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Abstract—Capabilities for trustworthy cloud-based comput-
ing and data storage require usable, secure and efficient
solutions which allow clients to remotely store and process
their data in the cloud. In this paper, we present RESeED,
a tool which provides user-transparent and cloud-agnostic
search over encrypted data using regular expressions without
requiring cloud providers to make changes to their existing
infrastructure. When a client asks RESeED to upload a new file
in the cloud, RESeED analyzes the file’s content and updates
novel data structures accordingly, encrypting and transferring
the new data to the cloud. RESeED provides regular expression
search over this encrypted data by translating queries on-
the-fly to finite automata and analyzes efficient and secure
representations of the data before asking the cloud to download
the encrypted files. We evaulate a working prototype of RE-
SeED experimentally (currently publicly available) and show
the scalability and correctness of our approach using real-world
data sets from arXiv.org and the IETF. We show absolute
accuracy for RESeED, with very low (6%) overhead, and high
performability, even beating grep for some benchmarks.

Keywords-cloud computing; security; privacy; searchable
encryption; regular expression

I. INTRODUCTION

The establishment of algorithms which allow for keyword
searches over a set of encrypted documents [3] has been
critical to the development of privacy preserving clouds,
and will likely grow in importance given predicted losses
resulting from the recent damage done to global confidence
in cloud security [16], [17]. During the last decade, there
have been an increasing number of proposed solutions to
address the users privacy and data confidentiality violation
concerns while providing the capability to perform searches
over encrypted data. These solutions can be categorized
into two groups. First, cryptographic algorithms, initiated
by the seminal work by Boneh et al. [3], make use of
mathematical primitives such as public key encryption. The
major advantage of using cryptographic techniques is the
existence of theoretical proofs that they will not leak sen-
sitive information as long as the underlying mathematical
primitives are not broken. These approaches often suffer
from performance and scalability aspects that limit their
real-world deployment significantly. The second group of
techniques make use of novel techniques from database
research [18], resulting in search methods for large-scale
data centers such as locality sensitive hashing techniques.
Such solutions have shown promising results in real-world
settings in terms of the efficiency of remote query processing
on encrypted data. On the negative side, database approaches

have been highly criticized for disclosing sensitive informa-
tion that (even though indirectly) could potentially cause
data confidentiality and user privacy violations.

Additionally, both of the existing cryptographic and
database techniques for cloud data storage and processing
fall short in two primary ways. First, they have mostly
concentrated on the simplest categories of search, i.e., key-
term search. Second, for real-world deployment, they require
cloud provider cooperation in implementing their proposed
algorithms within the cloud that could be a significant
barrier in practice. While recent advances have extended the
capability of encrypted keyword search, allowing searches
for ranges, subsets, and conjunctions, increasing the power
of search over encrypted data [5]. One powerful tool which
has remained elusive, however, is the ability to apply regular-
expression based search on encrypted data. A solution using
current methods remains impossible in practice due to the
exponential explosion of the space required for the storage
of the resulting ciphertexts. As such, a regular expression
based search on possible phrases in a document with even
as few as 5,000 words would require more storage than will
exist for the foreseeable future.

In this paper, we present RESeED a method that provides
cloud providers with a scalable user-transparent capability
for regular expression and full text search over encrypted
files stored in the cloud. RESeED achieves this objective
without any need for the cloud provider to cooperate, or
change its infrastructure. To the best of our knowledge,
RESeED is the first solution to provide searchability over
encrypted data using the power of regular expressions, and
the first that makes use of both database techniques such as
local indexing, and cryptographic approaches such as sym-
metric encryption to satisfy the requirements of deployment
efficiency and information leakage guarantees. Users who
have RESeED installed on their client systems are able to
upload files to the cloud for storage, remotely search for
encrypted files using regular expressions, and download the
data which matches these queries. the background so that
the users see only plain-text data on their local machines.

