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A B S T R A C T
The Industry 4.0 revolution has been made possible via AI-based applications (e.g., for automation and
maintenance) deployed on the serverless edge (aka fog) computing platforms at the industrial sites—
where the data is generated. Nevertheless, fulfilling the fault-intolerant and real-time constraints of
Industry 4.0 applications on resource-limited fog systems in remote industrial sites (e.g., offshore oil
fields) that are uncertain, disaster-prone, and have no cloud access is challenging. It is this challenge
that our research aims at addressing. We consider the inelastic nature of the fog systems, software
architecture of the industrial applications (micro-service-based versus monolithic), and scarcity of
human experts in remote sites. To enable cloud-like elasticity, our approach is to dynamically and
seamlessly (i.e., without human intervention) federate nearby fog systems. Then, we develop serverless
resource allocation solutions that are cognizant of the applications’ software architecture, their
latency requirements, and distributed nature of the underlying infrastructure. We propose methods
to seamlessly and optimally partition micro-service-based application across the federated fog. Our
experimental evaluation express that not only the elasticity is overcome in a serverless manner, but
also our developed application partitioning method can serve around 20% more tasks on-time than the
existing methods in the literature.

1. Introduction
The Industrial Revolution brought about rapid changes

in operations by incorporating state-of-the-art technolo-
gies. However, various solutions must be synchronized and
adapted accordingly. This rapid shift is prevalent, especially
in remote sites. Nonetheless, processing emerging opera-
tional data and smart applications on available computing
platforms can be challenging in harsh operational environ-
ments, which motivates our research work. Therefore, we
explore the stochastic behaviours and in-depth structure
of Industry 4.0 applications and address the challenges of
modern computing platforms in the following sections.
1.1. Overview and Motivation

Industrial systems are rapidly shifting from human-
controlled processes towards closed-loop serverless con-
trol systems that process various types of applications to
manage industrial operations autonomously. Particularly at
remote sites, such as offshore oil and gas fields (Hussain,
Mokhtari, Ghalambor and Salehi (2022)), space stations
(Aume, Andrews, Pal, James, Seth and Mukhopadhyay
(2022)), submarines and underwater robots (ROVs) (Ka-
banov and Kramar (2022)), the Industry 4.0 paradigm shift
demands systems to serverlessly process emerging data-
driven and latency-sensitive applications under harsh oper-
ational environment where there is limited/no access to the
cloud services, and human resources are scarce and not com-
puter literate. Realizing these systems mandates addressing
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challenging research questions to enable robust, latency-
aware, and serverless processing of the applications on
alternative computing platforms (Wang, Ke, Zheng, Wang,
Sangaiah and Liu (2019); u. Rehman, Ahmed, Yaqoob,
Hashem, Imran and Ahmad (2018); Cai, Genovese, Piuri,
Scotti and Siegel (2019)) operating atop low-latency wire-
less communication systems (Gao, Wan, Shen, Gao, Wang,
Li and Vucetic (2023)).

To overcome the lack of reliable access to cloud servers,
making use of the fog computing systems (Mattia and Be-
raldi (2023)) in remote industrial sites has become a com-
mon practice. Nonetheless, these fog systems inherently suf-
fer from the lack of elasticity (Nguyen, Phan, Park, Kim and
Kim (2020)) and fail to handle workload spikes often occur
due to unpredictable disasters that the remote industrial sites
are prone to (Chiou, Epsimos, Nikolaou, Pappas, Petousakis,
Mühl and Stolkin (2022)). This lack of elasticity and re-
source scarcity curbs the excessive use of compute-intensive
(e.g., AI-based) solutions at the fog platform level. In prac-
tice, managing emergency situations demands lightweight
and explainable solutions that operate fast and do not impose
extra burden to the fog system. An exemplar use case is
a remote (offshore) oil field where, upon detecting an oil
spill, the following coordinated activities must be processed
within a short period of time: (A) Drones must be dispatched
for more granular investigation; (B) Emergency teams must
be notified; and (C) High-end simulations must be conducted
for purposes like predicting the oil spill expansion direction,
and staff evacuation.

To establish an Industry 4.0 system in a remote site
that is robust against such unpredictabilities, we explore the
challenging idea of augmenting the processing capability
of the local fog via dynamically federating it with nearby
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fog systems (e.g., mobile datacenters (Baburao, Pavankumar
and Prabhu (2023))), thereby, providing cloud-like server-
less elasticity for Industry 4.0 applications. This challenge
stems from the fact that modern industrial applications are
often cloud-native, and are not originally designed to reap
the benefits of wirelessly-connected autonomous fogs. There
is an infrastructural gap to adapt these applications to the
federated fog environment, and this gap is what this research
aims at filling. More specifically, the challenge is how to
establish the notion of serverless such that the applications
can seamlessly take advantage of the dynamically formed
federated fog system? To overcome this challenge, we need
to deal with two aspects of the federated environments:
(a) Characteristics of the federated fog environment: The
federated fog environment is prone to the uncertainties stem
from the unreliable communication between fog system,
and heterogeneous computing across them. Therefore, these
uncertainties can potentially affect the latency constraint
of Industry 4.0 applications across the federation. Failure
to dealing with these uncertainties can potentially hurt the
robustness of remote site instead of helping it (Salehi, Smith,
Maciejewski, Siegel, Chong, Apodaca, Briceno, Renner,
Shestak, Ladd et al. (2016)).
(b) Characteristics of Industry 4.0 applications: Most of
the current Industry 4.0 applications function based on
Machine Learning (ML-based) and typically follow the
micro-service-based software architecture (Jwo, Lee and
Lin (2022); Wen and Chen (2022)) where a workflow of
micro-services (Dragoni, Giallorenzo, Lafuente, Mazzara,
Montesi, Mustafin and Safina (2017)) have to be completed
within a deadline. There are also legacy applications with
monolithic architecture that are inflexible and have to be al-
located in an atomic manner (i.e., cannot be partitioned into
modules) (Calderón Godoy and González Pérez (2018)). Un-
like monolithic applications, micro-services are composed
of several independent services that can be deployed sepa-
rately. For instance, as depicted in figure 1, a “fire safety"
application is essentially a workflow of micro-services that
includes services for capturing surveillance video content,
pre-processing the captured content, noise removal, feature
extraction, fire detection, location mapping, alert generation,
and expansion prediction. Hence micro-services can be
constrained by certain factors (e.g., location and data). For
example, a micro-service that reads data from surveillance
camera has to be located on the server connected to the
camera. Such constraints have to be considered in allocation
and partitioning of the Industry 4.0 applications.

It is crucial to have a lightweight and efficient solution
that can handle sudden surges in demand without adding
computing stress to the overall system, especially in un-
predictable emergencies with limited computing resources.
In sum, an ideal platform for remote sites should be: (i)
serverless in the sense that it can seamlessly supply resources
for both monolithic and micro-service applications across
the federation; and (ii) simple, robust, and effective against
the network and computing uncertainties such that it can
fulfill the latency (deadline) constraints of the applications.

fire
detection

input video

noise
removal

feature
extraction

alert
generation

location
mapping

video
preprocessing

expansion
prediction

Figure 1: Workflow of micro-services needed for the “fire
detection” application. The application needs to seamlessly
make use of federated fog to complete on time and prevent
any potential damage.

