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Abstract—Live streaming of video contents over the Internet
generally requires conversion (i.e.,transcoding) of the video con-
tents based on the characteristics of viewers’ devices (e.g.,spatial
resolution, network bandwidth, and supported codec). Due to the
complexity of video transcoding process, live streaming service
providers are becoming reliant on cloud services (e.g.,Amazon
AWS!). With the scalable and reliable processing capability that
clouds offer, live streaming service providers are able to transcode
the live streams in a timely manner and fulfill viewers’ Quality
of Service (QoS) demands. For that purpose, cloud services must
be utilized efficiently. In this paper, we present a cloud-based
architecture that facilitates transcoding for live video streaming.
Then, we propose a scheduling method for the architecture
that is cost-efficient and satisfies viewers’ QoS demands. We
also propose a method- utilized by the scheduler- to predict
the execution time of transcoding tasks before their executions.
Experiment results demonstrate the feasibility of cloud-based
transcoding for live video streams and the efficacy of the proposed
scheduling method in satisfying viewers’ QoS demands without
imposing extra cost to the stream provider.

I. INTRODUCTION

According to Global Internet Phenomena Report [1], video
streaming constitutes roughly 64% of all the U.S. Internet
traffic. Cisco Systems, Inc.” has predicted that the video
streaming traffic will rise up to 80% of the Internet traffic
by 2019 [2].

One increasingly popular type of video streaming is live
streaming services that enable clients (i.e.,video publishers)
to use a camera and broadcast videos via the Internet. For
instance, using Livestream?, viewers are able to watch the
contents being captured by video publishers on their smart
phone, laptop, and TV. To provide a high-quality live video
streaming service on a variety of viewers’ devices, the video
contents need to be transcoded (i.e.,converted) based on the
characteristics of the viewers’ devices (e.g.,spatial resolution,
network bandwidth, and supported codec).

Currently, to support a high-quality live stream on different
display devices, video publishers have to generate multiple
versions (i.e.,formats) of the same video (e.g.,multiple video
encodings) at their own end. However, this approach suffers
from hardware limitations and network bandwidth bottleneck.
In addition, this approach is not aware of the viewers’ de-
mands. That is, it can potentially generate versions that are not
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requested by viewers. Thus, this approach has remained cost-
prohibitive and inefficient. Another approach is on-demand
live video stream transcoding. In this approach, the publisher
generates only one version of the video at her end. The live
video can be streamed to the viewers as long as their display
devices are compatible with the streamed format. On-demand
live video transcoding takes place upon joining a new viewer
with an incompatible display device format.

Video transcoding is a computationally heavy and time
consuming process, it requires huge storage and computing
infrastructures. In-house provisioning and upgrading of such
infrastructures to meet the fast-growing global demands of
video transcoding is cost-prohibitive. Therefore, making use
of cloud services is becoming a common practice amongst
streaming service providers [3]-[6].

The challenge for live streaming providers in utilizing
cloud services, however, is to spend the minimum cost for
the services while meeting the viewers’ QoS demands. In
particular, live streaming viewers have unique QoS demands
that need to be respected to achieve the user satisfaction.

Viewers of a live streaming service, firstly, demand to
receive video streams without any delay. We define presen-
tation time as the latest time (i.e.,deadline) that a transcoding
operation can be completed to stream the video without any
interruption. There is no value in transcoding a video after
its presentation time. That is, each transcoding task has an
individual hard deadline. The transcoding tasks that miss their
presentation times must be dropped (i.e.,discarded) to keep up
with the live streaming. In this research, we define drop rate as
the percentage of transcoding tasks that are dropped as they
cannot complete transcoding by their presentation times. To
maximize viewers’ satisfaction, we need to minimize the drop
rate of the video streams.

Secondly, previous studies (e.g., [7], [8]) show that more
than 40% of viewers only watch few seconds of a video
stream. However, they judge the streaming provider quality
based on the delay they perceive in the beginning of the
stream. We define the delay that the user perceives in the
beginning of the stream as the startup delay. Under this
circumstance, to maximize viewers’ satisfaction, we need to
minimize the startup delay of the video streams.

In summary, we consider video live streaming QoS demand
as: minimizing the startup delay and the drop rate. Therefore,
the challenge in this research is how fo allocate (i.e.,schedule)
transcoding tasks on cloud resources to satisfy the QoS
demands of live streams viewers without incurring extra cost
to the stream provider?



To address this challenge, in this paper, we present an
architecture for Video Live Streaming using Cloud, briefly
termed VLSC. Then, we present a scheduling method within
the VLSC architecture that maps the transcoding tasks to the
cloud Virtual Machines (VMs) with the goal of minimizing
QoS violations and without incurring extra cost to the stream
provider.

Efficient operation of a scheduling method generally de-
pends on the execution time information it has about the
tasks in the scheduling queue [9], [10]. The execution time
information are generally obtained from prior executions of the
same (or similar) task(s) [9]. However, such prior executions
are not available in live video streaming, as it is the first
time ever the video being transcoded. To provide an efficient
scheduling method, in this paper, we also propose a method
to estimate the execution time of transcoding tasks in a live
video stream.

In summary, the key contributions of this paper are as
follows:

« Presenting the VLSC architecture to enable live streaming

service providers to utilize cloud services.

o Developing a QoS-aware scheduling method to map
transcoding tasks on cloud VMs without imposing extra
cost to the live stream provider.

o Analyzing the performance of the proposed QoS-aware
scheduling method under different live streaming work-
loads.

