
1

E2C: A Visual Simulator to Reinforce Education
of Heterogeneous Computing Systems

Ali Mokhtari, Drake Rawls, Tony Huynh, Jeremiah Green, Mohsen Amini Salehi
High Performance Cloud Computing (HPCC) Laboratory,

School of Computing and Informatics,
University of Louisiana at Lafayette, LA 70503, USA

E-mail: {ali.mokhtari1, drake.rawls1, tony.huynh1, jeremiah.green1, amini}@louisiana.edu

✦

Abstract—Heterogeneity has been an indispensable aspect of dis-
tributed computing throughout the history of these systems. In particular,
with the increasing popularity of accelerator technologies (e.g., GPUs
and TPUs) and the emergence of domain-specific computing via ASICs
and FPGA, the matter of heterogeneity and understanding its ramifica-
tions on the system performance has become more critical than ever be-
fore. However, it is challenging to effectively educate students about the
potential impacts of heterogeneity on: (a) the performance of distributed
systems; and (b) the logic of resource allocation methods to efficiently
utilize the resources. Making use of the real infrastructure (such as those
offered by the public cloud providers) for benchmarking the performance
of heterogeneous machines, for different applications, with respect to
different objectives, and under various workload intensities is cost- and
time-prohibitive. Moreover, not all students (globally and nationally) have
access or can afford such real infrastructure. To reinforce the quality of
learning about various dimensions of heterogeneity, and to decrease
the widening gap in education, we develop an open-source simulation
tool, called E2C , that can help students researchers and practitioners to
study any type of heterogeneous (or homogeneous) computing system
and measure its performance under various system configurations. To
make the learning curve shallow, E2C is equipped with an intuitive
graphical user interface (GUI) that enables its users to easily examine
system-level solutions (scheduling, load balancing, scalability, etc.) in a
controlled environment within a short time and at no cost. In particular,
E2C is a discrete event simulator that offers the following features:
(i) simulating a heterogeneous computing system; (ii) implementing a
newly developed scheduling method and plugging it into the system, (iii)
measuring energy consumption and other output-related metrics; and
(iv) powerful visual aspects to ease the learning curve for students. We
used E2C as an assignment in the Distributed and Cloud Computing
course. Our anonymous survey study indicates that students rated E2C
with the score of 8.7 out of 10 for its usefulness in understanding the
concepts of scheduling in heterogeneous computing. Moreover, our
pre- and post-evaluations indicate that E2C has improved the students’
understanding of heterogeneous computing systems by around 18%.

1 INTRODUCTION

Heterogeneity has been an indispensable aspect of distributed
computing throughout the history of these systems. In the
modern era, as Moore’s law is losing momentum due to
the power density and heat dissipation limitations [9], [20],
heterogeneous computing systems have attracted even more
attention to overcome the slowdown in Moore’s law and

fulfilling the desire for higher performance in various types
of distributed computing systems. In particular, with the in-
creasing prevalence of accelerator technologies (e.g., GPUs
and TPUs) and the emergence of domain-specific computing
via ASICs [21] and FPGA [5], the matter of heterogeneity and
harnessing it has become a more critical challenge than ever
before to deal with.

Examples of heterogeneity can be found in any type of
distributed system. Public cloud providers offer and operate
based on a wide variety of machine types. Hyperscalers such as
AWS and Microsoft Azure provide computing services ranging
from general-purpose X86-based and ARM-based machines to
FPGAs and accelerators [1]. In the context of Edge computing,
domain-specific accelerators (ASICs and FPGA) and general-
purpose processors are commonly used together to perform
near-data processing, thereby, unlocking various real-time use
cases (e.g., edge AI and AR/VR applications) [2], [3]. In the
HPC context, deploying various machine types with different
architectures on HPC boards to fulfill the power and perfor-
mance requirements is becoming a trend [7].

Heterogeneity plays a key role in improving various per-
formance objectives of distributed systems, such as cost,
energy consumption, and QoS. That is why harnessing system
heterogeneity has been a longstanding challenge in distributed
systems (e.g., [8], [10], [14]), and educating it to Computer
Science/Engineering (and more broadly STEM) students, and
researchers has become necessary. Making use of real infras-
tructure (such as those offered by the public cloud providers)
for benchmarking the performance of heterogeneous systems,
for different applications, with respect to different objectives,
and under various workload intensities is cost- and time-
prohibitive. As an example, consider an IoT-based system that
offers multiple smart applications to its users (e.g., object de-
tection, face recognition, speech recognition, etc.); there exists
a wide range of machine types with different architectures
(such as x-86 or ARM-based multi-core CPUs, different types
of GPUs, FPGAs, and ASICs) that can process these services.
To find an optimal configuration, a student must examine
all permutations of these configurations. Moreover, there can
be multiple workload intensities and scheduling policies that



2

can affect performance of the system and the student must
examine them too. Last but not least, learning about the
energy consumption of the heterogeneous computing system
in question adds another dimension to the evaluation process
that needs to be conducted by the student.