The architecture of RESeED is illustrated in Figure 1.
Queries are processed through the use of novel data struc-
tures which we call the column store and order store. A sin-
gle column store that indexes keywords found in the files for
the entire data-set, and a compact order store, which contains
a fuzzy representation of keyword ordering, is created and
stored for each new file. Queries are processed based on the
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Figure 1. System Architecture

conversion of the regular expression to an automaton, which
is then transformed to match sub-expressions. RESeED
is deployed on a trusted hardware that facilitates secure
access to Cloud providers. Currently, RESeED is built for
Fortivault, a trusted gateway for accessing Cloud services
provided by Fortinet Ltd1. Experimental results generated
from a working prototype of RESeED on real data-sets,
express promising results both in terms of correctness and
performance.

In summary, the contributions of the paper are the follow-
ing.
• We introduce a novel and scalable solution which

processes regular-expression based searches over en-
crypted data. Our solution operates based on two novel
data structures, a column store, and an order store, to
achieve this scalability. We process searches over these
data structures using algorithms described in Section III
to transform the query problem into a domain covered
by our new data structures.

• We present the first practically deployable solution to
the search over encrypted data problem with zero in-
formation leakage guarantees, implement this solution
and evaluate our prototype on real-world data-sets.

• We demonstrate the performability, scalability, and cor-
rectness of our results, demonstrating the low overhead

1http://www.fortinet.com/

incurred, even when compared with existing solutions,
and demonstrating high performability, in some cases
beating the run time of existing tools for regular ex-
pression search over unencrypted data.

This paper is organized as follows. Section II reviews the
most recent work in the literature, and establishes the need
for our solution. Section III presents the algorithms used by
RESeED for regular expression search on encrypted text.
Section IV describes our implementation details followed
by Section V which presents the empirical results using real
data-sets. Finally, Section VI concludes the paper and lays
out our plan for future work.

II. RELATED WORK

Searchable encryption has been extensively studied in
the context of cryptography [8], [9], [21], mostly from
the perspectives of efficiency improvement and security
formalization. Searchable encryption was first described in
[21], but the methods provided are impractical and erode
security due to the necessity of generating every possible key
which the search expression can match. To reduce the search
cost, in [9], Goh proposed to use Bloom filters to create per-
file searchable indexes on the source data. However, these
previous studies just consider exact keyword search.

One could construct regular expression based search over
encrypted data using the scheme presented in [5], but again
the results prove impractical, requiring ciphertext and token
sizes of the order O(2nw).

Recent work has focused significantly on enabling search
over encrypted Cloud data. Wang et al., [23] studied the
problem of similarity search over the outsourced encrypted
Cloud data. They considered edit distance as the similar-
ity metric and applied a suppressing technique to build a
storage-efficient similarity keyword set from a given collec-
tion of documents. Based on the keyword set, they provided
a symbol-based tree-based searching index that allows for
similarity search with a constant time complexity. In other
research [14], privacy-preserving fuzzy search was proposed
for encrypted data in Cloud. They applied a wild-card-based
technique to build fuzzy keyword sets which were then used
to implement a fuzzy keyword search scheme.

Ibrahim et al., [12] provided approximate search ca-
pability for encrypted Cloud data that was able to cover
misspelling and typographical errors which exist in a search
statement and in the source data. For this purpose, they
adapted the metric space [10] method for encrypted data to
build a tree-based index that enables the retrieval of the rel-
evant entries. With this indexing method, similarity queries
can be carried out with a small number of evaluations. Our
work contrasts with these studies due to the fact that our
search mechanism allows search on the encrypted cloud
data through the use of regular expressions, meaning that
the searches enabled by our technique are not limited to a
set of predefined keywords.

Making use of encryption techniques ensures that user
privacy is not compromised by a data center [13]. But
the problem then becomes, how can an encrypted database
be queried without explicitly decrypting the records to be
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searched? At a high level, a searchable encryption scheme
[11] provides a way to encrypt a search index so that its
contents are hidden except to a party that is given appropriate
tokens. The Public Key Encryption with keyword search
primitive, introduced by Boone et al., [3], indexes encrypted
documents using keywords. In particular, public-key systems
that support equality (q = a), comparison queries (q > a) as
well as more general queries such as subset queries (q ∈ S).
Song et al., [21] presented a symmetric cryptography setting
for searchable encryption architectures for equality tests.
Equality tests in the public-key setting are closely related to
Anonymous Identity Based Encryption and were developed
in [4] by Boneh et al., In [5], Boneh et al., introduce a
new primitive called Hidden Vector Encryption that can be
used for performing more general conjunctive queries such
as conjunction of equality tests, conjunction of comparison
queries and subset queries. This system can also be used to
support arbitrary conjunctive queries without revealing any
information on the individual conjuncts.

