
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–22
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

S3BD: Secure Semantic Search over Encrypted Big Data in the
Cloud

Jason W. Woodworth1∗and Mohsen Amini Salehi2∗

2 High Performance Cloud Computing (HPCC) Laboratory
12 School of Computing and Informatics

University of Louisiana at Lafayette, Louisiana, USA

SUMMARY

Cloud storage is a widely utilized service for both personal and enterprise demands. However, despite its
advantages, many potential users with enormous amounts of sensitive data (big data) refrain from fully
utilizing the cloud storage service due to valid concerns about data privacy. An established solution to the
cloud data privacy problem is to perform encryption on the client-end. This approach, however, restricts data
processing capabilities (e.g., searching over the data). Accordingly, the research problem we investigate is
how to enable real-time searching over the encrypted big data in the cloud. In particular, semantic search is
of interest to clients dealing with big data. To address this problem, in this research, we develop a system
(termed S3BD) for searching big data using cloud services without exposing any data to cloud providers.
To keep real-time response on big data, S3BD proactively prunes the search space to a subset of the whole
dataset. For that purpose, we propose a method to cluster the encrypted data. An abstract of each cluster
is maintained on the client-end to navigate the search operation to appropriate clusters at the search time.
Results of experiments, carried out on real-world big datasets, demonstrate that the search operation can be
achieved in real-time and is significantly more efficient than other counterparts. In addition, a fully functional
prototype of S3BD is made publicly available.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Cloud services, Searchable Encryption, Semantic Search.

1. INTRODUCTION

Cloud storage has become an inevitable solution for companies and individuals who desire to store
a huge volume of data, known as big data, and relieves them from the burden of maintaining
storage and processing infrastructure [1]. However, despite the advantages cloud solutions offer,
many potential clients abstain from using them due to valid concerns over data security and privacy
on cloud servers [2–4] and in the data transmission process [5, 6]. For example, 73% of banks list
data privacy and confidentiality as a reason for not using cloud services, making it the most cited
concern [2]. Thus, enhancing cloud privacy and confidentiality for the users’ data is of paramount
importance.

Cloud storage providers commonly offer security by encrypting user data on their servers
and maintaining their encryption keys. However, this approach makes the data prone to attacks,
particularly, internal attackers who can have access to the encryption keys [7]. One proven solution
that addresses this vulnerability is to perform the encryption on the user’s end [8], before it is
transferred to the cloud. Unfortunately, this solution limits the user’s ability to interact with the
data, most notably the ability to search over it. The abilities are further limited when dealing with

∗Correspondence to: School of Computing and Informatics, University of Louisiana at Lafayette, Louisiana, USA. Email:
jww7675@louisiana.edu, amini@louisiana.edu

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2

big data where performing any possible operation on the encrypted data becomes cost- and time-
prohibitive [8].

Our motivation, in this research, is an organization that owns a big data scale dataset containing
confidential data. One example of such an organization is a law enforcement agency with encrypted
police reports and officers who need to search over the reports with their handheld devices (e.g.,
smartphones). Users of the organization may not remember exact keywords in the documents they
are looking for, or need to retrieve documents semantically related to what they are searching for.
For instance, the user searches for “burglary” but is interested in finding documents about “robbery”
too. As such, users require the ability of semantic search on the encrypted big data. As the users
perform the search on their handheld devices with limited processing and storage capabilities, any
solution for them should not impose a major processing or storage overhead. Ideally, the users
need a transparent system that enables them to only enter search queries in plain text and retrieve
documents in real-time and ranked in order of semantic relevance. Finally, any solution should not
reveal any sensitive data to internal or external attackers.

Although solutions for searching over encrypted data exist, they often do not consider the
semantic meaning of the user’s query. That is, they only consider the keywords entered by the
user (e.g., [9]), and not the terms semantically related to the user’s in the query. Other solutions
do not rank documents based on their relevance to the query, imposing additional search time for
the user to look through results themselves. Many solutions impose a large processing and memory
overhead (e.g., [10]), making the search service costly on cloud and possibly non-real-time.

In this research, we offer a solution for providing semantic search over encrypted big data in real-
time and with low overhead using cloud services. In our solution, each document is parsed before
uploading to extract key phrases that represent the document’s semantic. The key phrases are then
encrypted and stored in an index structure on the cloud for search processing. Semantic information
is injected into the query at search-time to be searched in the index.

Previous similar solutions are based on using a potentially huge central index, which is fully
traversed for each search query (e.g., [11]). Undoubtedly, these solutions do not scale for big data.
A common approach to reduce the impact of a large central index is to evenly partition it into disjoint
clusters (e.g., [12]), which facilitates the parallelization of searching. However, this practice is still
inefficient, as much of the index content is irrelevant for any individual search query.

Another approach for reducing the impact of a large central index is to fracture the central index
into topic-based clusters (also known as shards) [13]. Then, at the search time, a subset of shards are
proactively chosen to be searched over. Although this solution substantially reduces the search time
and required resources, the remaining problem is how to generate topic-based shards on encrypted
data due to a lack of semantic information?

More specifically, in this research, we define the problem of providing a secure cloud-based
semantic search system for big data as needing to answer the following three questions:

• How to fracture a central encrypted index into topic-based shards without revealing semantic
data to the cloud?
• How to narrow the search operation to only shards that are relevant to the user’s query, hence,

increase the real-timeness of the secure semantic search operation for big data?
• How to rank results of a search based on semantic relevance to the user’s query?

In this paper, we present Secure Semantic Search over encrypted Big Data in the Cloud (S3BD)
to address the aforementioned questions. The core of S3BD is based on extracting and encrypting
semantic key phrases from provided documents and clustering them into topic-based shards. To
provide a real-time response to a provided search query, S3BD proactively determines the shards
relevant to the query at search time and limits the search only to those shards. S3BD extracts key
phrases and performs data encryption only at the user-end, thus, the cloud and outside world can
see nothing about the plaintext data.

In summary, S3BD improves upon previous work in the literature by limiting the impact of a large
encrypted central index created when using big data. Specifically, the contributions of this paper are
as follows:

• Developing a secure, scalable, and space-efficient system for semantic searching over big data
in the cloud.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

3

• Proposing a novel application of k-means clustering to an encrypted central search index to
create topic-based clusters without using explicit semantic data.
• Proposing a novel method for pruning a large number of shards into a small number of those

most relevant to a search query through semantic comparison of the query to small samples
of each shard.
• Providing a method for ranking search results based on their semantic relevance to the query

without exposing any semantic information to the cloud.
• Evaluating and analyzing the performance, scalability, overhead, and accuracy of S3BD when

compared with previous works in the literature.

A prototype of S3BD has been implemented and is made available to the public† used
for performance evaluations. The evaluations conducted on real-world datasets demonstrate the
practicality of S3BD for big data.

The rest of the paper is organized as follows. Section 2 reviews related works in the literature,
establishing the need for our solution. Section 3 gives an overview of our proposed system
architecture and explains the upload, cluster, and search processes that define S3BD. Section 4
reviews the threat model we are working with and provides a security analysis of our solution.
Section 5 presents the results of our evaluations using real-world datasets. Finally, section 6
concludes the paper.

2. RELATED WORK

We provide a review on research works undertaken in the four fields most related to this work
and position the contribution of our works against them. Specifically, these fields are searchable
encryption, semantic searching, semantic searching over encrypted data, and clustering methods for
searching.

2.1. Searchable Encryption

Solutions for searchable encryption (SE) are imperative for privacy preservation on the cloud.
The majority of SE solutions follow one of two main approaches, the first of which being to use
cyryptographic algorithms to search the encrypted text directly. This approach is generally chosen
because it is provably secure and requires no storage overhead on the server, but solutions utilizing
this method are generally slower [8], especially when operating on large storage blocks with large
files. This approach was pioneered by Song et al. [8], in which each word in the document is
encrypted independently and the documents are sequentially scanned while searching for tokens
that match the similarly encrypted query. Boneh et al. produced a similar system in [14] which
utilized public key encryption to write searchable encrypted text to a server from any outside source,
but could only be searched over by using a private key. While methods following this approach are
secure, they often only support equality comparison to the queries, meaning they simply return a list
of files containing the query terms without ranking.

