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Abstract— Efficient and safe petroleum extraction in remote
offshore oil-fields is a challenging and hazardous operation.
To address this challenge smart oil-fields have been proposed
and deployed for remote offshore oil-fields. A smart oil-field
includes a wide range of sensors (e.g., pipeline pressure,
gas density, temperature) that collectively generate terabytes
of data per day which needs to be analyzed in real-time.
Existing smart oil-field solutions utilize satellite communi-
cation and distant Cloud Datacenters which are unviable
due to significant transfer time delay. In this paper, a robust
resource allocation model using edge computing is proposed
which considers connectivity, limited computational capac-
ity, and resource intensiveness of applications in the oil-
fields. To achieve robustness, the proposed model efficiently
allocates tasks to an appropriate edge or cloud resource to
satisfy the real-time constraint of applications. Evaluation
results show that proposed model can significantly improve
the performance of the system in comparison to conventional
cloud-based architectures.

Keywords: Cloud computing, Edge computing, Smart oil field,
Robustness.

1. Introduction
For nearly two centuries, petroleum has been a main natu-

ral resource used to produce many industrial products such as
gasoline, diesel, oil, gas, asphalt, and plastic. Over the years,
high demand for petroleum products led to a scarcity of nat-
ural resources in easy-access areas and forced companies to
reallocate their oil and gas (O&G) extraction sites to remote
offshore (e.g., sea) reservoirs [1]. Meanwhile, operations
at remote sites are costly, hazardous, and constrained with
limited crew and equipment resources. Moreover, petroleum
extraction is a fault-intolerant process that requires ultra-
high reliability, specifically in the face of a disaster (e.g., oil
spill [2], gas leakage [3]). Therefore, achieving efficient and
safe petroleum extraction —especially when coupled with
the location constraints of remote offshore reservoirs is a
challenging task for oil and gas (O&G) companies.

In order to address these challenges, smart oil-fields have
been proposed and deployed in over the past decade. Smart
oil-fields include a diverse set of sensors (e.g., Gas density,

Pipeline pressure, Temperature sensors, Fire / Gas / H2S
alarms, Flow monitoring & Tank levels) and computational
facilities. Real-time monitoring of the site, including rigs’
structure, wells, and distribution lines is performed to avoid
oil and gas leakage, identify corrosion level of the infras-
tructure, and predict potential future incidents. It maximizes
production efficiency and minimizes negative environmental
impacts. Thus, a large amount of raw sensor data (between
one to two terabytes) is generated in a single day of operation
in a smart oil-field [4]. With an absence of a full management
crew at the site, real-time decision making depends on
the ability to quickly process and analyze large amounts
of data. The situation can become extremely hazardous
due to uncertainties in O&G extraction process (stemming
from stochastic gas pressure in the reservoir and leakage of
hazardous gases such as H2S) especially in presence of on-
site human workers. This imposes a major challenge —data
management and analytics. According to the Cisco Public
white paper on New Realities in Oil and Gas[5], 48% of all
respondents involved in O&G industry admitted that proper
data management and analysis is the major challenge for
acquiring the best efficiency from the smart oil-fields.

Most of the generated data, such as those pertaining
to drilling-platform safety, are time-sensitive and must be
processed in real-time. For instance, data obtained from
sensors to monitor the release of toxic gases (e.g., Hydrogen
Sulphide (H2S) which is common in remote oil-fields) need
to be processed in less than five seconds to preserve workers’
safety [6]. Processing such volume of data requires high-
end communication and computation facilities that are not
available in remote (offshore) oil-fields. Satellite connection
is the common vehicle of transmitting data from oil-fields
to onshore Data Centers. However, the bandwidth of such
connections ranges from 64 Kbps to 2 Mbps, making it
12 days to transmit one day’s worth of oilfield data to an
onshore Data Center [4]. As such, the major challenges for
the remote offshore oil-fields can be specified as follows:

• Real-time processing of resource-intensive emergency
applications.

• Constant decision-making during the extraction pro-
cess.