1.2. Problem Statement and Contributions
As depicted in Figure 2, for the use case of remote

smart oil fields, a federated fog computing can be formed
via wireless communication between nearby fog servers.
Considering each fog system 𝑖 as a node (gateway)𝐺𝑖 and the
wireless links between them as edges, we can conceptually
model the federated fog in form of a graph that the federated
fog platform operates upon. It is noteworthy that each fog
system is configured with a different set of resources, i.e.,
there is a heterogeneity across fog systems. In this system,
uncertainty exists in both the communication and compu-
tation times of the same task running across the federation.
Accordingly, to meet the latency constraints (deadline) of the
applications, the federated fog platform should be cognizant
of these communication and computing heterogeneity and
uncertainties, in addition to the applications’ characteristics
and latency requirements.

Considering the heterogeneity across fog systems, in
our prior work (Hussain, Pakravan and Salehi (2020)), we
explored and identified the stochastic execution behavior
of several Industry 4.0 applications across various type of
machines. In another study (Hussain, Amini, Kovalenko,
Feng and Semiari (2019)), we investigated resource alloca-
tion strategies for the monolithic applications across the fog
federations. Nonetheless, many real-world operational pro-
cesses are carried out by means of applications with a work-
flow (Directed Acyclic Graph—DAG) of micro-services,
where each micro-service is an independent entity that com-
municates its output data as the input to the next micro-
service in the graph. Development and deployment of such
applications on the federated fog entails the user’s involve-
ment in the topological and uncertainty details of the un-
derlying infrastructure to ensure that the whole application
is complete within its deadline. To establish the notion of
serverless, the federated fog platform has to transparently
take care of these details Lertpongrujikorn and Salehi and
allocate the application such that application’s deadline is
met.

Micro-service DAGs offer the opportunity to perform
the allocation at the micro-service level. That is, the plat-
form can partition the workflow graph into subgraphs and
allocate them across the federation. In this case, for a given
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Figure 2: A multi-layer view of the serverless fog federation
infrastructure in the context of offshore smart oil and gas in-
dustry. Micro-service and monolithic Industry 4.0 applications
seamlessly run across the federated fog systems by means of
a platform, deployed on each gateway (𝐺𝑖) representing a fog
system.

workflow topology, and specific federation uncertainties, the
two following questions have to be addressed: (1) How to
partition the micro-service workflows, so that its deadline
can be met? (2) How to allocate computing resources to the
partitioned micro-services across fog federation, so that it
has the highest likelihood of meeting its deadline?

To address these questions, we propose a load-balancing
approach within the federated fog platform that is aware
of both the application’s software architecture, its deadline,
and the underlying execution platform’s characteristics. As
a result, it enables cloud-like serverless behavior via dy-
namically and seamlessly allocating the applications across
the federation. In summary, this paper makes the following
contributions:

• Developing a probabilistic method (called ProPar)
to optimally partition micro-service workflows across
the fog federation in a transparent and serverless man-
ner.

• Developing a resource allocation method based on the
Bayesian statistics that is cognizant of the application
deadline and efficiently assigns partitioned workflows
across the federation.

• Evaluating and analyzing the partitioning and the
resource allocation methods across the fog federation
for Industry 4.0 applications.

The outcomes of this research lays the foundation upon
which solution architects and industry experts can focus

only on the business logic of their applications–either micro-
service-based or monolithic–and leave the allocation details
of their applications and handling the demand surge to the
serverless fog federation platform. The rest of the paper
is organized in the following manner. Section 2 presents
related works as background studies. Section 3 represents
the system model. Section 4 states the partitioning method
of micro-service workflow across fog federation, whereas
section 5 represents the resource allocation method for In-
dustry 4.0 application. Section 6 demonstrates experimental
setup, baseline techniques, and experimental results. Finally,
section 7 concludes the paper with some future avenues for
exploration.

2. Background and Prior Studies
Serverless computing is a computing model that enables

developers to deploy and run applications without manag-
ing the underlying infrastructure Cinque (2023). This new
paradigm has become popular due to the rise and adoption of
containerization and micro-services in Industry 4.0. Appli-
cations are designed to be divided into small, self-contained
functions that operate independently and can respond to
specific events. These functions are short-lived, stateless,
and highly scalable, making them ideal for handling un-
predictable workloads and traffic spikes Patros, Spillner,
Papadopoulos, Varghese, Rana and Dustdar (2021). Overall,
serverless computing offers reduced costs, increased agility,
and faster time-to-market. Various research works (Oluy-
isola, Bhalla, Sgarbossa and Strandhagen (2022); Ammar,
Haleem, Javaid, Bahl and Verma (2022); Laskar (2022); Al-
Hajji and Onikoyi (2022); Dai, Lin, Che and Lyu (2022))
have been undertaken for the development and integration
of smart applications into the industrial sectors utilizing
serverless technology.
2.1. Resource Allocation in Industry 4.0

The resource allocation in Industry 4.0 is challenging
due to dynamic user demands and limited resources. Effec-
tive resource allocation and management must adapt to the
changing needs. Industrial IoT generates enormous data that
needs fast processing that is enabled by fog computing—
bridging the gap between cloud and IoT devices. In a re-
cent study Atiq, Ahmad, Uz Zaman, Khan, Shaikh and
Al-Rasheed (2023) Haseeb et al. propose a cost-effective
resource allocation and management strategy considering
latency and energy efficiency. Authors of this work introduce
a framework, called R2AM, to manage resources in trans-
portation IoT using fog computing. Data from IoT devices
is queued for storage and processing, while fog nodes are
sorted based on their processing power.

Ensuring optimal resource allocation in fogs is crucial to
efficiently handle dynamic IIoT workloads—with the min-
imum cost and delay. In another research Kumar, Kishor,
Samariya and Zomaya (2023a), Kumar et al. have introduced
a framework that presents an efficient approach for workload
prediction and optimal placement of fog nodes to execute
dynamic IIoT workloads. The approach incorporates a Deep
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Auto Encoder (DAE) model to forecast workloads. Then,
based on the demand for IIoT workloads, the fog nodes are
scaled. To optimize multiple objectives and meet service
constraints, a meta-heuristic algorithm is developed. While
these work considers a hierarchical federation of comput-
ing platforms across edge-to-cloud and execution cost as
an important objective, our research considers a horizontal
federation using peer computing platforms (i.e., fog systems)
which is more viable in remote industrial areas.
2.2. Fog Computing for Industry 4.0 Use Cases

In traditional operational systems of the industrial sec-
tor, the centralized cloud can only support legacy applica-
tions (Alam (2021); Shastry, Nair, Prathima, Ramya and
Hallymysore (2022)) with a considerable latency-tolerant
nature. On the other hand, Industry 4.0 applications are
latency-sensitive and need a dynamic execution platform to
support (near) real-time response time. Fog computing has
shown great potential in handling time-sensitive tasks for
the Industrial Internet of Things (IIoT). However, resource
allocation for fog nodes presents difficulties due to their
limited capacity. To tackle this issue, Kumar et al. in Kumar,
Walia, Shingare, Singh and Gill (2023b) develop a frame-
work using artificial intelligence (AI). This system features a
fuzzy-based offloading controller and an AI-powered Whale
Optimization Algorithm (WOA) to enhance the Quality-of-
Service (QoS) parameters. The primary aim of this research
is to conserve the battery life of fog devices while our work
ensures the successful completion of micro-services on fog
nodes within strict time constraints. In a similar research,
Rao et al. in (Rao, Coviello, Hsiung and Chakradhar (2021))
proposed a dynamic runtime for smart industrial applica-
tions that utilize 5G technology with edge-cloud architec-
ture. This work uses application-specific knowledge to map
the micro-services into the execution platform. However,
authors consider only the predefined critical path’s latency
and disregard other micro-services that could form a new
the critical path if they are poorly allocated. Additionally,
they consider utilizing cloud data centers to overcome the
emergency and oversubscribed situations. In contrast, our
proposed solution considers all the micro-services (includ-
ing those not on a critical path) to complete the execution
across the fog federation with respect to the application
deadline. Similarly, Faticanti et al. (Faticanti, De Pellegrini,
Siracusa, Santoro and Cretti (2020)) analyze the through-
put desires of the micro-service applications while perform
offloading to other fog systems. They addressed resource
allocation challenges for the fog-native applications, built
on a containerized micro-service modules Chanikaphon and
Amini Salehi (2023). Two cascading algorithms make up
the entirety of their approach. The first one separates fog
application components according to throughput, and the
second one governs the application orchestration across
geographically distributed data centers.
2.3. ML Applications and Serverless Platform

