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SUMMARY

Cloud computing has become a potential resource for businesses and individuals to outsource their data to
remote but highly accessible servers. However, the potential of cloud services has not been fully realized
due to users concerns about data privacy and security. User-side encryption techniques can be employed
to mitigate the security concerns, but once the data is encrypted, no processing (e.g., searching) can be
performed on the outsourced data. Searchable Encryption (SE) techniques have been widely studied to
enable searching on the data while they are encrypted. These techniques enable various types of search on
the encrypted data and offer different levels of security. While these techniques enable different search types
and vary in details, they share similarities in their components and architectures. In this paper, we provide a
comprehensive survey on different secure search techniques, a high-level architecture for these systems, and
an analysis of their performance and security level. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As cloud computing becomes prevalent, more cloud-based solutions are being developed and widely
used in different applications. Companies that have adopted cloud storage solutions are reported to
gain a competitive edge against those that have not [1].

Cloud computing is favored due to its many advantages, including: convenience and accessibility,
consistent back ups to reducing the burden of local storage, and saving capital expenditure on in-
house hardware and software maintenance [2]. However, public cloud storage services may be
utilized by multi-tenant customers who store large amounts of potentially sensitive data on the
cloud. Using cloud storage implies losing full control over data and delegating it to the cloud
administrators, exposing the data to potential external and internal attacks [3, 4], which can be
devastating for organizations that rely on confidentiality of their data (e.g financial corporations).

These problems have made businesses concerned about outsourcing their data to the cloud and
utilizing its potential [5, 6]. For instance, a medical center that owns patients’ health records cannot
outsource its data to a cloud that is vulnerable to attacks, due to legal regulations [7]. In another
instance, a law enforcement agency that keeps sensitive criminal records will hesitate to use cloud
storage because of similar concerns.

One way to overcome the confidentiality problem is to encrypt data on local hardware before
outsourcing it to the cloud. While this approach preserves data confidentiality, it hinders data
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processing. In particular, searching is of paramount importance for outsourced unstructured data [8].
In fact, when data is encrypted, search systems do not function anymore, because they are unable to
compare the query to the encrypted data.

A naı̈ve approach to enable search on encrypted data would be downloading all of the data from
the cloud, decrypting them, and locally performing plain text search [9]. However, with potentially
huge data (also called big data) hosted on the cloud [10] and limited network bandwidth [11], this
approach remains impractical. Therefore, searchable encryption systems (e.g., [12, 13, 14, 15])
have been introduced to cope with this problem. These systems ideally allow the encrypted data to
be searched without revealing the data and search query. Hence, they relieve concerns about data
confidentiality in the cloud.

Efforts to create searchable encryption systems date back to 2000 with work by Song et al.
[11]. Since then, numerous research works have been undertaken to enable different types of
searchable encryption. Although these systems differ in their search approaches, security level,
and performance, they share certain architectural similarities. There are other survey studies over
different searchable encryption systems [16, 17]. This paper complements those survey studies by
providing a comprehensive survey of the existing searchable encryption systems and differentiates
them in terms of their search approaches, security level, and performance. In addition, we provide
a generic framework that encompasses the general components of searchable encryption systems.
As more granular search systems are recently being demanded by different industries, we survey
domain-specific search systems as well. Finally, we identify the shortcomings of the current research
works and recommend avenues for future research and development efforts in the searchable
encryption area. In summary, the contributions of this paper are as follows:

• Analyzing the commonalities and differences in various types of cloud-based searchable
encryption systems.

• Providing a generic framework for cloud-based searchable encryption systems.
• Surveying and categorizing current cloud-based searchable encryption systems.
• Surveying domain-specific encryption systems.
• Identifying forthcoming challenges in searchable encryption and introducing future research

avenues to address them.

The remainder of the paper is organized as follow: Section 2 introduces the background
and preliminaries of searchable encryption. An overall framework for searchable encryption is
given in Section 3. Section 4 reviews the security requirements and criteria to assess searchable
encryption systems. Section 5 reviews the categorization of different searchable encryption schemes
and Section 6 evaluates the security shortcomings of the searchable encryption system and also
categorizes the existing searchable encryption systems based on their security analysis. Next,
Section 7 surveys domain-specific searchable encryption schemes. Finally, Section 9 summarizes
the paper and provides avenues for future research in this area.

2. ELEMENTS OF A CLOUD-BASED SEARCHABLE ENCRYPTION SYSTEM

Song et al. [11] are one of the pioneers of searchable encryption. They provide a system in which a
client (i.e., data owner) can search over her encrypted data (in the form of emails) on an email server.
Once the data owner wants to search some keywords in her emails, she submits an encrypted query
(termed trapdoor) to the server. The server is in charge of searching over the encrypted data and
retrieving related emails for the owners. More recent research works in searchable encryption (e.g.,
[14, 18, 19, 20, 13, 21]) describe their systems with similar elements to this work. We introduce
these elements in greater detail in the rest of this section.

As depicted in Figure 1, which is inspired by works in [14, 18], searchable encryption systems
are commonly composed of three main elements, as follows:

Data owner. A data owner sets up the system by granting access to data users and
uploading documents to the cloud. The data owner possesses a collection of n documents D =
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Figure 1. Main elements involved in cloud-based searchable encryption systems.

{d1, d2, d3, . . . , dn} and wants to outsource them to a remote public cloud server (e.g., Amazon
and IBM Cloud Storage) for storage or sharing purposes. In order to protect the confidentiality of
the documents, the owner locally encrypts the data using her authorization key and uploads the
encrypted data to the cloud.

Data user. The data users are those who are authorized to search and retrieve the uploaded
documents. The data users have an encryption key that is applied to their search queries to create
trapdoors†. The trapdoors are then sent to the cloud servers to retrieve search results in the form of
a list of relevant documents (e.g., in [22, 23]) or document identifiers (e.g., in [24, 25]). The data
user can potentially be permitted to decrypt the document locally [24, 25]. It is worth noting that, in
practice, a data owner can be a data user too.

Cloud server. The cloud server receives an encrypted collection of documents uploaded by data
owners and carries out three main tasks: storing uploaded documents, searching them against
trapdoors, and maintaining and updating relevant data structures.