• Real-time monitoring of the site.
To address these challenges, there is a need for a system

to collect data from oil-fields, process them instantly, and
make necessary decisions for a seamless and reliable O&G
site. Despite recent technological advancements, to date, no
comprehensive solution exists that can support bandwidth
and computationally intensive operations expected in smart
oil-fields. Provided the difficulties in achieving a real-time
response required for time-sensitive applications in remote
smart oil-fields, empowering smartness for remote oil-fields
remains an open challenge. Edge computing systems, if de-
ployed cleverly, has the potential to obviate these difficulties
and enable them to take advantage of services offered by
smart oil-fields.
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Fig. 1: A smart oil-field equipped with sensors and the edge
node.

As depicted in Figure 1, our approach to the problems of
smart oil-fields in remote areas is to use an Edge Computing
system that is aware of the Quality of Service (QoS) de-
mands of different applications types. It accounts for perfor-
mance characteristics of the computational resource and their
limited availability in the edge environment. It also considers
low and unreliable connectivity to the onshore Data Centers.
The question is how to efficiently process resource-intensive
and time-sensitive applications in the presence of a weak and
unreliable connection to onshore Data Centers? Efficiency
here refers to solutions that are aware of the connectivity,
limited computational capacity, and resource intensiveness
of emergency management applications in remote oil-fields.
Therefore, the specific problem definition in this research
can be stated as how to allocate arriving tasks to an Edge
resource or in Cloud Datacenter in a robust manner (i.e., in
a manner that the number of tasks missing their individual
deadline is minimized)?
The contributions of this paper are as follows:

• Proposing a resource allocation model to efficiently use
limited computational resources of Edge resources and
minimizes reliance on onshore resources.

• Developing a coordinator heuristic that provides robust
task processing for real-time monitoring and decision
making.

• Analyzing the performance of the proposed heuristic
under various workload conditions.

The rest of the paper is organized as follows. Section 2
introduces the system model with formal problem statement,
assumptions and scenario overview. Section 3 discusses
on-time completion certainty of a task on a computing
unit. Sections 4 and 5 present heuristics and performance
evaluation respectively where resource allocation heuristics,
experimental setup and experiments with the results are
particularly described. Section 6 presents the related work.
Finally, section 7 concludes the paper.

2. System Model
2.1 Formal Problem Statement

In proposed system model, a set of tasks is generated to
process the sensor data and sent to a computing unit (Edge
or Cloud). Every task has its own deadline within which it
has to be completed. A resource allocation method, in this
system, aims at maximizing the number of tasks meeting
their deadlines. The set of arriving tasks can be defined as
T , where T : {t1, t2, t3, t4 . . . , tn} and the set of computing
units S, where S : {s1, s2, s3, s4 . . . , sm}. The set of tasks
that meet their deadlines is denoted as Ts, and we have
Ts ⊆ T . It is assumed that a task ti is allocated to the
computing unit sj when the task ti can meet its deadline δi
in that specific computing unit.

2.2 Assumptions
In our system model, an Edge machine is a stationary

device with memory storage, constrained computational ca-
pacity and wireless communication capability [7]. The Edge
machine is located at the offshore (remote) oil rig on the
platform above the water surface. Owing to the hardware
limitations, Edge machines are generally not suitable for
computationally intensive tasks. Nevertheless, Cloud Data-
center has a massive computational capacity that makes it
appropriate for intensive computations [8]. Different sensors
(e.g., capture pipeline pressure, cathodic protection, flow
monitoring, air pollution, and gas density) produce various
types of data (e.g., numeric, image, and video) which are
utilized by several applications ( e.g., disaster management
and remote monitoring system) [9]. As such, we define task
type to represent the variety of applications that exist in the
system. For instance, task type A can be image processing
for a disaster management application and task type B can
be related to scheduled maintenance application [10].