To avoid the burden of examining all cases, we need
simulation tools that can help the students and researchers to
study the performance of various system configurations and
effectively learn about impacts of heterogeneity in a distributed
system. To that end, in this paper, we introduce E2C that is
an open-source discrete event simulator that simulate any type
of heterogeneous (and homogeneous) computing system. By
using E2C , the students can easily examine their system-
level solutions (scheduling, load balancing, scalability, etc.) in
a controlled environment within a short time and at no cost. In
particular, E2C offers the following features: (i) defining user-
defined workload generation scenarios with various number
of applications (a.k.a. task types) and arrival intensities; (ii)
simulating a heterogeneous computing system; (iii) imple-
menting a newly developed scheduling method and plugging
it into the system, (iv) measuring power and other output-
related things, and (v) visual aspects to ease the learning curve
for students. These features help students who study resource
allocation solutions in distributed systems to test and evaluate
their solutions easier and faster. Moreover, the graphical user
interface would help students to gain a deeper knowledge
of resource allocation procedures in distributed computing
systems.

We used E2C as an assignment in our Distributed and
Cloud Computing class to examine various types of scheduling
methods for heterogeneous (and homogeneous) systems under
various workload intensities. We conducted a survey on the
learning outcomes of the simulator and its usability aspects.
Analysis of the survey results showed that the students on
average rated E2C with the score of 8.7 out of 10 for its
usefulness in comprehending scheduling methods for hetero-
geneous and homogeneous computing systems under different
workload intensities. Moreover, based on the survey results,
students assessed that E2C is easy to use with the average
score of 8.3 out of 10, and they evaluated their willingness
for recommending E2C to others with the average score of
8.3 out of 10.

In the rest of this paper, in Section 2, we first position E2C
with respect to other existing simulators. Next, we elaborate
on the features of E2C in more detail in Section 3. Then, in
Section 4, we describe our experience of using E2C as a class
assignment for Computer Science and Engineering students. In
Section 5, the evaluation of E2C and the results we obtained
are discussed. Availability of the simulator and the conclusion
and future extensions of E2C are explained in Sections 6 and
7, respectively.

2 POSITIONING E2C WITH RESPECT TO
OTHER EXISTING SIMULATORS

There are several existing cloud simulators that have been de-
veloped to provide researchers and developers with a platform
to simulate and test cloud computing environments. Some of

Simulator Prog.
Lan-
guage

GUI supporting
hetero-
geneous
computing

workload
generator

CloudSim Java ✗ ✗ limited

iFogSim Java ✗ ✗ limited

EdgeCloudSim Java ✗ ✗ ✓

iCanCloud C++ ✓ ✗ ✗

TeachCloud Java ✓ ✗ limited

E2C Python ✓ ✓ ✓

TABLE 1: Positioning of E2C with respect to other simulation
tools for distributed systems.

the popular cloud simulators include CloudSim [6], Edge-
CloudSim [19], iFogSim [11], iCanCloud [16], and Teach-
Cloud [12]. Table 1 provides a quick positioning of E2C with
respect to these simulation tools.

CloudSim is a popular open-source framework used for
modeling and simulating cloud computing environments and
applications. With its modular and extensible architecture,
CloudSim allows users to customize and configure different as-
pects of the simulation, such as virtual machine management,
workload scheduling, and resource allocation policies, to suit
their research needs. However, as a Java-based framework, it
needs the user-input in the form of Java lines of the code within
the back-end for configuring and customizing the environment.
As a results, the users (e.g. students) should already have
background experience and knowledge of Java and object-
oriented programming (OOP). While this can provide its own
kind of learning experience, it is not necessarily helpful for
teaching about cloud computing and distributed systems, and
may only slow down education concentrated in that area.
EdgeCloudSim is another simulation platform that is tailored
to Edge computing systems. EdgeCloudSim is based on the
CloudSim with more functionalities in network modeling and
load generator. iFogSim is another CloudSim-based simulation
tool that is utilized for modelling and simulation of Fog
computing environments, and evaluating the efficiency of
different resource management policies in terms of latency
(timeliness), energy consumption, network congestion and
operational costs. iCanCloud is a cloud computing simulation
framework for generating and customizing a large distributed
computing system written in C++. iCanCloud comes with a
user-friendly GUI which is useful in managing pre-configured
virtual cloud systems and generating graphical reports. Al-
though iCanCloud supports consistent heterogeneity in terms
of configuring VMs with varying number of CPU cores, it
does not support inconsistent heterogeneity by having VMs
with accelerators (e.g. GPUs and FPGAs). Jararweh et al.
developed a simulation toolkit, called TeachCloud [12], for
cloud computing environment equipped with a GUI that allow
students easily create the main components in the cloud
system. However, TeachCloud lacks supporting the heteroge-
neous computing systems. In general, these simulators provide
valuable insights into the performance and efficiency of cloud
computing systems, enabling researchers and developers to