III. REGULAR EXPRESSION BASED SEARCH OVER
ENCRYPTED DATA

We introduce a new method for enabling regular expres-
sion search over encrypted documents which does not suffer
from the exponential growth of the stored search keys. The
method presented in this paper requires the storage of tokens
for public-key encryption with keyword search (PEKS) as
described in [3] whose storage requirement is on the order
O(nw). PEKS is a keyword-based encryption algorithm that
does not reveal any information about the content, but enable
searching for the keywords. We also use a novel structure
we call an order store, which contains a fuzzy indication
of the order of keywords within a document, whose storage
requirement is on the order O(n), and in practice has a
fractional constant factor which keeps the overhead very low.
When searching the entirety of arXiv.org, for instance,
the order stores required only a 6.1% overhead.

A. Alphabet Division
The key to our algorithm for regular-expression based

search over a set of encrypted data revolves around the
ability to divide the alphabet Σ, of a non-deterministic finite
automaton (NFA) representing some regular expression r
into two disjoint subsets, C, the set of core symbols, and
Ω, the set of separator symbols. Our methods work for any
language composed of strings from SC ∈ 2Σ separated by
strings from SΩ ∈ 2Ω. Intuitively strings from SΩ are col-
lections of white space and other separator characters, while
strings from SC are words, numbers, or other important
symbols that users tend to search. Based on a survey of the
uses of regular expressions in practice [2], [7], [19], [24],
given an alphabet where such a division is possible, searches
for phrases in the language most often take this form. We
note that this appears to be the case for languages other
than natural language (e.g. genome sequences are composed
of sets of codons which can be divided into start and stop
codons, and the core codons which code for amino acids),
but focus on the application of this technique to natural
language within this paper.

B. Algorithm for Regular Expression Search

In order to apply regular expression based search to a
document, we first perform two operations on the document
creating two data structures. The first is to extract every
unique string si ∈ 2SC , or the set of unique words. The
second is to create a fuzzy representation of the order of the
strings in the document, by hashing each word to a token of
N bits, and storing them in the order in which they appear
in the document.

For the set of all documents we create a single column-
store, Ξ, which indexes the set of unique strings found in
all documents, and indicating the files in which they can
be found. The column-store can be generated using PEKS
token for each keyword as described in [3]. For each file or
document, Fi, we also create a unique order store, Oi, from
the ordered set of fuzzy tokens. The order store is simply
an ordered list of the fuzzy hashes of N bits for each word,
with each hash appearing in the same order as the original
word appeared in the original document.

Algorithm 1 Regular Expression Search
1: procedure REGEXP(r,Ξ) . Where r contains the

regular expression, and Ξ is the column-store.
2: n0 ← REGEXPTONFA(r)
3: N ′ ← ωTRANSFORM(n0)
4: marking ← () . A bit matrix for each file, and

each word in Ξ, initially all 0
5: for n′i ∈ N ′ do
6: di ← NFATODFA(n′i)
7: for word ∈ Ξ do
8: if di ACCEPTS word then
9: F ← FILES(word)

10: MARK(F, marking)
11: end if
12: end for
13: end for
14: P ← FINDPATHS(n0, N

′, marking)
15: matches ← ∅
16: for pi ∈ F do
17: Oi ← GETORDERSTORE(File for pi)
18: if pi ∈ Oi

19: then matches ← matches ∪ (File for pi)
20: end for
21: return matches
22: end procedure

Using these data structures, we can perform a search
which is equivalent to one performed over the encrypted
database via the procedure given in Algorithm 1. The regular
expression r is first converted into a non-deterministic finite
automaton (NFA), n0 [15], this automaton is then partitioned
into a set of NFAs defined by a transformation we call an
ω-transformation, detailed in Algorithm 2.

