
User-Friendly and Secure Architecture (UFSA) for
Authentication of Cloud Services

Reza Fathi∗, Mohsen Amini Salehi†, and Ernst L. Leiss∗
∗Computer Science Department, University of Houston

{rfathi, coscel}@cs.uh.edu
†Computer Science Department, University of Louisiana at Lafayette

amini@louisiana.edu

Abstract— Clouds are becoming prevalent service providers
because of their low upfront costs, rapid application deployment,
and high scalability. Many users outsource their sensitive data
and services to cloud providers. Users frequently access these
sensitive services through devices and connections that are
vulnerable to thieving and eavesdropping. Therefore, users are
desperate of robust security measures to protect their data and
services privacy in clouds. In particular, robust authentication
techniques are demanded by users for safe access to cloud
services. One technique is to utilize multiple authentication
factors (a.k.a multi-factor authentication) to access cloud services.
However, the challenge is that the multi-factor authentication
technique is not effective as it causes user frustration and fatigue.
To address this challenge, in this study, we propose a multi-factor
authentication architecture that aims at minimizing the perceived
authentication hardship for cloud users while improving the secu-
rity of the authentication. To achieve the goal, our authentication
architecture suggests a progressive manner to leverage access to
different levels of cloud services. At each level, the architecture
asks for authentication factors by considering the perceived
hardship for users. To increase the security and user convenience,
the architecture also considers implicit authentication factors in
addition to the explicit factors. Our evaluation results indicate
that authentication using the proposed architecture decreases the
users’ perceived hardship up to 29% in compare with other
methods. The results also reveal that our proposed architecture
adapts the authentication difficulty based on the user condition.

Index Terms—Cloud services, User-friendly authentication,
Multi-factor Authentication, Sand-boxing

I. INTRODUCTION

Third party cloud service providers let their users to ob-

tain on-demand services. This paradigm is flourishing in the

computing industry because it reduces the upfront costs and

deployment time of applications. However, sharing resources

with other users on the cloud premises, vulnerable devices

and network connections have arisen security concerns among

the cloud users [13, 24, 31, 36]. To address these concerns,

cloud providers are seeking for stronger security solutions at

different levels to assure their users about the security of their

offered services.

More specifically, with the increasing connectivity of mo-

bile devices to the Internet, many sensitive operations (e.g.

financial transactions) are carried out using these devices. In

addition, heaps of sensitive data, hosted on the cloud servers,

are accessed by hand-held and mobile devices such as smart-

phones. These devices, in particular, are vulnerable to security

threats such as being stolen. Moreover, lack of users’ trust

in the cloud security, and leakage of confidential data or

services are other security challenges of cloud providers [22].

Therefore, an ideal security model for cloud should provide

an acceptable trust to users and guarantee that there will be

no unauthorized access to their data and services.

Authentication is the process of determining whether or not

a user is the one claiming to be. It also provides a security

level that determines the confidence degree of a system on

the authenticated user. Authentication is a crucial step in the

security suit that directly involves the users of a system.

To have a robust authentication, it is a common practice

to apply multiple authentication factors (a.k.a. multi-factor
authentication) to grant access to sensitive services [5]. As

a result, the security improves because it does not depend on

a single factor. For example, if a bank card is stolen, the PIN

number is still required to cash the money.

Using multiple authentication factors is burdensome for

users. Recent research works have revealed that convenience

is a major factor for users in preferring one method over

another [3]. In fact, users prefer to utilize convenient authenti-

cation methods rather than sophisticated ones that are typically

more secure [18]. This issue usually causes sophisticated

authentication methods to fail in practice, in spite of their

higher security. An alternative solution proven to be less

difficult for users is progressive multi-factor authentication
[29]. It applies the authentication factors in a progressive

manner upon users’ demand to access more sensitive services.

Another authentication approach that relieves the user from

authentication is implicit authentication where patterns of the

user behavior is used for authentication. This is opposed to

explicit authentication where the user has to directly provide

the authentication factor. Nonetheless, although implicit au-

thentication methods provide user convenience, they cannot

provide a sufficient security level due to their high false-

positive rate [6, 10, 12, 33].

