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Abstract. Infrastructure as a Service (IaaS) clouds have become the
predominant underlying infrastructure for the operation of modern and
smart technology. IaaS clouds have proven to be useful for multiple rea-
sons such as reduced costs, increased speed and efficiency, and better
reliability and scalability. Compute services offered by such clouds are
heterogeneous—they offer a set of architecturally diverse machines that
fit efficiently executing different workloads. However, there has been lit-
tle study to shed light on the performance of popular application types
on these heterogeneous compute servers across different clouds. Such
a study can help organizations to optimally (in terms of cost, latency,
throughput, consumed energy, carbon footprint, etc.) employ cloud com-
pute services. At HPCC lab, we have focused on such benchmarks in dif-
ferent research projects and, in this report, we curate those benchmarks
in a single document to help other researchers in the community using
them. Specifically, we introduce our benchmarks datasets for three appli-
cation types in three different domains, namely: Deep Neural Networks
(DNN) Inference for industrial applications, Machine Learning (ML) In-
ference for assistive technology applications, and video transcoding for
multimedia use cases.

1 Overview

Heterogeneous computing systems (HCS) have become essential in overcoming
computational limitations as Moore’s Law reaches its twilight, especially with
the rising demand for scalable and efficient computational solutions for smart
applications. These systems leverage architecturally diverse machines, enabling
them to handle tasks with varying computational requirements. Heterogeneity
is increasingly prevalent across cloud systems, including public cloud platforms
like Amazon Web Services (AWS) and Microsoft Azure, which provide a mix of
x86-based CPUs, ARM processors, GPUs, and domain-specific accelerators like
FPGAs.

On the application side, cloud computing has become a cornerstone for de-
ploying a wide range of applications, including Deep Neural Network (DNN)
inference and training tasks, and more conventional workloads, such as video

http://hpcclab.org/
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processing, across various industries. These systems are highly diverse (aka appli-
cation level heterogeneity) and have affinity with heterogeneous compute servers
offered by cloud platforms.

This technical report delves into the benchmarking of different application
types across different cloud providers with heterogeneity compute offerings. This
benchmarking provides a base to evaluate and compare the performance of di-
verse workloads. In this paper, we focus on benchmarking applications for infer-
ence tasks across heterogeneous servers. Specifically, we analyze:

– Deep Neural Network (DNN) inference for time-critical applications in the
Oil and Gas industry [1,2].

– Machine Learning inference tasks, including image classification, NLP, and
speech recognition for assistive technology, particularly, for blind and visually
impaired users [3].

– Video transcoding tasks involving resolution, frame rate, bit rate, and codec
conversions [4,5].

This technical report introduces the methodologies, datasets, and cloud plat-
forms used for benchmarking and provides insights into accessing these bench-
marks across heterogeneous systems. The datasets of this report are all available
on the High-Performance Cloud Computing Lab’s GitHub repositories.

1.1 Benchmarking Structure

Figure 1 provides an overview to the benchmarking we introduce in this techni-
cal report. According to the figure, our benchmarking encompasses two Cloud
providers, namely AWS and Chameleon Cloud; each one with heterogeneous
processors that are listed in the overview taxonomy. On the application side
we consider three application domains, namely “Video Transcoding”, “Machine
Learning” inference for assistive technology, and “Machine Learning” inference
for industrial Use Cases in the context of Oil and Gas. Each application is bench-
marked on each processor type in different clouds.

1.2 Application Types

The industrial use cases include applications like fire detection, oil spill detection,
and acoustic impedance estimation in the Oil and Gas sector, which require real-
time and highly accurate predictions to prevent catastrophic failures [?], [?].

Assistive Technology applications are in the context of supporting blind and
visually impaired users, focusing on speech recognition and object (obstacle)
detection to enhance accessibility and independence.

Video Processing application are for video transcoding and compression in
multimedia streaming. The applications include changing resolution, bit rate,
frame rate, and compression format.
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Fig. 1: Benchmarking structure

1.3 Heterogeneous Resources in Cloud Platforms

Leading providers like Amazon Web Services (AWS) and research-oriented plat-
forms such as Chameleon Cloud, offering a range of virtual machine (VM) con-
figurations to cater to different application needs with different prices.