The second major approach is to utilize database and text retrieval techniques such as indexing
to store selected data per document in a separate data structure from the files, making the search
operation generally quicker and well adapted to big data scenarios. Goh [15] proposed an approach
using bloom filters which created a searchable index for each file containing trapdoors of all unique
terms, but had the side effect of returning false positives due to the choice of data structure. Curtmola
et al. [11] worked off of this approach, keeping a single hash table index for all documents, getting
rid of false positives introduced by bloom filters. The hash table index for all documents contained
entries where a trapdoor of a word which appeared in the document collection is mapped to a set of
file identifiers for the documents in which it appeared. Van Liesdonk et al. further expanded on this
in [16] with a more efficient search by using an array of bits where each bit is either 0 or its position
represents one of the document identifiers. These methods are generally faster, taking constant time
to access related files, but are less provably secure, opening up new amounts of data to potential

†The prototype can be obtained from http://hpcclab.org/products/S3BDJars.zip

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

threat. All of the mentioned methods only offer an exact-keyword search, leaving no room for user
error through typos and cannot retrieve works related to terms in the query.

2.2. Semantic Search

Much of the work into searching semantically has been done in the context of searching the
web [17–19]. Some of these works, such as RQL by Karvounarakis [20], require users to formulate
queries using some formal language or form, which leads to very precise searching that is
inappropriate for naı̈ve or everyday users. Others [21, 22] aim for a completely user-transparent
solution where the user needs only to write a simple query with possible tags, while others still
[23, 24] aim for a hybrid approach in which the system may ask a user for clarification on the
meaning of their query.

All of these methods use some form of query modification coupled with an ontology structure
for defining related terms to achieve their semantic nature. In addition, these ontology structures
often need to be large and custom-tailored to their specific use cases or domain, making them very
domain-dependent and unadaptable to different areas. Surprisingly, few of the works in this field
offer a ranking of results, instead having the user choose from a potentially large pool of related
documents.

2.3. Semantic Search over Encrypted Data

Few works at the time of writing have combined the ideas of semantic searching and searchable
encryption. Works that attempt to provide a semantic search often only consider word similarity
instead of true semantics.

Li et al. proposed in [25] a system which could handle minor user typos through a fuzzy keyword
search. Wang et al. [26] used a similar approach to find matches for similar keywords to the user’s
query by using edit distance as a similarity metric, allowing for words with similar structures and
minor spelling differences to be matched. Amini et al. presented in [27, 28] a system for searching
for regular expressions, though this still neglects true semantics for another form of similarity.
Moataz et al. [29] used various stemming methods on terms in the index and query to provide more
general matching. Sun et al. [10] presented a system which used an indexing method over encrypted
file metadata and data mining techniques to capture semantics of queries. This approach, however,
builds a semantic network only using the documents that are given to the set and only considers
words that are likely to co-occur as semantically related, leaving out many possible synonyms or
categorically related terms.

2.4. Clustering Methods for Searching

The clustering hypothesis states that “Closely associated documents tend to be relevant to the same
requests” [30]. This idea has been expanded upon in many ways to form the body of research that
investigates document clustering and its effects in information retrieval and searching. Clustering
has largely been used in two main ways: partitioning the central index into static shards, independent
of user search queries, and clustering in a query specific manner based on the results of searches
with the query [31]. Solutions following the latter approach have the potential to outperform the
static clustering approach [32], they are largely impractical for large data sets.

The former approach has been studied extensively, especially in the domain of web searching
[12,33], but these systems still demand a high computational cost to search over big data. Relatively
few works have specifically focused on the idea of clustering the central index into shards based
on topics. This idea was pioneered by Xu and Croft [13], who showed that making shards of a
dataset’s index more homogeneous (i.e. the contents of the shards are based around the same topic)
improved the effectiveness of a system over standard distributed information retrieval. They used
the k-means clustering algorithm with a KL-divergence distance metric to create the shards, then
determine which shard should be searched by a query by estimating the likelihood that the query
would come from the shard’s language model. Liu and Croft [31] expanded upon this by using
more updated language modeling techniques to better smoothen their estimations. However, neither
of these works were appropriate for large scale data.

Kulkarni et al. [34] adapted these methods to larger scale datasets by performing the k-means
clustering on a smaller sample of the dataset, then inferring from the documents’ language models

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

5

which shard those not included in the sample would belong to. These works differ from ours
in that they are only designed to operate on plaintext datasets. Before this work, there was no
attempt to create a topic-based clustering system that would operate on secured encrypted datasets.
Additionally, these models perform clustering on documents, whereas our work is designed to
cluster terms from the documents, which was more effective given our encrypted approach.

3. ARCHITECTURE AND PROCESSES OF S3BD

S3BD has three primary architectural components: the Client Application; Cloud Processing Server;
and Cloud Storage. Within those components, the system supports three major processes, namely
uploading documents; clustering on the encrypted index; and semantic search. In this section, we
first elaborate on the architectural components of S3BD, then explain the major processes.

3.1. Overview of S3BD Architecture

Figure 1 presents an overview of the components and processes in S3BD. In this figure, Client
Application is a lightweight program hosted on the user’s device and is the only component in
the system deemed to be trusted. Cloud Processing Server and Cloud Storage are maintained by a
third party cloud provider, thus, considered “honest but curious”. Our threat model assumes cloud
components and the network channels are prone to external and internal attacks.

The components in the architecture are described as follows:

• The Client Application provides a user interface for uploading documents or to search over
them in the cloud. It is also responsible for parsing and extracting information from plaintext
documents and encrypting them before they are uploaded.
When the user requests to search, the system expands the search query with semantic data
and transforms it to the secure query set (termed as a trapdoor). The trapdoor is used for
the search process on the cloud. The user then receives a ranked list of documents that can
be downloaded and decrypted upon request. Client Application is also responsible for pre-
processing queries to enable proactive searching on a subset of big data and achieve real-time
search operation.
• The Cloud Processing Server is responsible for constructing and updating the index and other

related data structures during the upload process using encrypted data sent by the Client
Application. Once the central encrypted index is built, it is clustered into shards to make
search scalable for big data. As the clustering process is time consuming, it is performed in
an offline manner as the dataset grows.
Cloud Processing Server is also involved in the search process. It receives the user’s search
query and loads the relevant shards into memory. The shards are then searched to find and
rank relevant documents. The highly-ranked documents are retrieved from the Cloud Storage
and sent to the user.
• The Cloud Storage component is used to store the uploaded encrypted documents. Therefore,

it does not see any representation of the user’s query. Upon request by the Cloud Processing
Server, the Cloud Storage can locate the documents and provide it to the user‡.

Finally, it is important to note that each component exists per-user. That is to say, while each
Cloud Processing Server and Cloud Storage instance may exist on a single machine, components
which hold data are assumed to exist separately for each user (e.g. each law enforcement agency).
Thus, a separate central index and set of shards is held for each user. This is done to avoid bloating
search times with operations to separate different users’ files, and to avoid having users collude to
attack other users.

‡Currently, our Cloud Storage relies on a single cloud. However, the architecture can potentially utilize multiple clouds
for storage so long as the location of each document is provided.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

Figure (1). Overview of the S3BD architecture and processes. Parts within the solid-line indicate components
or processes at the user-end, deemed trusted. Parts in the dashed-line indicate those on the cloud-end, deemed

untrusted.

3.2. Upload and Parsing Process

Upon user request to upload a new document to cloud, the parsing process extracts a subset of the
terms and phrases in a document (called keywords) to represent the semantics of that document.
To preserve security, the keywords are encrypted along with the document before uploading to the
cloud. The encrypted keywords are used to create (or update) the encrypted index structure on the
cloud.