The challenge is that convenient authentication methods are

not secure and sophisticated authentication methods are not

effective as they are not user-friendly. In fact, any solution for

this challenge should satisfy both the security and usability

aspects at the same time. Progressive authentication can be

helpful, however, when it is applied frequently, it also results

in user fatigue. Therefore, the research question that we

investigate in this study is: how can we minimize user per-

2015 IEEE 8th International Conference on Cloud Computing

2159-6190 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/CLOUD.2015.75

516



ceived hardship with progressive multi-factor authentication
in accessing cloud services?

To answer this question, we propose an architecture based

on the implicit and explicit authentication factors. We also

define a measure for hardship that enables us to estimate

the difficulty of a given set of authentication factors. Then,

we utilize the defined measure to propose an algorithm that

minimizes the perceived authentication difficulty for the user

at each access level. Our proposed algorithm also operates

adaptively based on the user condition. That is, if the user

cannot pass the implicit authentication, then the algorithm

introduces more difficult authentication factor to her. On the

contrary, the more implicit authentication can be passed, the

less difficult authentication factors is required from user.

Our proposed architecture (UFSA) introduces a novel

method for selecting explicit authentication factors in a multi-

factor authentication method to make it more user-friendly and

usable without sacrificing the security level. In summary, this

study includes the following contributions:

• Proposing an architecture based on progressive authenti-

cation to access cloud services.

• Selecting a subset of explicit authentication factors at

each authentication level that minimizes the perceived

user authentication hardship.

• Analyzing the performance of UFSA, in terms of adapt-

ability and user perceived hardship, in various working

conditions.

Our evaluation results show that UFSA reduces users per-

ceived authentication hardship remarkably in compare with

methods that do not consider user hardship in the authenti-

cation process. In addition, the evaluation results reveal that

UFSA adapts the authentication process based on the user

condition. That is, it increases the authentication hardship

(i.e., asks for more authentication factors) in case implicit

authentication factors of the user are not valid. Accordingly,

it eases the explicit authentication when more implicit factors

are valid.

The rest of this paper is organized as follows: In Section II

related research work is introduced. Next, in Section III,

sand-boxing method is explained. Then, in Section IV, the

proposed authentication architecture is described. Performance

evaluation of the proposed architecture is reported in Sec-

tion V. Finally, conclusion and future works are provided in

Section VI.

II. RELATED WORK

There are two types of user authentication namely, explicit

and implicit. Explicit authentication requires user involvement

to identify and verify the subject requesting a service. In [4],

the authors discuss the logic of authentication and consider

four important authentication protocols and describe their

weak points. The author of [14] describes the security risks of

authentication methods depending on synchronized clocks.

With the increase of security concerns, researchers have sug-

gested to use more than one authentication method to achieve

a higher security. Duncan discusses the main factors of a

dual-factor authentication system which should be considered

during the decision-making process [2]. He highlights some of

the most important issues to be considered before selecting an

authentication solution. In [16], a dual-factor authentication

method using the voice of the user has been introduced.

This method combines single-factor voice verification with

token technology. It uses pre-recorded speech and a text-to-

speech voice cloning technology to improve the strength of

the authentication process. In addition, its generated spoken

one-time passcode is not vulnerable to voice cloning or reply

attacks.

In [5], a multi-layer and multi-factor authentication method

is provided for intranet, extranet, and internet users to access

a web main system. In this system, intranet users only pass

through the conventional user name and password authentica-

tion process to access the authenticated network resources. The

extranet users, however, are required to pass one more level of

authentication to prove their identity. The Internet users face

the highest authentication complexity to be segregated form

the invalid users. Implicit authentication has the advantage

of not involving the user in the authentication process. It is

done in the background and tries to identify and authenticate

users using biometric or behavioral parameters. This method

has obtained many applications recently, due to the increasing

usage of hand held and mobile devices.

In [8], a biometric approach by ear shape recognition is

proposed. The idea is using smart-phones to learn a pattern

from the geometric features of the ear of the users. These

features are used to learn patterns for implicit authentication

of a user.

In [7], a method for implicit authentication by using the

pattern of inputing user name and password is proposed.

This is in addition to a layer for the explicit authentication

to increase the security. Shi et al. [33] propose implicit

authentication through learning user behaviour based on his

messaging, phone calls, browsing history, and device location.

Sandnes and Zhang studied feature extraction for learning

from device holding hand, stroke size, timing, speed, and

timing regularity [32].