3

Fig. 1: Overview of the E2C Simulator that includes major components, being the source workload, a batch queue of arriving
tasks, scheduler (a.k.a. load balancer), and a set of heterogeneous machines, represented with different colors. Each machine
has a “machine queue” where the assigned tasks are queued for the execution.

make informed decisions when designing and implementing
cloud-based solutions. However, there are limitations in using
these simulators as an educational tool for teaching hetero-
geneous distributed computing systems. As per limitations of
existing simulators, they lack either a user-friendly graphical
interface to make use of the simulator easy and intuitive for the
students or supporting heterogeneous computing systems. To
overcome these limitations, we developed E2C , a simulator
explicitly designed for heterogeneous computing systems with
an intuitive graphical user interface (GUI). E2C is intended
to facilitate the study of heterogeneous computing systems
for students by enabling them to simulate and explore the
characteristics of this type of computing systems through a
user-friendly interface.

E2C comes with a GUI, that requires no programming input
from the user. All inputs can be done directly from the GUI.
In addition, the GUI displays simulations in live time, making
it well suited for education, as many students perform better
through visual learning. E2C also aims to be granular, allowing
the user to configure the system in many specific ways. This is
also important for researchers, given that a simulated system
should be highly configurable in order to handle a wide variety
of workloads.

3 SIMULATING A HETEROGENEOUS COMPUT-
ING SYSTEM VIA E2C
Figure 1 shows an overview of the E2C simulator that includes
the following major components: (i) workload, (ii) batch

queue, (iii) scheduler, (iv) machine queue, and (v) a set of
(homogeneous or heterogeneous) machines. In addition, there
are two more components that contain canceled and dropped
tasks. This is to support circumstances where tasks have hard
deadlines and there is no value in executing them beyond their
deadline.

A workload is defined as a large group of tasks where each
task is a request for an application (task type). In the real
world, a heterogeneous computing system can be configured
to execute several task types. For instance, a heterogeneous
system processing satellite images should support task types
for object detection, noise removal, and image enhancements
to be performed on the received images. E2C enables us to
define the task types, arrival distribution for each task type, and
their arrival duration. Each task in the generated workload of
E2C has an arrival time and deadline as well.

The machines in the distributed system can be identical
(homogeneous) or non-identical (heterogeneous). Note that the
heterogeneity of the system is modeled by a matrix, called the
Expected Execution Time (EET) matrix [4], [17], [18]. This
matrix defines the expected execution time of each task type
on each machine. This is to model a real world heterogeneous
system, where any given task type (e.g., object detection, noise
removal, etc.) is expected to have a differing execution time
across heterogeneous machines. The opposite holds true for a
homogeneous system where any given task type has identical
execution time across all machines. As shown in Figure 2, the
user has access to the EET matrix by selecting the workload
component. Users can either modify the EET matrix manually



4

Fig. 2: Workload component. Here, the user can load EET
and Workload CSV files. The user can also modify the EET
matrix and arrival times of the task with the “Edit” button.
Upon loading new CSV files or editing values, the user must
press the “Submit” button. EET and Workload files must be
compatible. T1, T2, T3 represent different task types in
this simulation.

or load the desired one as a CSV file.
As shown in Figure 2, the user can load the desired

workload trace as a CSV file in this section. The user must
keep in mind that the workload trace must conform to the EET
matrix. That is, there can be no task type within the workload
that is not defined within the EET. Upon the arrival of a task,
the simulator transfers the task to the batch queue. The batch
queue is where tasks are held before being scheduled. Next,
based on the selected scheduling method, the scheduler selects
a task from the arrival queue.