A naı̈ve approach to extract keywords is to select all terms from a document excluding stopwords.
However, previous works (e.g., [35]) show that selecting few keywords that are semantically related
to the document heavily reduces the storage overhead while still producing relevant search results.
More specifically, the advantages of extracting a subset of keywords are three-fold. First, it maintains
a low storage overhead for the central index. Second, assuming the central index is appropriately

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

7

structured (e.g., using hash tables [11]), it makes the time complexity of updating the index with
new documents nearly constant [11]. Third, it increases the security of the central index by exposing
fewer keywords to the external world. Thus, we use a key phrase extractor algorithm [36] to extract
a number of keywords that represent the document’s semantics. The composite (i.e., multi-phrase)
extracted keywords are split into individual distinct terms. This ensures that the central index
contains encrypted versions of both the composite keyword and its components.

Once keywords for a document are extracted, the frequency of their occurrences within
the document is collected. Then, the extracted keywords are deterministically encrypted [37].
Deterministic encryption is a method that always transforms a value (keyword) into the same
encrypted token, similar to hashing. In our implementation, we use the RSA deterministic
encryption algorithm [38] for this. Individual users who want to search the same dataset (e.g. law
enforcement officers in a single agency) share RSA key pairs.

We use this method for the central index structure to allow for matching to encrypted query
terms in the index, an integral part of the search process. It is worth noting that the frequency of
keywords are maintained in plaintext in the central index. The use of homomorphic encryption [39]
on the frequency data was considered, but the system needs to perform many operations on them
and current implementations of fully homomorphic cryptosystems are too slow [40] to achieve our
desired real-time response rate. Finally, the extracted keywords and their frequencies are integrated
in a key file before uploaded to the cloud.

When the encrypted document and key file are received by the cloud server, the document is sent
to the cloud storage block, while the key file information is added to the index. The cental index is
stored as a mapping of encrypted terms to document IDs and the frequency at which they appeared
in those documents.

3.3. Topic-based Clustering Process

S3BD alleviates the search over the central encrypted index by clustering its terms into semantically
related shards. In this research, we term this process as topic-based clustering. The challenge
is how to perform this type of clustering on the encrypted terms, because their meaning is lost
due to encryption. One approach to overcome this challenge is to cluster terms based on their
co-occurrences in documents, known as statistical semantics. To achieve this, we adapt k-means
clustering algorithm [41] to cluster encrypted data at the keyword level.

K-means clustering algorithm allows us to cluster terms as long as the distance between two terms
can be formulated. Distance between two keywords is defined as the semantic relatedness between
them [13]. To adapt k-means for the encrypted data, we need to define the two main operations,
namely picking initial means (also known as centroids) of clusters; and computing distance between
the encrypted terms. These operations are discussed in the next subsections.

Once the clusters are built, they are used against search queries. To make the search scalable
for big data, we define pruning as to proactively search clusters that are semantically relevant to
the query (i.e., pruning irrelevant clusters). However, because the clusters are encrypted and the
semantics are lost, the pruning cannot be achieved on the cloud. For that purpose, in this section, we
also develop a method, termed abstraction, to sample the clusters into small abstracts that can be
sent to and decrypted on the client-end. Upon search request, the abstracts are used on the client-end
to prune the cluster and determine which clusters to be searched on the cloud.

3.3.1. Initializing Centroids The first step to partition the central index into clusters with the K-
Means clustering algorithm is to pick initial shard centers (also known as centroids) to form the
shards around them. A centroid is an entry in the central index which is essentially an encrypted
keyword plus the list of documents it appears in.

For effective search pruning, the shards should be distributed as evenly as possible, while
maintaining semantic relationship. For that purpose, the centroids should represent diverse sections
of the dataset. In fact, the initialization of centroids significantly impacts the resulting shards.

A naı̈ve method for initializing centroids is to simply pick a number of centroids equal to the
number of desired shards (k) randomly from the central index. This method can potentially result in
keywords with very few associated documents being chosen as centroids. Because the co-occurance
of keywords and centroids in documents determines the distance between them, the naı̈ve method
can potentially lead to formation of small shards (i.e., shards with few elements).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

To avoid creating small shards (and uneven clustering), we propose a second method that ensures
centroids have enough associated documents to attract other keywords. Our method for initializing
centroids is to sort the keywords in the central index based on the number of their associated files,
then choose the top k terms as centroids. This ensures that keywords with low association are
not chosen. However, this method can potentially lead to picking centroids with a high overlap of
associated documents that can again cause uneven distribution of shards. Thus, ensuring centroids
have a diverse set of associated documents is prioritized.

The method we develop for choosing centroids operates on the sorted index and nominate
keywords from the beginning that do not overlap, in their associated documents, with previously
nominated keywords. The algorithm to build centroids is mentioned in Algorithm 1. The algorithm
receives the number of clusters, denoted k, and the sorted central index structure as input parameters
and determines the set of centroids and their associated documents, denoted U , as output.

Algorithm 1: Nominating Keywords as Centroids
Input : k and central index (with terms sorted by number of associated files)
Output: centroids and U

1 Procedure NominateCentroids(k)
2 U ← /0

3 centroids← /0

4 foreach ω ∈ central index do
5 Ωω← MeasureUniqueness(ω)
6 if Ωω ≥ 1 then
7 // Nominate keyword to be a centroid
8 centroids.add(ω)
9 U ←U ∪ Iω

10 end
11 if centroids.count ≥ k then
12 return centroids
13 return U
14 end
15 end
16 Procedure MeasureUniqueness(ω)
17 unique← 0
18 duplicate← 0
19 foreach documentID ∈ Iω do
20 if documentID ∈U then
21 duplicate← duplicate+1
22 end
23 else
24 unique← unique+1
25 end
26 end
27 if duplicate > 0 then
28 Ωω← unique÷duplicate
29 end
30 else
31 Ωω← 0
32 end
33 return Ωω

For each keyword in the central index, we need to measure its uniqueness (Line 5 in Algorithm 1).
For that purpose, we develop a method to measure uniqueness of a given keyword in the index
structure (see Lines 16 to 33). Let ω a keyword and Iω the set of documents associated with ω in

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

9

the central index. Also, let U the set of documents current centroids have appeared in. Then, we
define uniqueness, denoted Ωω, based on Equation 1. Uniqueness is also calculated in Line 28 of
Algorithm 1.

Ωω =
|Iω \U |
|Iω∩U |

(1)

In order to choose ω as a centroid, the number of documents unique to Iω must be more than the
number of documents in the intersection of Iω and U (i.e., Ωω ≥ 1, as indicated in Line 6). Upon
choosing a keyword to be a centroid, the keyword and its associated documents are added to the set
of current centroids (Lines 8 and 9 in Algorithm 1).

3.3.2. Computing Distance between a Keyword and a Centroid Once k centroids are chosen, the
distance from centroids to keywords in the central index needs to be calculated. With plaintext
data, calculating distance is possible using techniques such as semantic graph [31]. However, this
technique is impossible when encrypted data are used.

The clustering hypothesis states that keywords (also called terms) which co-occur (e.g., in a
document) can be considered related [30]. This can be obtained even when terms are encrypted.
Accordingly, we consider the co-occurrence of terms in a document as a reasonable metric for their
similarity. That is, if two terms appear in the same document, they are considered related.

Recall that IT denotes the list of documents associated with term T in the central index. Also, let
θ(T, f) number of times (i.e., frequency) term T appears in document f . We define the contribution
of file f to term T , denoted κ(f ,T), as the ratio of θ(T, f) to the total number of times term T
appears in the dataset (i.e., frequency count of term T). Equation 2 shows the formal representation
of contribution for file f .

κ(f ,T) =
θ(T, f)

∑
j∈IT

θ(T, j)
(2)

Let γi be centroid of cluster i. We define contribution of term T and file f to cluster i (denoted
K(T, f ,γi)) as the ratio of sum of the frequency of T in file f and in γi to the sum of frequency count
of T and γi. Equation 3 shows the formal definition of K(T, f ,γi).