As smart IoT-based solutions become widespread, at the
application level, there is a need to support ML applications

on the network edge. However, such ML solutions are
yet to be applicable at the fog federation platform level.
This is mainly because existing ML-based resource allo-
cation methods (e.g., Kumar and Ahmad (2022); Salmani,
Ghafouri, Sanaee, Razavi, Mühlhäuser, Doyle, Jamshidi
and Sharifi (2023); Ruíz-Guirola, López, Montejo-Sánchez,
Souza and Bennis (2023)) are trained for homogeneous
and fairly stable underlying fog systems, whereas, in fog
federation we encounter a truly heterogeneous distributed
infrastructure that is overly dynamic. Moreover, although
lightweight (edge-friendly) AutoML solutions (that employ
ML for automation purposes (Garouani, Ahmad, Bouneffa
and Hamlich (2022))) operating based on model compres-
sion, pruning, and quantization is becoming a commonplace,
there is yet to be pe-trained ML models for Industry 4.0 use
cases deployed under the federated fog system dynamism.

A related research work (Ishakian, Muthusamy and
Slominski (2018)) examines the suitability of using a server-
less architecture for AI application workloads. The research
work evaluates the performance of using serverless functions
to classify images using deep learning models. The authors
find that warm serverless function executions have accept-
able latency. However, cold starts have significant overhead,
which could pose a problem for adherence to SLAs that
do not account for this bimodal latency distribution. As
industrial emergencies are unpredictable and rare, the system
admin might not consider keeping active (a.k.a warm start)
the resource orchestration functions due to high expense of
execution. Furthermore, serverless frameworks lack access
to GPUs, and functions are stateless, meaning each execution
can only use CPU resources and cannot rely on the serverless
platform runtime to keep state between invocations to opti-
mize performance. As a result, serverless solutions will need
to accommodate more stateful workloads in the long run. To
achieve performance comparable to current non-serverless
platforms, a declarative way of describing workloads and
their requirements will be necessary, such as specifying the
minimum time to keep warm containers (Kumari, Sahoo
and Behera (2022)) and access to GPUs (Risco and Moltó
(2021)). In an associated field of study (Zhang, Shen, Huang,
Wen, Luo, Gao and Guan (2021)), Zhang et al. explore
and propose a serverless framework for video analytics
pipelines based on deep neural networks (DNNs), which
fully leverages the collaborative potential of client-fog-
cloud architecture. By effectively coordinating fog and cloud
resources, they achieve cost-effective and highly accurate
video analytics. The proposed system incorporates a human-
in-the-loop design approach to continuously improve the
performance of models. Moreover, it offers various func-
tionalities for creating and deploying video applications,
alleviating developers from time-consuming tasks related to
resource management and system administration. However,
this work is curated for video processing tasks and incor-
porates cloud computing that can generate latency in time-
sensitive smart applications.
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2.4. Software-hardware System Stack
Patterson et al. (Patterson, Pigorovsky, Dempsey, Lazarev,

Shah, Steinhoff, Bruno, Hu and Delimitrou (2021)) have ad-
dressed the need for having a specialized software-hardware
system stack and a coordination mechanism to support edge-
based applications. They propose a swarm coordination
platform for the efficient and scalable execution of work-
flows of complicated tasks using cloud and edge resources.
Their hardware-software system stack tries to bridge the
gap between centralized and distributed coordination. Their
suggested approach uses domain-specific languages (DSL)
to enhance programmability, automatically mapping tasks
to cloud and edge resources, and providing hardware accel-
eration fabrics for remote memory access and networking.
However, they do not consider oversubscribed situations and
latency constraint smart applications. In contrast, our work
considers oversubscribed situation in remote areas where
monolithic and micro-service applications coexist.

3. System Model
Industry 4.0 applications are often in form of micro-

service workflows deployed via containers (Pallewatta, Kostakos
and Buyya (2023); Roda-Sanchez, Garrido-Hidalgo, Royo,
Maté-Gómez, Olivares and Fernández-Caballero (2023);
Wu, Peng, Xia, Jin and Hu (2023)). As shown in Figure 3,
the system model of the proposed serverless fog federation
comprises: (1) A gateway in each fog system that receives ar-
riving application requests and transparently allocates them
across the federation by considering the communications
and computing uncertainties, the application architecture
(i.e., monolithic, micro-service), and its latency require-
ments. (2) A network of wireless gateways where each
gateway 𝐺𝑖 represents a fog system that takes care of the
coordination and data transfer with peer fogs across the
federation. Each fog is an autonomous entity with its own
resources and policies.

The fog-to-fog communication is often based on Device-
to-device (D2D) wireless communication that depends on
various parameters, such as position in the federation, mobil-
ity, required coverage, data volume, environment, and spec-
trum to utilize (Ogundoyin and Kamil (2022)). Considering
the geographical area coverage required for the fog fed-
eration, Wireless Wan (WWAN) technologies, particularly
5G, are recommended by the OpenFog consortium Open-
Fog Consortium Architecture Working Group et al. (2017).
5G can facilitate low-latency communication between fog
systems (Attaran (2023)) and deliver peak data transmission
speeds up to 10 Gbps (Lagorio, Cimini, Pinto and Cavalieri
(2023)).

In this research, we consider an oversubscribed situation
in a fog that is defined as a situation where the system cannot
complete all the arriving requests within their deadlines.
Each workflow application, denoted 𝜔, is a 𝐷𝐴𝐺 = (𝑉 ,𝐸),
where the set of vertices 𝑉 = {𝑚1, 𝑚2, ..., 𝑚𝑛} denotes
the micro-services, and edge 𝑒(𝑚𝑖, 𝑚𝑗) ∈ 𝐸 represents the

precedence between 𝑚𝑖 and 𝑚𝑗 micro-services. Each micro-
service 𝑚𝑖 has a known slack (a.k.a. deadline and denoted
𝑚𝛿
𝑖 ), which is the time duration within that the micro-service

has to complete its execution. Furthermore, for each micro-
service 𝑚𝑖, we assume to know the statistical distribution
of its computational latency (denoted 𝑚𝑑

𝑖 ) representing the
possible execution times of that micro-service on that fog.
Such a statistical distribution can be obtained from profiling
the past execution times of the same micro-service on the
same fog system (Salehi et al. (2016); Gentry, Denninnart
and Salehi (2019)).