Continual implicit authentication on mobile devices is pro-

posed in [1, 7, 8, 10, 19, 20, 23, 29]. They analyze typing

motion behavior of the users to learn. The method in [23]

considers entering text on the keyboard while the users’

finger direction movement is considered. In [29], a progressive

authentication method on mobile phones is proposed. It tries

to facilitate the authentication process by decreasing authenti-

cation times. It uses both implicit and explicit factors to attain

the authentication score which is required in each step. In

[9], continual mobile authentication using touchscreen gestures

gathered by a digital sensor glove is proposed. This glove

collects more gesture information, which is used to achieve

implicit authentication.

These implicit authentication methods are used as a direct

authentication method, mostly on the touchscreen mobile

devices. Since they have relatively high false acceptance rate,

they are not dependable for the environments such as clouds

which host sensitive data and services. In our approach, these

implicit methods are used as a factor to give weight to

the score of explicit authentication methods. That is, in our

517



proposed architecture, these implicit methods are used as an

auxiliary factor.

III. SAND-BOXING

Since cloud services are provided based on shared resources,

any code in the clouds should be run in isolation and with

attention to security. Sand-boxing can provide isolation by

preventing dangerous actions of malicious codes or destructive

data thieving [21, 34]. That is, it provides a security layer

by implementing isolation between users and processes [25].

Sand-boxing is widely applied and is able to provide an

acceptable security [11]. The level of isolation provided by

sand-boxing depends on its static or dynamic configuration.

Static sand-boxing is to configure the sandbox at its ini-

tialization time. Although static sand-boxing needs a simple

configuration, it is restrictive and is not suitable for dynamic

and shared environments. To apply static sand-boxing, the

administrator should decide what subset of the system should

be protected beforehand. This decision will affect the whole

system without any flexibility to change it. The inflexibility

makes static sand-boxing inappropriate for cloud environ-

ments.

Configurable sand-boxing is a solution which offers fine-

grained control to users to define which actions are allowed

and which are not. An instance of configurable sand-boxing is

in Java 2 [35], in which users can configure the permissions

and trust they decide to offer to a running code. A code

configured as more trusted, can perform more privileged

operations. Not only does any misconfiguration cause many

security issues, just as in static sand-boxing, but it also needs

high technical skills to configure it [11]. In other words, it

is hard and seems very complicated to the typical users who

know little about security configurations.

Although defining a proper sand-boxing is difficult, dynamic

sand-boxing can automatically learn security policies [17, 27].

The learning happens at the training phase in which the

learning security policy module runs and records all the

permissions needed to access a service or a file.

In this study, operation sensitivity of a service is determined

by the permissions required to access that service. In any

access, a user should provide an authentication score equal

to or higher than the required operation sensitivity to be able

to access the service. This dynamism suites security controls

of cloud systems that need more flexibility at defining and

applying the policies.

IV. PROGRESSIVE USER-FRIENDLY AUTHENTICATION

Authentication is the process of determining whether a

connecting subject is the one claiming to be. Authentication

can depend on the factors a user knows, has, is, or which

belong to the user [26, 28]. There are two kinds of authen-

tication, explicit and implicit. Explicit authentication requires

user direct involvement in the process of authentication, such

as entering user-name password, PIN code, or using a swipe

card. This type of authentication imposes a burden on the

users, hence, causes user frustration when it is demanded

frequently. Implicit authentication tries to authenticate a user

without her direct involvement, therefore, it is not burdensome

and is welcomed by the user. Some implicit authentication

methods operate based on the user characteristics (e.g., biomet-

ric or behavioral patterns such as touching or typing patterns)

or the device characteristics (e.g., the GPS location or the

IP address of the connecting device) to authenticate users.

Depending only on the implicit authentication methods is

a security risk, as these methods have relatively high false

positive rate [7, 10, 33]. To avoid the user fatigue resulted by

explicit authentication, implicit authentication can be used in

combination with the explicit methods [12, 15].

In this paper, we propose an architecture, shown in Figure 1,

that utilizes implicit authentication along with the explicit

ones. The architecture includes five main components. Sand-

boxing component performs user access control to different

service levels in the Cloud. Explicit and implicit authentica-

tions are the set of authentication factors that the user can

exercise to gain access to different levels of Cloud services.

Meta-learner is a machine learning engine that provides an

authentication weight based on the implicit authentication

factors. Component F calculates the current authentication

score of a user and determines the optimal set of explicit

authentication factors (i.e., with minimum user perceived

hardship) that a user should exercise to gain access to a higher

service level.

