2016 |EEE International Conference on Big Data (Big Data)

S3C: An Architecture for Space-Efficient Semantic
Search over Encrypted Data in the Cloud

Jason Woodworth*", Mohsen Amini Salehi’, Vijay Raghavan*
*The Center for Advanced Computer Studies
THigh Performance Cloud Computing (HPCC) Laboratory
School of Computing and Informatics
University of Louisiana at Lafayette, Louisiana, USA
Email: {jww7675, amini, raghavan} @louisiana.edu

Abstract—The recent rapid growth in Internet speeds and
file storage requirements has made cloud storage an appealing
option on both a personal and enterprise level. Despite the many
benefits offered by cloud storage, many potential users with
sensitive data refrain from fully utilizing this service due to valid
concerns about information privacy. An established solution to
this concern is to perform encryption on the user side with the
key stored on a local machine, meaning the cloud will never see
the user’s plaintext data. However, by encrypting data on the
user side data processing capabilities (e.g., searching) are lost.
In particular, the ability to semantically search is of the user’s
interest in large datasets. In this paper, we present S3C, a system
that provides a semantic search functionality over encrypted data
in the cloud. S3C combines approaches from traditional keyword-
based searchable encryption and semantic web searching. It
offers a user transparent experience that accepts a simple multi-
phrase query and returns a list of documents ranked by semantic
relevance to the query. Our proposed approach is space-efficient,
which makes it suitable for large scale datasets. QOur minimal
processing also allows the system to be run on thin clients such
as smart-phones or tablets. We evaluate the performance of
our system against various real-world datasets, and our results
show that it produces accurate search results while maintaining
minimal storage overhead (~0.3% of the dataset size).

Index Terms—Cloud services, Searchable Encryption, Seman-
tic Search.

I. INTRODUCTION

Cloud storage is an efficient and scalable solution for
companies and individuals who want to store large to huge
numbers of files without the burden of maintaining their own
data center. Despite the advantages offered by these solutions,
many potential clients abstain from using them due to valid
concerns over the security of the files once they are on remote
servers, and thus desire stronger cloud security [9]. Tradi-
tionally, cloud providers provide security by encrypting user
documents on their own servers and storing the encryption key
remotely, allowing internal attackers to access unauthorized
data. One proven solution that addresses this concern is to
perform the encryption locally on the user’s machine before
it is transferred to the cloud [18]. Unfortunately, this limits
the user’s ability to interact with the data, most importantly
limiting the ability to search over it. Although solutions for
searchable encryption exist, they often do not consider the
semantic meaning of the user’s query, impose a large storage
overhead, or do not rank documents based on their relevance
to the query. This research is an attempt to solve these issues.

Our motivation in this research is an organization with
increasingly large amounts of data with sensitive information,

978-1-4673-9005-7/16/$31.00 ©2016 |EEE

3722

with system users who may not remember exact keywords in
the documents they are looking for or may want to retrieve
documents similar to what they are asking for. Users can
potentially also require the ability to perform the search on
their thin client devices. One example of such organization
is a hospital with encrypted patient records on the cloud
and staff who would like to be able to find patients with
similar diagnoses using a tablet. Another example is a police
organization with officers who would like to search over
encrypted police records on government clouds while on the
move with their PDAs. An organization with this desire would
need a system that provides security for their documents and
a searching mechanism in which the user only has to enter a
plaintext search query, and receive search results ranked based
on the document’s relevance to the entered query. Therefore
they can see the most relevant documents first and will not
have to comb through a list of all relevant documents.

Other solutions to the problem of searchable encryption
often fall short in three ways that make them unsuitable for the
examples described above. First, they do not offer semantic
searching, meaning the user would need to remember exact
keywords in the documents they are searching for. This is
inappropriate for a big data environment as it is unlikely that
the users would be able to remember exact keywords very
well [2]. Second, solutions that do offer semantic searching
either only make the system more forgiving of typos and words
with similar spellings, or utilize a large semantic networks
that need to be stored locally making them inappropriate for
thin-clients (e.g., [19]). Third, solutions that offer semantic
searching often do not rank the related files by their relevance
to the query (e.g., [12]), instead offering only a boolean search
which returns a potentially huge pool of all related files.

Therefore, we can define our problem as needing to answer
these four questions:

« How to semantically search a multi-phrase query over
encrypted files stored in the cloud?

o How to rank results of a search based on semantic
relevance to the user’s query?

« How to do the search processing on the cloud without
revealing data to the cloud?

« How to provide an approach that imposes the minimum
storage and processing overhead?

In this paper, we introduce Secure Semantic Search over
encrypted data in the Cloud (S3C), a scalable system that

performs a semantic search on locally encrypted data that lives
on the cloud. Our approach only parses and encrypts data on
the client side so the user machine is the only part of the
architecture that sees plaintext data. Documents are parsed
and indexed in a manner that takes constant storage space
per document. The search system resides on the cloud server,
relieving the client machine of the search processing. Users are
able to upload documents to a remote storage location, perform
a semantic search over their encrypted data, and receive a
list of documents ranked by their relevance to the query.
Experiments that we have performed on real-world datasets
demonstrate the accuracy, performance, and scalability of S3C.

In summary, the contributions of this paper are as follows:

« Proposing a secure method for searching a multi-phrase

query over encrypted data in the cloud.

o Providing a method for ranking search results based on

their semantic relevance to the user’s query.

« Presenting a working prototype of our system.

o Analyzing the performance of this system, and discuss

tradeoffs between performance and security.

o Analyzing the relevance of the documents retrieved by

the system.

o Analyzing the impact of query length on the performance

of the system.