The research works that have been undertaken in cloud-based searchable encryption generally
assume cloud servers to be honest-but-curious. That is, although the cloud server administrator
follows necessary security procedures and does not modify nor delete data files, she is still “curious”
about the content of the documents.

Another component we found common in current searchable encryption systems is a trusted
computing base. Each searchable encryption system implements this element in its own way to
adapt its purposes and functionality. Although a trusted computing base can be combined with other
components in the searchable encryption system system, it is worth recognizing and mentioning
that in the paper.

†For further explanation of trapdoors, please see Section 3
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Trusted computing base (Gateway) Data owners and users in a searchable encryption system
need data to be prepared and preprocessed (e.g., removing stop words from the search query
or extracting keywords from documents [21]) on their local hardware before proceeding to the
Cloud server. Preprocessing constructs another element in the searchable encryption system, termed
Trusted computing base (or Gateway) [14, 20, 12], that includes the client-side application. In
particular, the job of the gateway is to prepare documents for the data owner in the setup phase
and preprocess data users’ queries in the retrieval phase. The gateway is generally assumed to be
trusted and resides within the user’s premises. There are two approaches to implement the gateway:
client-end approach in which the gateway is part of client machine [26, 27]; and trusted server
approach in which the gateway resides on separate trusted sever [14, 20, 12].

• Client-end approach The advantage of the client-end approach is that the data is secure at
its origin, and thus is safe against connection interception. However, this imposes overhead
on the client-side application, potentially affecting its performance. Hence, it is considered
inappropriate for circumstances where data users predominantly use thin-client devices (e.g.,
smart phones) [28].

• Trusted server approach The Trusted server approach is generally faster and lends itself
better to the edge computing platforms. Although this approach imposes a low overhead on
the client machines, it reveals data in the communication channels between the client machine
and the trusted server. This approach also includes server provisioning and maintenance costs.
In practice, the trusted server approach is appropriate for circumstances where clients’ devices
fall short in computing power and have limited energy supply [19].

3. A GENERAL ARCHITECTURE FOR SEARCHABLE ENCRYPTION SYSTEMS

3.1. Overview

The architecture of a searchable encryption system has to implement four processes involved with
the elements mentioned in the previous section. In this section, we first describe these four processes,
then we discuss how they are applied within different elements of the searchable encryption system.

3.2. Processes Involved in a Searchable Encryption System

The processes in a searchable encryption system are namely Key generation (Keygen), Build-
Index, Trapdoor generation, and Search. These processes enable searchable encryption systems
and generally have polynomial time complexity [12, 29].

Key Generation (Keygen) Process. This process creates a key to encrypt plain text documents,
and later decrypts the retrieved documents. The algorithm for this process generates a key based on
a set of given security parameters. Probabilistic key generation algorithms [29] are commonly used
for this process.

As data owners and users transmit and store data through the server, there is a need to securely
store documents and determine if a user is authorized to access them. There are two common
methods for encrypting documents: symmetric and asymmetric encryption.

• Symmetric Encryption: In this method, both data owner and data user share the same secret
key. This key can be used to both encrypt and decrypt the document. In other words, this
key is to create noise in the documents, making them unreadable to unauthorized users, while
authorized users can use that shared key (or a computable “inversed” key) to defuse and
remove the noise in the document [30].

• Asymmetric Encryption: Known as Public Key Encryption. This cryptography includes two
different keys, public key and private key, which are used to encrypt and decrypt a document
[31, 32]. More specifically, the data owner would use one of his keys for encryption the
document and the other to decrypt. Since the two key are completely different and there
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is no computational correlation between them, even if the encryption key (public key) is
compromised, the attacker can not get the data content without the private key.

Build-Index. Searchable encryption systems commonly utilize an index structure to keep track
of the occurrences of keywords in documents. The process of initializing this index, called Build-
Index, takes key K from Keygen process the and a collection of documents D as inputs. Then, it
extracts keywords from the documents and inserts them into the index structure.

This Build-Index process is used by the data owner to generate a secure and searchable structure
that enables search over the encrypted data. An index structure is generally implemented in form of
a hash table [33], meta data (markup) [18], or inverted index [28, 34] where each unique keyword
is mapped to an identifier for each document it appears in.

Trapdoor Generation. This process is used by data users to form search queries. It encrypts the
user’s search query using a key that is compatible with the Build-Index key K. If needed, the search
query is preprocessed (e.g., expanded) by the Trapdoor Generation process [27, 21, 13]. Then, the
encrypted Trapdoor is sent to the cloud server.

Search. After receiving the trapdoor, the server runs the search procedure to match documents
that contain the set of keywords in the trapdoor. Next, the results are sent back to the client.

3.3. General Architecture for Searchable Encryption Systems

The general architecture for a cloud-based searchable encryption system is depicted in Figure 2.

Figure 2. Architectural Overview of Cloud-based Searchable Encryption Systems.

The system architecture consists of two main mechanisms, namely Setup and Retrieval. The main
job of the Setup mechanism is to prepare documents to be searched by data users. Upon receiving a
search query from the data user, the job of the Retrieval mechanism, is to perform the search on the
dataset, find matching documents, and send the results back to the data user. In the next subsections,
we elaborate on how these mechanisms operate.

3.3.1. Setup Mechanism Before sending documents to the cloud, the Setup mechanism first extracts
the useful information from the documents. The type of extracted data depends on the type of search
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system (e.g., keyword search [35, 36] versus semantic search [14, 15]). Then, the extracted data and
documents are encrypted and sent to the cloud server.

The data owner initiates the search system through the Keygen process (see Section 3.2 for more
details). The generated key is necessary to encrypt documents before outsourcing, and decrypt
downloaded documents.

In some searchable encryption systems, the Setup mechanism also includes creating an “index
structure” [14, 15, 21, 35]. The Index structure is also known as “meta data” [18] or “identify
keywords” [31, 37]). The index is comprised of keywords that represent the essence of each
uploaded document. Alternatively, some other searchable encryption systems do not rely on
the index structure, instead directly encrypting each keyword individually to form an encrypted
searchable document [11].

The searchable encryption system then encrypts the documents’ contents as well as the index
structure (if it exists), before sending them to the cloud server.