The ω-transform generates a set of automata, N ′ from
our original NFA n0 by operating on the transitions labeled
with elements of Ω in n0. Each state in the original NFA
with an incoming transition labeled with a symbol from Ω is



Algorithm 2 ω-Transformation
1: procedure ωTRANSFORMATION(n0)
2: Let Tn0 be the transitions in n0

3: Let Sn0
be the states in n0

4: for Each state si ∈ Sn0
do

5: for Each incoming transition of si, tj ∈ Tn0
do

6: if tj has label lk ∈ Ω then
7: SStart ← si
8: TΩ ← tj
9: end if

10: end for
11: for Each outgoing transition of si, tj ∈ Tn0

do
12: if tj has label lk ∈ Ω then
13: set si to an accepting state
14: end if
15: end for
16: end for
17: Tn0 ← Tn0 \ TΩ

18: for each si ∈ Sstart do
19: generate the automaton n′i from the reachable

states of si
20: if si is an accepting state
21: then remove si from the accepting states of n′i
22: N ′ ← n′i
23: end for
24: return N ′

25: end procedure
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Figure 2. Example of an ω-transformation on a simple automaton for the
regular expression back[\s]?pack.

added the the set of start states. Each state with an outgoing
transition from Ω is added to the set of accepting states. We
then remove from n0 all transitions labeled with symbols
from Ω and for each start state, generate a new NFA from
those states reachable from the new start state, as shown in
figures 2. Intuitively, this new set of NFAs N ′ are the set
of NFAs which match strings in C separated by strings in
Ω, and are thus suitable for searching our column store for
matches on individual tokens.

Once N ′ has been obtained, we minimize the NFA
contained in the set, and for each word in the column store,
Ξ, check for containment in each NFA. We maintain a bit
matrix, marking that indicates for each file, if a word
matched each NFA in N ′. Once this matrix is obtained, we

check the marking for each file to see if, for the marked
NFAs in N ′, if there exists some n′i ∈ N ′ with the original
start state of n0, some n′j ∈ N ′ with an original accepting
state of n0, and a set of automata Npath such that there is an
n′i+1 ∈ N ′ whose start state is an accepting state of n′i, and
which has an accepting state which serves as the start state
of some n′i+2 ∈ N ′, and so on until we find an NFA n′j−1

with an accepting state that is the start state of n′j , showing
that the file contains the necessary words to form a path
from the start state of n0 to one of the original accepting
states.

To confirm this path, we generate a new NFA from the
relationship between n0 and N ′ which we will call n′′. This
NFA has states equal to all states which were either a start
state or accepting state in an NFA in N ′, and which has
transitions for every NFA in Npath labeled with a hash of
the words matched in Ξ by those NFAs. We set the start
state and accepting states of n′′ to be the same as n0. We
then obtain the order store, Oi, for each file Fi where such
a path could exist, and check to see if there exists a string in
Oi is accepted by n′′. If there is, we indicate a match, and
mark the matching encrypted file as part of the set of files
which contain a match for the original regular expression r.

C. Practical Considerations and Challenges for Cloud-
Based Encrypted Data

The results of our previous experimentation with cloud-
based encrypted search [20] addresses the issue that there
is often a serious penalty for making multiple requests
to a cloud storage system for the results of queries on
an individual basis. As such our column and order stores
are maintained in aggregated tables, which are downloaded
together, and searched locally to reduce the penalty for
querying the cloud. In addition, the choice of the subdivision
of Σ into C and Ω is partially subjective. While it does not
effect the correctness of our results, it can effect the quality
of the partition for usability reasons. As such, we define
the division by allowing users to define the set Ω, and then
defining C = Σ \ Ω.

IV. IMPLEMENTATION

We discuss the implementations details of our framework
regarding both the creation and maintenance of the column
store, and the production and translation of all automata.

A. Column store creation and maintenance
When creating, updating, and maintaining the column

store, we used three main structures. First, the column store
table maps individual tokens, in the form of strings, to sets of
file identifiers. Second, we map file identifiers to the names
of files that have been processed by the program. and create
an inverse file map which represents its inverse. This gives us
a bijection from the set of file names of processed files to the
set of file identifiers When the program finishes executing,
we save the updated column store.