Depending on the nature of different task types, some
tasks are urgent (i.e., delay-intolerant), and some are not,
meaning that they are delay-tolerant. For example, cost-
efficient drilling strategy, compressing and archiving cap-
tured videos ([11], [12], [13]) are delay-tolerant tasks,



whereas, pipeline pressure monitoring, oil spill monitoring,
and temperature monitoring tasks are delay-sensitive.

We assume the arrival rate of tasks to the system is
not known in advance. However, we consider scenarios in
which the receiving computing unit is oversubscribed. That
is, it receives the number of tasks beyond its capacity to
execute them within their deadlines. Therefore, some tasks
are projected to miss their deadlines. If such tasks are delay-
sensitive, then there is no value in executing them and
they are dropped from the system ([14], [15], [16]). For
instance, in the live video stream for monitoring activities,
if a streaming task misses its deadline then there is no value
to process that and it should be dropped [10].

2.3 Scenario Overview
As an overview of the edge computing system, we con-

sider for oil-field, is shown in Figure 2. In this system, upon
arrival of a task to a resource allocator, it is immediately
assigned to a computing unit (which can be an Edge system
or Cloud Datacenter). Then, the task enters the batch queue
of the computing unit to be assigned (i.e., mapped) to a
machine utilizing the scheduler. In this system, we define the
time passed from the arrival of the task until its processing
completion as the computational delay (denoted as dP ).
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Fig. 2: Architecture of the Edge Computing Unit in Smart
Oil-Field.

3. On-Time Completion Certainty of a
Task on a Computing Unit
3.1 Overview

An overview of the proposed resource allocation model
for the arriving tasks of a remote oil-field is demonstrated
in Figure 3. The objective of the proposed model is to make
the oil-field robust against uncertainties in task arrival as well
as in communication delay that particularly occurs amid a
disaster (e.g., oil spill). To achieve the robustness goal, the
proposed model aims at maximizing the number of tasks that
can meet their deadlines.

Upon arrival of a task request, the task is received by
a Coordinator. The Coordinator then allocates the task to
the appropriate computing units. The appropriateness is
characterized based on the computing unit that maximizes

the likelihood of the task meeting its deadline. Within the
rest of this section, we calculate this likelihood by defining
the certainty of completing the task on-time. Once the
resource allocation decision of the task is determined by the
Coordinator, it is transferred to that particular computing
unit.

Machine
Queue

Coordinator

Batch Queue

Scheduler
Arriving
Tasks

Cloud Datacenter

Fig. 3: A proposed model where the coordinator allocates
arriving tasks to appropriate computing unit.

3.2 Calculating End-to-End Delay to Edge and
Cloud Computing Systems

When the task arrives at a computing unit, it is assigned
an individual deadline. An individual deadline comprises
the task arrival time and the end-to-end delay the task
can endure [17]. In a real-time scenario, a disaster (e.g.,
oil spill, gas leakage) management application can submit
requests that require high data rates, such as the thermal-
maps or satellite images[18]. In any case, the number of
applications that manage a disaster situation can be large
and each application can create several tasks that potentially
strain the capacity of the wireless network between sensors
and the computing unit. Subsequently, communication delay,
which is composed of up-link and down-link delay, can have
a significant impact on the end-to-end delay of tasks. Ac-
cordingly, we consider the communication delay in deadline
calculation. For an arriving task ti, deadline δi is defined as:
δi = arri+Ei+ε+dC , where arri is the arrival time of the
task, Ei is the average task completion time, ε is a constant
value defined by the processing device (slack time), and dC
is the average communication delay.