K(T, f ,γi) =
θ(T, f)+θ(γi, f)

∑
j∈IT

θ(T, j)+ ∑
p∈Iγi

θ(γi, p)
(3)

Then, we define cooccurence of term T and γi through file f , denoted ρ(T,γi, f), as the ratio of
κ(f ,T) to K(T, f ,γi). Equation 4 shows the formal definition of cooccurence.

ρ(T,γi, f) =
κ(f ,T)

K(T, f ,γi)
(4)

To represent the similarity between term T and centroid γi, we compute the distance, denoted
d(γi,T), based on Equation 5. In this equation, we iterate through the list of documents that are
associated with the term. For each document, we consider the contribution of that document to
term T and the cooccurence of T and γi through f . We use logarithm to limit the impact of the
cooccurence factor.

d(γi,T) = ∑
f∈IT

κ(f ,T)· log10 (ρ(T,γi, f)) (5)

3.3.3. Evening Shards Sizes Once the similarity between each centroid and each term is computed,
terms can be distributed to their proper shards. An initial approach for distribution is to assign
each term to the shard with the centroid that the term has the maximum similarity with. This
approach, however, can potentially lead to uneven shard distribution and subsequently inefficient
search pruning.

To avoid uneven clustering, we limit the growth of each shard so that it can only hold up to a
certain amount of its closest terms. Ideally, all clusters should end with an equal size of |I|k in which

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

|I| is the total number of terms in the central index. Accordingly, we constrain the growth of each
shard to α·|I|

k . Parameter α is determined to be greater than 1 (i.e., α > 1) to cover the dynamism
of a natural language but does not allow a shard (i.e., topic) to dominate the clustering. In our
implementation, we considered α = 2.

In a circumstance that a shard reaches its threshold, we disassociate the furthest term from the
shard’s centroid. Then, we assign it to the closest shard that has not yet reached to its threshold.

Once the shards are initialized with the terms, based on the afore-mentioned approach, we
iteratively reorganize them to produce shards that are more centered around a topic. We define
the average term of shard π as the closest term to the average distance of all terms from the current
centroid of shard π. In each iteration, the clustering process of S3BD calculates the average term in
each shard, chooses it as the new centroid, and forms a new shard around it.

Ideally, the iteration would continue until the shards’ composition stabilizes. That is, when there
is no alteration of terms during an iteration. However, in practice, as the iterative clustering is a
computationally expensive operation, we limit the iterations until shards are minimally altered. In
our implementation, we realized that we generally reach to the stable state in five iterations.

3.3.4. Shard Abstraction Because the shards on the cloud processing server are all encrypted, it
is impractical to identify shards related to search query and perform pruning on the cloud. Thus,
we need a method to identify appropriate shards to search over, for a given user query. We propose
abstracting the shards into tiny unencrypted samples that are processed on the client premises. These
abstracts are used against search queries to navigate search to only shards contain relevant search
results.

As a centroid shows centrality of a shard, it is more indicative of the shard’s general topic, hence,
can be used to form the abstract. However, each centroid is only a list of documents and cannot
directly be used in abstracts. Therefore, the system chooses terms from the documents associated
with a centroid to build that shard’s abstract. In particular, it chooses the most frequent term from
each associated document of a centroid.

Each abstract, which is a small set of encrypted terms, is sent to the client machine. The abstracts
are decrypted on the client machine and compared to the search query terms through a semantic
similarity metric [42]. Although abstracts are small, using semantic similarity of search query to
abstract terms enable identifying most relevant shards. Then, the search query is only compared
against those identified shards in the cloud.

3.4. Search Process

The search process consists of three main phases: abstract comparison; query modification; and
searching and ranking. The Client Application is responsible for the first two phases, while the
third happens on the Cloud Processing Server.

In summary, S3BD first performs pruning by comparing the query against the abstracts to
determine the shards that need to be searched. This information is then sent to the Cloud Processing
Server to load the appropriate shards into the memory as soon as possible. Meanwhile, the client
application semantically expands and the search query, encrypts it, and sends it to the cloud
processing server.

Once the Cloud Processing Server has all of the necessary information, it finds and then ranks
relevant documents from the shards specified in the abstract comparison phase. The result list is
then sent back to the user. The document selected by the user is downloaded and decrypted on the
client machine.

3.4.1. Comparing Queries Against Abstracts As the terms in the abstracts are semantically linked
to the topics in corresponding shards, comparing the query to the abstracts let S3BD detect which
shards are appropriate to search. This comparison is carried out, in the first phase of search,
by obtaining semantic distance of the terms in the query to the terms in the abstracts using
the WuPalmer word similarity metric [42]. For this purpose, WuPalmer computes the semantic
similarity between two words by evaluating the distance from one word to the other in a large
semantic graph, returning a normalized value between 0 and 1.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

11

Using WuPalmer to compare the query against all abstracts allows the system to rank the abstracts
based on relevance to the query. As the abstracts represent the shards, the ranking can identify
relevant shards to be searched.

The number of shards chosen determines the trade-off between search time overhead and search
comprehensiveness that can be decided based the user discretion. In fact, choosing a higher number
of shards consumes more memory and increases the search time, conversely, a low number of shards
ignores searching less relevant parts of the dataset that can include desirable results.

Once a sufficient number of shards have been chosen, the cloud processing server is notified
and begins loading those shards into memory. The loading time is overlapped with the Query
Modification step (explained in the next section) at the client end.

3.4.2. Query Modification Query modification is meant to inject semantic information into the
query. This phase starts with the user entering a plaintext query, denoted as q, into the Client
Application, after which it goes through three steps: query parsing, semantic expansion, and
weighting. These steps result in forming a query set, hereafter noted as Q.

The goal of query parsing is to refine the search query and split it into smaller tokens or sub-
phrases. To refine q, we first remove all stop words [43] (e.g., articles and prepositions). If the
query is multi-phrase, we then split it into parts. The reason for splitting is twofold. First, because
some documents may partially match with the query. Second, because portions of a query cannot
be derived from the encrypted query. Hence, we split q and create all tokens and sub-phrases of it
before encryption. Once this step is complete, Q consists of q, its split parts, and its sub-phrases.

The goal of semantic expansion is to add terms related to the query into the query set, thus,
enabling S3BD to search for semantically related results. In order to achieve this, S3BD injects
semantic data extracted from an ontological network [44].

One approach to extract semantic data is to perform a synonym lookup (e.g., through an online
thesaurus) for each member of Q (termed Qi) and add the results to Q. However, this approach
alone does not produce concepts that are semantically related to the user’s query, but are not
synonymous. To cope with this problem, S3BD needs to pull related terms from conceptual
ontological networks [44].

For the development of S3BD, the elements of Q are used to pull entries from Wikipedia, as
an instance of an onthological network. Keyphrase extraction is performed on the entries to get
conceptually related terms and phrases, which are added to Q.

In the search results, documents that include phrases exactly matching query terms are deemed
more relevant. For that purpose, in the weighting step, we assign weights, ranging from 0 to 1, to
the elements of Q as follows:

• As the documents that include the whole originial query have top priority, we assign the
maximum weight of 1 to q.
• Documents that include parts of the query (i.e., Qi) are more relevant than those including

terms derived from the query. As such, we assign 1/n weight to results of the query parsing
where n is the number of parts in the search query.
• Documents including related terms derived from the query have the lowest relevance.

Accordingly, the related terms obtained for each Qi should be assigned the lowest weight.
Let W (Qi) be the weight of Qi. Then, terms derived from Qi are weighted as W (Qi)/m where
m is the number of derived terms from Qi.

3.4.3. Searching and Ranking Once the query set Q is built, its elements are deterministically
encrypted [37] to create the trapdoor Q′. The trapdoor is then sent to cloud processing server to
perform the search and ranking of the result set. On the cloud processing server, each element of Q′
is checked against a union of the loaded shards, denoted Π, to compile a collection of documents,
denoted C, that are potentially related to the query. Once C is compiled, the documents are ranked
and then sent to the user.

