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Abstract—Ultra reliable, low latency vehicle-to-infrastructure
(V2I) communications is a key requirement for seamless oper-
ation of autonomous vehicles (AVs) in future smart cities. To
this end, cellular small base stations (SBSs) with edge computing
capabilities can reduce the end-to-end (E2E) service delay by
processing requested tasks from AVs locally, without forwarding
the tasks to a remote cloud server. Nonetheless, due to the
limited computational capabilities of the SBSs, coupled with the
scarcity of the wireless bandwidth resources, minimizing the
E2E latency for AVs and achieving a reliable V2I network is
challenging. In this paper, a novel algorithm is proposed to jointly
optimize AVs-to-SBSs association and bandwidth allocation to
maximize the reliability of the V2I network. By using tools
from labor matching markets, the proposed framework can
effectively perform distributed association of AVs to SBSs, while
accounting for the latency needs of AVs as well as the limited
computational and bandwidth resources of SBSs. Moreover, the
convergence of the proposed algorithm to a core allocation
between AVs and SBSs is proved and its ability to capture
interdependent computational and transmission latencies for AVs
in a V2I network is characterized. Simulation results show that by
optimizing the E2E latency, the proposed algorithm substantially
outperforms conventional cell association schemes, in terms of
service reliability and latency.

I. INTRODUCTION

Autonomous vehicles (AVs) are among main transformative

technologies in future smart cities. The deployment of AVs can

help in reducing traffic congestions, increasing road safety,

minimizing fuel consumption, and enhancing the overall driv-

ing experience [1]. To effectively operate AVs, reliable vehicle-

to-infrastructure (V2I) communications is required, particu-

larly with widely deployed cellular base stations (BSs) to

support connectivity and control for vehicles [2]. In particular,

cellular BSs can facilitate management of tasks that AVs

need to execute, by providing road information ahead of

time, delivering high definition maps (HD-maps) for AVs, or

maintaining coordination among AVs to prevent congestion.

Nonetheless, most of the tasks associated with AVs are delay

intolerant and require reliable processing with low latency.

Therefore, the V2I wireless system must be capable of manag-

ing AVs’ requested tasks under stringent latency and reliability

requirements [3].

To minimize the V2I communications latency, edge com-

puting is an attractive solution that enables BSs to process

AVs’ requested tasks locally, without relying on remote cloud

servers [4]–[6]. However, several challenges must be addressed

to seamlessly integrate edge computing with cellular V2I

communications. First, small cell BSs (SBSs) have limited

computational resources and, hence, they can be easily over-

loaded with AV tasks. Second, the end-to-end (E2E) latency

for AV task management in a V2I system depends on: a)

uplink transmission latency (i.e., to request a task from the

SBS); b) computational latency at the edge machine; and c)

downlink transmission latency to send the processed task to the

AV. Once coupled with heterogeneous task types and random

wireless channel variations, optimizing the E2E quality-of-

service (QoS) in V2I networks becomes very challenging and

requires efficient AV-to-SBS association jointly with wireless

and computing resource management.

Several works have been recently sought to address the

aforementioned V2I challenges [3], [7]–[10]. In [3], the au-

thors study the impact of transmission time interval (TTI)

design on the performance of low-latency vehicular commu-

nications. In [8], the authors survey various software-defined

latency control schemes in V2I networks. In [9], an edge

computing framework is developed to reduce computational

latency for vehicular services. The work in [10] proposes dif-

ferent radio resource management methods for achieving low-

latency vehicular communications. Meanwhile, most works

on AV-SBS association (e.g., see [11] and references therein)

rely on conventional metrics such as maximum signal-to-

interference-plus-noise ratio (max-SINR) and maximum re-

ceived signal strength indicator (max-RSSI).

However, the prior art in [3], [7]–[10] studies computing

and communication latency in isolation, rather than from an

E2E perspective. For example, the work in [3] considers

a fixed value for the computational latency and neglects

E2E latency. In addition, the authors in [10], focus solely

on wireless resource management, without considering the

computational latency. Moreover, existing works mostly rely

on centralized resource management, while fast and efficient

distributed algorithms are needed to manage tasks in dense

V2I networks.

