
RESeED: A Tool for Regular Expression Search over Encrypted Data in Cloud
Storage

Mohsen Amini Salehi1, Thomas Caldwell, Alejandro Fernandez, Emmanuel Mickiewicz,
Eric W. D. Rozier2, and Saman Zonouz3

Electrical and Computer Engineering, University of Miami
{m.aminisalehi1, e.rozier2, s.zonouz3}@miami.edu

David Redberg
Fortinet Inc.

Sunnyvale, California 94086
dredberg@fortinet.com

Abstract—We present RESeED, a tool that provides user-
transparent and Cloud-agnostic regular expression search over
encrypted data without requiring trust in the Cloud, or changes
to Cloud infrastructure. Upon receiving a search query, RE-
SeED translates it to a finite automata and analyzes efficient
and secure representations of the data before asking the Cloud
to download the matching encrypted files. We demonstrate
and evaluate a working prototype of RESeED and show the
scalability and correctness of our approach using data from
arXiv.org.

I. INTRODUCTION

Cloud providers offer scalable storage solutions to users
and relieve the burden and costs of managing a data center.
In spite of the advantages provided by the Cloud services,
there is increasing concern over the confidentiality of user
data stored within the Cloud.

A proven solution to confidentiality concerns is the use of
cryptographic techniques for user data [2]. However, such
techniques limit search capabilities on data stored in the
Cloud. The establishment of algorithms which allow for
keyword searches over encrypted documents [1] has been
critical to the development of privacy preserving search in
Cloud environments. However, one powerful tool which has
remained elusive is the ability to apply regular-expression
based search on encrypted data. A solution using current
methods, such as PEKS [1], remains infeasible in practice
due to the exponential explosion of the space required for
the storage of the resulting ciphertexts.

In this demo, we present RESeED, a tool that provides a
scalable and Cloud-agnostic algorithm for regular expression
search over encrypted files stored in the Cloud. RESeED
achieves this objective without cooperation from the Cloud
provider or the need for special infrastructure. RESeED
uses local indexing and symmetric encryption to provide
deployment efficiency and information leakage guarantees.
RESeED enables users to upload files to the Cloud for
storage, remotely search for the encrypted contents of the
files using regular expressions, and download the data that
matches these queries. It minimizes end-user involvement by
implementing the necessary encryption and decryption steps
in the background.

This work demonstrates the following features:
• A novel and scalable solution for searching regular-

expressions over encrypted data in the Cloud. Our
solution operates based on two novel data structures
as well as algorithms that process search queries using
these data structures.

Figure 1. RESeEDArchitecture

• Efficacy of RESeED when compared with existing
solutions that are used to search unencrypted data.

II. DESIGN AND IMPLEMENTATION

The architecture of RESeED is illustrated in Figure 1.
Search queries are processed through the use of novel data
structures that we call the column store and order store.
The column store is used to index keywords found in each
file in the data-set. The order store, which contains a fuzzy
representation of keyword ordering, for each file through the
use of fuzzy hashes.

Using these data structures, our proposed algorithms can
process search queries given in the form of a regular
expression by users. First, a search query is converted into a
non-deterministic finite automaton (NFA). This automaton
is then partitioned into a set of sub-NFAs based on the
appearances of delimiters in the search expression. In the
next step, the algorithm checks for the presence of each
token of the column store in each sub-NFA. After finding
the set of files that match all sub-NFAs, the algorithm uses
the order store for these files and uses a path-NFA generated
based on the matched sub-NFAs to confirm the keywords
appear in such a way as to form an accepting path in the
original NFA. If we find a match, the encrypted file is
marked as part of the set of files which contain a match
for the original regular expression.

RESeED is deployed on trusted hardware that facilitates
secure access to Cloud providers. Currently, RESeED is
built to be deployed on Fortivault, a trusted gateway for
accessing Cloud services provided by Fortinet Pty. Ltd.1

1http://www.fortinet.com/

III. DEMO DESCRIPTION

Although RESeED has been designed to be ex-
ecuted on trusted hardware, for demonstration pur-
poses, we have made it accessible at the follow-
ing web address: http://www.performalumni.org/
trust/Dragonfruit/demo/.

This demo includes the following steps:
• Upload File: Uploads a file to Cloud. While RESeED

is designed to be Cloud-agnostic. For this demo, we use
Dropbox2 as the Cloud storage. The current version of
RESeED accepts the pdf and txt file formats.

• Creating order store: A user creates an order store
with an arbitrary hash-width (i.e., size of the hashed
tokens in the order store). The hash-width impacts the
imposed overhead and false positive rate of RESeED.
Our evaluations showed that a hash-width of three leads
to low overhead and an almost zero false positive rate.

• Search: Users can search contents of the files uploaded
to the Cloud using regular expressions formatted with
the syntax shown in Table I.

• Downloading the search results: RESeED displays a
list of files matching any search. These files can then
be downloaded and decrypted.

Table I
REGULAR EXPRESSION SYMBOLS AND THEIR MEANINGS.