The search operation has to be agnostic about semantics of the query and the dataset. Okapi
BM25 [45] is a search and ranking algorithm for unencrypted data that functions in the meta-
data level and provides the required data agnosticism. Okapi BM25 operates based on the list of
keywords provided to it. However, it cannot differentiate between elements of the query set (Q′).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

We extend the idea of Okapi BM25 to include encrypted data and to consider the weighting of
elements in Q′.

Based on Okapi BM25, a document’s rank for a given query is considered to be a function of the
following three factors:

A. frequency of query term Qi in document di, denoted f (Qi,di). In S3BD, f (Qi,di) can be
obtained by looking up the encrypted query element Q′i in Π.

B. Inverse Document Frequency (IDF) of query term Qi across collection of documents (C).
Let N be the total number of documents in C, and n(Qi) be the total number of documents
containing Qi. Then, Equation 6 defines the IDF for Qi.

IDF(Qi) = log
N−n(Qi)+0.5

n(Qi)+0.5
(6)

In Π, we keep the frequency of each term in each document. Therefore, n(Qi) can be obtained
by summing up all the frequencies of Q′i in Π.

C. Document Length Normalization (DLN) that removes the effect disparity in documents’
length. Let δ be the average length of all documents in C, and β be a parameter that determines
the impact of the DLN factor. Equation 7 formally defines DLN for di. In this work, we
considered β = 0.75.

DLN(di) = (1−β+β· |di|
δ

) (7)

In S3BD, we maintain the length of uploaded documents. As such, we can obtain δ and |di| to
calculate DLN for di.

A rank is defined as the sum of scores given by each Qi. To consider the weighting scheme of Q in
ranking, each score is adjusted by considering the weight of Qi (denoted W (Qi)). Equation 8 shows
the formal representation of rank of document di for query set Q (denoted r(di,Q)). In this equation,
al pha is a parameter that determines the impact of the frequency factor. Our initial experiments
show that α = 1.2 provides an accurate ranking, thus, we use this value in our implementation.

r(di,Q) =
n

∑
i=1

IDF(Qi)·
f (Qi,di)·(α+1)

f (Qi,di)+α·DLN(di)
·W (Qi) (8)

The cloud processing server computes Equation 8 for all encrypted documents in the collection C
against Q′. To exploit parallelism implicit in the cloud system, C can potentially be compiled using
a mapreduce approach, mapping each shard to a separate process, spreading Π across multiple
machines. Because individual documents can be represented across multiple shards, an additional
process would need to combine the scores accumulated from different processes for each document.
Once C is compiled, its members are ranked in descending order, and a list of document identifiers
are sent to the client to be picked.

4. SECURITY ANALYSIS

S3BD provides a trustworthy architecture for storing confidential information securely in clouds
while maintaining the ability to search over them. Our threat model can be defined as follows.
Our system architecture is divided into three major components that live either in the cloud or on
the user’s machine (as seen in Figure 1). Only components and processes that exist on the user’s
machine (i.e. the Client Application) are considered to be trusted, meaning we can store and access
plaintext data there. Keeping the user’s machine trusted is a reasonable assumption in the real world,
as it can be kept with minimal exposure to outside attackers.

Components in the cloud are considered untrusted and susceptible to adversaries. We consider
these attackers to be either external (i.e. an unaffiliated party who wishes to learn about the dataset)
or internal (i.e. a party with access to the cloud who wishes to see the unencrypted dataset).
Our threat model assumes that these adversaries may intend to attack the communication streams
between the Client Application and Cloud Processing Server, and between Cloud Processing Server

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

13

and Cloud Storage, as well as the cloud machines themselves. To explain exactly what threats the
attackers pose to the encrypted data, we introduce the following definitions:

History: For a multi-phrase query q on a collection of documents C, a history Hq is defined as the
tuple (C,q). In other words, this is a history of searches and interactions between client and cloud
server.

View: The view is whatever the cloud can actually see during any given interaction between client
and server. For our system, this includes the encrypted index and all shards I over the collection C,
the trapdoor of the search query terms (including its semantic expansion) Q′, the number and length
of the files, and the collection of encrypted documents C′. Let V (Hq) be this view.

Trace: The trace is the precise information leaked about Hq. For S3BD, this includes file identifiers
associated with the search results of the trapdoor Q′ and unencrypted weight information from Q′.
It is our goal to allow the attacker to infer as little information about Hq as possible.

Because our threat model assumes a secure user machine, the View and Trace encompass all that
the attacker would be able to see. For encryption on the plaintext documents being searched, we use
a probabilistic encryption model, considered to be the most secure form of encryption [37]. Hence
we can infer that, because probabilistic encryption does not use a one-to-one mapping, C′ is not
susceptible to dictionary-based attacks [46], and secure so long as the attacker can not access the
keys (stored only on the user’s machine).

I, in the View, only shows a mapping of a single deterministically encrypted term or phrase to
a set of file identifiers with frequencies, meaning a distribution of encrypted terms to files could
be compiled, but minimal data could be gained from the construction. Similarly, Q′ only shows a
listing of encrypted search terms with weights.

The addition of the weights to Q′ could potentially enable the attacker to infer which terms in
the trapdoor were part of the original query. Even in this case, the attacker can at most get the
deterministically encrypted query. Additionally, the expansion of the query to include semantic data
adds noise that can mislead attackers from the original user query.

However, we must consider the small possibility that, if the attacker is able to obtain the keys used
for deterministic encryption from the user’s side, they could in theory build a dictionary of all words
in the vocabulary V that the documents are comprised of, mapped to their encrypted counterparts,
and reconstruct I in plaintext. In this scenario, the attacker could put together the terms that the
documents are comprised of, but since I carries no sense of term order, they could not reconstruct
the entire file. Additionally, only a small portion of important terms and phrases from each document
are given, meaning the attacker would only be able to ascertain how many times those specific terms
and phrases were in the document.

An attacker monitoring the process during a search could see the resultant file identifiers that are
associated with the given Q′. This would show an encrypted history as (C′,Q′). However, since the
attacker would not be able to discern the query (without the use of the above dictionary), this data
would be of little use.

Attackers could also potentially attempt to alter data in C′. These attacks, however, could be
recognized as the Client Application would not be able to decrypt them.

5. EVALUATION

5.1. Experimental Setup

We have implemented a prototype of S3BD which is available to the general public§. The
implementation has been the platform for all experiments in this research. All experiments were
carried out on Amazon EC2 cloud Virtual Machines (VMs). We ran both client application and
cloud processing server on separate Amazon EC2 VM instances. In particular, we used m4.xlarge
VM instance type to host client application and i2.xlarge VM instance type to host cloud processing
server.

§A binary of S3BD can be downloaded from http://hpcclab.org/products/S3BDJars.zip

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://hpcclab.org/products/S3BDJars.zip

14

We evaluate two major aspects of S3BD, namely its performance and its accuracy. Performance
specifically refers to the amount of time it takes to perform a search, while accuracy refers to the
relevance of its search results.

To evaluate the performance of S3BD with big data, we tested it utilizing portions of the Common
Crawl Corpus dataset [47] from Amazon Web Services. The dataset consists of approximately 151
terabytes of text data obtained from an extensive web crawl. We parsed files within the dataset to
create sample subsets (termed samples) of varying sizes. Each file in the dataset includes text from
multiple web pages, hence, we split those files to create a document for each web page. To generate
each sample, we randomly choose files until we reach the desired size for the sample.

We evaluate performance of S3BD by analyzing the time to search over varying numbers of
shards in the cloud. The results of this evaluation helps us determining the appropriate number of
shards to create.

Once we determine the appropriate number of shards, we compare the search time of
S3BD against that of our previous work (S3C) [35], as a baseline. S3C performs a similar style
of semantic search without use of clustering and pruning. To assure that the performance results for
S3BD is not affected by the temporal performance variations of cloud VMs, we run each query 20
times and report the mean and 95% confidence interval of the results.