The rest of the paper is organized as follows. Section II
reviews related works in the literature, establishing the need for
our solution. Section III provides a concise formal formulation
of the problem and our system model. Section IV gives an
overview of our proposed system architecture. Section V gives
an overview of our general method, while section VI goes into
scheme-specific details. Section VII reviews the threat model
we are working with and provides a security analysis of our
solution. Section VIII presents the results of our evaluations
using real-world datasets. And finally, section IX concludes
the paper and shows a plan for future works and extensions.

II. RELATED WORK

We provide a review on other research works undertaken
in the three fields most related to this work and position the
contribution of our works against them.

A. Searchable Encryption

Solutions for searchable encryption (SE) are imperative
for privacy preservation on the cloud. The majority of SE
solutions follow one of two main approaches, the first of which
being to use cyryptographic algorithms to search the encrypted
text directly. This approach is generally chosen because it is
provably secure and requires no storage overhead on the server,
but solutions utilizing this method are generally slower [18],
especially when operating on large storage blocks with large
files. This approach was pioneered by Song et al. [18], in
which each word in the document is encrypted independently
and the documents are sequentially scanned while searching
for tokens that match the similarly encrypted query. Boneh
et al. produced a similar system in [3] which utilized public
key encryption to write searchable encrypted text to a server
from any outside source, but could only be searched over by
using a private key. While methods following this approach
are secure, they often only support equality comparison to the

3723

queries, meaning they simply return a list of files containing
the query terms without ranking.

The second major approach is to utilize database and text
retrieval techniques such as indexing to store selected data per
document in a separate data structure from the files, making
the search operation generally quicker and well adapted to
big data scenarios. Goh [6] proposed an approach using bloom
filters which created a searchable index for each file containing
trapdoors of all unique terms, but had the side effect of
returning false positives due to the choice of data structure.
Curtmola et al. [4] worked off of this approach, keeping a
single hash table index for all documents, getting rid of false
positives introduced by bloom filters. The hash table index for
all documents contained entries where a trapdoor of a word
which appeared in the document collection is mapped to a
set of file identifiers for the documents in which it appeared.
Van Liesdonk et al. further expanded on this in [21] with a
more efficient search by using an array of bits where each
bit is either O or its position represents one of the document
identifiers. These methods are generally faster, taking constant
time to access related files, but are less provably secure,
opening up new amounts of data to potential threat. All of
the mentioned methods only offer an exact-keyword search,
leaving no room for user error through typos and cannot
retrieve works related to terms in the query.

B. Semantic Search

Much of the work into searching semantically has been done
in the context of searching the web [1], [13], [20]. Some of
these works, such as RQL by Karvounarakis [10], require users
to formulate queries using some formal language or form,
which leads to very precise searching that is inappropriate for
naive or everyday users. Others [5], [11] aim for a completely
user-transparent solution where the user needs only to write
a simple query with possible tags, while others still [7], [8]
aim for a hybrid approach in which the system may ask a
user for clarification on the meaning of their query. All of
these methods use some form of query modification coupled
with an ontology structure for defining related terms to achieve
their semantic nature. In addition, these ontology structures
often need to be large and custom-tailored to their specific
use cases or domain, making them very domain-dependent and
unadaptable to different areas. Surprisingly, few of the works
in this field offer a ranking of results, instead having the user
choose from a potentially large pool of related documents.

C. Semantic Search over Encrypted Data

Few works at the time of writing have combined the ideas
of semantic searching and searchable encryption. Works that
attempt to provide a semantic search often only consider word
similarity instead of true semantics.

Li et al. proposed in [12] a system which could handle
minor user typos through a fuzzy keyword search. Wang et al.
[22] used a similar approach to find matches for similar key-
words to the user’s query by using edit distance as a similarity
metric, allowing for words with similar structures and minor
spelling differences to be matched. Amini et al. presented in
[17] a system for searching for regular expressions, though
this still neglects true semantics for another form of similarity.

Moataz et al. [15] used various stemming methods on terms
in the index and query to provide more general matching. Sun
et al. [19] presented a system which used an indexing method
over encrypted file metadata and data mining techniques to
capture semantics of queries. This approach, however, builds
a semantic network only using the documents that are given
to the set and only considers words that are likely to co-occur
as semantically related, leaving out many possible synonyms
or categorically related terms.

ITII. SYSTEM MODEL
The problem of multi-phrase searching can be formally
represented using the following elements:
e A Vocabulary of plaintext words V = {vi,v2,v3,...,v,}
which constitutes a language (e.g., English)
e A Document (represented as a set of words) d; =

{dil Jdip,di3, ... ,d,'n} where d,‘j cVv

o A multi-phrase Query ¢ = {q1,¢2,93,.--,9n} Where
gi €V

o A Collection of documents C = {d},d>,ds,...,dn}

o A list of Relevant Documents R(g) C C where R is a
function for determining relevance based on a query

The aim of the search system is to find R(g) using g as a
guide for what elements of C it should contain.

To ensure the results of R(g) are as relevant as possible, we
consider adding semantics to the searching process. This adds
the following elements:

o A modification process M(g) which enriches g with
semantic data.

» A modified query set Q = M(g) which contains additional
related terms and ideas related to g.

o A weighting system W(Q) to weight the terms in Q based
on their closeness to the original query.

Introducing semantic data to the search process allows the
system to return results that are more meaningfully related
to the original query. Weighting is utilized to ensure that
the original terms in a document contribute more to that
document’s ranking than a related term.