The main contribution of this paper is, thus, a novel low-

latency V2I communications framework that maximizes the

reliability of the V2I network by jointly optimizing AV-to-

SBS association along with wireless resource management. To

this end, we build a novel solution, based on matching theory,

that allows to account for the E2E latency requirements of



Table I: Examples of V2I service latency requirements [3]

V2I Service Type
Latency

Requirement

Emergency Warning Safety 100 ms

See-through Automated Driving 50 ms

Pre-crash Sensing
Warning

Safety 20 ms

Automated Overtake Automated Driving 10 ms

AVs’ tasks, as well as the limited computational and bandwidth

resources of SBSs. To solve this problem, we propose a novel

algorithm that iteratively associates AVs to SBSs, along with

allocation of bandwidth. The proposed algorithm is proved to

converge to a core allocation between AVs and SBSs, thus

guaranteeing the stability of the V2I network when using

distributed implementations. Simulation results show that the

proposed algorithm substantially improves the performance by

maximizing the reliability of the V2I system and minimizing

the E2E latency for AVs, compared with max-SINR and max-

RSSI associations.

The rest of this paper is organized as follows. Section II

presents the system model. Section III presents the proposed

algorithm. Simulation results are provided in section IV. Sec-

tion V concludes the paper.

II. SYSTEM MODEL

Consider a wireless cellular network composed of a set N
of N SBSs that are distributed uniformly within a square area

of size A. In this network, a set M of M AVs are randomly

deployed and must communicate with SBSs1. Naturally, seam-

less operation of AVs requires management of multiple tasks

in real-time. Table I summarizes a list of typical tasks with

their latency requirements. To avoid latency at the backhaul

network, SBSs are equipped with edge computing machines

to process the AVs’ requested tasks from the set S , and send

necessary information to the AVs. One example is HD-maps

that cannot be built by a single AV in real-time. In fact, an

SBS can receive the location and sensing information from

its associated AVs, process the data to build an HD-map, and

send the HD-map to AVs.

Considering the edge computing capabilities of SBSs, the

E2E latency for V2I communications between AV m ∈ M
and an SBS n ∈ N can be defined as

τ(m,n; s) = [τt(m,n; s)]T + τp(m,n; s), (1)

where T is the duration of one TTI (in milliseconds) and

τt(m,n; s) represents transmission latency, in terms of number

of TTIs, for task s of an AV m associated with an SBS n. In

addition, τp(m,n; s) is the computational latency at the edge

unit of an SBS n to process task s of an AV m. Next, we

characterize transmission and processing latencies in details.

A. Wireless transmission latencies

The overall transmission latency is the sum of both down-

link and uplink transmission latencies and is given by:

τt(m,n; s) = τd(m,n; s) + τu(m,n; s), (2)

1We also consider road side units as SBSs.
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Fig. 1: V2I network with edge computing capabilities.

where τd(m,n; s) represents downlink transmission latency,

in terms of number of TTIs, for AV m to send its task s to

SBS n. This latency is given by:

τd(m,n; s) =
⌈ Id(s)

Rd(m,n)T

⌉

, (3)

where ⌈.⌉ is a ceiling operation and Id(s) denotes the downlink

packet size in bits, corresponding to task s. The denominator of

(3) represents the downlink data that can be transmitted within

one TTI. For efficient utilization of time-frequency resources,

we consider an orthogonal frequency-division multiplexing

(OFDM) frame structure of bandwidth W , divided equally into

K subchannels in a set K, each with bandwidth w. Hence, the

downlink data rate is:

Rd(m,n) = w
∑

k∈K

ymnk log2 (1 + γd(m,n, k)) , (4)

where ymnk = 1, if subchannel k is allocated by the SBS

n to AV m, otherwise ymnk = 0. Rd(m,n) depends on the

downlink SINR, γd(m,n, k), given by:

γd(m,n, k) =
GmGnPnhmnkLmn
∑

n′ 6=n Pmn′ + σ2
n

, (5)

where Pn, Pmn′ , and σ2
n denote, respectively, the transmit

power of SBS n, the received power from interfering SBS

n′ at the AV m’s receiver, and the noise power. In (5), Gm

and Gn denote, respectively, the antenna gain for AV m and

SBS n. hmnk, and Lmn represent, respectively, the Rayleigh

fading channel gain at subchannel k, and path loss of the

downlink between AV m and SBS n. In low-latency V2I, the

TTI duration is considered substantially small (in the order of

one OFDM symbol duration [3]), and, thus, the channel gain

hmnk (and the rate in (4)) can be considered constant within

the course of transmitting one packet.