Monolithic applications have “full cohesion", thus, have
a single deadline for the entire application. While partition-
ing in monolithic applications is infeasible, micro-service-
based workflows have a “loose cohesion” and can be parti-
tioned at the micro-service granularity (see Step 1 in Fig-
ure 3). We designate the resource allocation method to
operate after partitioning a micro-service workflow to al-
locate its partitions (containerized services) across the fog
federation. As shown in Step 2 of the same figure, for each
arriving request for a certain application, the fog gateway is
responsible of creating the serverless illusion for the users
by taking care of two actions: (a) optimally partitioning the
workflow (e.g., partitions P1 and P2 in Figure 3); and (b)
allocating resources to each partition via fog gateways (e.g.,
𝐺1, 𝐺2, and 𝐺3 in Figure 3) across the federation. Finally, in
Step 3, the serverless fog federation executes the applications
and generates the results.

We assume the types of industrial applications operating
in the system are limited and known in advance. Accord-
ingly, the gateway stores and updates the computation and
communication latencies of various categories of appli-
cations on the serverless fog systems. The computational
latencies for various micro-services are captured in a matrix,
termed as Estimated Task Completion (ETC) where each
entry represents computational latencies for a particular
micro-service across the fogs in the federation. Similarly, the
communication latencies for various micro-services reach-
ing various fog systems of the federation is stored in a matrix
table and named as Estimated Task Transfer (ETT). Hence,
we capture the time for transferring various types of micro-
services across fog federation under various circumstances
(i.e., different network congestion and data dependencies).
Therefore, all the communication and networking overheads
are abstracted in the ETT entries. The information from these
two matrices are employed to estimate the applications’ time
constraints. That is, the gateway relies on this information
to make informed decisions regarding resource allocation
across the fog federation.

4. Partitioning Micro-service Application
Workflows
The main objective of the partitioning method is to

partition a micro-service workflow application in a way that
the application can meet its deadline. For that purpose, we
need to measure the likelihood of on-time completion for

Hussain et al.: Preprint submitted to Elsevier Page 5 of 15



Resource allocation across serverless fog federation

Fog 1

serverless fog
federation

Fog 3G2 G3

G1

federated fog
gateway

resource
allocator

workflow
partitioning

gateway

Fog 2

monolithic

micro-service
workflow

arriving application
requests 

Step 1

Step 2

Step 3

G2 G3

P1 P2

P1

P2

Figure 3: System model of the proposed solution to allo-
cate micro-service workflow or monolithic applications across
a federation of three fog systems. Step 1 shows different
applications arriving to the gateway of their local fog system.
Step 2 shows the internal mechanics of each gateway that
includes a “graph partitioning” and a “resource allocator”
modules. The former is in charge of transparently partitioning
the micro-service workflows to maximize its likelihood of on-
time completion. The latter is in charge of seamlessly allocating
each partition to a fog across the federation. Step 3 shows the
serverless fog federation where each fog is represented by a
gateway (𝐺1, 𝐺2, 𝐺3).

workflow graph 𝜔, denoted 𝑃 (𝜔), on a fog system. This
requires knowing the probability of workflow completion
before its deadline. To know the workflow deadline, we sum
up the deadlines of its micro-services, i.e., 𝛿𝜔 = Σ𝑛

𝑖=1𝑚
𝛿
𝑖 .

To learn the workflow completion, denoted 𝐷𝜔, we need
to convolve the computational latency distributions of the
micro-services in the critical path of𝜔 that can be performed
based on Equation 1.

𝐷𝜔 = 𝑚𝑑
1 ⊛𝑚𝑑

2 ⊛ .... ⊛ 𝑚𝑑
𝑛 (1)

Using the completion time distribution (𝐷𝜔), the proba-
bility of on-time completion for 𝜔 is the portion of 𝐷𝜔 that
occurs before 𝛿𝜔 which is measured based on Equation 2.

𝑃 (𝜔) = ℙ(𝐷𝜔 ≤ 𝛿𝜔) (2)
Leveraging this theory, we can present our workflow par-

titioning method, called Probabilistic Partitioning (ProPart).
The flowchart of ProPart, shown in Figure 4, shows the
steps to partition workflow 𝜔. In the first step, we assume
executing the entire workflow on the receiving (local) fog

estimate the chance of on time
completion for workflow       &. location

dependency on the local fog

no

yes submit       to the
resource allocation

module

partition workflow       into
two sub-graphs    and    

estimate the chance of
sucess for each partition   ,   

across fog federation

rollback to    
yes

no

yes no

  

OR

OR

& loc.
dependent

Figure 4: Flowchart of the ProPart workflow partitioning
method. The output of this method is a partitioned workflow
that is submitted to the resource allocation module, which is
shown as the end step (with dashed lines) in this flowchart.

system without any partitioning and calculate 𝑃 (𝜔). The
value of 𝑃 (𝜔) is decisive on partitioning the workflow across
the fog federation or executing it locally—on the receiving
fog system—without partitioning it. Furthermore, we check
for location dependency of the micro-services within the
workflow on the local fog. To make the decision, the value of
𝑃 (𝜔) is compared against a user-define value 𝛼 (see Figure 4)
that serves as a threshold determining how aggressively
the user wants to take advantage of the federation. The
lower values of 𝛼 expresses the user tendency to execute
𝜔 locally and vice versa. In the extreme case, the user can
forbid using the federation via choosing 𝛼 = 0. In our
implementation, the value of 𝛼 is adjustable, however, in
the evaluation part, we consider 𝛼 = 50%. In addition, we
check location dependency of the micro-services that is one
of the prerequisite for successful completion of the workflow
𝑤 mentioned in earlier sections.

In the event that the likelihood of completing workflow
𝜔 is lower than 𝛼, the graph partitioning operation has
to be carried out. Finding the optimal number of parti-
tions is an NP-complete problem (Çatalyürek, Devine, Faraj,
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Gottesbüren, Heuer, Meyerhenke, Sanders, Schlag, Schulz,
Seemaier et al. (2023)), therefore, we develop a method
based on the idea of divide and conquer (Zhou, Du, Tian
and Tao (2023)) to recursively find the most efficient way
of partitioning 𝜔. The bare bones of the method is shown in
the flowchart of Figure 4. At every step of this method, the
graph is partitioned to two subgraphs, and for each subgraph
the likelihood of success across the federation is calculated
based on Equation 2. The process continues until either the
likelihood of success for at least one of the subgraphs is
lower than or equal the parent graph, or the subgraphs have
only one vertex (node). The former case implies that parti-
tioning the graph does not improve the chance of success,
hence, we roll-back to the parent graph and consider that
subgraph as the appropriate partition that can be allocated
to the fog federation. In the latter case, however, the graph
cannot be partitioned any further and inevitably must be
submitted for the resource allocator module.

To perform graph partitioning, we use the min-cut algo-
rithm (Lakhan, Mastoi, Elhoseny, Memon and Mohammed
(2022)) that partitions workflow 𝜔 into two sub-graphs 𝑖
and 𝑗 based on the max-flow min-cut theorem (Lochbihler
(2022)). The theorem states that the maximum flow (e.g.,
amount of data) that can be transferred from a certain vertex
(e.g., micro-service) to another one is determined by the
smallest bottleneck in the graph. Hence, to partition the
workflow graph into sub-graphs, the min-cut algorithm finds
the minimum number of edges that, if removed, the graph is
partitioned to subgraphs.