In systems where the data owner and data users are separate entities, the data owner needs to
distribute the public-key to the data users. The keys are utilized by data users to create trapdoors
that are compatible with the encrypted uploaded data. Methods such as public key cryptography [33]
or broadcast encryption [36] are commonly used for key distribution.

3.3.2. Retrieval Mechanism After setup, the system is expected to have a collection of files ready
to be searched over. Data users or owners can submit a search query, defined as a set of keywords
W = {w1, w2, . . . , wn}.

The Trapdoor is produced using W and the data owner’s keys. Some systems (e.g., [22, 38]) also
apply pre-processing of the search query when producing the Trapdoor. Once produced, it is sent to
the cloud server.

The cloud server includes a search engine that carries out the search process. In systems that rely
on an index structure, the index is used to match a Trapdoor against index entries to find relevant
documents. At the end, the list of results, which includes matching documents or their identifiers,
is sent back to the user. Upon receiving the result list, the data user can request to retrieve (i.e.,
download) and decrypt the documents, if they are authorized.

It is worth mentioning that during the Retrieval mechanism, the cloud server could learn minimal
information about the documents [36, 21]. In the next section, we provide further details on security
aspects of cloud-based searchable encryption systems.

4. SECURITY REQUIREMENTS AND SHORTCOMINGS OF SEARCHABLE ENCRYPTION
SYSTEMS

4.1. Security Criteria of searchable encryption Systems

It is crucial for searchable encryption systems to prove that they can preserve the confidentiality
of the user’s data and prevent information leakage. Therefore, the resistance of searchable
encryption systems should be verified against possible internal or external attacks on an untrusted
server. More specifically, the server should not be able to learn anything about the original data
from the cipher text or the search process. Song et al. [11] defined three security properties that
every searchable encryption system should maintain:

1. Controlled searching: Unauthorized users should not be able to search in the server. In
[37, 39], an unauthorized user cannot submit a query to the server unless she has the secret key
to generate a trapdoor. On the server side, the data must be kept in an encrypted manner. Also,
processing the data on the server must be done without decrypting the data. Thus, without a
trapdoor, nothing can be returned in response to an unauthorized search request.

2. Hidden query: this technique hides the unencrypted query from the untrusted server. Every
searchable encryption system should be able to mask or encrypt the content of the search
query to avoid the possibility of the server inferring the content from the search results. The
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untrusted server can only learn about the relationship of a secure query to a set of document
identifiers, not what that set of documents are about.
Without an encrypted query, an attacker could submit numerous queries to the searchable
encryption system. Then, by analyzing the search results, documents’ contents can be inferred
[37]. In [37], the authors present a secure index (e.g., Z-idx) that does not reveal the actual
search query, by hashing it into an irreversible trapdoor, before sending it to the server.
Hence, the server cannot learn any information from the query. Similarly, in [40], Ren et al.
implement a secondary homomorphic encryption on top of the deterministically encrypted
query terms to further obfuscate the original query.

3. Query isolation: In the search process, the server should know nothing except for the search
results [11]. In searchable encryption systems (e.g., [39]), if there is a match between the
query and the index, the server can locate the related documents and return them to the data
user. However, since the data on the server is encrypted and the secret key is not stored in the
server, the server cannot understand anything other than the search result.

4.2. Shortcomings of Searchable Encryption Systems

The security requirement means that the system needs to adopt methods to protect the data. For
example, documents and auxiliary indices are encrypted using the secret key so that only a user
with the valid key can learn about the content, thus, its privacy and confidentiality from the untrusted
server are protected. Even with cipher text, there are prevention measures against different hacking
techniques, such as statistical attacks [41] and keyword-distribution attacks [41], that aim to derive
the correlation between the cipher text and the plain text. These prevention measures contribute to
the complexity of the searching mechanism.

The complexity of the prevention measures compels the searchable encryption system to trade-off
between performance and security. In searchable encryption systems, the access pattern and search
pattern are the most common security factors to consider for these trade-offs.

Search pattern. is defined as any information or pattern that an attacker can use to derive
if random queries are related to keywords [24]. In some of the earlier research works (e.g.,
[11, 25, 37]), the searchable encryption system reveals the search pattern to make the search
operation more efficient. In a searchable encryption system by Curtmola et al. [24], the trapdoor is
created using deterministic encryption, thus the system leaks the search pattern. Similarly, research
works undertaken in [11, 25, 37] compromise search pattern to improve search efficiency.

Access pattern. is defined as any information that the attacker can use to determine the frequency
at which files are accessed or associate to the query. For example, an observant and patient attacker
could sniff the network connections to understand which files are searched for most frequently, thus
determining the most important documents in a dataset.

In the context of searchable encryption, Goldreich et al. [42] achieved fully secure searchable
encryption using Oblivious RAM (ORAM) to hide the access pattern. ORAM periodically shuffles
the data blocks so that the user avoids accessing the same data (memory) block for the same retrieved
data. However, in this work, the initial setup phase is computationally expensive and the search
phase requires logarithmic rounds of interaction between the user and the server to narrow down the
search results. This makes it a burden on the bandwidth and not suitable for large scale datasets.

Another work aimed at hiding the access pattern has been carried out by Boneh et al. [32] using
Private Information Retrieval (PIR) technique. In a system consisting of n replicated servers, the
user sends homomorphically encrypted queries [43, 32] to the n servers to retrieve data blocks from
the servers that collectively make up the result [44]. The system has to touch all of the replicated
servers, thus imposing a significant communication overhead to retrieve one single query.

To provide an efficient searchable encryption system, Song et al. [11] resorted to the weakened
security guarantee, i.e., revealing the access pattern and search pattern but nothing else. Later works
(e.g., [24, 25, 40]) attempt to find a proper method to balance a reasonable access and search pattern
leakage and improve the search performance.
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We should note that even with these security compromises, it is still difficult for an attacker to
derive helpful information from the dataset. In fact, the attackers cannot learn anything beyond the
importance of certain documents.

4.3. One-to-Many Order Preserving Symmetric Encryption (OM-OPSE)

In searchable encryption systems, data users generally need to see the search results ordered by their
relevance to the search queries. As such, a searchable encryption system needs a method to assign
relevance score to each found document and rank them for the user.