Analogous to (3), we can find the uplink transmission

latency τu(m,n; s), using the uplink SINR:

γu(m,n, k′) =
GmGnPmhmnk′Lmn
∑

m′ 6=m Pm′n + σ2
n

, (6)



where Pm is the transmit power of the AV m and Pm′n is the

received power from an interfering AV m′ that transmits over

subchannel k′. Given that the uplink traffic in V2I mainly

has small-size packets (e.g., to request a service or send a

short control packet), we assume that uplink transmissions are

managed within one subchannel k′ /∈ K.

B. Computational latency in an SBS

The computational latency, also known as the execution

delay, for managing a task at an edge computing machine

is a random variable. Such randomness mainly stems from

the fact that the execution time of a task can depend on the

data to be processed [6]. For example, the execution time for

compressing an HD-map depends on the quality or level of

details in the map. Furthermore, we consider a heterogeneous

type of machines across different SBSs, i.e., a single task

may require different computational latency, once processed

at different SBSs. Due to this uncertainty, it is common to

define a probability mass function (pmf) for the computational

latency of an arbitrary task s being completed by the edge

machine of SBS n by tk number of time steps2 [6].

Without loss of generality, we consider one edge computing

machine per SBS. In a V2I scenario, multiple tasks can be as-

signed to an SBS. In this case, the tasks assigned to a machine

(of SBS) n are batched at the queue µ(n) ⊆ S . Here, we note

that the completion time pmf of an arbitrary task s depends

on other tasks in µ(n). We can now find the completion time

pmf of a queued task s ∈ µ(n), Ps,n(tk;µ(n)), by convolving

the execution time pmf of tasks ahead of s in the queue µ(n)
[6]:

Ps,n(tk;µ(n)) = ⊛
s′∈µs(n,tk)

Ps′,n(tk),

= Ps1,n(tk)⊛Ps2,n(tk)⊛ · · ·⊛Ps|µs(n,tk)|,n(tk), (7)

where ⊛ denotes the convolution operation and µs(n, tk) =
{s1, s2, · · · s|µs(n,tk)|} is the set of all tasks ahead of s in queue

of machine n. Using the completion time pmf in (7), the SBS

can find the expected completion time for its associated tasks:

τc(µ(n), n) =
∑

m∈µ(n)

❊ [τp(m,n; s)] ,

=
∑

m∈µ(n)

tsmax
∑

tk=1

tkPs,n(tk;µ(n)), (8)

where tsmax is the maximum number of processing time steps

before task s is dropped.

C. Problem Formulation

Considering the proposed framework, the goal is to maxi-

mize the reliability of the V2I system, while considering the

latency requirements of each AV’s task. With this in mind, we

2Although processing latency is a continuous random variable, this metric
is commonly quantized into small time steps in a machine [6].

define the Bernoulli random variable κ, such that

κ(m,n; s) =

{

1, if τ(m,n; s) ≤ τth(s),

0, otherwise,
(9)

where τth(s) is the tolerable E2E delay for task s. That is,

κ(m,n; s) = 1, if task s is successfully managed within a time

less than its E2E latency constraint, otherwise, κ(m,n; s) = 0.

Using (9) and the 3GPP definition for reliability [12], we can

define the V2I system reliability as

η (x, [w1,w2, · · · ,wN ])=
1

M

∑

n∈N

∑

m∈M

xmnκ(m,n; s), (10)

with wn = [w1n, w2n, · · ·wMn] where each element is the

bandwidth allocation variable wmn = w
∑

k ymnk for SBS

n. Meanwhile, x denotes the AV-SBS association vector with

elements xmn = 1, if AV m is associated with the SBS n,

otherwise xmn = 0. In fact, (10) implies that the network

reliability depends on: 1) Association of AVs to SBSs; and 2)

Each SBS’s bandwidth allocation. Depending on the subset of

AVs associated with an SBS, the computational latency will

change, as seen in (7). Thus, to maximize the reliability η, the

challenge is to jointly find an optimal AV-SBS association and

resource allocation, while considering the fact that the trans-

mission and computational latencies for one AV is affected by

other AVs.

Therefore, we formulate the joint AV-SBS association and

resource allocation problem as:

argmax
x,[w1,w2,··· ,wN ]

η (x, [w1,w2, · · · ,wN ]) , (11)

s.t.,
∑

n∈N

xmn ≤ 1, ∀m ∈ M, (12)

∑

m∈M

xmn ≤ M, ∀n ∈ N , (13)

∑

m∈M

∑

k∈K

xmnymnk ≤ K, ∀n ∈ N , (14)

∑

m∈M

xmnymnk ≤ 1, ∀n ∈ N , (15)

xmn, ymnk ∈ {0, 1}. (16)

Constraints (12) and (13) imply that each AV is associated to

at most one SBS, and each SBS can serve up to M AVs.