According to Flowchart of Figure 4, at each iteration of
the method, the partitions (subgraphs) resulted from the min-
cut are estimated for their chances of success (meeting their
deadlines) across the fog federation using Equations 1 and 2.
If the likelihood of on-time completion of the partitioned
graph is less than its parent graph (i.e., 𝑃 (𝑖) ≤ 𝑃 (𝜔) or
𝑃 (𝑗) ≤ 𝑃 (𝜔)), we consider the parent graph (𝜔) as the op-
timal choice for allocation. In the next step, for each created
partition, the resource allocation method is invoked (the last
box in the flowchart). In the event that the partition’s chance
of on-time completion is greater than its parent graph, then
we examine another iteration of partitioning. The stopping
condition for partitioning is to reach graphs with only one
vertex (one micro-service).

5. Resource Allocation Method across
Serverless Fog Federation
The resource allocation module is in charge of allocating

arriving requests—either in form of monolithic applications
or partitioned micro-service workflows—across the local or
the federated fog systems. The allocation is performed based
on the notion of relevance that is defined as a fog system that
maximizes the likelihood of meeting the deadline (a.k.a. the
probability of success) for a given request. The probability of
success for a single unit of execution (i.e., a micro-service or
a monolithic application) on a particular fog system depends
on the end-to-end latency distribution of that unit on that fog.

The end-to-end latency is comprised of the commu-
nication and computation latencies. Each fog system uses
historical computational and communication latency infor-
mation of various micro-services across different fogs in
the federation to generate the probability distributed func-
tions (PDFs). In analogy, this is very much like routing
tables (Fall, Godfrey, Iannaccone and Ratnasamy (2009))
commonly used by the Internet routers. Two matrices are
maintained at each gateway, namely, Estimated Task Com-
putation (ETC) (Diaz, Guzek, Pecero, Danoy, Bouvry and
Khan (2011)), and Estimated Task Transfer (ETT) (Hussain
et al. (2019)). The PDF of computational latency for micro-
service type 𝑖 on fog system 𝑗 is stored in entry 𝐸𝑇𝐶(𝑖, 𝑗)
that is also used by the partitioning method, as noted in the
previous section. Similarly, entry 𝐸𝑇𝑇 (𝑖, 𝑗) maintains the
communication latency PDF of transferring data for micro-
service 𝑖 to fog 𝑗. We note that using these matrices makes
the resource allocation method aware of the communication
latencies, whereas, partitioning method is less granular and
only is aware of the computational latency. There are exist-
ing methods based on machine learning or other statistical
approaches (e.g., ) to construct and regularly update 𝐸𝑇𝐶
and 𝐸𝐸𝑇 matrices without any interference on the system
functionality.

For partition 𝜔 with source node (micro-service) 𝑖, the
resource allocation method computes its end-to-end latency
distribution on fog 𝑗 via convolving 𝐷𝜔 (see Equation 1)
and 𝐸𝑇𝑇 (𝑖, 𝑗). The end-to-end latency distribution is then
used in Equation 2 to calculate the probability of completing
partition 𝜔 before its deadline. Once we know the chance
of success on all adjacent fogs in the federating, the one
that offers the highest probability of on-time completion is
chosen as the assignment destination for 𝜔.

It is noteworthy that the probability of completing 𝜔
on the fog originally receives it (a.k.a. local fog) does not
include any communication latency. This means that, 𝜔 is
assigned to an adjacent fog in the federation (a.k.a. remote
fog), only if it offers a greater probability of on-time com-
pletion even after accounting for the communication la-
tency. However, utilizing a remote fog in a remote industrial
place implies environmental uncertainties, in addition to
the communication and computation uncertainties, that can
practically undermine the benefits of minor superiority in
the probability of on-time completion. That is, the likelihood
of on-time completion of 𝜔 remotely should be significantly
higher than the local one, so that it is worthwhile allocating
it remotely. To assess whether the difference between remote
and local execution is significant, we propose to use the
notion of confidence intervals (CI) of the underlying end-to-
end completion time distributions. In particular, we check
whether the CI of the end-to-end completion time distribu-
tion of the remote fog overlaps with the CI of the local one. If
they do not overlap, it implies that the remote fog is offering
a statistically and practically higher chance of success to 𝜔,
otherwise it is not worthwhile allocating it remotely.

The pseudo-code provided in Algorithm 1 expresses the
resource allocation method that each gateway utilizes to
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take advantage of the federated fog system. The method is
called Maximum Probability (MR) and is invoked for the
set of partitioned micro-service workflows, denoted as 𝑀 .
Using the deadline of each micro-service partition 𝜔 ∈ 𝑀 ,
from Step 2—10 of the algorithm, the algorithm calculates
the local and remote completion time distributions and its
probability of success both locally and on the adjacent fog
systems. Next, Step 11 sorts the calculated probabilities on
remote fogs in the descending order. If the probability of
success on the local fog is higher, then 𝜔 is assigned to the
local fog. Otherwise, 𝜔 is assigned to a remote fog if the CI
of its end-to-end latency distribution (denoted 𝐸𝑔(𝜔)) does
not overlap with the distribution of the local one (Step 14—
17). Otherwise, the same procedure is performed for the rest
of the neighboring fogs. If no non-overlap adjacent fog is
found, then 𝜔 is assigned to the local fog (default assignment
in Step 12).

Algorithm 1: Pseudo-code of the Maximum Prob-
ability (MR) resource allocation method

Input : set of partitions 𝑀 ; 𝐸𝑇𝐶 and 𝐸𝑇𝑇
matrices; and set of the adjacent fogs 𝐺

Output: chosen fog 𝑔 ∈ 𝐺 to assign each partition
𝜔 ∈ 𝑀

1 foreach 𝜔 ∈ 𝑀 do
2 𝐸𝑟(𝜔) ← completion time distribution of 𝜔 on

local fog
3 𝑃𝑟(𝜔) ← probability of success on local fog
4 foreach 𝑔 ∈ 𝐺 do
5 𝐸𝑔(𝜔) ← end-to-end completion

distribution of 𝜔 on fog 𝑔
6 𝑃𝑔(𝜔) ← probability of success on 𝑔
7 if 𝑃𝑔(𝜔) > 𝑃𝑟(𝜔) then
8 add 𝑃𝑔(𝜔) to 𝐹 , as a potential fog for

assignment
9 end

10 end
11 sort 𝐹 in descending order
12 consider local fog 𝑟 as default assignment for 𝜔
13 foreach 𝑃𝑔 ∈ 𝐹 do
14 if CI 𝐸𝑔(𝜔) has no overlap with CI 𝐸𝑟(𝜔)

then
15 assign 𝜔 to fog 𝑔
16 exit the loop
17 end
18 end
19 end

6. Performance Evaluation
This section evaluates the proposed partitioning and re-

source allocation methods against baseline solutions. Here,
we describe the simulation setup and scenarios, define base-
line methods, and present practical experiments with analy-
sis.

Application DNN Model Input Type Scope Framework

Fire Customized Alexnet Video Segment
Control &
Monitoring

Tensorflow
(tflearn)

HAR Customized Sequential
Neural Network Motion sensors

Workers
Safety keras

Oil FCN-8 SAR Images
Disaster
Management keras

AIE Temporal Convolutional
Network Seismic Data

Seismic
Exploration PyTorch

Table 1
ML-based applications used in many Industry 4.0 use cases,
such as oil and gas, along with their neural network model,
input data type, usage scope, and ML framework. The non-
abbreviated application names in this table are: fire detection
(Fire), human activity recognition (HAR), oil spill detection
(Oil), and acoustic impedance estimation (AIE).

Mean and Standard Deviation of Execution Times (ms) on AWS
Application Mem. Opt. ML Opt. GPU General Compute Opt.