For Edge computing, a communication delay (dC) can
be further broken down into the average up-link (dU ) delay
and the average down-link (dD) delay. For task ti from an



application i to the Edge system m, the up-link delay is
defined as:

dU =
Li

Rm
i

(1)

where Li is the task packet size, Rm
i is the transmission

data rate for the link from i to m (i.e., up-link bandwidth).
Similarly, the down-link delay is defined as Equation 2.

dD =
Li

Ri
m

(2)

where Ri
m is the transmission data rate from m to i (i.e.,

down-link bandwidth).
In the case of cloud computing system, since the Dat-

acenters are located far from the offshore oil-field, the
propagation delay of tasks becomes remarkable. Therefore,
we also need to consider propagation delay (denoted as
dR) when calculating the communication delay. Satellite
communication is commonly utilized for transferring the task
in remote oil-fields to the Cloud Datacenters. Hence, the
propagation delay is defined based on Equation 3.

dR =
Distance

Speed
· 2 (3)

In the equation 3, we consider a round trip time which
is twice the propagation delay. Therefore, communication
delay for the Cloud Datacenter consists of a transmission
delay along with a propagation delay. As such, we define
communication delay for the cloud computing system based
on Equation 4.

dC =
Li

Rm
i

+
Distance

Speed
· 2 + Li

Ri
m

(4)

3.3 Completion Time Certainty
To maximize the likelihood for an arriving task meeting

its deadline, we propose that Coordinator makes resource
allocation decisions based on the computing unit (i.e., Edge
or Cloud Datacenter) the task receives the highest certainty
to complete on-time (i.e., before its deadline). For an arriving
task ti on a computing unit j, let Eij be the mean completion
time of task ti on j. The value of Eij can be obtained by
analyzing the historic completion time information of task ti
on machine j. Then, we define on-time completion certainty,
denoted as Cj(ti), based on Equation 5.

Cj(ti) = δi − Eij (5)

For an arriving task, as shown in Figure 3, the Coordinator
calculates the certainty of completing the task both on the
Cloud Datacenter and on the Edge system. After that, the
task is allocated on the computing unit that provides a
higher certainty of task completion. More specifically, once
the Coordinator receives a task ti, initially it calculates the
deadline (δi) for this task. Then, it calculates the certainty of
completing the task ti, denoted as C(ti), by deducting the
completion time of that particular task from its deadline. The

value of certainty indicates the time remaining before the
deadline occurs. The higher the difference, the more chances
the task can meet its deadline. Therefore, the Coordinator
checks the certainty of an arriving task both for the Edge
system and the Cloud Datacenter. Finally, Coordinator as-
signs the task to the computing unit that offers the highest
certainty.

4. Resource Allocation Heuristics
4.1 Coordinator

The Coordinator makes an efficient resource allocation
decision for processing each task within its individual dead-
line. The arriving task is instantly allocated to an appropriate
computing unit determined by the Coordinator. The Coordi-
nator includes a buffer that handles multiple tasks arriving
simultaneously. Once the task is allocated, it cannot be
reallocated due to data transfer overhead. In this section, we
introduce resource allocation heuristics that can be utilized
by the Coordinator.

After the resource (task) allocation, the scheduler of every
Edge Node allocates the task to the VMs. It is realized that
this scheduling policy impacts the robustness of the system,
in terms of a number of tasks meeting their deadlines.
Consequently, in our research, we evaluate the impact of
using two different scheduling policies on the edge as
follows:

First Come First Serve (FCFS): FCFS is one of the
popular baselines for the task scheduling policy. According
to this policy, the tasks that arrive earlier get scheduled
first. The scheduler allocates tasks from the head of the
queue to the machines local queue to load its data and
execute it. We determine that machines have a limited local
queue. Accordingly, the edge internal scheduler is invoked
whenever a free spot appears in local queue of a machine.

Shortest Job First (SJF): SJF schedules the tasks that
have the shortest execution time. Initially, the heuristic
organizes the tasks in the batch queue according to their
execution time in ascending order. Therefore, the tasks with
a shorter execution time stay in the head of the queue and
are scheduled immediately whenever a free spot appears in
machines local queue. The execution time of a task can be
obtained from historic execution time information.

4.2 Baseline Heuristic
Existing remote oil-fields only use onshore Cloud Dat-

acenters and satellite communication for processing the
arriving tasks. As such, for the baseline method, the first
heuristic naïvely allocates every task to the onshore Cloud
Datacenter for processing.
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(a) FCFS scheduling
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Fig. 4: Deadline missing rate is measured using three heuristics (Maximum Certainty, Task Type and Baseline). Two different
scheduling policies (FCFS and SJF) are used for evaluation of the system with respect to deadline miss rate.