Moreover, (14) indicates that K subchannels can be used

by each SBS for downlink transmissions, while (15) ensures

orthogonal subchannel allocation within each cell. The reli-

ability maximization problem with joint AV-SBS association

and resource allocation in (11)-(16) is an optimization problem

with minimum unsatisfied relations [13] that is NP-hard and

difficult to solve. Next, we propose a novel framework to solve

this problem.

III. MATCHING THEORY FOR LOW-LATENCY V2I

COMMUNICATIONS

To jointly optimize AV-SBS association and bandwidth allo-

cation in (11)-(16), one must find a fast-converging algorithm

that can manage the network resources efficiently for dense



V2I networks having a large number of AVs and SBSs. To

this end, we build our solution based on matching theory,

a mathematical framework that can yield efficient algorithms

for solving combinatorial assignment problems, such as the

problem in (11)-(16). In particular, we model the problem of

AVs to SBSs association by using the analogous problem of

workers to firms assignment in labor matching markets [14].

That is, considering a set of workers (AVs) and a set of firms

(SBSs), the goal of each worker is to be hired with maximum

possible salary, while firms aim to hire a subset of workers

that maximize their revenue. Using this two-sided framework,

next, we show how the V2I resource management problem

can be formulated as a labor matching market.

A. Utility Functions for SBSs and AVs

To enable low-latency communications in V2I networks,

each SBS n aims to select a subset of AVs Mn ⊆ M that

maximize the following utility (objective) function:

Un(M
n;wn)=

∑

m∈Mn

[

α

wmn

− τt(m,n; s)

]

−τc(M
n, n), (17)

where the transmission latency τt is given in (2). Here, we

note that the computational latency for tasks of AVs in Mn

is random and unknown a priori. Therefore, in (17), the SBS

considers the expected value of the completion time for the

subset of AVs, as per (8). Moreover, the first term in (17) is

inversely proportional to the bandwidth allocated to an AV

m, and α is a control parameter. The allocated bandwidth

can be seen as the cost of serving an AV and, thus, the first

term in (17) will prevent unfair bandwidth allocations. In fact,

analogous to the labor matching market, the first term in (17)

is the salary that a firm has to pay for hiring a worker.

Meanwhile, each AV aims to be associated with an SBS

that can minimize its E2E latency. Nonetheless, an AV does

not know the computational latency for its task at an SBS.

That is because the computational latency of one AV depends

on other AVs associated with the same SBS, as captured in

(7). This information can be provided by the SBS. Hence, the

utility that an AV m assigns to an SBS n is:

Um(n;wmn) = −τt(m,n; s)−❊ [τp(m,n; s)] , (18)

where τt depends on the resource allocation vector wn.

B. V2I Communications as a Matching Problem

Using the defined utility functions for AVs and SBSs, We

define the proposed matching problem as follows:

Definition 1. An AV-SBS matching is a relation f : M → N
that satisfies:

1) For any AV m, f(m) ∈ N ∪ {m}. In fact, f(m) = m
implies that AV m is not assigned to any SBS.

2) For any SBS n, f(n) = Mn ⊆ M.

3) f(m) = n, if and only if m ∈ f(n).

This definition also ensures meeting the feasibility constraints

in (12) and (13).

Furthermore, subject to a bandwidth allocation vec-

tors [w1,w2, · · · ,wN ], a matching f , denoted by a pair

(f ; [w1,w2, · · · ,wN ]), is called individually rational, if it

meets the following conditions: 1) For any AV assigned to

an SBS f(m), wmf(m) > 0; and 2) For any SBS n, 0 <
Un(f(n);wn) < ∞. The first condition implies that at least

one subchannel must be allocated to the AV m by its assigned

SBS f(m), otherwise, the AV will be indifferent between

being assigned to the SBS f(m) or not. The second condition

implies that the utility of an SBS must be nonnegative and

finite, otherwise, there is no need to allocate resources to the

AVs in f(n). Our goal is to find a strict core allocation of

AVs to SBSs, as defined next.

