDF
is a method widely used in scheduling of soft real-time and
multimedia systems [8].In this experiment, we consider 20%
of GOP tasks as high-priority .

Figure 7 shows the percentage of high-priority tasks (in
Sub-figure V-C) and normal-priority tasks (in Sub-figure V-C)
that miss their deadlines when the degree of oversubscription
changes. In both of the sub-figures, we can observe that when
the system is oversubscribed, our scheduling method with
frame-skipping significantly outperforms other methods both
for normal-priority and high-priority tasks. However, when
the system is not oversubscribed (i.e., number of tasks less
than or equal 300) there is not any significant difference
between different methods. The reason is that when the system
is oversubscribed the number of tasks that miss their dead-
lines increases. In this situation, applying the frame-skipping
method can allocate more tasks before their deadlines. We can
conclude that frame-skipping method should be applied only
when the system is oversubscribed and when the system is not
oversubscribed there is no point to incur its overhead.

D. The Impact of Failure Rate

Machine failure or unavailability commonly occurs during
a natural disaster. As such, we are interested to see how our
proposed scheduling method treats high-priority and normal-
priority tasks in the presence of failure. For that purpose, we
evaluate the performance of the system in terms of percentage
of high-priority and normal-priority tasks that miss their dead-

(a) high-priority tasks

(b) normal-priority tasks

Fig. 7. The impact of frame-skipping on our proposed scheduling method.
Horizontal axis shows different number of tasks and vertical axis shows the
percentage of tasks missing their deadlines.

lines when the number of available video processing servers
varies for the same incoming workload.

In this experiment, we vary the percentage of video pro-
cessing servers failure from 0% to 50% and evaluate the
percentage of high-priority and normal-priority tasks that miss
their deadlines in each case. The number of arriving GOP tasks
in this experiment is 600 and the 20% of tasks are high-priority
. Also, we consider 10 video processing servers when there is
no failure in the system.

Figure 8 shows the result of this experiment. In this figure,
the horizontal axis shows the percentage of machine failure
and the vertical axis shows the percentage of high-priority and
normal-priority GOP tasks missed their deadlines (dropped) in
each case using our proposed scheduling method.

As We can see in Figure 8, by increasing the percentage
of machine failure, the percentage of GOP tasks that miss
their deadlines (dropped) has increased. However, we observe
that the percentage of high-priority and normal-priority GOP
tasks that miss their deadlines enters into a steady state,

particularly, when the failure percentage is greater that 30%.
The reason for the insignificant fluctuations is the increasing
use of the frame-skipping method as the failure rate increases.
Specifically, frame-skipping rate increases from approximately
0.9% to 15.5%, when the failure increases from 30% to 50%.
Additionally, in Figure 8, we can observe that the scheduling
method prioritizes high-priority tasks and keep the percentage
of dropped tasks constantly below normal-priority tasks.

Fig. 8. The impact of video processing servers’ failure on the percentage of
high-priority and normal-priority tasks miss their deadlines. The horizontal
axis shows the percentage of processing servers failed and the vertical axis
shows the percentage of high-priority and normal-priority GOP tasks dropped.

VI. CONCLUSION AND FUTURE WORK

The goal of this research was enabling public safety officials
to interactively prioritize live video streams of their interest
over other video streams in disastrous circumstances. We
presented a resource allocation mechanism to schedule high-
priority GOP tasks along with normal-priority GOP tasks in
the presence of oversubscription and machine failure. The pro-
posed method functions based on frame-skipping for normal-
priority tasks to preserve the precedence of high-priority tasks.
Experiment results under different workload and failure rates
demonstrate that our system is able to prioritize high-priority
tasks without interrupting other normal-priority video streams.
In particular, our method can keep the percentage of high-
priority tasks that missed their deadlines constantly (at least
12%) lower than normal-priority tasks. In the future, we
plan to integrate our proposed method with SDN to build
a robust public safety awareness system for natural disaster
management. We also plan to study accurate methods for
predicting execution time of GOPs in live video streams.

ACKNOWLEDGMENTS

This research was supported by NSF under grant number
1451916 and the Louisiana Board of Regents under grant
number LEQSF(2016-19)-RD-A-25.

REFERENCES

[1] Ishfaq Ahmad, Xiaohui Wei, Yu Sun, and Ya-Qin Zhang. Video
transcoding: an overview of various techniques and research issues.
IEEE Transactions on multimedia, 7(5):793–804, 2005.