Fire
𝜇=1461.8
𝜎=457.3

𝜇=1281.7
𝜎=387.93

𝜇=1349.5
𝜎=418.9

𝜇 =1534.8
𝜎=494.7

𝜇=1421.4
𝜎=441.8

HAR 𝜇=1.27
𝜎=0.082

𝜇=0.66
𝜎=0.006

𝜇=0.51
𝜎=0.006

𝜇 =1.17
𝜎=0.042

𝜇=0.66
𝜎=0.003

Oil 𝜇=269.9
𝜎=1.01

𝜇=218.8
𝜎=0.66

𝜇=65.98
𝜎=0.47

𝜇=667.1
𝜎=2.26

𝜇=242.9
𝜎=0.68

AIE 𝜇=7.02
𝜎=0.02

𝜇=6.41
𝜎=0.03

𝜇=7.55
𝜎=0.04

𝜇=9.35
𝜎=0.06

𝜇=7.95
𝜎=0.02

Table 2
The execution time mean (𝜇), and standard deviation (𝜎)
for various Industry 4.0 applications across different AWS
machines types.

6.1. Experimental Setup
EdgeCloudSim (Sonmez, Ozgovde and Ersoy (2017)) is

a discrete event simulator that we have used to develop the
solution and then evaluate its performance. We simulate fog
systems with eight processing nodes that process between
1500 and 2500 Million Instructions Per Second (MIPs)
that represent the heterogeneity of fog systems across the
federation. The synthesized fog federation is considered to
be distributed across a two-dimensional plane. Hence, every
fog has coordinates defined by the x and y-axis. Accordingly,
each fog can have a maximum of four neighbours, and the
federation is horizontally scalable.

As for the workload to evaluate our methods, we consider
the context of remote Industry 4.0 for oil and gas (Hus-
sain et al. (2022)). We consider four ML-based workflow
applications, namely, Fire detection ( Fire), human activity
recognition (HAR), oil spill detection (Oil), and acoustic
impedance estimation (AIE) (Hussain et al. (2020)) and they
are uniformly distributed within the workload. Hence, total
number of applications in the workload are equally divided
into the four Industry 4.0 applications.

While exploring the micro-service workflow architec-
ture, as shown in Figure 1, we find that there are seven micro-
services for fire detection application. Similarly, the number
of micro-services for oil spill detection, human activity
recognition, acoustic impedance estimation are five, four,
and four sequential (single-core) micro-services, respec-
tively. In Oil, the micro-services forming the workflow are
data pre-processing, dark spot detection, feature extraction,
classification, and segmentation micro-services. For AIE

Hussain et al.: Preprint submitted to Elsevier Page 8 of 15



Resource allocation across serverless fog federation

application, the micro-services are for data pre-processing,
initial model develop, inversion, and acoustic impedance
estimation. For HAR application we use data pre-processing,
feature extraction, classification, and activity recognition
micro-services. Other characteristics of these applications
are presented in Table 1. We benchmarked these applications
on AWS and identified their statistical distributions of their
execution times (in terms of MIPS) that are presented in
Table 2. For monolithic workload, we use the same set of
applications, however, we treat them as one unit and do
not partition them. One reason that we study monolithic
applications in the experiment section is to abstract our
analysis from the impact of workflows, and merely focus
on the impact of the resource allocation methods across the
federation.

Upon arrival of a request to a gateway, the micro-
services comprising the application are allocated distinct
deadlines, as mentioned in our system model. According
to reference (Salehi et al. (2016)), an individual deadline
comprises the time a micro-service arrives and the total
delay that the micro-service can withstand in an end-to-
end scenario. The delay in communication, which includes
both up-link and down-link delays, can substantially affect
the deadline. Accordingly, we consider the communication
delay in the deadline calculation. For micro-service 𝑖, the
deadline 𝑚𝑑

𝑖 is defined as 𝑚𝑑
𝑖 = 𝑎𝑟𝑟𝑖+𝐸𝑖+𝜖+𝑑𝐶 , where

𝑎𝑟𝑟𝑖 is the arrival time of request, 𝐸𝑖 is the average micro-
service execution time, 𝜖 is a constant value defined by
the processing fog device (slack time), and 𝑑𝑐 is the mean
communication delay. To produce the inter-arrival rate of
the requests, we synthesized from real-world workload
investigated by the Extreme Scale Systems Center (ESSC) at
Oak Ridge National Laboratory (ORNL) (Khemka, Friese,
Briceno, Siegel, Maciejewski, Koenig, Groer, Okonski,
Hilton, Rambharos et al. (2014); Khemka, Friese, Pasricha,
Maciejewski, Siegel, Koenig, Powers, Hilton, Rambharos
and Poole (2015)). In order to remove the impact of any ran-
domness in the evaluations, we carry out every experiment
a total of 30 times and subsequently estimate the mean and
95% confidence interval.

As we work towards streamlined and efficient solutions
for Industry 4.0, we evaluate suggested approaches alongside
widely used fundamental statistical computations rather than
relying on intricate ML-based network models. Given that
our focus is on the successful execution of ML-based micro-
service applications, we are steering clear of system-level
intricacy by forgoing complex ML-based models, which
may necessitate sophisticated hardware support and real-
time data to achieve optimal network model training.
6.2. Baseline Workflow Partitioning Methods

Min-Cut partitioning: cutting graph 𝐺 partitions its ver-
tices (micro-services) into two disjoint proper subsets. In
a weighted graph, the cost of a cut is the sum of weights
that are involved in the cut. Hence, the term “minimum
cut” refers to a cut that is either minimal in terms of the
number of edges that cross the cut (when the edges are

not weighted) or minimal in terms of the weights of the
edges that cross the cut (weighted). Min-cut is a widely-used
method in the literature (Lochbihler (2022)), therefore, we
use it as a baseline method via considering a unit weight for
edges of a workflow graph.

Least data transfer: Within a workflow, output of a
preceding micro-service serves as the input data for another
micro-service. The “Least data transfer” partitioning method
(Ahmad, Liew, Rafique, Munir and Khan (2014)) considers
the magnitude of data-transfer between micro-services as
the weights of edges. Accordingly, this method traverse all
the edges and cuts the workflow from the point where the
transferred data is minimum.
6.3. Baseline Resource Allocation Methods

Minimum Expected Completion Time (MECT): This is
a popular resource allocation method (Mokhtari, Rawls,
Huynh, Green and Salehi (2023); Salehi et al. (2016)) that,
for each request arriving to the gateway, it utilizes the
ETC matrix to compute the mean expected completion time
across different fog systems. The fog system with the mini-
mum expected completion time is then chosen to handle the
request.

Maximum Computation Certainty (MCC): MCC is an-
other method used in the literature (e.g., Hussain, Salehi, Ko-
valenko, Salehi and Semiari (2018)) for resource allocation.
It makes use of the ETC matrix to calculate the difference
between the request’s deadline and its mean completion
time (called certainty). Then, the task is assigned to the fog
system that offers the highest certainty.
6.4. Experimental Results

The focus of this research is to explore the dynamic
fog federation functionality upon facing a surge in demand
for micro-service workflow applications with deadline con-
straints. Efficacy of the federation system in meeting the
deadlines of these applications reflects its fault-tolerance.
6.4.1. Evaluating the Impact of Workflow Partitioning

To examine the impact of workflow partitioning, in this
experiment, we study a scenario where no method for work-
flow partitioning is in place, therefore, the whole workflow
is either executed locally or outsourced to another fog in the
federation. We compare this scenario against cases where
partitioning can be performed when needed using ProPart
method. To further study the impact of partitioning, we
compare the performance (ProPart) against other baseline
methods for partitioning, namely Min-cut and Least data
transfer. For the purpose of this experiment, we increase
the number of workflow requests submitted to a gateway
to generate oversubscribed conditions and record the rate
of meeting deadline for each case. For this experiment, we
configure Max Probability (MR) as the resource allocation
method. The result of this experiment is shown in Figure
5. The horizontal axis indicates the number of workflow
requests received and the vertical axis shows the rate at
which application deadlines have been met.
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Figure 5: Comparison of the workflow partitioning methods.
The horizontal axis represents the number of arriving workflow
requests and the vertical axis shows the requests’ deadline
meeting rate.