Symbol Definition
. any character; Character . is shown as \.
* zero or more repetition of a character
+ one or more repetition of a character
? zero or one repetition of a character
| OR statement
\s any separator character
\w any alphabetic character
\d any numeric character

In order to evaluate the performance and correctness of
RESeED, we tested it on a collection of scientific papers
from the arXiv.org3 repository. This data-set contains
683,620 pdf files with the total size of 264 GB. All
experiments were conducted on a computer running Linux
(Ubuntu 12.04), with an Intel Xeon processor (1.80 GHz)
and 64 GB RAM. We use a set of seven regular expression
benchmarks that are listed in Figure 2. They are sorted based
on the execution time of RESeED for these searches.

(A) All files that have “Cloud Computing” in their text:
cloud(\s)+computing

(B) Structured Query Language or SQL:
S(tructured)?(\s)+Q(uery)?(\s)+L(anguage)?

(C) All references to TCP/IP or Transmission Control Protocol Internet
Protocol:
((Transmission(\s)*Control(\s)*Protocol)|(TCP))
(\s)*/?(\s)*((Internet(\s)*Protocol)|(IP))

(D) All dates with YYYY/MM/DD format:
(19|20)(\d\d)/(0(1|2|3|4|5|6|7|8|9)|1(0|1|2))/
(0(1|2|3|4|5|6|7|8|9)|(1|2)\d|3(0|1))

(E) URLs that include Computer Science (cs) or Electrical and Computer
Engineering (ece) and finished by .edu:
http://((\w|\d)+\.)*(cs|ece)\.(\w|\d|\.)+\.edu

(F) All IEEE conference papers after the year 2000:
(2\d\d\d(\s)+IEEE(\s)+(\w|\s)*)|
(IEEE(\s)+(\w|\s)*2\d\d\d(\s))Conference

(G) Any XML scripts in the papers:
<(\?)?(\s)*(xml|html)(\s)+.*(\?)?>

Figure 2. Regular expression benchmarks used for evaluations.
2http://www.dropbox.com/
3http://arxiv.org/

IV. EVALUATION OF BENCHMARKS
We evaluated RESeED’s performance on the

arXiv.org data-set and compared it’s performance
against the grep utility4. For each benchmark, we
measured the overall search time for RESeED, indicating
the time to construct automata, the time to match against
the column store, and the time to match against the order
store. We also measured the total time that grep takes to
search the same regular expression over the unencrypted
data-set.

Figure 3 shows the result of our evaluations using the
benchmarks listed in Figure 2. The experiment shows the
feasibility of searching complicated regular expressions
within a limited time. The figure shows that even though our
method searches on the encrypted data, it executes faster for
benchmarks (A)-(D) when compared to grep. The reason
for this speed up is that our method uses the column store to
identify files which could contain a match, searching fewer
files compared to grep which scans the whole file set. We
note that for the benchmarks that take longer to execute than
grep ((E)-(G)), our method spends a considerable amount
of its time processing the column store. In general, our
method outperforms grep when given less fuzzy regular
expressions or when the list of the order stores that need
to be searched is small. In the former case, matching each
entry of the column store against our generated automata is
performed quickly and in the latter case, the number of files
that have to be checked in the order store are few.

A B C D E F G
Benchmarks Searched Using grep and RESeED

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

3325.5

4183.7

3423.8

3715.7

3338.4

4234.9

3196.6

567.6

932.1 1014.7

1849.2

3999.6

4510.8 4536.5
DFAs Compiling
Column Store Matching
Order Store Matching
grep on Uncrypted Data

Figure 3. Times to search benchmarks in Figure 2 for grep and RESeED.

V. CONCLUSION
In this paper, we have presented RESeED, a method

which provides Cloud providers with a user-transparent
and Cloud-agnostic capability to process regular expression
based search over encrypted data residing in the Cloud.
Our experiments on a real-world data set show RESeED’s
deployability and practicality empirically.

REFERENCES
[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.

Public key encryption with keyword search. In Advances in
Cryptology-Eurocrypt 2004, pages 506–522, 2004.

[2] E. W. D. Rozier, S. Zonouz, and D. Redberg. Dragonfruit:
Cloud provider-agnostic trustworthy cloud data storage and
remote processing. In Proc. of the 19th IEEE Pacific Rim
Int. Symp. on Dependable Computing, PRDC ’13, 2013.

4http://pubs.opengroup.org/onlinepubs/9699919799/utilities/grep.html

http://www.performalumni.org/trust/Dragonfruit/demo/
http://www.performalumni.org/trust/Dragonfruit/demo/

APPENDIX

More algorithms and experiments on the contributions of
this study can be found in the Technical Report available in
the following address:
http://www.performalumni.org/trust/

Dragonfruit/techreport/

http://www.performalumni.org/trust/Dragonfruit/techreport/
http://www.performalumni.org/trust/Dragonfruit/techreport/

	Introduction
	Design and Implementation
	Demo Description
	Evaluation of Benchmarks
	Conclusion
	References