In the architecture, each explicit authentication factor is

assigned an authentication score. That is, a user obtains au-

thentication score as she presents (i.e., validates) more authen-

tication factors and zero for unpresented ones. Accordingly,

each cloud service is assigned an operation sensitivity that

indicates the security criticality of that service. The operation

sensitivity is configured by the system administrator or by

using a dynamic sand-boxing (see Section III). When a service

is highly sensitive, it is assigned a higher operation sensitivity,

meaning that a higher trusted user can access the service. A

user gains a higher trust (and access level) by obtaining a

higher authentication score.

We utilize implicit authentication factors to give weight to

the score obtained by explicit authentication factors. As such,

when implicit authentication factors are validated (invalidated),

the score given to explicit methods will get higher (lower)

weights. This is achieved by function F in Figure 1. For

instance, using a known IP address for authentication can

validate the implicit authentication, as opposed to using an

unknown IP address (e.g., through connecting form a public

place) invalidates the implicit factor.

Let pi the authentication score of explicit factor i that a

user can utilize for authentication. Also, let w the implicit

authentication factor which returns a value in −1 ≤ w ≤ 1.

The negative extreme (i.e., when w = −1) indicates that the

implicit authentication has no trust on the user whereas the

other extreme (i.e., when w = 1) indicates that the implicit

authentication has a full trust on the user. The value of w
is obtained from the implicit factors by the meta-learning

engine. In fact, it exploits features of impilicit factors to build

a two layered machine learning engine. First layer includes

machine learning methods such as Support Vector Machines;

and the second layer is a meta-learner which provides output of

518



Fig. 1: Progressive and user-friendly authentication architecture: Implicit authentication factors weight the score of explicit

authentication methods which should be higher than or equal to the operation sensitivity of the sandbox region.

the learning component. For this research, we prototyped the

meta-learning component as a black-box to return simulation

values for w and left investigating it as a future work. Getting

w from the learning engine, function f(w) = w + 1 is used

to calculate a weight cofactor as input of component F .

Equation 1 formulates how the authentication score for a

set of explicit authentication factors, denoted Ls, is calculated

by F . As we can see in Equation 1, based on the value of

implicit authentication, f(w) gives zero to double weight to

the explicit authentication scores.

Ls = f(w)·
∑

∀i∈L

pi (1)

In the event that a user wants to access a cloud service

v, her obtained authentication score is compared against the

operation sensitivity of that service (φv). A user is able to

access service v if and only if Ls >= φv . Otherwise, the user

has to increase her authentication score by at least g = φv−Ls.

Finding a subset of available authentication factors to fill

the required gap (g) and, at the same time, minimizing the

hardship of the authentication is challenging. We developed

Algorithm 1 to find the subset of available authentication

factors to fill the authentication score gap (g) and enable the

user to access a given cloud service with minimal perceived

hardship. We consider the authentication score of each factor

and its hardship in the algorithm. The required gap (g) and the

tree (T ) that explores all cases are two inputs to Algorithm 1.

The other input is the set of available authentication factors

(shown as L). For a given authentication factor i ∈ L, we

calculate the fitness ratio as pi/hi, where hi is the perceived

hardship for authentication factor i. The elements of L are

sorted based on the fitness ratio in the descending order.

As mentioned earlier, to gain access to service v, the

total authentication factor score obtained by a user, should

be equal or higher than the operation sensitivity of service

v. The algorithm considers all possible combinations of the

authentication factors. However, for the sake of time efficiency,

Algorithm 1: Selecting a subset of authentication factors

with the minimum user perceived hardship to obtain access

to a cloud service.
Input: int g, Tree T , List L
Output: Path best

1 Queue Q; //Create an empty Queue
2 Node u, r, best;
3 r ← best← root(T );
4 enqueue(Q, r);
5 while not empty(Q) do
6 dequeue(Q, r);
7 foreach u childof r do
8 if boundScore(u) ≥ g then
9 Enqueue(Q, u);

10 bu← boundHardship(u);
11 bb← boundHardship(best);
12 cu← boundCount(u);
13 cb← boundCount(best);
14 if (bu < bb) OR (bu = bb AND cu < cb) then
15 best← u;

16 return best;

it only explores promising branches that potentially can fulfill

the score gap and provide the required authentication score. If

a promising branch has less perceived hardship than the current

best solution, it is replaced as the best found solution. As a

result, the proposed algorithm returns the set of authentication

factors with the minimum perceived hardship. We formally

define the perceived hardship for a set of authentication factors

(Lh) based on Equation 2. That is, the perceived hardship

for authentication factors in L is the sum of hardships of the

authentication factors (hi) in L.