In this benchmarking we use VMs configured with different processor types
offered by these cloud providers.

Performance variability in heterogeneous systems poses significant challenges,
especially for inference tasks where latency and throughput are critical. By an-
alyzing execution times across varied machine types, we can figure out: (A) the
randomness in application performance due to heterogeneity. (B) Comprehensive
benchmarking results, including resource utilization and execution times. These
results can be used by researchers to explore strategies to optimize resource allo-
cation for cost-efficiency and scalability. (C) This benchmarking provides access
to essential resources through curated links to GitHub repositories and datasets,
enabling reproducibility and further research

In the rest of this technical report, we will explain details of benchmarking
for industrial use case (Section 2), assistive technology for blind and visually-
impaired users (Section 3), and video processing (Section 4).
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2 Benchmark I: DNN Applications in Industrial (Oil &
Gas) Use Case

2.1 Overview

In the context of O&G operations, several activities, such as fire detection, toxic
gas monitoring, and spill detection, require accurate and timely processing. A
failure to process these operations correctly and quickly can lead to disastrous
consequences, including oil spills, explosions, and loss of life. Understanding the
uncertainties in the execution times of different applications and properly mod-
eling them is crucial for improving the safety, reliability, and efficiency of O&G
operations in Industry 4.0.

We benchmark the inference time of four Deep Neural Networks (DNN) ap-
plications in the context of O&G industry on both AWS and Chameleon cloud,
as explained in the next subsections. We note that more extensive results about
this benchmark is available in [1]. This benchmark was also used in conducting
the research and evaluation of [2].

2.2 DNN Inference Time for O&G Applications

1. Fire Detection: Utilizing the FireNet DNN model(which itself is based
on Alexnet [6]), this application detects fire in real-time from video frames.
FireNet integrates convolutional layers with max-pooling and normalization
to optimize processing time and accuracy. The dataset consists of 240 videos
processed on heterogeneous cloud systems, including AWS and Chameleon
Cloud.
All the benchmarking results and scripts for the Fire Detection Application
are available in GitHub Repository for Fire Detection.

2. Oil Spill Detection: We utilize a detection system that operates based on
the FCN-8 model [7]. The model contains five Fully Convolutional Network
(FCN) blocks and two up-sampling blocks that collectively perform semantic
segmentation (i.e., classifying every pixel) of an input image and output a
labeled image. The FCN-8 model functions based on the satellite (a.k.a.
SAR) [8] images. We configure the analysis to obtain the inference time of
110 SAR images collected by MKLab [9].
All the benchmarking results and scripts for the Fire Detection Application
are available in GitHub link for Oil Spill Detection.

3. Human Activity Recognition (HAR): Human Activity Recognition
(HAR) systems are widely used in Industry 4.0 to ensure workers safety
in hazardous zones. For this purpose, motion sensors, such as accelerome-
ter and gyroscope, that are widely available on handheld PDA devices are
utilized. The HAR system we use operates based on the sequential neural
network model with four layers to identify the worker’s activities (namely,
walking, walking upstairs, walking downstairs, sitting). For analysis, we use
a dataset of UCI machine learning repository, known as Human Activity
Recognition Using Smartphones [10].

https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Applications/FireDetection
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Applications/OilSpillDetection
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All the benchmarking results and scripts for this Application are available
in GitHub Repository for Human Activity Recognition.

4. Acoustic Impedance Estimation: Estimating acoustic impedance (AI)
from seismic data is an important step in O&G exploration. To estimate
AI from seismic data, we utilize a solution functions based on the temporal
convolutional network [11]. Marmousi 2 dataset [12] is used to estimate AI.
All the benchmarking results and scripts for this Application are available
in GitHub Repository for Acoustic Impedance Estimation.

2.3 Cloud Platforms Used for Benchmarking the Industrial
Applications

From Amazon Web Services (AWS), we employed the following instance
type virtual machines (VMs):

1. General Purpose Instances (e.g., m5ad.xlarge): Balances compute,
memory, and networking for diverse workloads.

2. GPU Instances (e.g., g4dn.xlarge): Optimized for high-performance
tasks like deep learning and video processing.

3. Inference-Optimized Instances (e.g., inf1.xlarge): Designed for ma-
chine learning inference at scale.
For configurations and raw data of the benchmarking under these AWS
instances, please refer to AWS results for industrial use cases.