Figure 3 shows the scheduler options. The user can choose
between immediate scheduling or batch scheduling [13].
Immediate scheduling is when incoming tasks are immedi-
ately scheduled to a machine upon arrival, whereas, with
batch scheduling, tasks are buffered in the batch queue so
the scheduler can make a more informed decision. Typi-
cally, immediate mode scheduling methods impose a lower
overhead and generally load balancers use this type of
scheduling [13]. The following immediate policies are cur-
rently implemented into E2C as options: FirstCome-FirstServe
(FCFS), Min-Expected-Completion-Time (MECT), and Min-
Expected-Execution-Time (MEET). For batch policies, E2C
currently implements: ELARE, FELARE, MinCompletion-

Fig. 3: Scheduler component. Here the user may select be-
tween the various immediate or batch scheduling policies,
along with setting the machine queue size. The machine queue
size is limited to infinite for immediate policies, but can be
changed for batch policies.

Fig. 4: Missed Tasks component shows the task ID that missed
its deadline, along with its task type, assigned machine, arrival
time, start time, and the time when it missed.

MinCompletion (MM), MinCompletion-MaxUrgency (MMU),
and MinCompletion-SoonestDeadline (MSD). An explanation
of these methods can be found in [14].

There exist two options for the scheduled tasks: (i) it might
be canceled because of missing its deadline before assignment;
or (ii) it might be mapped to one of the available machines.
The status of a canceled task is set to “canceled” and no more
process is needed. The canceled tasks component shows the
number of tasks have been canceled so far. In the case of map-
ping decisions, the task is appended to the local queue of the
assigned machine until the machine queue is saturated. Tasks
are executed on the assigned machine in a sequential manner
by default. If a task missed its deadline while executing on
the machine, it is dropped from the machine. As shown in
Figure 4, the Missed Tasks component shows the tasks that
missed their deadline.

Importantly, E2C is designed to be modular, hence, provid-
ing the ability for the user to modify the existing scheduling
methods or adding their own custom-designed scheduling
methods. This feature is particularly helpful for researchers
to examine new methods under various conditions and config-
urations.

After the user selects and submits the EET and workload,
they will press the “Play” button near the bottom-middle of
the GUI. This will begin the animation of tasks flowing from
the incoming workload to scheduler to machines, along with
the “Current Time” which will update continuously during



5

simulation. If you press the “Play” button again during the
simulation run-time, the simulation will be paused. The button
right of the play button is the “Increment” button, which
when pressed while the simulation is paused will perform the
next individual step that would performed (i.e. a task being
submitted to a machine by the scheduler, or a task’s execution
being completed by a machine, etc.). This can be helpful if you
wish to analyze each specific action of the simulation. To the
left of the “Play” button is the “Reset” button, which can be
used either during a pause or after completion of a simulation.
This will allow you to begin a new simulation, also allowing
you load in a new EET and/or workload should you choose.
Along with these three options, during the simulation run-time,
you can choose to alter the speed at which the simulation runs
by using the speed dial located at the bottom right. This can be
useful for either getting quicker results or for better visibility
of the animated simulation.

Upon completion of a simulation within E2C, the user
may view a report, and optionally, save the report as a CSV
file. There is an option for a “Full Report,” “Task Report,”
“Machine Report,” and “Summary Report.” The Full Report
displays the majority of relevant information regarding the
simulation - this is the option to view all data related to
each task and and how each machine performed on it. The
Task Report displays information that is more centric to
the individual tasks of the workload, whereas the Machine
Report displays data more relevant to the machines of the
system. Lastly, the Summary Report displays a summary of
the workload data without the specifics of each individual task.

The E2C simulator can be implemented as a learning tool
for undergraduate and graduate students, and also serve prac-
tical solutions for researchers and practitioners. Through E2C,
students can gain the ability to analyze, design, implement, and
test distributed computer systems and components. They can
deeply investigate scheduling methods, how they work, and
gain insights into their advantages and disadvantages. Along
with this, they can develop their own scheduling method(s)
and use E2C as a means to implement it. Students can
also learn how heterogeneity can improve the performance
of the system through defining machines that have better
performance for executing specific task types. Moreover, they
can study the energy consumption of the system once a
certain scheduling method is applied, allowing them to learn
about resource management. So far, we have used the E2C
simulator for students in “Distributed and Cloud Computing”
courses to examine the impact of different scheduling policies
on homogeneous and heterogeneous systems with various
workload intensities. Similarly, the simulator can be used for
the “Operating Systems” and “Computer Networks” courses at
the undergraduate and graduate levels to teach students about
the impact of scheduling at different levels.