Lh =
∑

∀i∈L

hi (2)

519



We use a tree data structure to encompass all possible

cases in Algorithm 1. At the root of the tree we assume no

authentication factor is selected. Then, at each level of the tree,

we decide about inclusion or exclusion of one authentication

factor from L. We use the Queue data structure to hold

unexplored nodes of T, shown as Q in Algorithm 1. We start by

enqueuing the root r (step 4). Then, while there is an elements

in Q, we dequeue r (step 6) and enqueue its children u, if they

are promising (steps 8, 9). To check if node u is promising,

before enqueuing it, we evaluate its potential to be a feasible

response (step 8). In fact, function boundScore(u) determines

the total authentication score obtained by the path from root to

node u and by including all remaining authentication factors

from node U in T.

Next, in step 15, we update the best found solution, if node

u has less hardship than the current best solution. Function

boundHardship(u) uses Equation 2 to calculate the the

overall perceived authentication hardship from the root to node

u and promising nodes from u. It is worth noting that, if

node u results into the same authentication hardship as the

current best solution, it is selected as the best solution, if

and only if, it includes fewer authentication factors. Function

boundCount(u), in steps 12 and 13, determines the number of

authentication factors involved in the path from root to node

u and promising nodes from u. This tries to minimize the

number of authentication factors required to fill gap g.

It is noteworthy that best indicates a path from root to

a leave in T . Following the path determines the subset of

authentication factors in L that has the minimum hardship.

V. EVALUATION

Our goal is to minimize the users’ perceived hardship during

the use of Cloud services. Hardship is the users’ feeling of

inconvenience when trying to pass an authentication step.

We rank hardship values [30] of each authentication factor

between 1 and 100 as the inverse of the easiness a user

encounters. When a method seems harder, a higher value will

be assigned for its hardship. Administrators also determine an

authentication score for each explicit authentication factor with

values between 1 through 100; while hardship of the methods

will be assigned by the users based on their preference and

feeling of the hardship. In other words, each user determines

how hard doing an authentication step is for her, which are

subjective numbers. For example, a user may set 10 and 30 for

pin-code and swipe card respectively while another user may

assign 40 and 20 for these factors based on her preferences.

For evaluation we compare the hardship scores of different

authentication methods. We implemented two other solutions

that serve as baseline solutions. The Naı̈ve method selects the

easiest available method at each step regardless of the methods

authentication score. The Greedy method selects an available

authentication factor with the highest fitness ratio of pi/hi

at each step. We implemented an emulation to do a proof

of concept. To demonstrate the performance of UFSA from

different angles, we first provide two case studies and then

we show the simulation results.

A. Case Study 1:

Region Name Operations List Region’s Sensitivity
Reg1 Operation1 10
Reg2 Operation2 20
Reg3 Operation3 40
Reg4 Operation4, Operation5 60

TABLE I: Defined sections of a sandbox

Operation Sensitivity Score
Operation1 10
Operation2 20
Operation3 40
Operation4 60
Operation5 80

TABLE II: Defined operations’ sensitivity

We defined a sandbox having four regions with the defined

regions’ border sensitivity and the operations belonging to

them in Table I. In Table II, we defined the explicit operation

sensitivity of the five operations defined in Table I. In Table

III, a list of explicit authentication methods supported by the

cloud system for a user is defined.

Figure 2a shows hardship faced by the users while increas-

ing the operations’ sensitivity. In this figure, it is shown that

the Greedy method causes higher hardship by acting greedy

and selecting a method with the highest fitness ratio at each

step. Our proposed method (UFSA) in Algorithm 1 causes

less hardship by selecting the easiest methods which provides

at least the required authentication score. The Naı̈ve method

causes higher hardship comparing to UFSA by selecting only

the easiest method at each step.