Definition 2. An individually rational AV-SBS matching

(f ;w) is a core allocation, if there are no pair of SBS-subset

of AVs (n,M′) with a bandwidth allocation vector ŵn, that

satisfy,

1) Um(n; ŵmn)>Um(f(m), wmf(m)), for all m ∈ M′, and

2) Un(M
′; ŵn) > Un(f(n);wn).

In fact, a pair (n,M′) that meets above two conditions can

improve their utility by blocking the matching f and making

a new allocation. In particular, the notion of core allocation

guarantees stability of the V2I system by preventing undesired

SBS-AVs allocations.

Nonetheless, finding a core AVs-to-SBSs allocation is chal-

lenging, due to the interdependent utilities of the AVs and

SBSs that stem from two facts: 1) From (7), the processing

latencies of the assigned AVs to the same SBS are interrelated;

and 2) From (14), allocated bandwidth to one AV depends

on the resource allocation to other AVs within the same cell.

In fact, classical methods such as the deferred acceptance

algorithm [15] fail to yield a core allocation for the V2I

problem [14]. Thus, we next propose a new algorithm that

guarantees finding a core allocation of AVs to SBSs.

IV. PROPOSED MATCHING ALGORITHM FOR JOINT

AV-SBS ALLOCATION AND RESOURCE MANAGEMENT

The key idea for guaranteeing the core allocation is to allow

negotiations for bandwidth between AVs and SBSs, while

performing the AV-SBS association. That is, SBSs can offer

a certain E2E latency to each AV (by allocating a number of

subchannels), while the AV can accept the offer or reject it

for a better allocation with another SBS.

Building on this idea, we propose a novel algorithm in Table

II that proceeds as follow: Initially at round j = 0, each

SBS allocates one subchannel to each AV. As the algorithm

proceeds, each SBS n updates the bandwidth allocation vector,

wn(j) = [w1n(j), w2n(j), · · · , wMn(j)], at round j, using

the following rule: If an AV rejects the offer by an SBS n
in round j − 1, then wmn(j) = wmn(j − 1) + w; otherwise,

wmn(j) = wmn(j − 1).
At any round j, subject to the bandwidth allocation wn(j),

each SBS n ∈ N selects a subset of AVs that maximizes its

utility in (17). The process of AV selection is performed in

Step 2. Subsequently in Step 3, each SBS offers association



Table II: Proposed AV-SBS Association and Resource

Management Algorithm

Inputs: M, N , K, S.
Step 1: Let t = 0. Each SBS allocates one subchannel to each

AV. Each SBS sends proposal to all AVs, notifying them of their E2E
latency, according to (18).
while there are proposal rejections do

Step 2: At each round j, each SBS n selects a subset of AVsMn

that maximize the utility Un(Mn;wn(j)), with the bandwidth
allocation vector wn(j) = [w1n(j), w2n(j), · · · , wMn(j)],
where wmn = w

∑
k
ymnk . Each SBS n sorts AVs in descend-

ing order according to a utility Un(m) = α

wmn
− τt(m,n, s).

The SBS adds the first AV from the list to Mn, calculates
Un(Mn,wn(t)), and while this utility is positive, adds other
AVs from the ordered list one by one.
Step 3: Each SBS offers association to all AVs selected in Step
3. Any offer in round t−1 that was not rejected will be repeated
in round t.
Step 4: Each AV that receives one or more offers rejects all,
except the one that maximizes its utility in (18).
Step 5: If an AV rejects the offer by an SBS n in round t−1, let
wmn(t) = wmn(t−1)+w; otherwise, wmn(t) = wmn(t−1).
t+ 1← t

end
Output: Strict core allocation f∗

to its selected AVs in Step 2. Any offer in round j − 1 that

was not rejected will be repeated in round j. In Step 4, each

AV tentatively accepts the offer that maximizes its utility in

(18) and rejects the rest. Finally in Step 5, SBSs update their

bandwidth allocation vectors wn(j), ∀n ∈ N , according to the

rule explained previously. The algorithm converges once no

offer is rejected by the AVs. Prior to proving the convergence

of the proposed algorithm to a core allocation, we make the

following preliminary observations:

Remark 1. Every AV has at least one association offer in

each round.

This can be easily verified by noting that at Step 1, each SBS

extends an association offer to all AVs. Since at any round,

each AV tentatively accepts one offer, the AV’s allocated

bandwidth remains constant. Moreover, from Step 3, we note

that any offer that is not rejected must be repeated in the

next round. Therefore, at any round, AVs have at least one

association offer.