The introduction of encryption adds the following elements:

o A ciphertext version of the original Vocabulary V' =
{H(v1),H(v2),H(v3),...,H(v,)} where H is a hash func-

tion
e A Collection of encrypted documents C =
{E(d)),E(d»),E(d3),...,E(dy)} where E is an

encryption method
o A list of relevant documents R'(q) C C’

Formally, the challenge is to find the relevant list of elements
in C' while still using a plaintext multi-phrase query, and to

have R'(g) be as similar to R(g) as possible.

IV. S3C ARCHITECTURE

S3C has three main components, namely the client ap-
plication, cloud processing server, and cloud storage. The
lightweight client application is hosted on the user’s machine,
and is the only system in the architecture that is assumed to
be trusted. Both cloud units are expected to be maintained by
a third party cloud provider and are thus considered ‘“honest
but curious”. In our threat model, both cloud systems and the

3724

4

[
Lt

ﬁ User

Client Application
/

Search Up\oad
™ - J)
8o T
: ﬁ 5 File
5 Extracted Spl S o
: Ontological Cluery Synonyms S ?
i Terms i a
....................................... Structured Encrypled
v Key File Documents
—> -«
\-/ a \/ K
Weighting Secure Hashing
Function Function

q I Y
n Cloud Side

—
Search Results Cloud Side

T Interface

_

Hashed Index

Cloud
Storage

— |

P

Ranking Engine -
Search Engine

/

Cloud Processing Server

Fig. (1) Overview of S3C architecture and processes. Parts
within the solid-line group indicate items or processes on the
client side which are considered trusted. Parts in the dashed-
line group indicate those in the cloud processing server. All
components in the cloud are considered untrusted.

network channels between all machines should be considered
open to both external and internal attacks. Figure 1 presents
an overview of the three components and processes associated
with them in the system.

A. Client Application

The client application provides an interface for the user to
perform a document upload or search over the data in the
cloud. It is responsible for parsing and extracting keywords
from plaintext documents and encrypting them before they
are uploaded to the cloud.

When the user requests to search, S3C expands the query
based on the system’s semantic scheme and transforms the
query into the secure query set (i.e., trapdoor) to be sent to
the cloud. The user will then receive a ranked list of documents

and can select a file for the system to download and decrypt.

B. Cloud Processing Server

The cloud server is responsible for constructing and updat-
ing the inverted index and other related data structures based
on the parsed and processed data sent from the client. The
structures are created entirely out of hashed tokens to keep
the server oblivious to the actual file content.

When the server detects that the client has requested to
search, it will receive the trapdoor and perform the search over
its index (see section V) and gives each related document a
score. Once the highest ranking documents are determined,
the server can request to retrieve them from the cloud storage
and send them back to the client.

C. Cloud Storage

The cloud storage block is used to store the encrypted files
that the user uploads. It will not see any representation of the
user’s query. The storage can potentially span multiple clouds,
so long as the computing server knows where each document
is stored and the index is updated accordingly.

V. OVERVIEW OF UPLOAD AND SEARCH PROCESSES
A. Overview

The main idea behind our approach is that if we can use a
searching method that is agnostic towards the meaning of the
terms in the documents or the query and only considers their
occurrence and frequency, then we can perform the search
over encrypted data. For that purpose, we should assure that
we transform each occurrence of a distinct word in every
document into the same token, and consequently apply the
same transformation when that word appears in the search
query. Doing this ensures that a match is still produced during
the search process. Hashing is a good way to achieve this.

The Okapi BM25 algorithm [16], frequently used for stan-
dard text retrieval, is a term-frequency, inverse-document-
frequency model that works using an inverted index. The
algorithm does not need to consider actual meaning of the
terms in the document, and only needs to know in which
documents they exist. This feature makes it very applicable
to our use case.

S3C has two main functionalities: uploading documents
from the client, and searching over documents in the cloud.
We explain these functionalities in the rest of this section.

B. Upload Process

The goal of the upload process is to parse the desired
document into indexable information and encrypt it before
being sent to the cloud. In general, a subset of terms from
the document (termed keywords) is selected to represent the
semantics of that file. In addition, term frequency of the
keywords within that document is gathered, then the terms are
transformed individually into their hashed form and written to
a temporary key file to be sent to the cloud along with the full
encrypted text file.

Once the cloud processing server receives the encrypted
document file and associated key file, it moves the encrypted
document into storage. Then the terms and frequencies in the
key file will be added to the hashed index, which associates a

3725

hashed term with a list of documents it appeared in. The size
of the uploaded document is also recorded within the index.

Our system also supports batch uploading of many data files
at once and processes them as a series of individual files with
linear complexity.

C. Search Process

The search process consists of two main phases: query
modification and index searching and ranking. The query
modification phase starts with the user entering a plaintext
query into the client application. The query is then modified
on the client side and then sent to the cloud processing server
where index searching and ranking is performed. The process
of query modification takes in the original query g and expands
into the modified query set Q. It involves three phases: query
splitting, semantic expansion, and weighting.

The goal of splitting the query is to break g into smaller
components. This is done because a multi-phrase string hashes
to a different value than the sum or concatenation of the hash
values of its parts, and once on the cloud, the terms must
match the entries in the hashed index exactly. Once this phase
is complete, Q will consist of g and its split parts.

In order to achieve semantic expansion, the system injects
semantic data through the use of online ontological networks.
The most naive approach to this is to perform a synonym
lookup for each member of Q (termed Q;) through an online
thesaurus and add the results to Q. This assures that the search
results will include documents containing terms synonymous
with, but not exactly matching, the user’s query.