Figure 2b shows the accumulated hardship obtained by

applying different methods. Since the Naı̈ve method selects

the easiest factor at each step, it often results in to the highest

hardship. UFSA leads to more hardship than the Naı̈ve method

when the implicit weight w is negative. In fact, implicit factors

weight the score that explicit methods provide and scales the

scores down when bad events happen. In contrast, when the

implicit factors are validated, implying that good events are

happening, the user gets a higher weight of w (see Equation

1) for her authentication factors. So, each authentication step

gains a higher score causing the user faces less hardship during

the authentication process. The figure shows that UFSA causes

less hardship comparing to both other methods when good

events occur. The Greedy method causes higher hardship than

UFSA. It chooses a method with a higher fitness ratio, however

with a higher hardship.

B. Case study 2:

We provided another example in Table IV including op-

erations’ sensitivity to compare the behaviour of UFSA in a

biased example. It is called biased because the user set 40

as the hardship of a method which has the highest score. In

other words, its fitness ratio is 2.25 while other factors have

the ratio of less than or equal 1. Figure 3a shows that, in this

case, the Greedy method can cause less hardship comparing to

the UFSA. Since the UFSA selects the authentication factors

in a progressive way deciding at each authentication step, it

chooses a method that is the best choice at the case level

520



(a) Impact of operation sensitivity on the user hardship (b) Impact of implicit factors on the user hardship

Fig. 2: Evaluating perceived user hardship referring to Tables II and III.

(a) Impact of operation sensitivity on the user hardship (b) Impact of implicit factors on the user hardship

Fig. 3: Evaluating perceived user hardship on a biased setting referring to Tables II and IV.

Number Name Score Hardship
1 Bio Question 5 10
2 Password 10 5
3 Sms 20 20
4 Voice 30 30
5 Image 30 30
6 Token 40 50
7 Attend 90 80

TABLE III: Supported explicit authentication of a user

Number Name Score Hardship
1 Bio Question 5 10
2 Password 10 5
3 Sms 20 20
4 Voice 30 30
5 Image 30 30
6 Token 40 50
7 Attend 90 40

TABLE IV: A biased configuration for the supported explicit

authentication of a user

and moment. However, it doesn’t guarantee to select the best

global subset if the user later proceeds to more sensitive

operations requiring a higher authentication score. Indeed, it

is unknown beforhand that how many sensitive operations a

user will request to perform during a session. The Greedy

method chooses the best greedy option at each step which is

the optimal greedy choice in general too.
C. Evaluating User Perceived Hardship:
Figure 3b shows that UFSA causes higher accumulated

hardship when the implicit factor is negative because of the

bad events which cause suspicious weighting of the authenti-

cation factors. When good events happen, our method causes

less hardship comparing to the Naı̈ve method. Nevertheless,

the Greedy method causes less accumulated hardship in a

biased example when the user continues to do all the sensitive

operations defined in the operations table.
However, in simulation test running, UFSA outperformed

the Naı̈ve and Greedy methods by achieving less hardship. In

each running, we used the content of Table II and randomly

generated content of Table III. Figure 4 is the result of running

the simulation for 100 times, showing that UFSA results in less

hardship for the user.
Figure 4a shows that with increasing the operation sensi-

tivity, UFSA results in less hardship. Greedy method causes

higher hardship by just acting greedy. The Greedy method

selects harder authentication methods if they have higher ratio

of score over hardship. As a result, it ends up with higher hard-

ship comparing to UFSA which uses a dynamic programming

solution to select a solution with lower hardship. This figure

shows that when operation sensitivity is 80, UFSA causes

up to 18% less hardship compared to the Greedy method.

521



(a) Impact of operation sensitivity on the user hardship (b) Impact of implicit factors on the user hardship

Fig. 4: Evaluating perceived user hardship in different working conditions.

In addition, our method shows up to 29% less hardship

comparing to the Naı̈ve method. The Naı̈ve method selects

a subset for authentication just by considering the hardship of

the factors. It chooses factors with lower hardship but have

lower authentication score over hardship ratio too. So, it ends

up at a higher authentication hardship.

Figure 4b considers impact of the implicit weight on the

accumulated hardship. It shows that when the implicit factors

are not valid and hence the implicit weight of w becomes

less, the user perceived hardship increased by requiring higher

explicit authentication score. However, when a user’s security

condition improves by providing higher implicit factors to

the learning component, the system adapts to the situation

and requires less explicit authentication score resulting in less

hardship for the users. It is shown in the Figure 4b that when

implicit authentication weight increases, UFSA causes less

inconvenience compared to the Greedy and Naı̈ve methods.