4.3 Maximum Certainty (MC) Heuristic
The objective of this heuristic is to maximize the robust-

ness of the system through maximizing individual task’s
certainty of meeting its deadline. It allocates an arriving task
to the computing unit that maximizes certainty of the task.
Upon arrival of a task to the Coordinator, it calculates the
certainty of that task for the Edge and the Cloud Datacenter
and allocates it to the computing unit that has the highest
task certainty.

4.4 Task Type Based (TT) Heuristic
This heuristic uses the task type as the decisive factor

for resource allocation. Recall that urgent tasks (i.e., those
related to managing oil spill) have shorter deadlines. This
heuristic harnesses this knowledge and allocates the arriving
tasks that are urgent to the Edge Node. Other tasks that are of
non-urgent type are dispatched to onshore Cloud Datacenters
for processing. We should note that this heuristic does not
account for communication delay in its decision making.

5. Performance Evaluation
5.1 Experimental Setup

CloudSim simulation [19] is used to evaluate our sys-
tem’s performance . CloudSim is a discrete event simulator
that provides Cloud and Edge Computing models. In our
simulation Edge Nodes are Datacenters which are devices
with limited computational capacity (8 cores). Each core
is utilized by one Virtual Machine (VM). All VMs in
an Edge Node are homogeneous, i.e. they have the same
computational power (MIPS). We consider a large Cloud
Datacenter including 16 cores, is allocated to manage tasks
of the oil-field under study. We implement the bandwidth for
the Cloud Datacenter and simulate the propagation delay to

calculate the communication latency in our study. All these
parameters are scalable to larger magnitude.

To implement the tasks of smart oil-field we have used
CloudSim’s prototype structure defined as cloudlets. An
Edge Node and a Coordinator component have been de-
veloped for allocating the tasks according to our proposed
heuristic.

5.2 Generated Workload
In our simulation, execution times for tasks are generated

using Gaussian distribution[20]. We use results of the Ex-
treme Scale System Center (ESSC) at Oak Ridge National
Laboratory (ORNL) ([15], [16]) to implement the arrival
time for each task. Nevertheless, the arrival time from this
workbench is very sparse which is not applicable to our
work. In order to make it relevant to our work, we tune the
workbench and set the number of tasks to 24,000 to generate
a dense arrival time.

Initially, every Edge and Cloud are assigned initial work-
load that represents their current workload. In addition to
the initial workload, Coordinator receives the generated
workload (testing workload). This workload is the one we
consider for our result’s evaluation. By manipulating the
number of tasks in the initial workloads, we are able to
control the system’s oversubscription level. For the sake of
accuracy and to remove any uncertainty in the results, we
conduct each experiment 10 times and report the mean and
95% confidence interval of the results.

5.3 Experiment Results
To study the performance of our model thoroughly, we

evaluate the system under various number of arriving tasks.
We analyze the impact of the increasing number of tasks
within testing workload on the oversubscribed system. We



consider the minimum testing workload to be a batch of
700 tasks and the maximum to be a batch of 18,500 tasks.
In each experiment, we count the number of tasks that
miss their deadlines. Each workload is evaluated against the
three resource allocation heuristics mentioned in the previous
section.

Figure 4 demonstrates the results obtained from the ex-
periments. Sub-figure (a) and (b) of Figure 4 represents the
results obtained using the FCFS and SJF scheduling policy
respectively. As we can see, Coordinator results lead to
a higher performance when it uses the certainty heuristic
rather than Baseline and Task Type heuristics. The certainty
heuristic accounts for the deadline of the individual task
and tends to support real-time tasks processing in Edge. The
experiment indicates that even a limited edge node deployed
on the edge of the network can improve the robustness of
the whole system. That is, it reduces the deadline miss rate
of the system in face of oversubscription.