One way to achieve ranking of the search results is to assign an importance value (i.e., weight)
to the extracted keywords in the index structure. The weight of an extracted keyword can be
obtained based on its importance in the document [30, 45]. These weights are typically hidden using
deterministic encryption methods [46]. However, because deterministic encryption is a one-to-one
mapping of plain text to cipher text, this encryption method can potentially leak some information
about the documents [46]. In fact, an internal attacker can potentially deduce the distribution of
encrypted scores in the data collection.

Given the context background of the corpus, the attacker can utilize the retrieved score distribution
to gain knowledge about the documents or even break the encryption of the system [35]. To prevent
this, certain research works have modified Order Preserving Symmetric Encryption (OPSE) which
is a deterministic encryption method that preserves numerical order of the plain text [47].

Wang et al. [36] and Sun et al. [14] utilized OPSE to create a more efficient approach (known
as one-to-many order-preserving mapping) to increase obfuscation of the original encrypted scores
while maintaining plain text order. Instead of mapping the plain-text score to a single encrypted
document, the encrypted score is assigned within a randomly appointed bucket within a predefined
range. Therefore, the randomness of score distribution increases and the probability of being
predicted decreases. Several research works have demonstrated that modifying OPSE is “as-strong-
as-possible” encryption technique [36, 14].

5. TAXONOMY OF SEARCHABLE ENCRYPTION SYSTEMS

There have been various research efforts to enable different forms of search operation on encrypted
data. However, a lot of these efforts are rooted in some general approaches. The goal of this section
is to provide a comprehensive taxonomy of current searchable encryption systems and supply an
overview of the conducted research in this domain. The taxonomy of searchable encryption systems
is provided in Figure 3. As we can see in this figure, the searchable encryption systems can be
broadly categorized based on the type of search they perform into three main types, namely Keyword
Search; Regular Expression Search; and Semantic search.

5.1. Keyword Search

5.1.1. Sequential Scan Keyword Search Song et al. [11] pioneered the idea of user-side encryption
and keyword-based search over encrypted documents. The user intends to retrieve encrypted
documents that contain her search keyword. In the proposed scheme, each keyword Wi of a
document is encrypted independently in two encryption layers. First, they pre-encrypt the keyword
Wi with E(Wi) into n bits. This is then split into two parts: the right part (Ri) consists of m bits
and left part (Li) consists of n−m bits.

Second, the left part is encrypted with a stream cipher that can be checked for matches using
XOR.

When a user requests documents that includes a set of interested keywords, she submits the
encrypted version of each keyword in the query: Li and ki, the server performs XOR matching
on n−m bits of each cipher text to see whether Ci XOR Li is of the form (S, Fki(S)) for some S
[11]. In this system, since every word is independently encrypted, to find all the matches, the server
has to follow the above steps word-by-word for the entire document. For this reason, this method of
searching is known as sequential scan.
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Figure 3. Taxonomy of current searchable encryption systems.

Another work in Sequential Scan category is PEKS (Public key Encryption with Keyword Search)
[32]. PEKS encrypts each keyword in the uploaded document based on a public key using the
Bilinear Diffie-Hellman [32] or Trapdoor Permutation [32] method. On the client side, the data
owner uses her private key to verify if her query keyword occurs in a document. In this method, the
server needs to scan every cipher text (i.e., keyword) of each document to find the occurrences. The
method is computationally expensive because the search cost is proportional to the number of the
documents in the dataset.

There are not many dominant research works that follow this fashion due to the limiting time
complexity for searching through the whole dataset, and given that datasets are growing in volume.
More advanced and efficient searchable encryption systems are mentioned later.

5.1.2. Index-Based Keyword Search In order to deal with the inefficiency of the Sequential Scan
keyword search, Song et al. [11] proposes a data structure called an “index” that contains a list of
keywords mapped to their original documents using a document pointer (also known as document
identifier [26]). The keyword Wi is encrypted as E(Wi) and the document identifier is encrypted
using the result of a key generator function fk with input of the hashed keyword E(Wi). In the
Index-based keyword search systems, instead of searching sequentially (word-by-word) in every
document, the system only needs to check the index structure for the interested keywords. From the
results, the system retrieves the document identifiers and sends them back to the client.

Goh et al. [37] was one of the first works to introduce the secure index-based search method. In
this work, the system creates an index for each document before encrypting and uploading it. The
index consists of keywords that are considered relevant to the document. There are two main ways to
construct the secure index: IND-CKA [37] and the efficient variant construction called Z-IDX [37].
Both of these methods use a Bloom Filter [37] as an index for each document to track its keywords.
At search time, the system creates the search trapdoor and uses the Bloom Filter to check if the
trapdoor is contained in the dataset.

Ren et al. [40] directly extended the two-layer encryption idea originally presented by Song
et al. into a hashed index representation, seeing significant speed increases. In addition, they
introduced another layer of randomized XOR-homomorphic encryption on the search query to
further obfuscate the query to adversaries watching the network stream. Liu et al. [48] presented
a searchable encryption method with multiple data sources where the cloud index is composed of
multiple Indices from different sources. Research works such as [35, 36] introduced a similarity
score for keyword search using formulas based on the term frequency of the keywords. Introducing
a similarity score allows the result list to be ranked for the end users. We will review their scoring
and ranking keyword against document and query in details in Section 5.3.3.
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Earlier works from [37, 11, 32, 24] used index-based keyword search with their owned methods
to perform single keyword or disjunctive keyword search on encrypted documents. However, as the
needs of data users grow to require more accurate search results, different techniques are introduced
on to the index to support multi-keyword and conjunctive keyword search. MRSE [49] is one of the
first works to propose a solution to that demand. Cao et al. [49] define a dictionary consisting
of all keywords, with each keyword having a defined location in the dictionary. Data files and
search queries are represented by binary vectors which then are use “inner product computation” to
measure the similarity of the data file and the query. Cao et al. [49] also apply their own internal
ranking to return relevant ordered result. Later on, Z. Xu et al. [50] improve MRSE in so its fixed
dictionary can be extended dynamically. Their works also improve the ranking algorithms by using
access frequency in weighing the matched data file.