To evaluate the relevance of S3BD, we evaluated it using the Request For Comments (RFC)
dataset [48]. RFC is a collection of 6298 documents (247 MB) regarding notes on Internet
development topics. The reason we choose RFC dataset is that it is domain-specific and small
enough to manually verify accuracy of search results. We compare the results of S3BD to the
baseline (S3C) and to a version of S3C that operates on non-encrypted data [35].

In addition to these two major aspects, we analyze the storage overhead incurred by storing the
central index on the Cloud Processing Server. To that end we show the size of the central index as
the dataset increases in size.

It is noteworthy that, as we use two different datasets for our evaluations, we generate two
different sets of benchmark queries based on the nature of the datasets. The benchmarks are
explained in the respective subsection for each experiment.

5.2. Evaluating Performance of S3BD

5.2.1. Benchmark Queries to Evaluate Performance Perfrormance evaluations are carried out
based on 10 benchmark search queries, shown in Figure 2. Queries were chosen after manual
analysis of the samples and determining topics of their documents. It is noteworthy that the wording
of the benchmark queries does not impact the performance of the system.

Government News Report
Social Media Feed
Encryption in Cloud Server
City Travel Blog
Online Shopping Network
Free Recipe Index
Online Weather Service
Celebrity Fashion Catalog
Academic Conference Papers
Sports Broadcasting Network

Figure (2). Benchmark queries used for evaluating search
performance on the Common Crawl Corpus dataset.

5.2.2. Finding the Appropriate Number of Shards The challenge in S3BD is how to determine the
number of shards that should be created to provide the best trade-off between search performance
and search accuracy. In fact, creating a lower number of shards potentially implies higher search
accuracy, because each shard covers a larger subset of the dataset. However, searching a larger
portion of the dataset lowers the performance, because less of the dataset is pruned. On the other
hand, creating a high number of shards does the inverse. That is, it improves search performance
but potentially lowers accuracy.

To handle the trade-off between the search performance and the search accuracy, in this
experiment, we utilize the idea of Pareto front analysis [49] to understand the relation between

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

15

Figure (3). Time taken to search over the union of chosen shards (Π) on the cloud. The horizontal axis shows
the number of shards the dataset sample is partitioned into and the vertical axis shows the average search
time (in milliseconds). The search time includes time to find documents in Π that match the trapdoor (Q′)

and rank them. Each data point is the average of searching each benchmark query 20 times.

these factors and find the number of shards that satisfies both objectives at the same time. For that
purpose, we compare the performance, in terms of cloud search time, across different numbers of
shards, representing accuracy.

The result of the experiment is shown in Figure 3. The vertical axis, in this figure shows the time
taken to search on the cloud and the horizontal axis shows the various numbers of shards created.
To assure that our analysis is comprehensive and is not bound to a certain dataset size, we conduct
the experiment with samples of different sizes — from 50 GB to 200 GB.

As we can see in Figure 3, the time to search decreases as more shards are formed. Important to
note is that declines in search time cease being substantial for 100, 150, and 200 GB past 30 shards.
On the other hand, creating fewer shards yields remarkably high search times for larger datasets. As
this pattern is consistently observed for samples of different sizes, we can conclude that partitioning
datasets into 30 shards provides an ideal trade-off between search performance and accuracy of
S3BD.

5.2.3. Shard Distribution and Variance Interestingly, the search time does not strictly decrease as
more shards are formed. This can be seen primarily in the spike in search time for the 150 and 200
GB samples with 60 shards. Our analysis shows that this is attributed to uneven shard distribution. In
fact, the size of a shard plays an important role in determining its search time. For a given query, the
system can potentially determine to search among the smallest shards, when few shards are created.
Inversely, for the same query with more shards created, it is possible to search among the largest
shards, despite the fact that the average shard size is smaller.

We thus determine that maintaining consistent cluster sizes (low variance) is important for
maintaining consistent search performance and accuracy. With S3BD, we introduce a method for
controlling cluster size variance through diversifying cluster centroids and enforcing a maximum
cluster size. To measure the effects of this, we analyze the variance in cluster sizes produced by the
clustering algorithm with and without this cluster control. Results are seen in Figure 5. The Vertical
axis of the figure shows the variance in the sizes of the shards, while the horizontal axis shows the
number of shards created.

In the figure, we observe that the variance in the non-controlled clusters is substantially greater
than that in the controlled clusters. We can thus infer that, while our control measures leave some
variance in cluster sizes, it will lead to more consistent search performance and accuracy.

To further show the relation between search time and the size of searched shards (i.e., number of
terms in the shard), we analyzed the number of terms in the shards chosen to be searched, during

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16

Figure (4). The average number of terms (i.e., size of) the searched shards (Π). The horizontal axis shows
the number of shards the dataset sample is partitioned into. The vertical axis shows the average number of

terms of the searched shards.

Figure (5). The variance in cluster sizes for controlled and non-controlled clustering. The vertical axis
shows the variance, with cluster size measured in the number of documents represented in the cluster. The

horizontal axis shows the size of the dataset.

performance evaluations, in Figure 4. Vertical axis of the figure shows the average number of terms
in a searched shard, and horizontal axis shows the number of shards created. The rest of setup for
this experiment is the same as those for Figure 3.

By comparing the two figures, we observe that the number of terms in shards is correlated with
the respective search times; both follow similar patterns. In addition, Figure 4 shows that creating
more shards does not necessarily impact the average number of terms in searched shards nor does
it improve search times. These justifications support our conclusion that 30 shards is an appropriate
number of shards to be created in S3BD.

5.2.4. Performance Comparison of S3BD Versus S3C To show improvements in search time, we
compare the search times of S3BD against S3C, the earlier work in the literature. In this experiment,
we first compare the components of the overall search time (query modification time and cloud
search time) between the two systems using a dataset size of 50 GB. We then compare the cloud

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

17

Figure (6). Detailed comparison of the performance of search components in S3BD versus S3C. In this
experiment, the dataset sample is 50 GB, clustered into 30 shards in S3BD. Query Time refers to time
for query modification; Cloud Search Time is the times to perform searching and ranking; Search Time is
the collective time to search. The vertical axis shows the amount of time taken (in milliseconds) for the

corresponding component.

Figure (7). Comparison of the performance of S3C and S3BD across different dataset sizes. Each bar
represents a different dataset size, and the vertical axis represents the time taken (in milliseconds) to perform

searching and ranking on the cloud.

search time for both systems across various dataset sizes. In accordance with the conclusion of
previous experiment, we configured S3BD to cluster the sample into 30 shards.

Figure 6 shows the overall search time as well as the time of the two major actions involved in
the search, namely query modification and searching and ranking on the cloud. According to the
figure, the total search time of S3BD is 20% less than S3C. While query modification time is not
significantly different, the figure expresses that the difference is due to cloud search time, which is
77% less for S3BD.

Figure 7 shows time taken to search and rank on the cloud for the different systems using
increasing dataset sizes. As shown by the figure, the search time increases at a higher rate for S3C
than S3BD. Additionally, all search times for S3BD are substantially lower than S3C, with time for
200 GB of data at ∼95% less for S3BD. Because of this, S3BD shows more promise for scalability
to larger dataset sizes.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18

Figure (8). The size of the central index as the dataset increases in size. The horizontal axis plots the size
of the dataset used in gigabytes, while the vertical axis plots the associated index size in megabytes. Data

points are taken at 25 gigabyte intervals between 50 and 200 gigabytes.

5.3. Evaluating Overhead of S3BD

As the size of the dataset grows, it is important for the utility information created by the Cloud
Processing Server (the central Index) to be as small as possible, so as not to increase already large
storage requirements. To demonstrate the space-efficiency of S3BD, we show the size of the central
index as the size of the dataset increases (seen in Figure 8).

The size of the index is shown to increase in a strictly linear fashion, with a linear regression
analysis showing a strong positive correlation with a coefficient of r = 0.99. The central index is on
average ∼0.27% the size of the dataset, adding very little to storage requirements. This small size
can be attributed to S3BD’s method for extracting only a small number of key phrases from each
document.