Researchers in the resource allocation area and cloud so-
lution architects can employ the E2C simulator to test their
solution prior to implementation. Being highly customizable,
they can configure E2C to represent its real world counterpart.
Through this, they may test the outcome of a heterogeneous
system with different scheduling methods without spending
real resources, saving both money and time. The outcome to

be tested can be things such as QoS through task comple-
tion percentage (versus missed and cancelled tasks), energy
consumption of machines (resource management), and how
different scheduling methods perform on any given system.
This way, researchers can apply practical use of E2C in order
to help design and compare their own real world distributed
systems or clusters. As an example, in [15], we have used
E2C to examine energy efficiency and fairness of scheduling
methods on a heterogeneous edge. Also, in [22], we extended
E2C to simulate the memory allocation policies of multi-tenant
applications on a homogeneous edge computing system.

4 CLASS ASSIGNMENT FOR COMPUTER SCI-
ENCE AND ENGINEERING STUDENTS
The E2C was used, and will continue to be used, by under-
graduate and graduate students of the University of Lafayette’s
Distributed Cloud Computing course. Before E2C was im-
plemented as an assignment for the students, there were
no assignments for evaluating the students’ understanding
of heterogeneous systems and scheduling methods through
simulation. Now, with the addition of E2C, students have
a means to learn these subjects through coursework. In this
assignment, E2C was used to teach students about the impact
of various scheduling methods in heterogeneous and homoge-
neous computing systems operating under various workload
intensities. It also asked the graduate students to develop and
implement their own scheduling policies and compare it with
the existing solutions. The installation and graphical user-
interface of E2C is user friendly and works on any operating
system, which makes it easy to pick up and use for projects
or assignments. We have created a web-based documentation1

where all the features of the simulator—from installation to
reporting—are explained.

In this assignment, students were to read and learn about
the basic components of E2C, being task types, machines,
EET matrix, workload trace, and task deadlines. The stu-
dents would then use the simulator to evaluate the differ-
ent scheduling methods currently implemented by E2C on
both a homogeneous and a heterogeneous system. For the
homogeneous system, students were to use three workload
traces with arrival intensities ranging from low, medium,
to high to stress the system at different levels. For each
arrival intensity level, they ran the simulation and saved
the CSV output files, provided by E2C , summarizing all
the data related to the simulation for three different im-
mediate scheduling methods, namely FirstCome-FirstServe
(FCFS), Minimum-Expected-Completion-Time (MECT), and
Minimum-Expected-Execution-Time (MEET). Students then
created a bar graphs to depict the percentage of completed
tasks that each scheduling method results under each intensity
level. The expected results is that higher intensity workloads
lead to a lower completion rate (i.e., more tasks missing their
deadlines). In addition to observing this behavior, the students
had to analyze and report the behavior of different scheduling
methods.

1. E2C documentation can be accessed at: https://hpcclab.

github.io/E2C-Sim-docs/

https://hpcclab.github.io/E2C-Sim-docs/
https://hpcclab.github.io/E2C-Sim-docs/


6

Fig. 5: A bar graph with completion % for immediate schedul-
ing methods on a homogeneous system, showing results for
varying intensities using FCFS, MECT, and MEET policies.

Fig. 6: A bar graph with completion % for immediate schedul-
ing methods on a heterogeneous system, showing results for
varying intensities using FCFS, MECT, and MEET policies.

For the next part of the assignment, they would do similarly
but with a heterogeneous system instead. For this part, in
addition to the immediate scheduling policies, they would
also be testing the batch mode policies: MinCompletion-
MinCompletion (MM), MinCompletion-MaxUrgency (MMU),
and MinCompletion-SoonestDeadline (MSD). Required by the
graduate students and optional to undergraduates as a bonus,
the third part of this assignment was to create and implement
their own scheduling method for the heterogeneous system
that enabled fairness across various task types in the system.
After these simulations and implementations were complete,
students were to perform an analysis of their findings on
both the homogeneous system and heterogeneous system, and
answer questions that show what they have learned about
scheduling and its related methods.

The creation of graphs to evaluate their findings is straight-
forward due to the way saving data from simulations is within
E2C . Once a simulation is complete, all students needed to
do is go to the reports menu and save the report as a CSV
file.

For the bar graphs that the students create for both their
findings on homogeneous and heterogeneous systems, they
plot the completion percentage (completed tasks/total tasks

Fig. 7: A bar graph with completion % for batch scheduling
methods on a heterogeneous system, showing results for
varying intensities using MMU, MSD, and MMU policies.

in workload) for each scheduling method. Some examples
of their findings show a bar graph depicting completion per-
centage for immediate scheduling policies on a homogeneous
system (Figure 5), immediate scheduling policies on a hetero-
geneous system (Figure 6), and batch scheduling policies on
a heterogeneous system (Figure 7).