The experiment results indicate that, in all cases, the
percentage of workflows meeting their deadlines decline
upon increase in the number of requests. Nonetheless, the
advantages of workflow partitioning is significant, with “No
partition” invariably performing poorly. We witness that par-
titioning can improve the performance of using federation
by at least 5% (“No Partition” versus “Least data transfer”
with 400 requests), and at most 35% (“No Partition” ver-
sus “ProPart” with 100 requests). Moreover, across various
partitioning methods, we observe that ProPart surpasses
other partitioning methods (particularly when the system
is not oversubscribed), whereas, Least data transfer yields
the lowest deadline meet rate. The reason for the higher
performance of ProPart is that, under lower load, its sta-
tistical analysis to obtain the likelihood of success leads to
more accurate results, thereby, more informed partitioning
decisions. Moreover, we observe that, as the number of
requests rises, the performance of Min-cut gradually drops
to the extent that for 400 requests, it even gets marginally
worse than the Least data transfer method. The reason is that,
Least data transfer partitions based on the edges that generate
the smallest output data that is effective when the system
becomes oversubscribed, whereas, Min-cut utilizes the least
number of edges for partitioning and does not consider the
amount of data travels between the partitions.
6.4.2. Evaluating the Impact of Resource Allocation

To study the impact of the resource allocation method in
the fog federation, we performed the following experiments
with three different resource allocation methods that, include
the proposed MR method and two baseline methods, MECT
and MCC. To studying the impact of using serverless federa-
tion fog versus not using it, we also include a scenario where
no federation is utilized. We conducted this experiment
for micro-service workflows, monolithic applications, mix
application workload and the results are shown in Figures 6
7, and 8 respectively.
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Figure 6: The deadline meet rates resulted from the MR,
MCC, and MECT resource allocation methods of micro-service
workflows across the fog federation.

Micro-service Workflow Applications: Similar to the
previous experiment, the number of workflow requests is
incremented to examine various levels of oversubscription,
which is shown in the horizontal axis of Figure 6. In this
experiment, we use ProPart to partition the micro-service
applications. This implies that the MR bars, in the figure,
show the performance of the entire methods we proposed
in this work. To visualize the performance of the resource
allocation methods, the deadline meet rates of receiving
requests are reported. We can see that the benefits of making
resource allocator aware of the fog federation is significant,
because no federation scenario performed worse than the
“No Federation” at any oversubscription level. This is be-
cause in a no-federation scenario, the recipient fog becomes
overwhelmed with numerous requests, leading to missing
request deadlines. Upon increasing oversubscription level,
we can see a downward trend for all the resource allocation
methods. However, because the proposed resource alloca-
tion method, MR, is aware of the compound uncertainty in
both computation and communication, it still outperforms
other baseline methods. In contrast, MECT and MCC are
only cognizant of computation latency and the deadlines,
therefore, they are prone to less informed allocation deci-
sions that can cause missing the requests’ deadlines. We
can also observe that the performance difference of MCC
and MECT is not statistically significant, because their
confidence intervals overlap throughout the experiment.

Monolithic Applications: In this part, we investigate
the performance of our resource allocation methods on the
monolithic applications submitted to the system of fog feder-
ation. In addition we include a scenario where no federation
is utilized to understand the benefits of using federated fog
systems. In Figure 7, we can see the impact of increasing the
number of incoming applications from 400 to 1,000 (hori-
zontal axis) on the deadline meet rate (vertical axis) when
various resource allocation heuristics are employed. In fact,
we performed the experiment for oversubscription levels
less than 400, however, we did not observe any behavioral
difference. As such, for the sake of better presentation, we
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only report results for cases where the number of requests
are greater than 400.
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Figure 7: The deadline meet rate resulted from various resource
allocation methods for monolithic applications across the fog
federation.

Similar to the previous case, in Figure 7, we observe the
poor performance resulted by ignoring the federation. The
issue becomes increasingly pronounced as oversubscription
level rises (800 and 1,000 requests), highlighting the advan-
tage of serverless fog federation for Industrial use cases in
remote areas. With 1,000 requests, MR offers around 19%
higher deadline-meeting rates than the other two methods.
The reason is that MR captures end-to-end latency and
utilizes the federation only if it significantly impacts the
chance of success. From these experiments, we can conclude
that for both monolithic and workflow applications, captur-
ing uncertainty of the end-to-end latency can significantly
improve the performance. This impact is more remarkable
for monolithic tasks, i.e., monolithic tasks can make a better
use of the federation, because they do not have the challenge
of request partitioning and performing one request across
multiple sites.

Mixed Application Workload: To further evaluate the
impact of resource allocation, in this experiment, we con-
sider circumstances where the arriving workload is a mix of
requests for monolithic and workflow applications. 50% of
the examined workload are requests for monolithic applica-
tions and another 50% are micro-service workflows. Similar
to the previous parts, we increase the number of requests
(horizontal axis in Figure 8) and measure the deadline meet
rate (vertical axis in the same figure). We use ProPart for
partitioning the workflow applications along with various
resource allocations methods.

Decreasing the performance (deadline meet) upon in-
creasing the number of requests aligns with our observations
in the previous parts. However, we can see that even under
mixed workload the combination of ProPart+MR consis-
tently outperforms other methods for any level of request
intensity. Although the performance difference of MR and
other methods is not as significant as those in Figure 7
(for monolithic applications), it still outperforms the other
methods due to the consideration of the end-to-end latency
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Figure 8: The deadline meet rate resulted from various resource
allocation methods for mixed workload of monolithic and
micro-service workflows across the fog federation.

in the serverless fog federation. Analyzing other outputs of
this experiment showed that, for monolithic requests, MR
helped effective use of the federation and improving their
performance, whereas, for micro-service workflow requests,
the partitioning method contributes more than the resource
allocation to the better performance.
6.4.3. Analyzing the Workflow Makespan Time

After scrutinizing behavior of the partitioning and re-
source allocation modules, in this part, our objective is to
study the impact of entirety of the proposed solutions on
the completion of requests. In fact, partitioning and and
resource allocation methods can affect the computational
latencies of the micro-service workflows. For the monolithic
applications, resource allocation method is the influential
factor on the requests’ computational latencies. We measure
the computational latency via the makespan time, which is
the total processing time from the time a request is received
until it is complete. Therefore, we capture the makespan time
both for the micro-service and monolithic applications. We
note that the experiments in the previous part only show the
deadline meet rate and do not show how long on average all
requests take to complete.

Average Makespan Time for Micro-service Workflows:
In this part, we estimate the average makespan time of
the workflow requests on the fog federation. Similar to the
previous experiments, we increase the oversubscribing level
by submitting more workflow requests. The result of this
experiment is presented as a line chart in Figure 9 where the
x-axis represents the number of receiving requests, and the
y-axis represents the average makespan time. We examine
various partitioning methods and keep MR, as the resource
allocation method.