Updating the column store, given a list of new files, is
handled as follows. For each file Fi in the list, if the file has
not already been encountered, we assign a new numerical
identifier for the file name and insert it into both the file map



and inverse file map. We create a new file to contain the
hashes of the individual tokens in fi which is then parsed,
and each previously unseen token is added to the column
store. We hash these tokens and insert them into the file of
hashes that corresponds to Fi. For our implementation, the
tokens are hashed using SHA-1. We take the first b2 bytes
of the 20 bytes produced by the SHA-1 and discard the
remainder. The string of these resulting bytes produced for
a given file the order store and contains the hashes of all of
the tokens contained in Fi in the order that they appear.

B. Automata Creation and Translation
In our implementation, each NFA is represented by a

transition table given by a square adjacency matrix, and a
start and end state. Transitions are represented by integers
(to allow all ASCII characters to be used as transitions while
still having room for special characters to represent epsilon
transitions and common regular expression wild-cards such
as ., \w, and \d).

The proposed framework implements a breadth first
search algorithm to explore the Path NFA to create P , which
is a vector of paths. Each path is represented as a vector of
sub-automata (each sub-automata identified by an integer
and only present once in the case of cycles) that would
provide a valid path through the Path NFA. The allpaths
structure is later used with the order stores to check if the file
a given order store represents satisfies any valid paths. Since
the size of the subNFA state space is on the order of the
number of delimiters in the input regular expression, creating
this structure and checking against are more efficient than
scanning each file.

It is noteworthy that due to the nature of the implemen-
tation, the language of this program differs slightly from
the grep command regular expression search. In fact, our
current implementation is similar to the grep command
with w flag. There are also minor differences between the
grep regular expression language and the language RE-
SeED works with. Table I describes the regular expression
language we use in RESeED.

V. EVALUATIONS

A. Experimental Setup
In order to experimentally evaluate the performance and

correctness of our algorithm we tested our algorithm on
two different data sets. The first data-set is the Request
For Comments3 (RFC) document series, a set of documents
which contain technical and organizational notes about the
Internet. This data-set contains 6,942 text files with total
size of 357 MB and has been used in previous research
works (e.g., in [23]). The second data-set is a collection
of scientific papers from the arXiv4 repository. This data-
set contains 683,620 PDF files with the total size of 264
GB. All experiments were conducted on a computer running
Linux (Ubuntu 12.04), with 4 Intel Xeon processors (1.80
GHz) and 64 GB RAM. For the purposes of fairness in our

2In our experiments, b = 3.
3http://www.ietf.org/rfc.html
4http://arxiv.org/

experiments, we limited the algorithm to a single core, but
note that our algorithm benefits heavily from parallelization,
as many of the steps are trivial to parallelize.

We derived a set of ten regular expressions benchmarks
based on those provided by researchers at IBM Almaden [6],
translated into an abbreviated set of regular expression
operators and symbols, as indicated in Table I. This set
of benchmarks was initially compiled for searching Web
contents. We adapted these benchmarks to be semantically
interesting and popular for both the RFC and the arXiv data-
sets. The regular expression benchmarks and their descrip-
tions are listed in Figure 3. They are sorted based on the
time they take to execute. That is, the first benchmark is the
fastest and the last one is the most time consuming one.

B. Finding the Proper Hash-Width
Due to the fuzzy nature of the order store, there exists a

chance that our search algorithm returns files that do not
contain the regular expression that we are searching for,
resulting in a false positive due to the pigeonhole principle.
While a smaller hash-width results in a more compact order
store, it also results in a higher rate of false positivies. We
experimentally evaluated the effect of hash-width on the rate
of false positives to determine an ideal hash-width for our
data sets. We generated order stores for each file with hash-
widths between one and 10 bytes and measured the rate of
false-positives for the benchmarks listed in Figure 3. We
used grep to confirm the observed rate of false positives
returned by our method. The result of this experiment for
the RFC data-set is illustrated in Figure 4. The horizontal
axis shows different hash-widths and the vertical axis shows
the percentage of false-positive rate for each benchmark.

As we can see in Figure 4, most of the benchmarks have
high false-positive rate for a hash-width of one. However, for
a hash-width of two, the false-positive rate drops sharply. In
particular, the drop of the false-positive rate is sharper for
benchmarks that have are less fuzzy (i.e., contain specific
words) such as benchmarks (B), (C), and (D). In contrast,
the false-positive rate in benchmarks which are more fuzzy
(e.g., benchmark (G) and (J)) tend to drop slower. The
reason is that for a these fuzzier regular expression, there
are several words that can match to the expression and if
any of these matching words have a hash collision, then it
will lead to a false-positive. We observe that with a hash-
width of three bytes the false-positive rate is almost zero for
all benchmarks.