The learning outcomes of this assignment was to under-
stand the impact of different scheduling methods in face
of homogeneous and heterogeneous systems, and to analyze
the advantages and disadvantages of each. For instance, they
analyzed why Minimum-Expected-Completion-Time (MECT)
performs better than FirstCome-FirstServe (FCFS) method,
and why the batch policies outperform immediate scheduling
policies for heterogeneous systems.

5 EVALUATING LEARNING OUTCOMES OF E2C
As mentioned in Section 4, E2C have been examined as an as-
signment in the Distributed and Cloud computing course. After
the assignment, we conducted a survey across the students to
evaluate the impact of E2C on their learning. 23 students (14
undergraduate students and 9 graduate students) participated
in this survey study. The demography of the 23 students are as
follows: (i) Gender: 73.9% students were male and 26.1% of
them were female; (ii) Degree level: 60.9% students enrolled
in Bachelor’s degree (undergraduate) and 39.1% were pursuing
higher level of education including master and doctoral degree
(graduate); (iii) Programming experience: The mean and me-
dian values of the students’ programming experience are 3.8
and 3 years, respectively; and (iv) Passed Operating System
(OS) course: 43.5% of the students have already completed the
OS course and 56.5% of them have not previously passed that
course. The questions of the survey2 were in two categories:
(i) Those related to the user interactions (experience) with
the E2C simulator that is shown in Figure 8a; and (ii) Those
focuses on the specific learning outcomes, i.e., how much the
knowledge of students was improved as a result of doing this
assignment. The result of this category is shown in Figure 8b.

2. The complete survey can be retrieved from here.



7

intuitive GUI ease-of-use easy
installation

comprehensive
report

adding
custom sched.

recommend
to others

evaluated metric

2

4

6

8

10
sc

or
e 

(o
ut

 o
f 1

0)

(a) Evaluation of user experience with E2C

homogeneous
scheduling policies

heterogeneous
scheduling policies

impact of arrival rate
on performance

overall
usefulness

evaluated metric

5

6

7

8

9

10

le
ar

ni
ng

 im
pa

ct
 sc

or
e 

(o
ut

 o
f 1

0)

(b) Evaluation of learning objectives

Fig. 8: Illustration of the survey on the students’ experience in accomplishing their distributed systems assignment via E2C (a)
This subfigure demonstrate the HCI experience of the students with E2C (b) This subfigure shows how much E2C simulator
could help students in understanding the characteristics of task scheduling policies in the homogeneous and heterogeneous
configurations.

All students were asked to rate E2C with respect to each
evaluation metric in the scale of 10.

The user experience part studies the user-friendliness of the
E2C interface and how it makes technical concepts intuitive.
Installing E2C is the first experience of such nature. Figure 8a
shows that students on average evaluated that the installation
part is an easy and straightforward procedure with the score of
8.3, that is applicable for any operating system. The intuitive
Graphical User Interface (GUI) of E2C is another metric of
the user experience. The overall average score of 8.35 for this
metric shows that the students has had no difficulty in dealing
with the E2C through its GUI. As per gender assessment,
female students assessed the GUI intuitive and easy to use
with the average score of 9.3 while male students rated it
as 8. Moreover, the average score of 8.3 (female average
score:9.3, male average score: 7.9) for ease-of-use metric
demonstrate that students assess the overall technical part of
E2C is intuitive and easy to understand. However, the students
assessed the report section with the average score of 5.7
(female average score:4.8, male average score: 5.9). Although
the reports are comprehensive, we realized that the structure
of the GUI for the report section is not intuitive, therefore, the
students could not find their required reports easily. To address
this issue, we are rearranging the report section in the GUI and
make different reports and their fields more informative. In
case of developing a custom scheduling in E2C, the graduate
students responded that E2C was useful, with the average
score of 8.3 (female average score:9.2, male average score:
7.4), in implementing and evaluating their custom scheduling
policy. In general, the students evaluated their willingness for
recommending E2C to others with the average score of 8.3
(female average score: 9.7, male average score: 7.8), as shown
in Figure 8a.