5.4. Evaluating Accuracy of S3BD

5.4.1. Benchmark Queries to Evaluate Accuracy We derived a set of benchmark queries based on
the information present in the RFC dataset. For testing accuracy, we consider two major categories
of queries which a user may desire to search. In the first category, we consider a user who already
knows which document they are looking for, but may not remember where the document is located
in their cloud system or may not want to look through a large number of files to find it. Such queries
are typically specific and only a small number of documents should directly pertain to them. An
accurate search system is expected to bring up these most desired documents first.

In the second category, we consider a user who wants to find all of the documents related to
an idea. For instance, considering our motivational case, the law enforcement officer searching for
similar crimes. Such queries would be broad with many possible related documents, and an accurate
search system is expected to bring up the most relevant ones first.

5.4.2. Metric for Evaluating Accuracy We define accuracy as how relevant the returned results are
to the user’s query, and how closely they meet user expectations. We describe accuracy in terms of
the TREC-Style Average Precision (TSAP) method described by Mariappan et al. [50]. This method
is a modification of the precision-recall method commonly used for judging text retrieval systems.
It is defined as follows:

Score =
∑

N
i=0 ri

N
(9)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

19

Category 1 - Specific:
IBM Research Report (IRR)
Licklider Transmission Protocol (LTP)
Multicast Listener Discovery Protocol (MLDP)
Category 2 - Broad:
Internet Engineering (IE)
Transmission Control Protocol (TCP)
Cloud Computing (CC)
Encryption (EN)
Figure (9). Queries used for evaluating relevance. Queries
in Category 1 target a small set of specific, known
documents within the collection, while queries in Category
2 target a broad set of documents, not necessarily known to

the user.

Figure (10). TSAP@10 score for specified queries for S3BD , S3C, and a baseline system. For a given
query, once the systems return a ranked list of results, a score is computed based on the human-determined

relevance to each file.

Where i is the rank of the document determined by the system and N is the cutoff number (10 in
our case, hence the term TSAP@10). ri takes three different values:

• ri = 1/i if the document is highly relevant
• ri = 1/2i if the document is somewhat relevant
• ri = 0 if the document is irrelevant

This allows for systems to be given a comparative score against other schemes in a relatively fast
manner, without the need for knowledge of the entire dataset.

5.4.3. Results of Evaluating Accuracy Figure 10 shows the TSAP scores (vertical axis) for different
benchmark queries (abbreviated in the horizontal axis). For each benchmark query, we compare the
relevance score of S3BD compared to the scores of S3C and a baseline standard approach. In the
baseline system, a simpler document representation is used (without keyword extraction) query
modification is simpler, and there is no topic clustering, while the same Okapi search algorithm is
used.

While S3BD might intuitively seem to suffer in accuracy due to lower document representation
within the shards, the figure expresses that is not the case. The relevance of the results obtained from
S3BD, for most of them benchmark queries, are either the same or similar to those of S3C and the
baseline. When compared to the less efficient baseline, S3BD provides better results for four of the
benchmark queries. When compared to S3C, the relevance of S3BD is only lower in two benchmark

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20

queries, namely Cloud Computing and Internet Engineering. As a matter of fact, both of these
benchmark queries are in the broad category. In the contrary, we observe that benchmark queries in
the specific category have almost identical relevance in both systems.

We can infer that S3BD provides higher accuracy with specific queries. The reason is that
S3BD can find shards for specific terms in the queries more accurately, in comparison to broad (i.e.,
general) terms. In fact, for broad terms it is possible that pruning leads us to search less relevant
shards. It is an interesting future research avenue to recognize broad terms and apply less aggressive
pruning for them.

6. CONCLUSION

In this research, we developed S3BD, a system to perform a secure semantic search over encrypted
big data in the cloud. S3BD achieves real-time search ability on big data through pruning irrelevant
portions of the dataset at search time. S3BD is comprised of three major architectural components,
namely client application, cloud processing server, and cloud storage. After parsing and uploading
documents, the cloud processing server clusters a central encrypted index into smaller, topic-based
shards. At search time, client application compares the user’s query to abstracted versions of those
shards to determine the appropriate shards to be searched. S3BD ontologically expands the user’s
search query to achieves semantic search ability.

We performed analyses on S3BD’s performance and search accuracy using a working prototype.
We analyzed the number of created shards to strike a trade-off between search performance
and accuracy. Comparison of S3BD against similar works in the literature demonstrated that
S3BDimproves the search performance on the cloud by approximately 77% without compromising
accuracy.

There are several avenues of research to extend S3BD. One interesting avenue is to determine
the number of shards to be searched based on the broadness of the user’s query. Another avenue
is to dynamically determine the number of shards based on the dataset characteristics, e.g., size.
Adapting the S3BD architecture based on the edge computing model can be explored to improve
the efficacy of the search.

AVAILABILITY

Distributable .jars of the S3BD core, as well as running instructions, are available at http:
//hpcclab.org/products/S3BDJars.zip.

A preliminary version of S3BD with web interface for demonstration purposes is available at
https://teaching.cmix.louisiana.edu/˜c00408440/S3C/S3Client/home.php.

ACKNOWLEDGMENTS

We would like to acknowledge anonymous reviewers of the manuscript. This research was supported
by the Louisiana Board of Regents under grant number LEQSF(2017-20)-RD-B-06, and Perceptive
Intelligence, LLC. Preliminary version of portions of this material were presented at the IEEE Big
Data 2016 [35].

REFERENCES

1. S. M. Zobaed, M. A. Salehi, Big Data in the Cloud, Springer International Publishing, 2018, pp. 1–8.
2. J. Hoppermann, L. Herbert, Software-as-a-service in banking, Tech. rep., Forrester.
3. M. Javanmard, M. A. Salehi, S. Zonouz, Tsc: Trustworthy and scalable cytometry, in: Proceedings of the 7th IEEE

International Symposium on Cyberspace Safety and Security, 2015, pp. 1356–1360.
4. R. Fathi, M. A. Salehi, E. L. Leiss, User-friendly and secure architecture (ufsa) for authentication of cloud services,

in: Proceedings of the 8th IEEE International Conference on Cloud Computing, 2015, pp. 516–523.
5. K. Gai, M. Qiu, Z. Xiong, M. Liu, Privacy-preserving multi-channel communication in edge-of-things, Future

Generation Computer Systems 85 (2018) 190 – 200.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://hpcclab.org/products/S3BDJars.zip
http://hpcclab.org/products/S3BDJars.zip
https://teaching.cmix.louisiana.edu/~c00408440/S3C/S3Client/home.php

21

6. K. Gai, M. Qiu, Z. Ming, H. Zhao, L. Qiu, Spoofing-jamming attack strategy using optimal power distributions in
wireless smart grid networks, IEEE Transactions on Smart Grid 8 (5) (2017) 2431–2439.

7. S. Subashini, V. Kavitha, A survey on security issues in service delivery models of cloud computing, Journal of
Network and Computer Applications 34 (1) (2011) 1 – 11.

8. D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data, in: Proceedings of the 17th
IEEE symposium on Security and Privacy, 2000, pp. 44–55.

9. N. Cao, C. Wang, M. Li, K. Ren, W. Lou, Privacy-preserving multi-keyword ranked search over encrypted cloud
data, IEEE Transactions on Parallel and Distributed Systems 25 (1) (2014) 222–233.

10. X. Sun, Y. Zhu, Z. Xia, L. Chen, Privacy preserving keyword based semantic search over encrypted cloud data,
International Journal of Security and Its Applications 8 (3).

11. R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption: improved definitions and
efficient constructions, Journal of Computer Security 19 (5) (2011) 895–934.

12. L. A. Barroso, J. Dean, U. Holzle, Web search for a planet: The google cluster architecture, IEEE Micro 23 (2)
(2003) 22–28.

13. J. Xu, W. B. Croft, Cluster-based language models for distributed retrieval, in: Proceedings of the 22nd International
ACM Conference on Research and Development in Information Retrieval, SIGIR ’99, 1999, pp. 254–261.

14. D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with keyword search, in: Advances
in Cryptology – Eurocrypt ’04, 2004, pp. 506–522.