C. Evaluation of Regular Expression Benchmarks
To demonstrate the efficacy of our search method we also

evaluated its performance for the RFC and arXiv datasets
and compared this performance against the performance of
the grep utility [1]. For each benchmark, we measured the
overall search time in our method, indicating the time to
construct automata; the time to match against the column
store, and the time to match against the order store for
the encrypted data. Additionally, we measure the total time
that grep takes to search the same regular expression over
the unencrypted data-set. To eliminate any measurement
error that may happen due to other loads in the system,



Table I
REGULAR EXPRESSION SYMBOLS USED IN THIS PAPER AND THEIR MEANINGS.

Symbol Definition Symbol Definition
. any character; Character . is shown as \. | OR statement
* zero or more repetition of a character \s any Ω character
+ one or more repetition of a character \w any alphabetic character
? zero or one repetition of a character \d any numeric character

(A) Words related to Interoperability:
Interopera(b(le|ility)|tion)

(B) All files that have “Cloud Computing” in their text:
cloud(\s)+computing

(C) Structured Query Language or SQL:
S(tructured)?(\s)+Q(uery)?(\s)+L(anguage)?

(D) All references to TCP/IP or Transmission Control Protocol Internet
Protocol:
((Transmission(\s)*Control(\s)*Protocol)|(TCP))
(\s)*/?(\s)*((Internet(\s)*Protocol)|(IP))

(E) All files that reference “Computer Network” book of “Andrew Stuart
Tanenbaum”:
Tanenbaum,(\s)*(A\.|Andrew)((\s)*S\.|Stuart)?(,)?
(\s)*(\")?Computer(\s)*Networks(\")?

(F) All dates with YYYY/MM/DD format:
(19|20)(\d\d)/(0(1|2|3|4|5|6|7|8|9)|1(0|1|2))/
(0(1|2|3|4|5|6|7|8|9)|(1|2)\d|3(0|1))

(G) URLs that include Computer Science (cs) or Electrical and Computer
Engineering (ece) and finished by .edu:
http://((\w|\d)+\.)*(cs|ece)\.(\w|\d|\.)+\.edu

(H) All IEEE conference papers after the year 2000:
(2\d\d\d(\s)+IEEE(\s)+(\w|\s)*)|
(IEEE(\s)+(\w|\s)*2\d\d\d(\s))Conference

(I) Any XML scripts in the papers:
<(\?)?(\s)*(xml|html)(\s)+.*(\?)?>

(J) Papers from any US city, state, and possibly ZIP code:
(\w)+(\s)*,(\s)*(\w\w)(\s)*\d\d\d\d\d(-\d\d\d\d)?

Figure 3. Regular expression benchmarks used for the performance
evaluations.
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Figure 4. False positive rate for each benchmark as a function of hash-
width.

we ran the experiment multiple times, reporting the mean
and 95% confidence interval of the results. The confidence
intervals are so small that they are not readily visible in the
graph. Figure 5 shows the result of our evaluations using
the benchmarks listed in Figure 3. The experiment shows
the feasibility of searching complicated regular expressions
within a limited time. More importantly, the figure shows
that even though our method searches on the encrypted data,
it performs faster for benchmarks (A)-(F) than grep. The
reason for our method’s improved performance is the fact
that our method uses the column store first, searching fewer
files compared to grep which scans the whole file set. We
note that for the benchmarks that perform longer than grep

(benchmarks (G)-(J)), our method spends a considerable
amount of its time to match against the order store.