Figure 8b summarizes the students’ responses in terms of
their learning outcomes. The results show that they found E2C
helpful in understanding the impact of scheduling methods
in heterogeneous and homogeneous systems with the median

score of 8.7 (female average score:9.8, male average score:
8.2) and 8 (female average score:9.5, male average score:
8.4), respectively. In addition, as explained in Section 4, they
utilized three workload traces with varying arrival intensities
to learn about the impact of arrival rate on the system
performance in terms of on-time completion rate. As shown
in Figure 8b, they responded that E2C could help them
in understanding the impact of arrival rate on the system
performance with the average score of 8.6 (female average
score:9.7, male average score: 8.2). Overall, based on the
survey results, shown in Figure 8b, students assessed E2C is
useful in developing their knowledge in the distributed systems
course with the median score of 8.8 (female average score:9.5,
male average score: 8.6). More specifically, as shown in the
results, female students assessed E2C as a an easy-to-use
and useful learning tool with higher median score than male
students. In other words, the gender-based results show that
E2C is more effective for female students.

We asked students similar scheduling questions in the form
of two quizzes, taken before and after using E2C as a course
assignment. The quizzes asked the students to map three
arriving tasks to four heterogeneous machines via the fol-
lowing scheduling methods: MEET, MECT, MM, and MSD.
The average score of students has improved from 7.6 (out
12 points) in the first quiz to 8.94 in the second quiz. The
results imply that E2C could improve the students’ learning
of scheduling methods in heterogeneous computing systems
by 17.6%.

At the end of the survey study, we asked them to write
us their feelings and suggestions that they would like to see
in the next version of the E2C simulator. Here, is the main
suggestions we received from them: “The simulator clarified
the working of different scheduling methods well with its
visual animation.” “The application was intuitive when it
comes to the context of this course and it was relatively easy
to use.” “I must commend the great work done by the everyone
at the HPCC lab that contributed to the E2C simulator. This



8

is a wonderful software.” As for the suggestions, students
reported several bugs that we already fixed. Some others had
suggestions to make the GUI more intuitive, e.g., by changing
the mouse pointer when it is hovered on various components;
also there were suggestions to enable drag and drop feature to
the simulation scenario.

6 E2C CODE AND RESOURCE AVAILABILITY
E2C core is available for download at the following address:
https://github.com/hpcclab/E2C-Sim

The manual document on how to run E2C and its options and
full documentations are available here:
https://hpcclab.github.io/E2C-Sim-docs/

The video resources for E2C are in this YouTube page.

7 CONCLUSION AND FUTURE WORKS
E2C provides a free (open-source) learning tool for students
enrolled in courses like Distributed Systems, Operating Sys-
tems, and Computer Networks as well as researchers by
delivering an intuitive way to simulate heterogeneous and
homogeneous systems. It particularly helps the students to gain
insight into the performance of different scheduling methods
upon various heterogeneous systems and under various work-
load intensities without the need to use and expend for real
infrastructure. As such E2C is a step towards reducing the
widening educational gap nationally, and even at the global
scale. The users of this system can employ several existing
scheduling methods built into the simulator, but also have the
ability to develop and test their own custom method. As we
experienced it in our Distributed and Cloud Computing class, it
is an effective accompaniment that can remarkably improve the
knowledge of students in the area of heterogeneous computing
and scheduling. E2C comes with user friendly GUI for quick
usage by beginners, but is also configurable enough to meet
the needs of researchers and practitioners in the field. Based
on the feedback we received from our students, we plan to
extend E2C with several other features, including various
communication paradigms and the ability to drag and drop
components into the simulator.

ACKNOWLEDGEMENT
Development of E2C was made possible by the funding
support provided by National Science Foundation (NSF) under
awards# CNS-2007209 and CNS-2047144 (NSF CAREER
Award).

REFERENCES
[1] Amazon sagemaker. https://aws.amazon.com/sagemaker/.
[2] Glass enterprise edition 2. https://www.google.com/glass/tech-specs/,

note = Acessed: September 2023 .
[3] Qualcomm reveals the world’s first dedicated xr plat-

form. https://www.qualcomm.com/news/releases/2018/05/
qualcomm-reveals-worlds-first-dedicated-xr-platform, note = Posted
on: May 28, 2018.

[4] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, Debra
Hensgen, Sahra Ali, et al. Representing task and machine heterogeneities
for heterogeneous computing systems. Journal of Applied Science and
Engineering, 3(3):195–207, 2000.

[5] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad
Ewais, Naif Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga
Handagala, Miriam Leeser, et al. The future of fpga acceleration
in datacenters and the cloud. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 15(3):1–42, 2022.