Chameleon Cloud is a configurable experimental platform that enables ex-
tensive benchmarking research. It offers VM flavors such as m1.medium, m1.large,
and m1.xlarge, catering to various resource needs [13].

For configurations and raw data of the benchmarking under these Chameleon
Cloud instances, please refer to Chameleon results for industrial use cases.

2.4 Benchmarking Methodology for Industrial Applications on
Heterogeneous Clouds

To benchmark the DNN applications, the inference time is measured in AWS
and Chameleon cloud providers with respect to different machine types they of-
fer. That is, the aforementioned applications are deployed across different cloud
instances mentioned earlier. The random nature of the inference time is captured
by running each application multiple times under varying cloud conditions to ob-
tain a comprehensive understanding of how the system’s heterogeneity influences
the performance.

Detailed benchmarking data are available in: Benchmarking Repository.

2.5 Analysis of Inference Time of the Applications

The inference time of each application will be analyzed using both AWS and
Chameleon Cloud, and the times across the different machines will be compared.
First, we will test for the normality of the datasets using the Shapiro-Wilk test,
then we will utilize other statistical inference methods such as mean and standard
deviations to compare the execution times on the different cloud services.

https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Applications/HAR
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Applications/AcqImp
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/AWS_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Chameleon_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0
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Shapiro-Wilk Test for Normality of the Data The Shapiro-Wilk test is
a test that evaluates whether the data set is normally distributed [?]. A large
p-value indicates that the dataset is normally distributed, while a small p-value
indicates that the data is not normally distributed. The normality tests are used
to understand the distribution of the collected data; therefore, this test is used.

Results of the AWS Cloud Shapiro-Wilk Test; Raw data can be found at:
Results of the AWS Cloud Shapiro-Wilk Test

Results of the Chameleon Cloud Shapiro-Wilk Test; Raw data can be found
at: Results of the Chameleon Cloud Shapiro-Wilk Test

Kolmogorov-Smirnoff Goodness of Fit Test Due to the lack of normality
in several cases after using the Shapiro-Wilk test, we utilized the Kolmogorov-
Smirnoff test to determine the best fitting distribution of the inference times.
The Kolmogorov-Smirnoff Goodness of Fit test identifies whether a set of samples
derived from a population fits to a specific distribution.

Results of the Chameleon Cloud Shapiro-Wilk Test; Raw data can be found
at: Results of the Chameleon Cloud Shapiro-Wilk Test

Mean and Standard Deviation of Inference Executive Times The mean
and standard deviation of the inference times summarizes the behavior of the
observations in a single value.

Results of the AWS Mean and Standard Deviation; Raw data can be found
at: Results of the AWS Mean and Standard Deviation

Results of the Chameleon Mean and Standard Deviation. Raw data can be
found at: Results of the Chameleon Mean and Standard Deviation

For further analysis of these results, please check our paper dedicated to this
benchmarking [1].

3 Benchmark II: Machine Learning Inference
Benchmarking on Heterogeneous Cloud Resources for
Assistive Technology

3.1 Overview

In the context of assistive technology, several activities, such as identifying sur-
rounding object, obstacle detection, and interaction with the system (in form of
speech recognition and question answering) require accurate and real-time pro-
cessing. This benchmarking aims at Understanding the inference time of different
applications for assistive technology of blind and visually impaired individuals.

We benchmark the inference time of four ML applications in the context of
assistive technology on different VM types of AWS cloud, as explained in the
next subsections. We note that this benchmark has been used and explained in
our prior publication [3].

https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/AWS_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Chameleon_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Chameleon_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/AWS_Result
https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0/tree/master/Chameleon_Result
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3.2 Task Types

In this section, we benchmark the execution times of four ML tasks used for
assisting blind and visually impaired individuals, namely Image Classification,
Object Detection, Question Answering, and Speech Recognition. To ensure con-
sistency across the task types, they will all be converted to the ONNX (Open
Neural Network Exchange) format using the Python ONNX converter. The work-
load of the tasks was also designed to be available for execution from the begin-
ning.