We observe in Figure 4 that only 17% of all tasks
miss their deadlines using the certainty heuristic, whereas
more than 22.2% of the tasks miss their deadline with the
baseline heuristic. Although the deadline miss rate grows
with the increase of the number of tasks within workload
for all three heuristics, the certainty heuristic, outperforms
in the beginning to the midrange of the tasks increase.
From the midrange to the largest tasks workload, as the
edge machines are saturated with the assigned tasks, the
certainty-based heuristic performs nearly the same as the
other two heuristics. We assume that the performance of
the certainty heuristic depends on the level of the initial
oversubscription of the system, but we leave finding the
proof of our assumption for the future research.

We also notice that certainty-based heuristic performs
slightly better using the SJF scheduling rather than FCFS.
The reason for that can be the efficient scheduling of short
tasks first. Hence, we can conclude that certainty-based
heuristic outperforms the Task Type and Baseline heuristics
and can provide a higher robustness for the whole system in
face of oversubscription.

6. Related work
Edge Computing concepts have been previously proposed

in the literature for delay tolerant networks. Lorenzo et al.,
in [21] proposed resource allocation methods for Edge
Computing environments that considers unreliable network
connectivity. However, in similar kind of research works
([22], [23], [24]) authors neither consider the case of emer-
gency management applications nor the heterogeneity of the
Edge resources, while performing resource allocation.

The more specific problem of resource provisioning for
real-time disaster management applications in Edge Com-
puting with low-connectivity to the back-end Data Centers
has not been explored in the context of remote smart oil-
fields and there is a limited research on these issues in

other contexts. Efforts towards smart oil-fields have been
predominantly on analyzing the big data extracted from
oil wells by Cameron et al., in [25] or applying machine
learning methods to reduce exploration or drilling costs
by Parapuram et al., in [26]. Warning systems for early
prediction of disasters were analyzed by Xu et al., in [27].
These solutions are all reliant on onshore Data Centers [9]
which are not viable for remote and offshore oil-fields.

To date, limited work exists from academia and industry
to design wireless communication networks for remote smart
oil-fields ([1], [4], [29], [30], [31], [32]). Particularly, prior
art cannot address the key challenges of remote operations,
due to the following reasons. First, the works in [33] rely on
satellite communications between the oil rigs and offshore
management centers. However, satellite communication is
not suitable for real-time decision making during oil ex-
traction process, as the delay can be substantially large.
Second, the works in [34] assume the existence of a macro
cell Base Station at a nearby onshore location that provides
wireless support for oil rigs. Nonetheless, remote reservoirs
can be very far away from the shore. Third, most of
existing networks [35] operate at sub-6 GHz frequency bands
with limited capacity that cannot manage large data rates
and URLLC requirements of smart oil-fields. Fourth, ad-
hoc communications protocol with random channel access
cannot satisfy the ultra-reliability requirements in smart oil-
fields with a dense number of wireless devices.

7. Conclusions

In this paper, we presented a robust resource allocation
model using Edge Computing that copes with the uncertain-
ties that exists both in communication and computation for
offshore smart oil-fields. We leveraged the task deadline and
historical data for completion time to devise a coordinator
that operates near the smart oil-field (i.e., at the Edge level)
and distribute arriving tasks to the most certain computing
unit (Edge or Cloud) in the face of oversubscription. The
method considers the nature of the task type (e.g., real-time
and delay intolerant). Experimental results express that our
proposed model can improve the robustness of the system
compared to distant Cloud Datacenter working similarly in
case of disaster or emergency-related tasks. From simulation
results, it is observed that for various amounts of arriving
task, our proposed heuristic outperforms the baseline and the
Task Type heuristics. Approximately 17% of all tasks miss
their deadline using the certainty-based coordinator, where
more than 22.26% tasks miss their deadline with baseline
and task type heuristics. In future, we plan to extend our
proposed model to work more efficiently by considering
heterogeneity within each computing unit (Edge and Cloud).
We also plan to study the impact of approximate computing
on the performance of the system.
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