However, this approach alone does not cover ideas that
are semantically related to the user’s query, but are not
synonymous. To achieve this, our system pulls from more
advanced ontological networks. For example, in this research
we use the contents of Q to pull entries from Wikipedia and
perform keyphrase extraction on them to get related terms and
phrases (hereafter referred to as related terms). These related
terms are then added to Q. The result of this is that the search
can retrieve documents that contain concepts more abstractly
related to the user’s query (e.g., related diseases). In addition,
the use of online resources relieves the client of the need to
store semantic networks locally.

The goal of weighting is to ensure that the search results are
more relevant to the user’s original query than the synonyms
and related terms. For example, a document that matches the
entire original query should be weighted higher and considered
more relevant than a document that only matches synonyms.
To achieve this, we introduce the following weighting scheme
with weights ranging from 0 to 1:

o The original query g is weighted as 1.

« Results of query splitting are weighted as 1/n where n is
the number of terms derived from splitting.

o Synonyms or related terms of a term Q; are weighted as
W(Q;)/m, where W(Q;) is the weight of Q; and m is the
number of synonyms or related terms derived from Q;.

These weights are added to all members of Q to complete
the modified query set.

Once the entirety of Q is built, its members are hashed to
create the trapdoor Q' which is sent to the cloud to perform

the index search and ranking. On the cloud processing server,
the system goes through each member of Q' and checks them
against the hashed index to compile a list of files that could be
considered related to the query. These related files are further
ranked using our modification of the BM25 equation described
in the following equations:

fQhd)- (1)
f(;’d’)+°‘(1—[3+[3% W(Ql)
(1)

IDF in this equation refers to the inverse document fre-
quency for the term, which can be defined as:

N—n(Q})+0.5
n(Qi)+0.5

We define the terms in these equations as follows:

r(di, Q") = Y IDF (Q})-
i=1

IDF(Q)) = log (2)

e Q; - an individual term in the original plaintext query

« Q! - the hashed version of Q; in the hashed query set.

o r(d;,Q') - the ranking score attributed to document d; for
hashed query set O/

o f(Q.,d;) - the frequency of term Q; in document d;

e N - the total number of documents in the collection C

o n(Q}) - the total number of documents containing the
query term Q;

e |d;| - the length of document d; in words

o O - the average length of all documents in C

o W(Q)) - the weight associated with term Q;

o o and P - constants (in this work we considered the values
1.2 and 0.75, respectively)

The cloud processing server computes this equation for all
documents in the collection and returns the list to the client,
sorted by score in descending order.

VI. SEARCH SCHEMES

S3C considers three main schemes for how to implement
our approach. The primary differences among the proposed
schemes are: how to select the subset of terms to represent the
document, split the user search query, and perform ranking.

A. Naive Scheme: Full Keyword Semantic Search (FKSS)

FKSS follows the naive method of selecting terms as
keywords. It simply goes through the document and collects
and counts the frequency of each individual word that is not
considered a stopword. This gives the hashed index the full
scope of the document, as no meaningful text is left out, but
bloats it with possibly unneeded terms.

FKSS also follows a naive method of splitting the query,
as it just divides it into singular words. This is all that is
necessary, as the keyword selection for the hashed index only
considers single words. Thus splitting the query into larger
groups of words would add no value.

Ranking for FKSS is performed with no modification from
Equation (1).

Though FKSS follows a naive approach, it can be useful for
scenarios in which small documents are used or it is integral
for the full text to be considered. For example, searching over
encrypted media tags or social media updates. It is the least

3726

secure scheme, however, as it leaves the full scope of each
document in the hashed index.

B. Space-Efficient, Fully Secure Scheme: Selected Keyphrase
Semantic Search (SKSS)

SKSS creates a space-efficient index by running the doc-
ument through a keyphrase extractor to obtain a constant
number of the most important keywords and phrases within the
document (in our implementation, we considered collecting
10 keyphrases). These phrases can be considered to convey
general information on what the document is about. Because
they can contain more than one word, they are broken down
into their individual distinct words, so that the key file sent
to the server contains both hashed representations of the full
phrase and each word within it. The use of a constant number
of terms per document keeps storage overhead small and
increases security, as much of the document is not put in the
hashed index.

In an effort to further increase security, term frequency is
eliminated on the justification that each term is considered to
be equally important to the meaning of the document, and thus
can be considered equally frequent within the document.

To split the query, SKSS splits not only into individual
words, but into all possible adjacent subsets. An example
of this can be seen in Figure 2. While some of the phrases
added to the set might be meaningless (“Failure Wireless
Sensor”, for example), others will carry meaning that will be
important during the semantic lookup (“Sensor Networks”,
for example). Once the splitting is complete, synonyms and
related terms are looked up for all of the resulting phrases in
the query set.

LI

“Failure in Wireless Sensor Networks”, “Failure
Wireless Sensor”, “Wireless Sensor Networks”,
“Failure Wireless”, “Wireless Sensor”, “Sensor

Networks”, “Failure”, “Wireless”, “Sensor”,

“Networks”
Fig. (2) A sample of the query splitting done by
SKSS.

When performing ranking, SKSS modifies Equation (1)
to compensate for the lack of frequency data. Because the
keyphrae extractor pulls a limited number of terms from
the document, all extracted phrases are considered equally
frequent. Thus, a 1 is put in place of f(g;,d;).

C. Space-Efficient, Accuracy Driven Scheme:
Search With Frequency (KSWF)

KSWF is a combination of the two previous schemes. The
keyphrase extractor is still used to obtain keywords for the
index, similar to SKSS, and the phrases are subsequently split
into their individual words. After this, it makes a second pass
through the document to collect the frequency information
for each word and phrase, similar to FKSS, which is stored
alongside the terms in the index.