The summary of the benchmarking of these applications on different AWS
VM types are shown in Table 1.

Task Type t2.large c5.2xlarge g4dn.xlarge

Image Classification [14] 74 27 12
Object Detection [15] 36 21 12

Question Answering [16] 36 16 4
Speech Recognition [17] 621 237 20

Table 1: Table showing the expected execution times for the different tasks across the
different machines. The table is also available in the ML Github repository.

Image Classification Image classification [14] is a supervised learning problem
where a model is trained to identify specific target classes using labeled exam-
ple images. The aim is to classify unseen images accurately by learning patterns
from the training data. In this dataset, image classification is implemented using
the ResNet50 model, which is a robust deep neural network for image recogni-
tion tasks. To measure performance, 1,000 sample images are processed on each
machine (VM) type to evaluate execution times for the classification task.

The average execution (inference) time of this model on different AWS VM
types are shown in Table 2. Raw data of this benchmark can be found at Im-
age Classification Github page, and figure 2 graphically shows these different
inference times.

Machine Type Average Inference Time

c5.2xlarge 24.929
g4dn.xlarge 8.663
t2.large 74.096

Table 2: Average inference times of the three machine types when performing image
classification tasks.

https://github.com/hpcclab/heterogeneity_measure/blob/main/analysis/results/eets/eet-summarized.png
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/image_classification
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/image_classification
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Fig. 2: Chart comparing the Image Classification Inference times across the Ma-
chines

Object Detection Object detection [15] is to locate and identify instances
of objects within images or videos. In this dataset, YOLOv5 model is utilized
to perform object detection, a task run on 1,000 sample images ten times to
measure the expected execution time for object recognition. The set of images
used for this purpose are available in this link.

The average execution (inference) time of this model on different AWS VM
types are shown in Table 3. Raw data of this benchmark can be found at Object
Detection Github page, and figure 3 graphically shows these different inference
times.

Machine Average Inference Time

c2.2xlarge 21.483
g4dn.xlarge 14.149
t2.large 38.824

Table 3: The Average inference times of the three machines when performing the Object
Detection.

Question Answering Question-Answering (QA) models are advanced machine
and deep learning models designed to answer questions based on provided con-
text, or in some cases, without context, as seen in open-domain QA tasks.

In this dataset, the QA task is implemented using the DistilBERT model
[16], a lightweight variant of BERT. A sample context and question are provided
as input, and the inference task is executed 1,000 times.

The average execution (inference) time of this model on different AWS VM
types are shown in Table 4. Raw data of this benchmark can be found at Question
Answering Github page, and figure 4 graphically shows these different inference
times.

https://drive.google.com/drive/folders/1lrlEzL2XFhmECxevFFXJgbP7lSQUy2fT?usp=sharing
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/object_detection
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/object_detection
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/question_answering
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/question_answering


Title Suppressed Due to Excessive Length 9

Fig. 3: The average inference times for Object Detection across the different AWS
VM types.

Machine Type Average Inference Time

c2.2xlarge 16.995
g4dn.xlarge 4.035
t2.large 36.116

Table 4: Average inference time of performing the question-answering inference across
heterogeneous AWS VM types.

Fig. 4: Average inference times of different machines performing questions an-
swering tasks.
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Speech Recognition Automatic speech recognition (ASR) is the technology
that enables programs to convert spoken language into written text. It differs
from voice recognition, which focuses solely on identifying individual speakers.

In this dataset, speech recognition tasks are performed using the Wav2vec2
model [17]. Four-second audio samples are executed across various machine
types, and the average inference time is calculated to evaluate the system’s
performance.

The average execution (inference) time of this model on different AWS VM
types are shown in Table 5. Raw data of this benchmark can be found at Speech
Recognition Github page, and figure 5 graphically shows these different inference
times.

Machine Types Average Inference Times

c2.2xlarge 230.32
g4dn.xlarge 21.579
t2.large 621.614

Table 5: Average inference times of heterogeneous AWS VM types performing the
speech recognition task.