5.2. Regular Expression Search

One expansion to the keyword-based searchable encryption is to allow users to perform a regular
expression search on encrypted data. A preliminary approach by Song et al. [11] proposes to create
all possible variations of a given regular expression. For instance, for the query ab[a− z], it would
generate all 26 possible search queries, namely aba, abb, . . . , abz. This approach only works for
simple regular expressions and is not scalable for those with high degree of variability, e.g., a∗b∗.

RESeED [20, 51] is a regular expression search system for encrypted data. RESeED operates
based on two data structures: a Column Store, which is an unencrypted inverted index, representing
keywords and the documents they appeared in, and an Order Store which is a fuzzy (hashed)
representation of keywords within a document. For a given search phrase, RESeED builds a
Nondeterministic Finite Automaton (NFA) [20]. The NFA is then partitioned into sub-NFAs that
can be matched against keywords in the Column Store. For the documents found in the previous
step, their Order Store is checked to confirm the keywords are in the same order as the regular
expression.

5.3. Semantic Search

Searchable encryption solutions providing keyword or regular expression-based search abilities are
useful when users exactly know what keywords they are searching for in the documents. However,
with a growing collection of documents and the emergence of big data [52, 53], the data users may
not remember the exact keywords they want to retrieve, or they might want to search for documents
that are more broadly related to a topic [28, 34].

For instance, in a hospital with encrypted medical records, a doctor may desire to search for
records using the query “heart disease”. While the doctor is interested in documents containing the
exact query terms, she is also interested in documents with semantically related terms (e.g., “heart
attack” or “chest pain”). Therefore, a semantic search is needed to return documents related to terms
in the query and to avoid redundant searching attempts.

Many research works have been undertaken to enable different forms of semantic searchable
encryption. As we can see in the taxonomy (Figure 3), these semantic search systems can be
further categorized into three main types, namely Fuzzy Keyword Search; Stemming Search; and
Ontological Search.

5.3.1. Fuzzy Keyword Search A Fuzzy Keyword Search improves the usability of a system by
searching for close matches to the query if it fails to find sufficient matches for the exact query.
Although these systems are categorized as search systems, they may not be directly used for search
purposes. Fuzzy search can be used to make a system tolerant to user’s typos [54].

Fuzzy keyword search systems work based on edit distance that measures the similarity between
two strings s1 and s2 [55]. Edit distance is defined as the number of string operations needed to
transform s1 to s2. The possible string operations are insertion (insert a character into a string),
substitution (replace one character with another in a string), and deletion (remove a character
from a string) [26]. Let D = {d1, d2, . . . , dn}, a collection of documents stored on an untrusted
third-party server (e.g., cloud); W = {w1, w2, . . . , wn} a unique set of keywords with a fixed edit
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distance d; and (s, k) a search trapdoor with threshold k ≤ d. Then, a fuzzy keyword search system
outputs a list of documents that possibly contain keyword w, if w ∈W ; else return document where
ed(w,wi) < k.

Li et al. [26] provide a fuzzy keyword search system that injects all possible words wi that satisfy
ed(w,wi) < d where w denotes the extracted keyword. For example, the fuzzy list of the keyword
CAR is {ACAR, CAAR, CARA, . . ., CARZ}. This list of fuzzy variants is sent to the server where the
index structure is located and includes those keywords and their associated documents. Similarly, in
the Retrieval phase, the query is augmented with fuzzy variants, sent to the server to be matched, and
a list of documents is returned. However, this approach is computationally expensive. For instance,
if d = 3 the number of possible variants is 4

3 · k
3· 263. To improve this, the authors [26] propose a

wild-card-based technique that inserts wild card (*) to represent the fuzzy character or omit a letter
from wi. For instance, the fuzzy key set of CAR is {∗CAR,C ∗AR,CA ∗R,CAR∗, CAR} and
{CAR,AR,CR,CA}. These techniques significantly reduce the size of the index structure, thus
improving the search time.

In a later study, Liu et al. [56] proposes a Dictionary-based Fuzzy search method. The method
takes a dictionary and a predefined edit distance value and generates a set of fuzzy keywords for
each keyword in the search queries. However, instead of inserting a wild-card, this technique only
injects words that exist in the given dictionary. At the search time, the query goes through the same
process to get the fuzzy set extension from the dictionary and encrypts it before sending it to the
server to be searched.

In fuzzy keyword search, the system needs to search for the entire list of fuzzy keywords, which
imposes an extensive overhead for a large edit distance. Therefore, to further enhance the fuzzy
searching performance, Wang et al. [12] build a tree from the fuzzy keyword set that reduces the
search to O(log(n)) of the fuzzy list’s size.

5.3.2. Stemming Search Utilizing the Fuzzy Keyword Search makes searchable encryption systems
more resistant to minor typos, but in many cases does not exactly cover the semantic perspective.
In fact, two keywords having a close lexicographical distance does not necessitate that they are
semantically related. Different words (e.g. “student” and “studying”), despite having a large edit
distance (4), are highly semantically related. The stemming search method aims at solving this
problem based on the belief that semantically related words tend to start from the same root (stem).

The model is the same as other searchable encryption systems: a user encrypts documents and
extracts keywords as an encrypted index. The difference in this system is the additional step it takes
to convert the keyword set into a set of stem words. When a user searches for a query, each query
keyword is replaced by its stem [13]. There are three ways to extract the stem of a word:

• Affix stripping: This method applies well-known stemming algorithms to find the stem of
a word. Prominent methods include the J.B. Lovins [57] and Porter stemming algorithms
[58]. These algorithms remove the suffix and prefix to get the root of a word. However, these
algorithms require knowledge of the language and can be computationally costly.

• Statistical Stemming: known as n-gram stemming, statistically finds the frequency of a
contiguous sequence of n items from a given sequence of text in the whole document [59].
The least frequent n-gram is considered to be the stem (also called root).

• Hybrid: Utilizing both of the aforementioned methods to find the stem.

Both the uploaded documents and the search query extension go through the same process to get
the stems of the extracted keywords. These stemmed keywords are stored in the index on of the
third-party server (e.g., public cloud) and used in the search process.