The user query is split in the same manner as SKSS, with
each adjacent subset added to the overall query set. Because
the frequency data is now present for all of the terms and
phrases, it uses the same ranking method as FKSS. This
scheme was developed primarily to analyze the impact of

Keyphrase

utilizing term frequency with a method like SKSS. Intuitively,
adding term frequency should bring up more relevant search
results, as there is more accurate data for the ranking.

The addition of frequency data to KSWF adds greater
accuracy to the ranking function. For this reason, it is useful
in scenarios in which the highest accuracy possible is desired
while maintaining minimal storage overhead.

VII. SECURITY ANALYSIS

S3C provides a trustworthy architecture for storing confi-
dential information securely in clouds while maintaining the
ability to search over them. The only trusted component of
the architecture is the user machine, which has access to all
sensitive information such as the full plaintext documents and
the document key files. Keeping the client machine trusted is
a reasonable assumption in the real world, as it can be kept
with minimal exposure to outside attackers.

Our threat model assumes that adversaries may intend to
attack the communication streams between client and cloud
processing server and between cloud processing server and
cloud storage, as well as the cloud processing server and stor-
age machines themselves. To explain what exactly the attacker
could see or do, we will first introduce some definitions.

History: For a multi-phrase query g on a collection of
documents C, a history H, is defined as the tuple (C,q). In
other words, this is a history of searches and interactions
between client and cloud server.

View: The view is whatever the cloud can actually see
during any given interaction between client and server. For our
system, this includes the hashed index I over the collection C,
the trapdoor of the search query terms (including its semantic
expansion) Q’, the number and length of the files, and the
collection of encrypted documents C'. Let V(H,) be this view.

Trace: The trace is the precise information leaked about
H,. For S3C, this includes file identifiers associated with the
search results of the trapdoor Q’. It is our goal to allow the
attacker to infer as little information about H, as possible.

The view and trace encompass all that the attacker would
be able to see. For the sake of this analysis, we will assume
that the chosen encryption and hashing methods are secure,
and so C’ itself will not leak any information. / only shows
a mapping of a single hashed term or phrase to a set of file
identifiers with frequencies, meaning a distribution of hashes
to files could be compiled, but minimal data could be gained
from the construction. Similarly, Q' only shows a listing of
hashed search terms with weights. The addition of the weights
could potentially enable the attacker to infer which terms in
the trapdoor were part of the original query, but they would
still only have a smaller set of hashed terms.

However, we must consider the small possibility that, if
the attacker was able to know the hash function used on
the client side, they could in theory build a dictionary of all
words in the vocabulary V that the documents are comprised
of mapped to their hashed counterparts, and reconstruct /
in plaintext. In this scenario, the attacker could put together
the terms that the documents are comprised of, but since /
carries no sense of term order, they could not reconstruct the
entire file. The KSWF scheme adds additional security by only
showing a small portion of the important terms and phrases

3727

from the document, meaning the attacker would only be able
to ascertain how many times those specific terms and phrases
were in the document. The SKSS scheme adds more security
by removing those term frequencies.

An attacker monitoring the process during a search could
see the resultant file identifiers that are associated with the
given Q'. This would show an encrypted history as (C', Q).
However, since the attacker would not be able to discern the
query (without the use of the above dictionary), this data would
be of little use.

Attackers could also potentially attempt to alter data in
C’. These attacks, however, could be recognized as the client
would not be able to decrypt them.

VIII. PERFORMANCE EVALUATION
A. Overview

To evaluate the performance of S3C and provide proof of
concept, we tested it with the Request For Comments (RFC)
dataset, a set of documents containing technical notes about
the Internet from various engineering groups. The dataset has
a total size of 357 MB and is made up of 6,942 text files.
To evaluate our system under Big data scale datasets, we
utilized a second dataset, the Common Crawl Corpus from
AWS, a web crawl composed of over five billion web pages
We evaluated our system against the RFC using three types of
metrics: Performance, Overhead, and Relevance.

B. Metrics for Evaluation

1) Relevance: We define relevance as how closely the
returned results meet user expectations. To evaluate the rel-
evance of our schemes, we used the TREC-Style Average
Precision (TSAP) method described by Mariappan et al. in
[14]. This method is a modification of the precision-recall
method commonly used for judging text retrieval systems. It
is defined as follows:

3)

Where i is the rank of the document determined by the
system and N is the cutoff number (10 in our case, hence the
term TSAP@10). r; takes three different values:

e r;i=1/i if the document is highly relevant

e r;i=1/2i if the document is somewhat relevant

e r;=0 if the document is irrelevant

Score =

ZﬁV:Or,-
N

This allows for systems to be given a comparative score
against other schemes in a relatively fast manner.

2) Performance: We define performance as the time it takes
to perform the search operation. The aspects of performance
we measure are as follows:

« Time it takes to process the user query in seconds. This
includes semantic query modification and hashing into
the trapdoor.

o Time it takes to search over the index in the cloud in
seconds. This includes retrieving the related files from
the index and ranking them based on the query.

« Total time to perform the search in seconds. This encap-
sulates both of the steps above, plus any additional time
taken with communication over the network.

3) Overhead: We define overhead to be the imposed cloud
server storage space taken by the hashed index and the com-
puting involved with it. The aspects of overhead we measure
are as follows:

o Size of the inverted index, measured in the form of
number of entries.

o Time it takes to construct the index in seconds. This
operation reads the data files for the index and compiles
them into a hash table. It is only performed on the cloud
server startup.