Fig. 5: Average inference times of heterogeneous AWS machines performing
speech recognition.

4 Benchmark III: Video Transcoding Benchmark on
Heterogeneous Cloud Resources

4.1 Overview

In this section, we explain the benchmark we produced for video processing. The
benchmarking focuses on the video transcoding operation, which CPU-intensive,

https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/speech_recognition
https://github.com/hpcclab/heterogeneity_measure/tree/main/analysis/results/profiling/speech_recognition
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using FFMpeg, a popular tool for video processing. We note that FFMpeg is
a powerful tool with the ability to concurrently process multiple operations.
Therefore, the benchmarking includes multi-parameter processing information
on the cloud, in addition to single parameter transcoding.

This benchmark has been used in [5] and [4] publications. Interested re-
searchers can refer to these papers for more details on the specifications of the
benchmark and how to use it. Here is the Github repository where all the bench-
marking results and scripts are made available. This Github repositoryincludes
a folder where all the scripts for splitting and transcoding benchmark videos are
included.

4.2 Video Transcoding Tasks

This repository includes 100 open-source videos that are gathered in a variety
of content forms (i.e. fast/slow pace, action, scenery, animation, etc.). All 100
videos are available in the following formats

1. In their original form. Also, in this link the meta-data (content type, codec,
resolution, of each video is described in the CSV format.

2. In form of 2-second split video segments.
3. The 2-second split video segments in the uniform (standard) compression

format. We define standard as to have a 720p resolution, 30 fps framerate,
H.264 codec, and 4500 kb/s bitrate

4. the 2-second split video segments available with the standard and HLS-
compatible format.

The task types we considered for this benchmarking ar the following three
transcoding operations:

Bitrate Bitrate describes the rate at which bits are transferred from one loca-
tion to another along a digital network. The average execution time is collected
for five parameters: 384K, 512K, 768K, 1024K, and 1536K.

Frame rate Frame rate is the measurement of how quickly a number of frames
appear in a second. The average execution time is collected for the five param-
eters: 10fps, 15fps, 20fps, 30fps, and 40fps.

Resolution Resolution is the total number of pixels in a video frame rate.
The average execution time for the resolution tasks will be collected for the five
parameters: 352×288, 680×320, 720×480, 1280×800, and 1920×1080.

4.3 Single Parameter Video Transcoding Benchmarking

To limit the degree of freedom in execution time, in this part, each task is con-
figured to change only one specification of the videos in the benchmark dataset.

https://github.com/hpcclab/videostreamingBenchmark?tab=readme-ov-file
https://github.com/hpcclab/videostreamingBenchmark/tree/master/VideoPreparationScripts
https://drive.google.com/drive/folders/1uereCYUqTqb602W9BFi-cjj-Gag-IFt9?usp=sharing
https://drive.google.com/file/d/1Z9g91wXzOIlFM7pWEaLkDq0Wc7-SGAaQ/view?usp=sharing
https://drive.google.com/drive/folders/1MaEAN8TjuOhv9mH33j5L7nibxppriadQ?usp=sharing
https://drive.google.com/drive/folders/1KhsxZtC22L-EHoeXmsdmWpkuNZpmS-pL?usp=sharing
https://drive.google.com/drive/folders/1KhsxZtC22L-EHoeXmsdmWpkuNZpmS-pL?usp=sharing
https://drive.google.com/drive/folders/1MKeNOcfzrWl9kUNp26F-5eFm4qwhpjsE?usp=sharing
https://drive.google.com/drive/folders/1MKeNOcfzrWl9kUNp26F-5eFm4qwhpjsE?usp=sharing
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Single Parameter Transcoding folder include transcoding which changes one pa-
rameter of the standardized video segment at a time; the folder also includes the
required scripts to perform such benchmarking. All the results of this benchmark
are from processing the video dataset only on Chameleon Cloud Small VM
type. Each experiment is run 30-times. Both individual transcoding time and
the mean and standard deviation are reported in the benchmark.