VI. CONCLUSION AND FUTURE WORK

Accessing cloud services through vulnerable devices, such

as hand held computers, has become prevalent. Therefore,

there is an increasing demand for secure authentication to

access sensitive services hosted on clouds. Current multi-factor

authentication methods cause user fatigue and are proven to be

non-effective. We need authentication solutions that maintain

ease-of-use in spite of frequent authentication processes. In

this paper, we proposed an architecture based on progressive

multi-factor authentication that uses a combination of explicit

and implicit factors to provide the required security for ac-

cessing different levels of cloud services. In this architecture,

a user needs to obtain more authentication score to be able

to access more sensitive (i.e., higher level) cloud services. To

grant access to a given level of cloud services, we proposed

an algorithm that chooses a subset of authentication factors

with the minimum perceived hardship for users. In addition,

to increase security and user convenience, we consider the

weight of implicit authentication factors to calculate the score

that the user has to obtain using explicit authentication factors

to be able to access a cloud service. Our simulation results

showed that our proposed method reduces the users’ perceived

authentication hardship by up to 29% and 18% compared to

the Naı̈ve and Greedy authentication methods, respectively.

There are several interesting avenues of future work for this

research. We are currently developing a meta-learning engine

to provide an accurate multi-factor implicit authentication. We

are also planning to extend the current work to determine the

preferred authentication factors automatically and assign the

authentication hardships without user involvement.

REFERENCES

[1] C. Bo, L. Zhang, X.-Y. Li, Q. Huang, and Y. Wang.

Silentsense: silent user identification via touch and move-

ment behavioral biometrics. In Proceedings of the 19th
annual international conference on Mobile computing &
networking, pages 187–190. ACM, 2013.

[2] D. d. Borde. Selecting a two-factor authentication sys-

tem. Network Security, 2007(7):17–20, 2007.

[3] C. Braz and J.-M. Robert. Security and usability: the

case of the user authentication methods. In Proceedings
of the 18th International Conferenceof the Association
Francophone d’Interaction Homme-Machine, pages 199–

203. ACM, 2006.

[4] M. Burrows, M. Abadi, and R. M. Needham. A logic

of authentication. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences,

426(1871):233–271, 1989.

[5] S. Chaudhari, S. Tomar, and A. Rawat. Design, im-

plementation and analysis of multi layer, multi fac-

tor authentication (mfa) setup for webmail access in

multi trust networks. In Emerging Trends in Networks
and Computer Communications (ETNCC), 2011 Inter-
national Conference on, pages 27–32. IEEE, 2011.

[6] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu,

E. Shi, and Z. Song. Authentication in the clouds: a

framework and its application to mobile users. In Pro-
ceedings of the 2010 ACM workshop on Cloud computing
security workshop, pages 1–6. ACM, 2010.

[7] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Huss-

mann. Touch me once and i know it’s you!: implicit

authentication based on touch screen patterns. In Pro-

522



ceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 987–996. ACM, 2012.

[8] P. A. Fahmi, E. Kodirov, D.-J. Choi, G.-S. Lee, A. Mohd

Fikri Azli, and S. Sayeed. Implicit authentication based

on ear shape biometrics using smartphone camera during

a call. In Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference on, pages 2272–2276.

IEEE, 2012.

[9] T. Feng, Z. Liu, K.-A. Kwon, W. Shi, B. Carbunar,

Y. Jiang, and N. Nguyen. Continuous mobile authenti-

cation using touchscreen gestures. In Homeland Security
(HST), 2012 IEEE Conference on Technologies for, pages

451–456. IEEE, 2012.

[10] T. Feng, J. Yang, Z. Yan, E. M. Tapia, and W. Shi. Tips:

context-aware implicit user identification using touch

screen in uncontrolled environments. In Proceedings of
the 15th Workshop on Mobile Computing Systems and
Applications, page 9. ACM, 2014.

[11] R. Fischer and M.-Y. Kao. Multi-domain sandboxing:

An overview. Technical report, Citeseer, 2000.

[12] H. Gascon, S. Uellenbeck, C. Wolf, and K. Rieck.

Continuous authentication on mobile devices by analysis

of typing motion behavior. In Sicherheit, pages 1–12,

2014.

[13] F. Gens. It cloud services user survey, pt. 2: Top benefits

and challenges. IDC eXchange, 2008.