The general observation shows an upward trend in the av-
erage makespan time, regardless of the partitioning method.
The difference across methods become visible after 200
requests. We can see that ProPart outperforms the other two
baselines upon increasing the oversubscription level. This is
because ProPart performs partitioning only if the success
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Figure 9: Average makespan time for micro-service workflows
utilizing various partitioning methods along with the MR
resource allocation method

rate of completion is significant. On the other hand, the
baseline methods partition requests without considering the
latency constraints.

Average Makespan Time for Monolithic Applications:
Due to cohesion of monolithic applications, their computa-
tional latency is only influenced by the resource allocation
method. Hence, we study the impact of various resource
allocation methods on the makespan of the monolithic ap-
plications across the fog federation.
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Figure 10: Average makespan time resulted from various
resource allocation methods for the monolithic applications

The result of this experiment is presented in Figure 10,
demonstrating that MR and MECT perform similarly un-
less the system is highly oversubscribed. Moreover, MCC
performs significantly worse for any workload size. The
reason is that MCC do not consider the stochastic nature
of completion time, hence, it assigns the arriving requests
to one fog and oversubscribes that, which increases the
average makespan. From the experiment, we can conclude
that if the system is not oversubscribed, the serverless fog
federation system does not need to undergo the complication
of methods like MR and other methods like MECT and even
MCC can provide a competitive performance. However, if

the system is expected to receive higher amount of load, then
methods that consider factors such as end-to-end latency are
needed to better cope with the oversubscription.
6.4.4. The Impact of Fog Federation Scaling on Fault

Intolerance
The serverless fog federation in remote Industry 4.0 sites

can potentially have a dynamic topology that has significant
impact on fault intolerance (deadline meet rate) characteris-
tic of the system. For instance, when a disaster occurs in an
offshore oil field, one or more rescue boats with mounted
fog systems can be dispatched to seamlessly augment the
existing fog and help in handling the disaster (Gima, Oma,
Nakamura, Enokido and Takizawa (2019)).This improves
fault intolerance performance of the federation. Conversely,
in the event that one or more of these mobile fogs fail or leave
the disaster place, a performance drop in fault intolerance
can potentially happen. The purpose of this experiment is to
understand the impact of such dynamics on the overall fog
federation’s fault intolerance performance.

To achieve our goal, we insert neighbouring fog sys-
tems ranging from one to four that correspond to degree
one to four in the underlying fog federation graph. This
means that, we develop a grid-based fog federation that
can have minimum of one neighbour fog and maximum of
four neighbour fog. To evaluate the system’s performance,
we capture the deadline meet rate of the requests under
various oversubscription levels ranging from 100 to 400
workflow requests. This experiment utilizes the proposed
ProPart partitioning and MR resource allocation methods.
The result of this experiment is presented in Figure 11. In
addition, we performed a similar experiment for monolithic
applications, where we fixed the number of receiving tasks
to 1,000 requests and incremented the fog federation degree
for various resource allocation methods. The result for the
monolithic applications is presented in Figure 12.
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Figure 11: Impact of scaling the serverless fog federation
using proposed partitioning and resource allocation methods
upon increasing the oversubscription level for micro-service
workflows against fault intolerance performance. The degree
represents the number of neighbors each fog system has.
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Impact of Federation Scaling for Workflows on Fault
Intolerance: Figure 11 demonstrates the results for scaling
the fog federation. We can see that, for any level of over-
subscription, the largest federation (degree=4) excels. Im-
portantly, considerable performance improvement is seen for
the higher oversubscription level (300 and 400 workflows)
that reflects the fault intolerance trend. On the other hand,
for less overloaded cases, the performance improvement of
scaling is marginal. Our analysis reveals that this is because
ProPar attempts to put the entire workflow into one fog
system, rather than partitioning and distributing them across
the federation. For the higher levels of oversubscription,
however, the proposed method more often utilizes the fog
federation to distribute workflow partitions. That is the rea-
son we witness a more substantial improvement for fault
intolerance performance in under higher oversubscription
levels.
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Figure 12: Impact of scaling the fog federation when differ-
ent resource allocation methods are employed for monolithic
applications on fault intolerance performance. The “degree”
shows the number of neighbors the source fog system has in
the federation.

Impact of Federation Scaling for Monolith Applications
on Fault Intolerance: In this experiment, we examine the re-
source allocation methods for monolithic applications while
scaling the fog federation. As we can see in Figure 12, the
monolithic applications are positively impacted by the feder-
ation scaling. The result reflected a significant performance
improvement when the federation scaled up from degree 1
to 2, regardless of the resource allocation method employed.
Degree 1 describes a topology where there are only two fogs
in the federation. That is why, none of the methods perform
well. Even under such a tight resource availability, we can
see that the MR method outperforms others. Nevertheless,
for the higher degrees, MR performs approximately 15—
18% better than MECT and MCC. As mentioned earlier, the
main reason behind superiority of MR is considering both
the communication and computation latencies in its decision
making. This particularly shows how the communication
latencies can be decisive is such environments and that is
why the and end-to-end latency has to be considered.

7. Conclusion and Future Works
Transitioning to Industry 4.0, particularly at remote sites,

entails the ability to handle modern micro-service work-
flows with strict latency constraints near data sources and
in a serverless manner. The problem, however, is that un-
der emergency situation, near-data fog computing systems
quickly become oversubscribed and cannot handle the situa-
tion effectively. To overcome this challenge, we developed a
platform for serverless industrial fog federation that is aware
of the software architecture of the industrial applications and
the characteristics (uncertainties) of the fog federation. The
proposed platform operates within the gateways representing
each fog system and makes fog federation serverless via
hiding the topological complexities of the federation from
the user’s perspective. The platform’s goal is achieved via
two modules: the first one models each micro-service appli-
cation as a DAG and tries to optimally partition it to sub-
graphs that can make use of the federation. Then, the second
module, which is for resource allocation, maps the partitions
across the fog federation via considering both computation
and communication latencies. Evaluation results show the
efficacy of the proposed platform, particularly under over-
subscribed situations, where it brings about ∼15%—18%
higher deadline meet rate in compare to other widely-used
partitioning and resource allocation methods. Moreover, we
noted that proposed solution for the federation is scalable
and can dynamically handle different number of fogs in the
federation.

In the future, we plan to handle industrial use cases
such as industrial monitoring operation (e.g., drilling), that
have to run uninterruptedly, across the federation. For that
purpose, we are going to develop live service migration
across the federation. In order to effectively manage indus-
trial applications, it is imperative to support task priorities,
such as urgent tasks with hard deadlines and best-effort tasks
with soft deadlines (Hujo, Vogel-Heuser and Ribeiro (2021);
Nouinou, Asadollahi-Yazdi, Baret, Nguyen, Terzi, Ouazene,
Yalaoui and Kelly (2023)). One complication is that some
tasks of a certain industrial application can be considered as
urgent, whereas, other tasks of the same application expose
best-effort behavior. For the example of object detection
application, the tasks used for fire detection (Zhao, Zhi, Zhao
and Zheng (2022)) are deemed urgent with hard deadlines,
whereas, tasks for detecting employees’ faces are best-effort
and with lower priority. Demonstrating the feasibility of fog
federation and partitioning micro-service workflows across
it, one future avenue of this research can focus on the
task characteristics and priorities across the fog federation.
Another avenue for the future study will be performing
partitioning in a more granular manner—within each micro-
service. For instance, for ML-based micro-services, we can
perform pre-processing on the source fog and neural network
processing on another fog in the federation.
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