C. Benchmarks

We derived a set of benchmark queries based on the
information presented in the dataset. For testing relevance,
we looked at two categories of queries which a user may
desire to search. In the first category we consider a user who
already knows which document they are looking for, but may
not remember where the document is located in their cloud or
may not want to look through a large number of files to find it.
Such queries are typically specific and only a small number of
documents should directly pertain to them. The search system
is expected to bring up these most desired documents first.

In the second category we consider a user who wants to
find all of the documents related to an idea, such as the
nurse attempting to find all patients with a similar disease
or diagnosis in our motivation. Such queries would be broad
with many possible related documents, and the search system
should bring up the most relevant ones first.

o Category 1 - Specific:
IBM Research Report (IRR)
Licklider Transmission Protocol (LTP)
Multicast Listener Discovery Protocol
o Category 2 - Broad:
Internet Engineering (IE)
Transmission Control Protocol
Cloud Computing (CC)
Encryption (EN)

(MLDP)

(TCP)

Fig. (3) Queries used for testing relevance. Queries in
category 1 target a small set of specific, known docu-
ments within the collection, while queries in category 2
target a broad set of documents not necessarily known
to the user.

To measure performance, we measured time for a small
(single word) query and a mid-size (three word) query. In
addition, to measure the effects of expanding the size of the
search query, we measured times for queries that expanded
from one word to four words, taking measurements at each
single word increment. Due to the inherent variety in the
performance results, we report the mean and 95% confidence
interval of 50 rounds of running each experiment.

For our scalability tests, we measured search times and
storage overhead for several three word queries against in-
creasingly large portions of the dataset. Specifically, we tested
against datasets of sizes: 500 MB, 1 GB, 5 GB, 10 GB, 25
GB, and 50 GB.

As a baseline for performance testing, we implemented a
standard non-secure (SNSS) version of the system, utilizing

3728

0.30 T T

025 i]
o =7y
O 0.20 |y =78 E
O [= -
o = g E
S o1sf H & & 1
® | & g &
< E H & &
& OoE H g & 1
F E = E H
0.05 | g & 1
000 | | nau ﬂ: . ﬂouu . aoa F @Bw :n
IRR LTP IE TCP CcC EN
Query
EEE FKSS SKSS 1 KSWF]

Fig. (4) TSAP@10 score for the specified query for each
system. Once the system has returned a ranked list of results,
a score is computed based off of a predetermined relevance
each file has to the given query.

the same semantic processing but with no encryption or
hashing. Due to their similarities in indexing, the SNSS and
FKSS schemes can be seen as being grouped together, as they
both consider the entirety of the document text. Similarly, the
SKSS and KSWF schemes can be grouped together since they
both consider a small subset of the document text.

D. Evaluating Relevance

Figure 4 shows the TSAP scores of each of the four schemes
searching with each of the benchmark queries.

For queries in category 1, the main desired results were
ranked the highest for all schemes. Our space-efficient
schemes (the SKSS and KSWF), which might intuitively
seem to suffer greatly in accuracy, only show to suffer a
small amount when compared to the schemes that utilize the
documents full text. For queries in category 2, the SKSS and
KSWF schemes showed to return just as relevant results, and
in some cases were more relevant. Most interestingly, the
KSWEF scheme does not actually show much benefit from the
addition of term frequency, meaning that when working with
a small subset of the document’s text, finding the frequency of
those key phrases may be unnecessary due to causing a longer
indexing time, unless the highest possible accuracy is desired.

E. Evaluating Performance

In the experiments, we measured the performance of each
scheme with a small (one-word) and mid-sized (three-word)
query, gathering the total time it takes to perform the search.
In addition, we measured the two main components of the
total search time: the time taken for query modification and
the time taken to perform the index search and ranking on the
cloud.

Results can be seen in Figures 5, 6, and 7. All schemes
can be seen to be reasonably similar in terms of total search
time. The majority of search time across all models is taken
up by the query processing phase, as our system needs to pull
information from across the Internet in the form of synonyms
and Wikipedia entry downloads. SKSS and KSWF both take

2]
2 b | |
£
=]
£ 4 |
—_
i
(%] 3 h
'_

A -

0

IBM research report network
Query
[EI SNSS FKSS SKSS KSWF“

Fig. (5) Total search time in each scheme. This includes the
time taken to process the query, communicate between client
and server, and perform searching over the index. The results
are averaged over 50 runs.

7 T

Y6l -]
£
=S 1
> [
£4 l J
@
Y3t i
e
a, i
>
o} Il Il
3! /7 L
0 = .
IBM research report network
Query
[El SNSS FKSS SKSS 1 KSWF]|

Fig. (6) Time to process the query. This includes query
modification and hashing into the trapdoor. The results are
averaged over 50 runs.

)

30F o 1 1
250 1

/ o ,

15F E

1.0 i

0.5 E

Search time on Hashed Index (s

0.0

IBM research report network
Query

FKSS

[E SNSS SKSsS [KSWFI

Fig. (7) Time it takes to perform the search on the hashed
index on the cloud. This includes the time taken to find all
files in the hashed index that contain any hashed terms in the
query trapdoor and rank them with the scheme’s respective
functions. The results are averaged over 50 runs.

3729

250000

200000 R
1500001 B
100000 1

50000 1

[

SKSS

Number of Entries in Hashed Index

. .
SNSS FKSS

System

Fig. (8) Size of the inverted index for each system. An entry
denotes a hashed keyword mapped to a set of file identifiers.

slightly longer to process longer queries due to the addition
of the adjacent query subsets which need to be looked up as
well. Query processing time is thus linked to Internet speeds
and the size of the Wikipedia entry for each of the query
terms. The results indicate that under fast Internet speeds, the
performance time of this system will naturally improve. While
pulling information from the Internet does naturally increase
search times, it was included intentionally to reduce storage
size needed for the local client which would otherwise need
to house an onboard ontological network.