Lemma 1. Each AV will have exactly one offer after a finite

number of rounds and the algorithm converges.

Proof. From Lemma 1, we note that each AV has at least one

offer at each round. Moreover, according to the bandwidth

allocation rule in Step 5, the bandwidth must be increased

for the AV by all proposing SBSs, except the one that

its offer is accepted. Meanwhile, from (18), the utility of

SBSs is a decreasing function of the allocated bandwidth.

Thus, as algorithm proceeds, the number of offers for each

AV decreases until each AV receives only one offer that it

accepts. Since no rejection is made at that point, the algorithm

converges. �

Lemma 2. The proposed algorithm in Table II converges to

an individually rational allocation of AVs and SBSs.

Proof. Let (f∗, [w∗
1,w

∗
2, · · · ,w

∗
N ]) be the outcome at the

Table III: Simulation Parameters
Notation Parameter Value

N Number of SBSs 10
M Number of AVs 10 to 40

Pn

Transmit power of an
SBS

100 mW

Pm

Transmit power of an
AV

10 mW

W System bandwidth 100 MHz

Id Downlink packet size 5 kbits

Iu Uplink packet size 100 bits

Gn, Gm Antenna gains 1
σ2
n

Noise power −90 dBm

α Control parameter 20k

w
Bandwidth of

subchannel
180kHz

convergence point of the algorithm after j∗ iterations. Since in

Step 1, at least one subchannel is allocated to AVs, and from

Step 5, the bandwidth allocation increases at each round, then,

wmf∗(m)(j
∗) > 0 for all m ∈ M. From the AV selection

process in Step 2, the AV subset Mn selected by an arbitrary

SBS n will yield a finite, positive utility Un(M
n;wn). Thus,

after j∗ iterations, Un(f
∗(n),w∗

n) will be positive, which

concludes the proof. �

Theorem 1. The proposed algorithm in Table II is guaranteed

to converge to a core association of AVs and SBSs.

Proof. Lemma 1 shows the convergence of proposed algo-

rithm after an arbitrary j∗ number of iterations. Let the

outcome of algorithm be (f, [w1(j
∗),w2(j

∗), · · · ,wN (j∗)]).
We prove the core allocation of the outcome by contradiction.

That is, suppose that this outcome is not a strict core allocation.

Since from Lemma 2, (f, [w1(j
∗),w2(j

∗), · · · ,wN (j∗)]) is

individually rational, there must be a blocking pair of an SBS

and a subset of AVs, (n,M′), with a bandwidth allocation

vector ŵn, such that, ∀m ∈ M′:

Um(n; ŵmn) > Um(f(m), wmf(m)(j
∗)), and (19)

Un(M
′; ŵn) > Un(f(n);wn(j

∗)). (20)

From (19), any AV m ∈ M′ must never have received an offer

from the SBS n with bandwidth allocation ŵmn (or greater

than ŵmn) at any round of the algorithm. Otherwise, the AV m
would have accepted that offer. Meanwhile, since the allocated

bandwidth to each AV increases or remains constant after each

round (according to the update rule in Step 5), then for an SBS

n to form a blocking pair with AVs in M′, the bandwidth

allocation must satisfy ŵmn ≥ wmf(m), for all m ∈ M′.

However, given that the utility of SBSs is a decreasing function

of the allocated bandwidth, then,

Un(M
′;wn(j

∗)) ≥ Un(M
′; ŵn)>Un(f(n);wn(j

∗)), (21)

where the strict inequality in (21) directly results from (20). In

fact, (21) implies that the SBS n will propose to the subset of

AVs in M′ with bandwidth allocation vector wn(j
∗) which

contradicts the initial assumption for the convergence of the

algorithm. Therefore, such a blocking pair does not exist and

thus, convergence to a core allocation is guaranteed. �



Table IV: Mean and Standard Deviation of the

Computational Latency Distribution

Task Type 1
τth = 20 ms

Task Type 2
τth = 50 ms

Task Type 3
τth =100 ms

Machine
Type 1

(µ11, σ11) =
(1, 0.5)

(µ21, σ21) =
(2, 0.5)

(µ31, σ31) =
(5, 0.5)

Machine
Type 2

(µ12, σ12) =
(2, 0.5)

(µ22, σ22) =
(4, 0.5)

(µ32, σ32) =
(10, 0.5)
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Fig. 2: CDF of the reliability.