15. E.-J. Goh, et al., Secure indexes, Cryptology ePrint Archive (2003) 216.
16. P. van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, W. Jonker, Computationally efficient searchable symmetric

encryption, in: Proceedings of the 7th VLDB Workshop on Secure Data Management, Springer, 2010, pp. 87–100.
17. C. Mangold, A survey and classification of semantic search approaches, International Journal of Metadata,

Semantics and Ontologies 2 (1) (2007) 23–34.
18. A. Andrejev, D. Misev, P. Baumann, T. Risch, Spatio-temporal gridded data processing on the semantic web, in:

Proceedings of the First IEEE International Conference on Data Science and Data Intensive Systems, 2015, pp.
38–45.

19. A. Tonon, M. Catasta, R. Prokofyev, G. Demartini, K. Aberer, P. Cudr-Mauroux, Contextualized ranking of entity
types based on knowledge graphs, Web Semantics: Science, Services and Agents on the World Wide Web 3738
(2016) 170 – 183.

20. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, RQL: A declarative query language for
RDF, in: Proceedings of the 11th International Conference on World Wide Web, 2002, pp. 592–603.

21. E. J. Glover, S. Lawrence, W. P. Birmingham, C. L. Giles, Architecture of a metasearch engine that supports
user information needs, in: Proceedings of the 8th International Conference on Information and Knowledge
Management, 1999, pp. 210–216.

22. Y. Lei, V. Uren, E. Motta, Semsearch: A search engine for the semantic web, in: Proceedings of the 15th international
conference on Managing Knowledge in a World of Networks, 2006, pp. 238–245.

23. R. Guha, R. McCool, E. Miller, Semantic search, in: Proceedings of the 12th International Conference on World
Wide Web, WWW ’03, 2003, pp. 700–709.

24. J. Heflin, J. Hendler, Searching the web with SHOE, in: Proceedings of the 17th Association for the Advancement
of Artificial Intelligence Workshop on AI for Web Search, AAAI ’00, 2000, pp. 35–40.

25. J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, W. Lou, Fuzzy keyword search over encrypted data in cloud computing,
in: Proceedings of the 29th IEEE International Conference on Computer Communications, INFOCOM ’10, 2010,
pp. 1–5.

26. C. Wang, K. Ren, S. Yu, K. M. R. Urs, Achieving usable and privacy-assured similarity search over outsourced
cloud data, in: Proceedings of the 31st IEEE International Conference on Computer Communications, INFOCOM
’12, 2012, pp. 451–459.

27. M. A. Salehi, T. Caldwell, A. Fernandez, E. Mickiewicz, E. W. D. Rozier, S. Zonouz, D. Redberg, Reseed: Regular
expression search over encrypted data in the cloud, in: Proceedings of the 7th IEEE International Conference on
Cloud Computing, 2014, pp. 673–680.

28. M. A. Salehi, T. Caldwell, A. Fernandez, E. Mickiewicz, E. W. D. Rozier, S. Zonouz, D. Redberg, Reseed: A secure
regular-expression search tool for storage clouds, Software: Practice and Experience 47 (9) 1221–1241.

29. T. Moataz, A. Shikfa, N. Cuppens-Boulahia, F. Cuppens, Semantic search over encrypted data, in: Proceedings of
the 20th International Conference on Telecommunications (ICT), 2013, pp. 1–5.

30. C. J. V. Rijsbergen, Information Retrieval, 2nd Edition, Butterworth-Heinemann, Newton, MA, USA, 1979.
31. X. Liu, W. B. Croft, Cluster-based retrieval using language models, in: Proceedings of the 27th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’04, 2004, pp. 186–193.
32. A. Tombros, R. Villa, C. V. Rijsbergen, The effectiveness of query-specific hierarchic clustering in information

retrieval, Information Processing & Management 38 (4) (2002) 559 – 582.
33. R. Baeza-Yates, V. Murdock, C. Hauff, Efficiency trade-offs in two-tier web search systems, in: Proceedings of the

32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’09,
2009, pp. 163–170.

34. A. Kulkarni, J. Callan, Topic-based index partitions for efficient and effective selective search, in: Proceedings of
the 8th Workshop on Large-Scale Distributed Systems for Information Retrieval, 2010, pp. 19–24.

35. J. Woodworth, M. A. Salehi, V. Raghavan, S3C: An architecture for space-efficient semantic search over encrypted
data in the cloud, in: Proceedings of the 3rd International Workshop on Privacy and Security of Big Data (PSBD),
2016.

36. O. Medelyan, E. Frank, I. H. Witten, Human-competitive tagging using automatic keyphrase extraction, in:
Proceedings of the 14th Conference on Empirical Methods in Natural Language, EMNLP ’09, 2009, pp. 1318–
1327.

37. R. A. Popa, C. M. S. Redfield, N. Zeldovich, H. Balakrishnan, Cryptdb: Protecting confidentiality with encrypted
query processing, in: Proceedings of the 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, 2011,
pp. 85–100.

38. W. Diffie, M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory 22 (6) (1976)
644–654.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22

39. K. Gai, M. Qiu, Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers,
IEEE Transactions on Industrial Informatics 14 (8) (2018) 3590–3598.

40. L. Ducas, D. Micciancio, Fhew: Bootstrapping homomorphic encryption in less than a second, in: Advances in
Cryptology – EUROCRYPT 2015, Springer, Berlin, Heidelberg, 2015, pp. 617–640.

41. J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the Royal Statistical
Society. Series C (Applied Statistics) 28 (1) (1979) 100–108.

42. Z. Wu, M. Palmer, Verbs semantics and lexical selection, in: Proceedings of the 32nd Annual Meeting on
Association for Computational Linguistics, ACL ’94, 1994, pp. 133–138.

43. W. J. Wilbur, K. Sirotkin, The automatic identification of stop words, Journal of Information Science 18 (1) (1992)
45–55.

44. T. S. Moh, K. H. Ho, Efficient semantic search over encrypted data in cloud computing, in: Proceedings of the 6th
International Conference on High Performance Computing Simulation, 2014, pp. 382–390.

45. S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, Okapi at TREC-3, Overview of the 3rd
Text Retrieval Conference (TREC-3) 3 (1995) 109–126.

46. D. Wang, P. Wang, Offline dictionary attack on password authentication schemes using smart cards, in: Information
Security, Springer International Publishing, 2015, pp. 221–237.

47. Common Crawl on Amazon Web Services (AWS), https://aws.amazon.com/public-datasets/common-crawl/.
48. Request for Comments (RFC) Document Series, http://www.ietf.org/rfc.html.
49. X. Li, M. A. Salehi, M. Bayoumi, High performance on-demand video transcoding using cloud services, in: 2016

16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 600–603.
50. A. K. Mariappan, R. M. Suresh, V. S. Bharathi, A comparative study on the effectiveness of semantic search engine

over keyword search engine using tsap measure, International Journal of Computer Applications EGovernance and
Cloud Computing Services (2012) 4–6.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	Introduction
	Related Work
	Searchable Encryption
	Semantic Search
	Semantic Search over Encrypted Data
	Clustering Methods for Searching

	Architecture and Processes of S3BD
	Overview of S3BD Architecture
	Upload and Parsing Process
	Topic-based Clustering Process
	Initializing Centroids
	Computing Distance between a Keyword and a Centroid
	Evening Shards Sizes
	Shard Abstraction

	Search Process
	Comparing Queries Against Abstracts
	Query Modification
	Searching and Ranking

	Security Analysis
	Evaluation
	Experimental Setup
	Evaluating Performance of S3BD
	Benchmark Queries to Evaluate Performance
	Finding the Appropriate Number of Shards
	Shard Distribution and Variance
	Performance Comparison of S3BD Versus S3C

	Evaluating Overhead of S3BD
	Evaluating Accuracy of S3BD
	Benchmark Queries to Evaluate Accuracy
	Metric for Evaluating Accuracy
	Results of Evaluating Accuracy

	Conclusion