Most important to note is the difference in index searching
times. The space-efficient SKSS and KSWF schemes take
a near-negligible amount of time to search over the index.
This can be explained by the vastly decreased index size (as
shown in the next subsection) as only key phrases are stored,
meaning that the initial set of potentially relevant documents
is significantly smaller and the ranking equation must be run
a lower number of times.

Because the greatest amount of time is taken during query
processing and index search time is very small for the space-
efficient schemes, these two schemes can be scaled up to work
on larger datasets without facing a huge growth in search time.

F. Evaluating Overhead

To demonstrate space-efficiency in our evaluation, we mea-
sured the overhead for each scheme in terms of how many
entries were stored in the hashed index. These results can
be seen in figures 8 and 9. The two groups of schemes
show a vast difference in this regard, due to the number of
terms selected from each document. The linear growth per
document of the index guaranteed by the constant number of
key phrases extracted keeps the index small while maintaining
the relevance of search results (as shown previously).

In addition, we measured the effect that the size of the
inverted index had on the time it takes to construct the
index from the utility files on the server. The differences are
again vast, with construction times being almost negligible
for SKSS and KSWF. It is worth noting that this operation
needs only to be performed at startup of the cloud server, and
that additions to the index at runtime operate at near constant

25

20} .

15F B

10 1

Index Construction Time (s)

SKSS
Systems

L L
SNSS FKSS KSWF

Fig. (9) Time it takes to construct the hashed index upon
server startup. This operation includes sequentially reading an
index file hosted on the cloud server which contains all data

for the inverted index and document sizes table and storing it
in hash tables.

18

16 - E

14} ,

(s)

12+ E
10+

Total Search Time

8
6
s
2
0

1

[E SNSS FKSS

Fig. (10) Total search time for an expanding query. This
includes the time to process the search query, communicate
between client and server, and rank in the cloud. The horizon-
tal axis shows the number of words (minus stopwords) in the
query. The results were averaged over 50 runs.

time regardless of the size of the dataset due to the hash table
structure of the index.

G. Evaluating the Impact of Query Length

In addition to measuring search times for individual queries,
we are interested in measuring the effect of expanding the
size of a single query from one term to four. For example,
one query used in this experiment started as protocol which
expanded to transmission protocol which further ex-
panded to transmission control protocol which finally
expanded to network transmission control protocol.
Figure 10 shows the results of this experiment, with queries
grouped by the number of meaningful terms in them (query
length minus stopwords) in the horizontal axis.

In these results, the time it takes to search (vertical axis)
can be seen to be linearly related to the number of meaningful

3730

O

()

E 4r -

[@@ total search time

§ 3l A& A query processing time

© l-l hashed index search time

n 2t i
T TTePoes i

...................... et

om.. s s s

20 30
Size of Dataset (GB)

50

Fig. (11) Time taken to search for different dataset sizes.
Resulting times are the mean of 50 runs performed with
multiple three word queries. The dotted line shows the time
taken to search on the hashed index in the cloud, the dashed
line shows the time taken for query modification, and the solid
line shows total time taken for the search (including query
modification and index searching).

terms in the query. This is because the majority of search time
is taken up by the query processing phase, which grows with
the number of terms in the query there are to be processed.
The SKSS and KSWF schemes can be shown to have a faster
growth due to the greater amount of query processing nec-
essary as the query expands. Interestingly, SKSS consistently
performs as well or better than the others despite the additional
query processing. This is due to its small index size and lack
of frequency data collection.

H. Evaluating Scalability

To test the scalability of our system, we ran searches against
an increasingly large set of data. For simplicity, evaluations
of this were only performed using our most space-efficient
scheme, SKSS. The resulting search times are an average of
mid-sized (three word) queries. Figure 11 shows the results of
this evaluation.

These results show that as the size of the dataset increases,
the time taken for query modification remains relatively con-
stant, while the time spent searching the hashed index on the
cloud increases linearly. As a result, the total search time
increases by only 30.8% as the dataset increases from 500
MB to 50 GB.

In addition, to show the low overhead provided by our
system, we measured the size of the index at each size increase
during our test. The results are shown in figure 12. We
conclude that though the relation between dataset size and
index size is linear, the slope is as low as 0.003. The index
size always remains at ~0.3% of the size of the dataset.

IX. DISCUSSION AND FUTURE WORKS

In this paper, we presented S3C, a system for securely and
semantically searching data in the cloud, with three different
schemes fit for different use cases. Our system improves
upon existing encrypted data search techniques by providing

160
140} Page
120} . ,
100} s ,
8ot . ,
60} . §

401 i i

Size of Index (in MB)

20

o’ ‘
0

20 30 ‘

Size of Dataset (in GB)
Fig. (12) Size of the index file for different dataset sizes.
The horizontal axis plots the size of the dataset used in
gigabytes, while the vertical axis plots the associated index
size in megabytes.

50

a solution that is space-efficient (i.e., SKSS) on both the
cloud and client sides, considers the semantic meaning of
the user’s query, and returns a list of documents accurately
ranked by their similarity to the query. Further, the semantics
are achieved without the need for a highly specific semantic
network to be built and maintained by the client. The system
requires only a single plaintext query to be entered and is
easily portable to thin-clients, making it simple and quick
for users to use. The system is also shown to be secure and
resistant to attacks.