[2] Salman A Baset and Henning Schulzrinne. An analysis of the skype
peer-to-peer internet telephony protocol. In Proceedings of 25th IEEE
International Conference on Computer Communications, INFOCOM
’06, pages 1–11, 2006.

[3] Marek Burza, Jeffrey Kang, and Peter Van Der Stok. Adaptive streaming
of MPEG-based audio/video content over wireless networks. Journal of
Multimedia, 2(2):17–27, 2007.

[4] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

[5] Shih-Fu Chang and Anthony Vetro. Video adaptation: concepts, tech-
nologies, and open issues. Proceedings of the IEEE, 93(1):148–158,
2005.

[6] Kai-Tat Fung, Yui-Lam Chan, and Wan-Chi Siu. New architecture
for dynamic frame-skipping transcoder. IEEE transactions on Image
Processing, 11(8):886–900, 2002.

[7] Giovanni Gualdi, Andrea Prati, and Rita Cucchiara. Video streaming
for mobile video surveillance. IEEE Transactions on Multimedia,
10(6):1142–1154, 2008.

[8] Dilip Kumar Krishnappa, Michael Zink, and Ramesh K Sitaraman.
Optimizing the video transcoding workflow in content delivery networks.
In Proceedings of the 6th ACM Multimedia Systems Conference, pages
37–48, 2015.

[9] Xiangbo Li, Mohsen Amini Salehi, and Magdy Bayoumi. High
performance on-demand video transcoding using cloud services. In
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’16, pages 600–603, 2016.

[10] Xiangbo Li, Mohsen Amini Salehi, and Magdy Bayoumi. Vlsc: Video
live streaming using cloud services. In Proceedings of 5th IEEE
International Conferences on Big Data and Cloud Computing, BDCloud
’16, pages 595–600, 2016.

[11] Xiangbo Li, Mohsen Amini Salehi, Magdy Bayoumi, and Rajkumar
Buyya. Cvss: A cost-efficient and qos-aware video streaming using
cloud services. In 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid ’16, pages 106–115, 2016.

[12] He Ma, Beomjoo Seo, and Roger Zimmermann. Dynamic scheduling
on video transcoding for mpeg dash in the cloud environment. In
Proceedings of the 5th ACM Multimedia Systems Conference, pages
283–294, 2014.

[13] Neil J McCurdy, William G Griswold, and Leslie A Lenert. Reali-
tyflythrough: enhancing situational awareness for medical response to
disasters using ubiquitous video. In AMIA, 2005.

[14] Kyoomars Alizadeh Noghani and M Oguz Sunay. Streaming multicast
video over software-defined networks. In Proceedings of 11th IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, pages
551–556, 2014.

[15] Madhu C Reddy, Sharoda A Paul, Joanna Abraham, Michael McNeese,
Christopher DeFlitch, and John Yen. Challenges to effective crisis
management: using information and communication technologies to co-
ordinate emergency medical services and emergency department teams.
International journal of medical informatics, 78(4):259–269, 2009.

[16] Mohsen Amini Salehi, Bahman Javadi, and Rajkumar Buyya. Resource
provisioning based on preempting virtual machines in distributed sys-
tems. Concurrency and Computation: Practice and Experience (CCPE),
26(2):412–433, 2014.

[17] Mohsen Amini Salehi, Jay Smith, Anthony A. Maciejewski, Howard Jay
Siegel, Edwin K.P. Chong, Jonathan Apodaca, Luis D. Briceño, Timothy
Renner, Vladimir Shestak, Joshua Ladd, Andrew Sutton, David Janovy,
Sudha Govindasamy, Amin Alqudah, Rinku Dewri, and Puneet Prakash.
Stochastic-based robust dynamic resource allocation for independent
tasks in a heterogeneous computing system. Journal of Parallel and
Distributed Computing (JPDC), 97:96 – 111, 2016.

[18] Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong, and Janice
McNair. Airborne traffic surveillance systems: video surveillance of
highway traffic. In Proceedings of the ACM 2nd international workshop
on Video surveillance & sensor networks, pages 131–135, 2004.

	Introduction
	Related Work
	Video Stream Transcoding
	QoS-Based Video Stream Processing

	System Model
	Proposed Resource Allocation Mechanism
	Overview
	Task selection
	Provisional Mapping
	Estimating Execution Start Time of the Selected Task
	Rescheduling Using Conservative Backfilling
	Frame-Skipping in Video Streaming
	Provisional Mapping Method

	Performance evaluation
	Experimental setup
	The Impact of High Priority Tasks
	The Impact of Frame-Skipping
	The Impact of Failure Rate

	Conclusion and Future Work
	References