5.3.3. Ontological Semantic Search Fuzzy keyword and stemming searchable encryption methods
cannot truly capture the semantic essence in searching. For example, if a user intends to search for
robbery, she may be interested in seeing results about “burglary” or “break in” as well. However,
neither the fuzzy keyword nor the stemming method can capture this type of semantic. In fact, the
semantically related words neither share the same stem nor have a close edit distance. To resolve
this problem, ontological semantic search was invented to find more meaningfully related data to the
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original query [28, 34]. As we can see in the taxonomy of Figure 3, Ontological semantic search can
be achieved using synonym semantics, conceptual semantics, or a combination of these semantics.
In this part, we explore these schemes, however, we first revisit some of the preliminary concepts
that enabler Ontological Searching:

• Semantic Relationship: Psycholinguists, Church et al. [60] propose that word association can
be inferred from a statistical description of semantic relationship between words defined by
the co-occurrence of those words. To calculate the similarity score between two keywords,
Sun et al. [14] use data mining methods to effectively find out the co-occurrence degree
between terms in a dataset. For two string x and y, the similarity score information I(x, y) is
defined based on Equation 1.

I(x, y) ≡ log2(
P (x, y)

p(x)p(y)
) (1)

where P (x, y) is the probability that x and y appear together; and p(x) and p(y) are the
probabilities that x and y appear independently in the collection. Higher values of the
similarity score express more relevance between x and y.
Another method to measure the similarity is based on Cosine similarity [14, 61] that can be
calculated using the vector representation of documents and queries to get a relevance score
of the closeness between the queries and documents.

• Inverted Index: A data structure that maps each unique keyword to the documents that contain
them. This structure keeps track of a list of keywords throughout the whole dataset, with each
keyword associated with list of documents that it appears in. For some work [14, 18, 35] in
order to further assist ranking functionality, a normalized numerical relevance score (value
between [0,1]) is often also given along with each document to indicate the relevance of it to
the keyword.

• Ranking function: In a large dataset, it is common for an abundant number of documents
to match a certain semantic search query with different degrees of relevance. Therefore,
it is necessary for the user to receive the list of documents ranked in order of relevance.
This introduces the need for a ranking function that measures the relevance of a matching
document to the search query. The most common ranking function is known as TF × IDF
(term frequency, inverted document frequency) [14, 15] where TF indicates the significance
of that keyword in the document and IDF indicates the significance of the keyword over all
documents in the dataset.

Different methods have been developed to measure the relevance of a given keyword in searchable
encryption systems. Woodworth et al. [28] extend the Okapi BM25 standardized text retrieval
method [28] which uses term frequency and inverse document frequency to calculate the semantic
relevance of a given query to a document. This score is later used to rank documents in the result
set.

Sun et al. and Xia et al. [14, 21] propose different mechanisms for semantic searchable
encryption by extending the query keywords and ranking the result set. The data owner constructs
metadata for each document and sends the encrypted metadata to a trusted server (e.g., a private
cloud) to build an inverted index and a semantic relationship library (SRL). The inverted index is
then sent to reside in the public cloud. Upon receiving a search query, the trusted server extends the
query using the semantic relationship library to get ontologically related keywords and synonyms.
Then, it encrypts the extended keywords and sends them to the public cloud to look up the index
structure. The returned documents are ranked based on the relevance ranking functions and are sent
back to the user.

In another study, Moh et al. [15] introduce three schemes to learn the semantic meaning of a
search query in order to produce accurately related result. Particularly, they propose Synonym-
Based Keyword Search (SBKS), Wikipedia-Based Keyword Search (WBKS), and a combination of
the two schemes called WBSKS. In the SBKS scheme, alongside the process of extracting important
keywords of the document, synonyms that represent the semantic of a document are collected. The
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encrypted version of these keywords and synonyms are sent to the cloud to form a searchable
index. Similarly, the search query is also extended with its synonyms to form the trapdoor. Then
the trapdoor is compared with the cloud index structure to find documents that semantically match
the search query. In WBKS scheme, a pre-defined set of Wikipedia articles (WKS) are collected
and a vector representation (VR) [15] of them are created using the term frequency and inverse
document frequency (TF × IDF ) technique.

When a document is uploaded, its VR is then compared against the VR in WKS and the obtained
score is stored in the index structure. In the search phase, the user query is converted to a VR and
is compared to the WKS library using cosine similarity method. This score is then added to the
trapdoor to let the server know how semantically related the query is to the WKS library. The cloud
server computes the cosine similarity score of the trapdoor and the existing entries in the index to
create a ranked list of documents which it sends to the user. In WBSKS scheme, both SBKS and
WSKS techniques are used. SBKS is used to expand the query in the Search phase and WSKS is
used to construct the expanded index of the uploaded documents of the Setup phase.

Another way to get the semantic meaning is by using WordNet [18]. WordNet is a tool created by
Princeton University that contains a dictionary including word definitions and their synonyms. For
example, Yang et al. [62] utilize WordNet to construct a semantic keyword set. Before the query is
encrypted and searched with, each query keyword is expanded with the provided synonyms.

Woodworth et al. [28] further propose work that reduces the number of terms put in the index by
extracting only the most important terms from an uploaded document, and extends the query using
Wikipedia and Synonyms to capture the broader meaning of the query. The result is a space-efficient
index which still achieves an accurate semantic search.

Table I provides a summary of categorization of different searchable encryption approaches in
terms of components mentioned in Figure 2. We point out references to the works in each searchable
encryption type, so readers can easily compare the difference between these works.

Table I. Categorizing different studied searchable encryption systems in terms of components they contain.

Search Approach File
Extractor

Using
Index File

Multi-
keyword
Searching

Query
Expansion

Ranking
Search
Result

Keyword Search N/A [37, 48, 35, 36, 40] [49, 50] N/A [35, 36]
Regular Expression Search N/A N/A N/A [20, 51] [13, 11, 36, 25, 37, 32]
Semantic Search [28, 54, 14, 18, 35] [28, 14, 18, 35] [28] [28, 54, 26] [28, 14, 21, 15]

6. SECURITY ANALYSIS OF SEARCHABLE ENCRYPTION SYSTEMS

Based on security criteria of searchable encryption systems (mentioned in Section 4.1) and the level
of information leakage, we can categorize current searchable encryption systems into four security
levels. The differences between these security levels are summarized in Table II and are explained
below.