4.4 Multi-Parameter Video Transcoding Benchmarking

Multiple Parameter Transcoding folder include transcoding which using FFM-
peg, we change three parameters, namely Framerate, Resolution, Codec (e.g.,
30, 240p, HEVC) of the standardized video segment in one transcoding opera-
tion (i.e., output one video with three parameters changed). This benchmarking
was conducted both on the following VM types of Chameleon Cloud: Medium,
Large, XLarge, XXLarge; For AWS cloud we used c5.2xlarge, g4dn.xlarge,

m5.2xlarge, m5a.2xlarge, r5.2xlarge VM types. More information about
these resources are shown in the tables of Figure 6 These results are available in
separate folders.

Fig. 6: Different machine types used for benchmarking multi-parameter video
transcoding. Image taken for the main report file available in here.

The summary of analysis of multi-parameter transcoding for different codec
types for AWS cloud is show in the table of Figure 7. Each entry of the table
shows the minimum and maximum transcoding time of the resolution, frame
rate, and/or bit rate change for different compression formats (codec).

https://github.com/hpcclab/videostreamingBenchmark/tree/master/ExecutionTimeBenchmark/SingleParameterTranscoding
https://github.com/hpcclab/videostreamingBenchmark/tree/master/ExecutionTimeBenchmark/MultipleParameterTranscoding
https://github.com/hpcclab/videostreamingBenchmark/blob/master/ExecutionTimeBenchmark/MultipleParameterTranscoding/SamplingAnalysis/Nguyen_Diana_CMPS490_Report.pdf
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Fig. 7: Min and Max of transcoding time for different machine types ins AWS.
CO is AWS c5.2xlarge, GPA is AWS m5a.2xlarge with AMD processor, GPI
is AWS m5.2xlarge with Intel processor, and MO is AWS r5.2xlarge . Image
taken for the main report file available in Page 45.

4.5 Merging Multiple Transcoding Benchmarking

FFMpeg has the ability to produce multiple outputs in one command (a.k.a.
transcoding merging). Note that this is different with multi-parameter transcod-
ing, because in merging, there are more than one output files. For instance, if
we transcode frame rate, bit rate, and resolution of video1, and generate one
output video file, this is a multi-parameter transcoding, whereas, changing the
resolution of video1 to 720p and 1280p and generate two separate video files is
called merging (i.e., merging to different FFMpeg commands in one).

Early evaluation of the collected execution-time revealed a remarkable varia-
tion in the execution-time of some task types. Specifically, we noticed that codec
execution-time is far beyond the other three task types. Accordingly, we cate-
gorize the tasks types into two groups: First group is called Video Information
Conversion (VIC ) that includes changing bit-rate, frame-rate, or resolution task
types. Tasks of this group have a low variation in their execution-times, when
processing different video segments on the same machine type. Second group is
Video Compression Conversion that only includes the codec task type (hence, we
call it the Codec group). In contrast to the first group, the codec execution-time
(and subsequently its merge-saving) for different video segments varies remark-
ably even on the same machine.

This is the link to the merging benchmark and the paper elaborates on it
is available here [5]. The above Github page contains three sub folder, namely
scripts, Codec class, and (a.k.a. VIC) class. This dataset is prepared to show
merge saving percentage (i.e., relative percentage between merge and non-merge
counterpart).

The Codec class contains 3 subfolders which each of them have two Mi-
crosoft Excel files (xls format) that include the execution time of merged and
non merged transcoding. Task merging in this case are performed with the same
operation only. There is also “merge across operations.xls” that includes the
data from where tasks from multiple operations within VIC class are merged to-
gether. The VIC class contains 3 subfolders where each one of them represents
transcoding time of each of the codec (HEVC, mpeg, VP9). Both as a single
task and a merged task.

https://github.com/hpcclab/videostreamingBenchmark/blob/master/ExecutionTimeBenchmark/MultipleParameterTranscoding/SamplingAnalysis/Nguyen_Diana_CMPS490_Report.pdf
https://github.com/hpcclab/videostreamingBenchmark/tree/master/MergingDataset
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The data collected in this benchmark are performed on our own local cloud
which is a DELL PowerEdge R830 with 4×Intel Xeon E5-4628Lv4 processors
with 112 homogeneous cores, 384 GB memory (24×16 GB DRAM), and RAID1
(2×900 GB HDD) storage.