[14] L. Gong. A security risk of depending on synchro-

nized clocks. ACM SIGOPS Operating Systems Review,

26(1):49–53, 1992.

[15] C. Herley. More is not the answer. 2014.

[16] P. Ho and J. Armington. A dual-factor authentication

system featuring speaker verification and token tech-

nology. In Audio-and Video-Based Biometric Person
Authentication, pages 128–136. Springer, 2003.

[17] H. Inoue and S. Forrest. Inferring java security policies

through dynamic sandboxing. In PLC, pages 151–157,

2005.

[18] I. Ion. User-centered security mechanisms for protecting
information sharing in the cloud. PhD thesis, Diss.,

Eidgenössische Technische Hochschule ETH Zürich, Nr.

20702, 2012, 2012.

[19] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit

authentication for mobile devices. In Proceedings of the
4th USENIX conference on Hot topics in security, pages

9–9. USENIX Association, 2009.

[20] H. Khan, A. Atwater, and U. Hengartner. Itus: an implicit

authentication framework for android. In Proceedings
of the 20th annual international conference on Mobile
computing and networking, pages 507–518. ACM, 2014.

[21] T. Khatiwala, R. Swaminathan, and V. Venkatakrishnan.

Data sandboxing: A technique for enforcing confiden-

tiality policies. In Computer Security Applications Con-
ference, 2006. ACSAC’06. 22nd Annual, pages 223–234.

IEEE, 2006.

[22] A. M.-H. Kuo. Opportunities and challenges of cloud

computing to improve health care services. Journal of

medical Internet research, 13(3), 2011.

[23] L. Li, X. Zhao, and G. Xue. Unobservable re-
authentication for smartphones. In NDSS, 2013.

[24] M. Lori. Data security in the world of cloud computing.

Co-published by the IEEE Computer And reliability
Societies, pages 61–64, 2009.

[25] M. Maass. A Theory for Applying Sandboxes Effectively.

PhD thesis, Carnegie Mellon University, 2014.

[26] R. E. Newman, P. Harsh, and P. Jayaraman. Security

analysis of and proposal for image-based authentication.

In Security Technology, 2005. CCST’05. 39th Annual
2005 International Carnahan Conference on, pages 141–

144. IEEE, 2005.

[27] M. Radhakrishnan and J. A. Solworth. Quarantining

untrusted entities: Dynamic sandboxing using leap. In

Computer Security Applications Conference, 2007. AC-
SAC 2007. Twenty-Third Annual, pages 211–220. IEEE,

2007.

[28] T. V. N. Rao and K. Vedavathi. Authentication using mo-

bile phone as a security token. International Journal of
Computer Science & Engineering Technology, 1(9):569–

574, 2011.

[29] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos. Pro-

gressive authentication: Deciding when to authenticate on

mobile phones. In USENIX Security Symposium, pages

301–316, 2012.

[30] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon.

Biometric-rich gestures: a novel approach to authenti-

cation on multi-touch devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 977–986. ACM, 2012.

[31] M. A. Salehi, T. Caldwell, A. Fernandez, E. Mickiewicz,

E. W. D. Rozier, S. Zonouz, and D. Redberg. RESeED:

Regular Expression Search over Encrypted Data in the

Cloud. In Proceedings of the 7th IEEE International
Conference on Cloud Computing, CLOUD ’14, pages

673–680, 2014.

[32] F. E. Sandnes and X. Zhang. User identification based

on touch dynamics. In Ubiquitous Intelligence & Com-
puting and 9th International Conference on Autonomic
& Trusted Computing (UIC/ATC), 2012 9th International
Conference on, pages 256–263. IEEE, 2012.

[33] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit

authentication through learning user behavior. In Infor-
mation Security, pages 99–113. Springer, 2011.

[34] T. Shinagawa, K. Kono, and T. Masuda. Flexible and

efficient sandboxing based on fine-grained protection

domains. In Software Security—Theories and Systems,

pages 172–184. Springer, 2003.

[35] M. Sun and G. Tan. Jvm-portable sandboxing of java’s

native libraries. In Computer Security–ESORICS 2012,

pages 842–858. Springer, 2012.

[36] A. Verma and S. Kaushal. Cloud computing security is-

sues and challenges: a survey. In Advances in Computing
and Communications, pages 445–454. Springer, 2011.

523