Table II. Security level of current secure search systems.

Security Level
Leak Plain
Text
Document

Using Trusted
Computa-
tional Base

Leak Index
Data

Plain
Data Stored
Remotely

Leak Access
Pattern

Leak Search
Pattern

Related
Works

Somewhat secure No Yes No Yes Yes Yes [14, 20, 12]
Semi secure No No Partially No Yes Yes [28, 18]
Secure No No No No Yes Yes [13, 11, 36, 25, 37, 32]
Fully secure No No No No No No [42]

Somewhat Secure The searchable encryption systems in this category often deploy a trusted
server (also known as a private cloud [14] or a gateway [20]) in between the third-party server
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(e.g., public cloud) and the client device. The searchable encryption systems that leverage edge/fog
computing [63] paradigms also fall under this category.

In Somewhat Secure searchable encryption systems, unencrypted documents are sent to the
private cloud, where they are parsed and encrypted to form the index structure. These systems not
only leak access and search patterns, but also expose the documents’ contents to an internal attacker
of the trusted server. Sun et al. [14] make use of the computational capacity of private clouds to
build a Semantic Relations Library (SRL). The SRL quantifies the semantic distance of each term
to other terms based on their co-occurrence in the dataset. However, SRL is maintained unencrypted
on the private cloud, and thus is susceptible to attacks on the private cloud.

Semi Secure In searchable encryption systems with this level of security, the auxiliary index
structure is partially encrypted. That is, some information about the documents or the keywords
are not encrypted and can be leaked from the index structure.

In [18], the index structure keeps track of encrypted keywords, and for each keyword it contains
a list of documents that include the keyword. However, the weight (i.e., score) of the keyword
in each document is maintained in an unencrypted manner. Therefore, the index structure is
partially encrypted and reveals the relevance score that represents the relatedness of a given
keyword to a document. In [28], Woodworth et al. provided a semantic search system for encrypted
data in the cloud. Their system, named S3C, also exposes the frequency of a keyword within
the original documents. These unencrypted data are considered security holes in the searchable
encryption system that attackers can take advantage of and conduct a statistical attack.

Secure Such searchable encryption systems do not trust any part of the system, except the client’s
device. Also, the auxiliary index is properly secured and does not expose any plain text data to the
server. Keywords in the index structure are hashed using SHA-1 or HMAC-SHA [36, 64] methods.
Also, relevance scores are encrypted using OM-OPSE method (as explained in Section 4.3).

Because of the aforementioned reasons, Secure searchable encryption systems are less prone to
internal attacks, in compare to those in the Somewhat or Semi Secure categories. However, the
Secure searchable encryption systems still leak the access and search patterns. Although there are
methods (e.g., Private Information Retrieval [65, 31], Oblivious RAM [42]) to avoid such leaks,
they slow down the search process. Thus, Secure searchable encryption systems prefer to expose
these leaks in favor of the search performance. Instances of Secure searchable encryption systems
can be found in [13, 11, 36, 25].

Fully Secure The searchable encryption systems in this category provide full security of the data
and the search operation. Systems in this category do not even reveal the search and access pattern
to the server.

Research undertaken by Goldreich et al. [42] falls into the fully secure category. It provides
search and access pattern security through the use of ORAM (see Section 4.2). This strong security,
however, comes with poly-logarithmic rounds of communication between the server and the user,
which restrains its usability. In the same research, the authors introduced another method that needs
only two-rounds of communication between the users and the server. Nonetheless, it induces a
square root complexity overhead in the set up phase.

7. APPLICATION DRIVEN DOMAIN

Certain regulations [66] require some businesses and industries (e.g., health care) to store their data
in a secure a manner. As such, they need to store their data in an encrypted format, if they were to use
a third-party servers or a public cloud for storage. Therefore, there have been several efforts from
those businesses to tailor searchable encryption solutions for their specific domains. This section
provides an overview of such works. In the rest of this section, we investigate such domain-specific
searchable encryption systems.
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Health care For health care providers, all Personal Health Records (PHRs) have to be encrypted
to guarantee a patients privacy [67, 68]. Health care providers focus on maintaining the privacy of
PHRs in an emerging patient-centric model that uses public clouds to easily store, retrieve, and share
health information between medical centers. Although the public cloud solutions are convenient and
attractive for health care providers, privacy concerns restrain its potential [69].

The owner of the PHR has the utmost right to share and distribute the decryption key to other users
for personal or professional purposes [67]. However, the encrypted PHR makes key functionalities,
such as keyword search by multiple users challenging. Multiple data users need to request the
decryption key to access the encrypted PHR. However, the key requests by users are generally
unpredictable, making it challenging for the data owner to manage key distribution, as they are
not always online [67]. To overcome this challenge, an attribute-based encryption (ABE) scheme
is proposed [70]. In ABE, there is a set of attributes that manages the access policies. Only users
with the valid decryption key that matches the attribute can decrypt the patient’s PHR and users
with a revoked key cannot do anything with the encrypted PHRs. The ABE encryption scheme also
enables a patient to exchange PHRs with a group of users without prior knowledge of the complete
list of users.

In [19], Naseeruddin et al. developed an ABE-based schema that allows the system to audit user
access, allowing it to identify the source of a breach and detect if information is distributed properly
or if there was illegal access to the data. An encrypted PHR will be delegated to n trusted authorities
from the data owner (patient). To access and search on the encrypted data, a data user needs to
acquire the approval of k trusted authorities. Their work modifies ABE with a signature threshold
A(k, n) where a valid message is guaranteed if there are at least k valid signature shares out of n
verified parties. In the Key generation algorithm of ABE, the key is generated based on an ABE-
modification to encrypt the data before outsourcing it to the public cloud, which can be searched
later to retrieve necessary information.

Another modification of ABE is proposed in [67, 71] to add another layer of fine-grained privacy
protection beyond the underlying cryptographic mechanisms to enable searchable encryption or
data access control. The study develops a hierarchical predicate encryption (HPE), in which the
data owner generates a key and distributes it to a local trusted authority (LTA). These LTAs are able
to delegate the key to allow authorized users to search to that patient’s PHR. In the search phase,
the server has to verify that the user has a valid signature from a registered LTA before performing
search. It is worth noting that this study only supports keyword search, and not other forms of search.