5 Summary

This technical report serves as a handbook for different benchmarking we have
done on various application types on different clouds with heterogeneous ma-
chines. We presented three main benchmarked applications in different domains:

1. Four DNN applications in industrial use case (Oil and Gas context). This
benchmarking was conducted on Chameleon and AWS clouds, each one with
heterogeneous VMs.

2. Four ML applications in assistive technology (blind and visually impaired)
use case. This benchmarking was exclusively done on heterogeneous AWS
VMs.

3. Four video transcoding operations using FFMpeg. This benchmarking was
performed in three phases. First, single parameter transcoding on Chameleon
Cloud. Second, Multi-parameter transcoding on both Chameleon and AWS
clouds. Third, merging multiple transcoding operations in one FFMpeg com-
mand that was done on our local cluster.

All these benchmarks are publicly available through our Github and are
reflected in our publications. We hope that other researchers in the community
can make use of this benchmarks as well.

References

1. R. Hussain, M. Amini, and A. Pakravan, “Analyzing the performance of smart
industry 4.0 applications on cloud computing systems,” in Proceedings of IEEE
22nd International Conference on High Performance Computing and Communica-
tions(HPCC), 2020.

2. R. F. Hussain and M. A. Salehi, “Resource allocation of industry 4.0 micro-service
applications across serverless fog federation,” Future Generation Computer Sys-
tems, vol. 154, pp. 479–490, 2024.

3. A. Mokhtari, S. Ghafouri, P. Jamshidi, and M. Amini Salehi, “Heet: A heterogene-
ity measure to quantify the difference across distributed computing systems,” in in
Proceedings of the 17th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC ’24, 2024.

4. C. Denninnart and M. A. Salehi, “Harnessing the potential of function-reuse in
multimedia cloud systems,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 33, no. 3, pp. 617–629, 2022.

5. S. Wu, C. Denninnart, X. Li, Y. Wang, and M. A. Salehi, “Descriptive and predic-
tive analysis of aggregating functions in serverless clouds: the case of video stream-
ing,” in Proceedings of the 22nd International Conference on High Performance
Computing and Communications (HPCC ’20), pp. 19–26, 2020.



Title Suppressed Due to Excessive Length 15

6. M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from
alexnet: A comprehensive survey on deep learning approaches,” arXiv preprint
arXiv:1803.01164, 2018.

7. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440, 2015.

8. Z. Huang, C. O. Dumitru, Z. Pan, B. Lei, and M. Datcu, “Classification of large-
scale high-resolution sar images with deep transfer learning,” Journal of Geoscience
and Remote Sensing Letters, 2020.

9. M. Krestenitis, G. Orfanidis, K. Ioannidis, K. Avgerinakis, S. Vrochidis, and
I. Kompatsiaris, “Oil spill identification from satellite images using deep neural
networks,” Journal of Remote Sensing, vol. 11, no. 15, p. 1762, 2019.

10. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain
dataset for human activity recognition using smartphones.,” in Esann, 2013.

11. A. Mustafa, M. Alfarraj, and G. AlRegib, “Estimation of acoustic impedance
from seismic data using temporal convolutional network,” arXiv preprint
arXiv:1906.02684, 2019.

12. R. Versteeg, “The Marmousi experience; velocity model determination on a syn-
thetic complex data set,” Journal of the Leading Edge, vol. 13, pp. 927–936, 09
1994.

13. K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad, and
P. Ruth, “Chameleon: a scalable production testbed for computer science research,”
in Contemporary High Performance Computing: From Petascale toward Exascale,
vol. 3, ch. 5, pp. 123–148, May 2019.

14. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

15. G. Jocher, “YOLOv5 by Ultralytics.” https://github.com/ultralytics/yolov5,
May 2020. (Accessed: Aug. 2, 2023).

16. V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

17. A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for
self-supervised learning of speech representations,” Advances in neural information
processing systems, vol. 33, pp. 12449–12460, 2020.

https://github.com/ultralytics/yolov5

	Benchmarking Different Application Types across Heterogeneous Cloud Compute Services