Our experiments with a working prototype of each of our
schemes show that S3C is accurate and gives reasonable
performance with low overhead. We argue that each of our
schemes could be tuned to certain use cases. SKSS could be
used for documents with a mid-sized amount of encrypted text
where the key phrase extraction can capture the meaning of
the document well, providing a very low overhead solution;
for example, hospital records with encrypted diagnosis notes.
KSWF could be used in similar cases in which the slight
raise in accuracy is considered worth the slight decrease in
performance and security. FKSS could be used for small doc-
uments where the whole of the text is considered important;
examples including twitter updates or media tags. In addition,
experiments showed that, due to low overhead, SKSS and
KSWF schemes can be utilized for searching big data scale
datasets.

Because of the nature of our semantic query expansion,
we discuss how this work can be expanded. As new online
semantic networks are added to the internet and made available
for applications, they too could be extracted from and added to
the query as part of the semantic processing step. This could
lead to more accurate domain-specific searching. Additionally,
we are working towards pruning the search processing through
topic-based clustering on the hashed index and only searching
over related clusters.

REFERENCES

[11 A. Andrejev, D. Misev, P. Baumann, and T. Risch. Spatio-temporal
gridded data processing on the semantic web. In Proceedings of the 2015

3731

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

IEEE International Conference on Data Science and Data Intensive
Systems, pages 38—45, Dec. 2015.

Christian Bizer, Peter Boncz, Michael L. Brodie, and Orri Erling. The
meaningful use of big data: Four perspectives — four challenges. ACM
SIGMOD Record, 40(4):56-60, Jan. 2012.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public Key Encryption with Keyword Search, pages 506-522.
Springer, 2004.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient
constructions. Journal of Computer Security, 19(5):895-934, Nov. 2011.
Eric J. Glover, Steve Lawrence, William P. Birmingham, and C. Lee
Giles. Architecture of a metasearch engine that supports user infor-
mation needs. In Proceedings of the 8th International Conference on
Information and Knowledge Management, pages 210-216, Nov. 1999.
Eu-Jin Goh et al. Secure indexes. Cryptology ePrint Archive, page 216,
2003.

R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings
of the 12th International Conference on World Wide Web, WWW 03,
pages 700-709, May 2003.

Jeff Heflin and James Hendler. Searching the web with SHOE. In
Proceedings of the 17th Association for the Advancement of Artificial
Intelligence Workshop on Al for Web Search, AAAI *00, pages 35-40,
July 2000.

M. Javanmard, M. A. Salehi, and S. Zonouz. Tsc: Trustworthy and
scalable cytometry. In Proceedings of the 7th IEEE International
Symposium on Cyberspace Safety and Security, pages 1356-1360, Aug.
2015.

Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris
Plexousakis, and Michel Scholl. RQL: A declarative query language for
RDF. In Proceedings of the 11th International Conference on World
Wide Web, pages 592-603, May 2002.

Yuangui Lei, Victoria Uren, and Enrico Motta. Semsearch: A search
engine for the semantic web. In Proceedings of the 15th international
conference on Managing Knowledge in a World of Networks, pages
238-245. Springer, Oct. 2006.

J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword
search over encrypted data in cloud computing. In Proceedings of
the 29th IEEE International Conference on Computer Communications,
INFOCOM ’10, pages 1-5, Mar. 2010.

Christoph Mangold. A survey and classification of semantic search ap-
proaches. International Journal of Metadata, Semantics and Ontologies,
2(1):23-34, 2007.

A. K. Mariappan, R. M. Suresh, and V. Subbiah Bharathi. A comparative
study on the effectiveness of semantic search engine over keyword
search engine using tsap measure. International Journal of Computer
Applications EGovernance and Cloud Computing Services, pages 4-0,
Dec. 2012.

T. Moataz, A. Shikfa, N. Cuppens-Boulahia, and F. Cuppens. Semantic
search over encrypted data. In Proceedings of the 20th International
Conference on Telecommunications (ICT), pages 1-5, May 2013.
Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, and Mike Gatford. Okapi at TREC-3. Overview of the Third
Text Retrieval Conference (TREC-3), 3:109-126, 1995.

M. A. Salehi, T. Caldwell, A. Fernandez, E. Mickiewicz, E. W. D.
Rozier, S. Zonouz, and D. Redberg. Reseed: Regular expression search
over encrypted data in the cloud. In Proceedings of the 7th IEEE
International Conference on Cloud Computing, pages 673-680, June
2014.

Dawn Xiaodong Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Proceedings of the 17th IEEE
symposium on Security and Privacy, pages 44-55, May 2000.
Xingming Sun, Yanling Zhu, Zhihua Xia, and Lihong Chen. Privacy
preserving keyword based semantic search over encrypted cloud data.
International Journal of Security and Its Applications, 8(3), May 2014.
Alberto Tonon, Michele Catasta, Roman Prokofyev, Gianluca Demartini,
Karl Aberer, and Philippe Cudr-Mauroux. Contextualized ranking of
entity types based on knowledge graphs. Web Semantics: Science,
Services and Agents on the World Wide Web, 3738:170 — 183, Mar.
2016.

Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel,
and Willem Jonker. Computationally efficient searchable symmetric
encryption. In Proceedings of the 7th VLDB Workshop on Secure Data
Management, pages 87-100. Springer, Sep. 2010.

C. Wang, K. Ren, Shucheng Yu, and K. M. R. Urs. Achieving usable
and privacy-assured similarity search over outsourced cloud data. In
Proceedings of the 31st IEEE International Conference on Computer
Communications, INFOCOM ’12, pages 451459, Mar. 2012.