These methods are appropriate for normal medical procedures, but may hamper first-aid treatment
in emergency situations in which a patient’s life is at risk and an authorized user is not present. To
combat this challenge, Yang et al. [72] implement adaptive dual-layer access control, in which
normal approved users are allowed to see all of the patient’s health care data, while outside users
can view a subset of the data in emergency situations using a password-based break-glass access
mechanism. This approach provides data security while limiting danger in emergency scenarios.

Law Enforcement Other industries, such as law enforcement, can potentially have privacy
restrictions in granting access to their datasets. Data owners, in this industry, require data that is
stored in external sources (e.g., in a cloud) to be encrypted, and searchable encryption systems may
only be used to enable search over data without providing direct access to the data. For example, a
detective needs to know if the subject has any matching record in the court reports. The detective,
however, does not need to (or cannot) access the information of all people in the court system.

Text Editors Li et al. [26] propose a secure search system which could handle user typos through a
fuzzy keyword search. Wang et al. [12] used a similar approach to find matches for similar keywords
to the user’s query by using edit distance as a similarity metric, allowing for words with similar
structures and minor spelling differences to be matched. However, these methods reveal the topic of
the external sources that an attacker can use to categorize the data sources based on query retrieval.
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Other Domains Financial and military domains generally have strict data privacy and
confidentiality rules [73]. However, there is currently no dedicated study on the particular use of
searchable encryption in these domains.

8. FUTURE RESEARCH DIRECTIONS

In this section, we suggest various directions that we envisage are necessary and researchers in the
searchable encryption domain could find their interest in. Each of these topics or even a combination
of multiple suggestions will push the current boundaries of searchable encryption.

1. Clustering Encrypted Data Since the field’s inception, searchable encryption systems have
primarily strived to improve search accuracy, performance, and security. Despite many provable
improvements to security, searchable encryption solutions still need to enhance their performance
and maintain the real-time quality of the search operation. This is particularly important as datasets
get substantially larger, and as more businesses look to outsource their big data to the cloud.
One promising approach to dealing with big data is to cluster the data and restrict the search to
relevant clusters. This approach presents several challenges: clustering encrypted keywords based
on some meaningful semantic data, determining which clusters are most relevant at search time,
and determining how many of those clusters should be searched. A novel feature of distributing and
arranging encrypted data into meaningful clusters is presented by Chen et al. [74]. By combining
affinity propagation and K-means clustering method, called CAK-means model, they can partition
related data into a certain number of clusters. This model maintains the closeness of relevant data
files and supports I/O operations that further improves the uploading process and system as a whole.

2. Searchable Encryption Across Multi-source Datasets As datasets grow larger and more
organizations opt to use remote cloud storage, it becomes increasingly likely that users and
organizations will need to search across multiple sources. For example, a law enforcement officer
who needs to obtain information on a suspect may need to search across datasets from other
jurisdictions. One challenge to this is that each of these organizations can potentially have their own
privacy and confidentiality policies and use various encryption standards [75]. The datasets may
also have different characteristics, such as document structure or length. Further research is needed
to deal with a wider variety of data, and combining multiple levels of security. One of the recent
works following this direction is from Gou et al. [76], where they set up a scenario of trusted clients
issuing queries on a cluster of server nodes. They proposed EncKV, a system to store encrypted
data and support rich query retrieval utilizing standard data partitioning algorithm. To provide rich
query across distributed data storage, the client maintains a small hashing structure to keep track of
metadata.

3. Edge Computing for Searchable Encryption Most current searchable encryption systems
have a two-tier architecture, utilizing primarily a user-end and cloud-end. The user-end includes
the client machine, often in the form of a thin-client (e.g., smart phone or tablet) with limited
computational power. This often creates a performance bottleneck, as much of the document and
query pre-processing must occur on the client-end since it is the only trusted component. An
edge computing paradigm can be utilized to bypass this bottleneck. Use of this paradigm would
add additional architectural tiers along the network between the server and client. Off-loading
computational work to an edge node can substantially improve performance, but weakens security,
as edge nodes are more vulnerable to attacks than clients. Further research efforts should determine
what processes can be performed on edge nodes while minimally compromising security. ENSURE
is an edge computing based searchable encryption system schema [77]. It introduces a way to
provide the searchable encryption system functionality through mobile devices. This is achieved
via outsourcing heavy tasks to edge devices, releasing the end device from intense computation
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workload and saving energy consumption. The article also improves security by relying on the
trustworthiness of the edge devices rather than on the public (cloud) servers.

4. Utilizing Blockchain in Searchable Encryption With recent breakthroughs, blockchain
technology and the idea of decentralization are becoming more promising aspects and gaining
more attention from the searchable encryption community. There are several proposals for utilizing
blockchain in searchable encryption. Hu et al. [78] introduce a decentralized privacy-preserving
search scheme leveraging smart contracts in which a blockchain verifies the accuracy and fairness
in the contract between users and cloud provider. In other research, Cai et al. [79]suggest a
decentralized storage platform, a concept in which people lease their hardware capacity as a service.
However, it is questionable that outsourcing data to other storage providers could create threats to
data integrity, which is mentioned in [80], and thus affect autonomous payment of people involving
the service [79]. The system proposed by Cai et al. [79] utilizes crypto-currencies and cryptographic
incremental hashing to solve the mentioned concerns. This is one of the very first works integrating
blockchain with searchable encryption systems which starts a promising direction. Nevertheless,
it would need more investigation and experimentation to develop more mature approaches in the
future.

9. SUMMARY

In this work, we surveyed current searchable encryption systems and techniques that perform
various forms of search operation on encrypted data located on an untrusted third-party cloud. We
identified common components of the searchable encryption systems and the overall architecture
through which these components interact with each other. Then, we provided a taxonomy that
categorizes the searchable encryption systems based on the type of search operation supported by
them. We analyzed the security of the current searchable encryption systems and categorized them
into four security levels. We investigated particular demands of searchable encryption systems in
various domains, such as health care and law-enforcement. Finally, we offered suggested directions
for future research, including clustering data for improved search speed, searching across multiple
datasets, and utilizing edge computing and blockchains.
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