In general, our method performs faster than grep when
given less fuzzy regular expressions or when the list of the
order stores that need to be searched is small. In the former
case, matching each entry of the column store against our
generated automata is performed quickly and in the latter
case, the number of files that have to be checked in the
order store are few.
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We also investigated how our proposed method scales
for larger data-sets. We compared the performance of our
method using the same benchmarks on the RFC data-set
against the arXiv data-set, and normalize the results based on
the size of the data-sets to show how well our method scales
for larger data-sets. The result of this experiment is shown
in Figure 6. The horizontal axis shows different benchmarks
evaluated against the RFC and the arXiv data-sets and the
vertical axis shows the time required to execute the search,
normalized by the size of the data-sets in MB. The arXiv
data-set is 730 times larger than RFC, however, as we can
see in Figure 6, even for the most difficult benchmark (J)
the normalized search time the arXiv data-set is remarkably
less than the time for the RFC data-set. This experiment
demonstrates the scalability of our approach, showing that
as the size of the data-set increases, the normalized search
time drastically decreases. The reason for this remarkable
decrease is the scalable structure of the column store which
enables effective identification of order stores which contain
possible accepting paths in the automaton representing our
regular expression. These features make our method highly
scalable, and well suited for very large data-sets.



A B C D E F G H I J
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ti

m
e

to
S

ea
rc

h
(s

),
N

or
m

al
iz

ed
by

th
e

S
iz

e
of

th
e

D
at

a-
se

ti
n

M
B

RFC
arXiv

Figure 6. Size normalized search time for the RFC and arXiv data-sets.

D. Analysis of the Overhead

Our proposed method has two main sources of overhead.
The first is related to the space complexity of the column
store. To investigate the growth of the column store, we have
measured the number of tokens stored in the column store
as files are added to the data-set. Figure 7 illustrates how the
size of the column store scales as the size of the RFC and
arXiv data-sets increases. For the sake of comparison, in this
figure, we have shown the number of tokens (i.e., entries)
in the column store for the arXiv and RFC data-sets for the
first 300MB of files to illustrate the trend. We expected the
number of tokens in the column store to have a logarithmic
growth as the size of data-set increases [22]. As can be seen
in Figure 7, the increase in the size of the column store
includes a linear and a logarithmic component. We that the
logarithmic component is due to the addition of dictionary
words to the column store, whereas the linear component is
caused by unique words which exist only within a small
handful of files such as name of the authors of a paper
or name of cities. For the same reason we notice a more
logarithmic trend in the number of tokens in the RFC data-
set whereas growth of the number of tokens in the arXiv
data-set has a larger linear component due to more unique
names such as author names, university names, names in the
references, etc.

However, the size of the column store is small compared
to the size of the whole data-set. More importantly, this
overhead becomes less significant as the size of the data-
set increases. For instance, the size of column store in
the RFC data-set is 13% of the whole data-set whereas
it is only 2% of the arXiv data-set. We also note that the
overhead from the column store is similar to that induced
by searchable encryption techniques which cannot handle
regular expressions, such as those in [5].

The second overhead is pertains to the time taken to
update the column store and to generate new order stores
upon the addition of a new file to the data-set. To measure
this overhead we added files to the RFC and the arXiv data-
sets one by one in a randomized order and measured the time
of the update operation, completing this experiment several
times. The result of this experiment is shown in Figure 8
for both the RFC (Sub-figure 8(a)) and the arXiv (Sub-
figure 8(b)) data-sets. In this experiment, for the sake of
comparison, we show the update time for only the first 300

Figure 7. Column store size as a function of data-set size.

(a) RFC

(b) arXiv

Figure 8. Time to update column store for RFC and arXiv data sets.

MB of added files for both the RFC and the arXiv data-sets.
In both sub-figures as the size of the data-set increases, the
time for the update operation increases linearly. A constant
part of this increase is due to the overhead of generating
the order store for each new file. However, the general
linear trend is attributed to the time to insert multiple new
entries into the column store. In our implementation, we
have used an unordered_set data structure to store the
list of appearances of a token in different files. The average
time complexity of the insert operation for multiple entries
(i.e., multiple tokens) in this data structure in linear based
on the number of tokens. We note that this performance
overhead can be mitigated with multiple column stores, and
benefits easily from parallelization.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented RESeED, a method which
provides the cloud providers with a user-transparent and



cloud-agnostic capability to process regular expression based
search over encrypted data residing in the cloud. RESeED
improves upon current state-of-the-art techniques in the
search over encrypted data, by providing a highly scal-
able, performable, and accurate solution with low storage
and performance overhead. The proposed solution is also
user-transparent, and cloud-agnostic. Our experiments with
a working prototype of RESeED on real-world data-sets
proves RESeED’s deployability and practicality empirically.
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