V. PERFORMANCE EVALUATION

A. Simulation Parameters

We consider an area of size 100 m × 100 m with AVs and

SBSs located randomly across the area. We consider 10 SBSs,

while the number of AVs varies from 10 to 40. Statistical

results are averaged over large number of independent runs.

Simulation parameters are summarized in Table III.

Furthermore, we assign a random task to each AV from

three task types in the set S = {s1, s2, s3}. Depending on

the edge computing capabilities at an SBS, we consider two

types of SBSs with different latency distributions to manage

the tasks in S . For each task si ∈ S processed at a machine

type j ∈ {1, 2}, the pmf of the computational latency follows

Gaussian distribution, N(µij , σ
2
ij), with mean µij and variance

σ2
ij [6], specified in Table IV. The tolerable E2E latency for

each task type is also specified in Table IV. We compare the

performance of our proposed algorithm with both Max-SINR

and Max-RSSI associations.

B. Simulation Results

Fig. 2 shows the cumulative distribution function (CDF) of

the reliability in the V2I network with M = 40 AVs and

N = 10 SBSs. The results in Fig. 2 show that the proposed

algorithm significantly outperforms the max-SINR and max-

RSSI schemes. For example, the probability of achieving

reliability less than 0.8 is only 30% in the proposed scheme,

while this probability for the max-SINR and max-RSSI is 95%
and 85%, respectively. Such performance gain is mainly due

to accounting for the E2E latency, while performing AV-to-

SBS association and bandwidth allocation, while the baseline

schemes do not optimize the E2E latency.

In Fig. 3, we show the CDF of the E2E latency and compare

the performance for the three approaches in a V2I network
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Fig. 3: CDF of the E2E latency.
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Fig. 4: CDF of the downlink transmission latency.

with M = 40 AVs and N = 10 SBSs. First, we can observe

that the proposed scheme can guarantee 50 ms E2E latency

with a high probability close to 99%. However, both baseline

approaches can only satisfy this E2E latency requirement with

probabilities less than 90%. For a large V2I network with

M = 40 AVs, the results in Fig. 3 show that the proposed

algorithm can effectively minimize the E2E latency. Clearly,

the E2E latency will reduce as the network load decreases.

To show the impact of both computational and transmission

latencies on the overall E2E latency, the CDF of these metrics

are shown, respectively, in Fig. 4 and 5, for M = 40 AVs and

N = 10 SBSs. Comparing the values for the computational

latency in Fig. 4, with transmission latency in Fig. 5, we can

observe that the computational latency at the edge computing

machine is substantial (can be up to 100 ms) and cannot be

neglected. Moreover, Fig. 5 shows that the proposed scheme

yields more efficient AV-to-SBS association, compared with

the baseline algorithms, as it accounts for the computational

latency and the amount of load at each edge machine. This

feature can be viewed as load balancing, where instead of

taking the number of AVs into account, our approach considers

the computational loads of the assigned tasks at each SBS.

In Fig. 6, we show the average downlink data rate per

AV, versus the network size. Clearly, the average rate per AV

decreases as more AVs exist in the network. The results in Fig.

6 show that the proposed algorithm outperforms the baseline
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Fig. 6: Average downlink rate versus the number of AVs.
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approaches substantially in terms of data rate. For instance,

the performance gains for a V2I network with M = 20 AVs

are 49% and 90%, respectively, compared with the max-RSSI

and max-SINR schemes.

Finally, Fig. 7 shows the number of iterations (with 95%
confidence error bars) of the proposed algorithm, versus the

number of AVs. The results in Fig. 7 demonstrate that, even

for large V2I networks with 10 SBSs and 30 AVs, the number

of iterations will not exceed 60. Moreover, the results show

that the number of iterations is polynomial with respect to the

network size.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework for

ultra reliable, low latency vehicles-to-infrastructure commu-

nications for autonomous vehicles. We have shown that the

proposed framework can maximize the V2I network reliability,

by jointly accounting for the interdependent computational

delays for AVs, along with the transmission latency in the

wireless network. In this regard, we have proposed a novel

algorithm, based on the concept of labor matching markets,

that allows distributed association of AVs with SBSs, while

taking into account the limited computational and bandwidth

resources of each SBS. Furthermore, we have proved the

convergence of the proposed algorithm to a core allocation

of AVs to SBSs. Simulation results have shown the various

merits of the proposed scheme.
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