[6] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

[7] Suma George Cardwell, Craig Vineyard, Willam Severa, Frances S
Chance, Frederick Rothganger, Felix Wang, Srideep Musuvathy, Corinne
Teeter, and James B Aimone. Truly heterogeneous hpc: Co-design to
achieve what science needs from hpc. In Smoky Mountains Computa-
tional Sciences and Engineering Conference, pages 349–365. Springer,
2020.

[8] Chavit Denninnart, James Gentry, Ali Mokhtari, and Mohsen Amini
Salehi. Efficient task pruning mechanism to improve robustness of
heterogeneous computing systems. Journal of Parallel and Distributed
Computing (JPDC), 142:46–61, 2020.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In Proceedings of the 38th annual international symposium on Computer
architecture, pages 365–376, 2011.

[10] James Gentry, Chavit Denninnart, and Mohsen Amini Salehi. Robust dy-
namic resource allocation via probabilistic task pruning in heterogeneous
computing systems. In Proceedings of the 33rd IEEE International
Parallel & Distributed Processing Symposium, IPDPS ’19, May 2019.

[11] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296,
2017.

[12] Yaser Jararweh, Zakarea Alshara, Moath Jarrah, Mazen Kharbutli, and
Mohammad N Alsaleh. Teachcloud: a cloud computing educational
toolkit. International Journal of Cloud Computing 1, 2(2-3):237–257,
2013.

[13] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra
Hensgen, and Richard F Freund. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. Journal of
parallel and distributed computing, 59(2):107–131, 1999.

[14] Ali Mokhtari, Chavit Denninnart, and Mohsen Amini Salehi. Au-
tonomous task dropping mechanism to achieve robustness in hetero-
geneous computing systems. In Proceedings of 34th IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 17–26, 2020.

[15] Ali Mokhtari, MD Abir Hossen, Pooyan Jamshidi, and Mohsen
Amini Salehi. FELARE: Fair Scheduling of Machine Learning Ap-
plications on Heterogeneous Edge Systems. In Proceedings of the 15th
IEEE International Conference on Cloud Computing, IEEE Cloud ’22,
2022.

[16] Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G
Castañé, Jesus Carretero, and Ignacio M Llorente. icancloud: A flexible
and scalable cloud infrastructure simulator. Journal of Grid Computing,
10:185–209, 2012.

[17] Sanjaya K Panda and Prasanta K Jana. Efficient task scheduling
algorithms for heterogeneous multi-cloud environment. The Journal of
Supercomputing, 71(4):1505–1533, 2015.

[18] Sanjaya K Panda and Prasanta K Jana. An energy-efficient task schedul-
ing algorithm for heterogeneous cloud computing systems. Cluster
Computing, 22(2):509–527, 2019.

[19] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim:
An environment for performance evaluation of edge computing sys-
tems. Transactions on Emerging Telecommunications Technologies,
29(11):e3493, 2018.

[20] Michael B Taylor. Is dark silicon useful? harnessing the four horsemen
of the coming dark silicon apocalypse. In DAC Design Automation
Conference 2012, pages 1131–1136. IEEE, 2012.

[21] Michael Bedford Taylor, Luis Vega, Moein Khazraee, Ikuo Magaki,
Scott Davidson, and Dustin Richmond. Asic clouds: Specializing the
datacenter for planet-scale applications. Communications of the ACM,
63(7):103–109, 2020.

[22] SM Zobaed, Ali Mokhtari, Jaya Prakash Champati, Mathieu Kourouma,
and Mohsen Amini Salehi. Edge-MultiAI: Multi-Tenancy of Latency-
Sensitive Deep Learning Applications on Edge. In Proceedings of 15th
IEEE/ACM International Conference on Utility and Cloud Computing,
UCC ’22, Dec. 2022.

https://github.com/hpcclab/E2C-Sim
https://hpcclab.github.io/E2C-Sim-docs/
https://youtube.com/playlist?list=PL7jhdCPVrCHh49PvIglDEY2Xs4v2ivrsw
https://aws.amazon.com/sagemaker/
https://www.google.com/glass/tech-specs/
https://www.qualcomm.com/news/releases/2018/05/qualcomm-reveals-worlds-first-dedicated-xr-platform
https://www.qualcomm.com/news/releases/2018/05/qualcomm-reveals-worlds-first-dedicated-xr-platform

	Introduction
	Positioning E2C with respect to other existing simulators
	Simulating a Heterogeneous Computing System via E2C 
	Class Assignment for Computer Science and Engineering Students
	evaluating learning outcomes of E2C 
	E2C Code and Resource Availability
	Conclusion and Future Works
	References