While a video is transcoded, it is commonly streamed
to the viewers’ devices through Content Delivery Networks
(CDNs) [11]. Tt is worth noting that, this research is not about
CDN technology. Instead, it concentrates on the computational
aspects of on-demand transcoding of live streaming.

The rest of the paper is organized as follows. Section II pro-
vides some background on video streaming and transcoding.
In section III, we present the VLSC architecture. QoS-aware
scheduling method is discussed in section IV. In section V, we
perform performance evaluation. Related works are presented
in section VI, and finally section VII concludes the paper.

II. BACKGROUND
A. Video Stream Structure

As depicted in Figure 1, a video stream consists of several
sequences. Each sequence is further divided into multiple
Group Of Pictures (GOP) with the sequence header informa-
tion in the beginning.

GOP is essentially a sequence of frames beginning with
an I (intra) frame, followed by a number of P (predicted)
frames or B (be-directional predicted) frames. There are two
type of GOPs: open-GOP and closed-GOP. In the closed-
GOP, there is no inter-relation among GOPs, hence, they can
be transcoded independently. In contrast, there is an inter-
dependency between GOPs in open-GOP. Each frame of the
GOP contains several slices that consist of a number of
macroblocks (MB) which is the basic operation unit for video
encoding and decoding.

In order to avoid unnecessary communication delay between
different cloud servers (i.e., Virtual Machine), video stream are
commonly split into GOPs, that can be transcoded indepen-
dently [12].

Video Stream
Seq2 | Seq3 |

Seql | Seq4 |

[ SeqHeader | GOP1 ][ GOP2 | GOP3 | -+

[ GoP Header [ I [P[P]B]P]P[B] -

Macroblock (MB)

Fig. 1: The structure of a video stream that consists of several
sequences. Each sequence includes several GOPs. Each frame
of GOP contains several macroblocks.

B. Video Transcoding

Video contents are initially captured in a particular for-
mat, spatial resolution, frame rate, and bit rate. Then, a
streaming server converts the original video based on the
viewer’s network bandwidth, device resolution, frame rate, and
video codec. These conversions that are generally called video
transcoding [13], [14] are as follows:

o Bit Rate Adjustment: Due to the diverse network environ-
ment of viewers, streaming service providers usually have
to reduce the video stream’s bit rate to ensure smooth
streaming.

o Spatial Resolution Reduction: If the video resolution
does not match to the viewer’s screen size. Then, the
macroblocks in original video are removed or combined
to produce a video with lower spatial resolution video.

o Temporal Resolution Reduction: Dropping some frames
to adapt the video to devices with lower supported frame
rate.

o Video Compression Standard Conversion: Transcoding
the compression standard of the original video based
on the supported codec of the viewer device (e.g.,from
MPEG?2 [15] to H.264 [16]).

III. VLSC ARCHITECTURE

We propose an architecture for live streaming using cloud
services. An overview of the architecture is presented in
Figure 2. The architecture shows the sequence of actions
taken place when viewers request videos from a live streaming
service provider. The architecture includes six main compo-
nents, namely video splitter, time estimator, task (i.e., GOP)
scheduler, transcoding virtual machines (VM), virtual cluster
manager (VCM), and video merger. The cooperation of these
components leads to cost-efficient and QoS-aware transcoding
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Fig. 2: An overview of VLSC: A cloud-based live streaming transcoding architecture

of live streams on the cloud. These components are explained
in the rest of this section.

A. Video Splitter

In the video splitter component, the live video stream is split
into several GOPs upon arrival, that can be then transcoded
independently. Each GOP has an individual hard deadline
based on the presentation time of the first frame in that GOP.
As we study the case of live streaming, if a GOP misses its
deadline, there is no value in transcoding that and it has to be
dropped.

B. Execution Time Estimator

In live streaming, the execution time of arriving GOP tasks
are unknown. It is noteworthy that this is a major difference
of live streaming with the case of Video-on-Demand (VOD)
where a video stream is processed several times. Thus, the
transcoding (i.e.,execution) time of each GOP task can be
estimated based on the prior execution information. Such prior
execution information do not exist in live video streaming as
it is the first time the video being streamed.

Although prior GOP execution information do not exist
in live streaming, our initial experiment results demonstrate
that the execution time of a GOP has a correlation with the
execution time of other GOPs within the same video. In fact,
generated GOPs within a video include similar number of
frames, hence, similar execution times. Therefore, in live video
streaming, the execution time of a given GOP task can be
estimated based on the execution time information of previous
transcoded GOPs within the same video stream.

We model the transcoding time of the previous GOPs within
a video stream as a Normal distribution N (u, o). Transcoding
time of a GOP also has a correlation with the size of data
(i.e.,frames) that GOP processes (termed GOP size hereafter).
Let Squg the average GOP size of the previous transcoded
GOPs within the video stream. Therefore, for a given GOP,,
with size S,,, the estimated transcoding time, denoted 7,,, is
calculated as follows.

n

Savg

Tn =

pto (1)

It is worth noting that by adding o, Equation 1 provides
a worst-case estimation for transcoding time of GOP,,. Also,
we should note that S, is known prior to the execution of
GOP,.

C. Transcoding (GOP) Task Scheduler

The transcoding task scheduler (briefly called transcoding
scheduler) is responsible for mapping GOP tasks to transcod-
ing servers. The scheduler goal is to satisfy the QoS demands
of clients (in terms of minimum startup delay and GOP drop
rate of video streams) without incurring extra cost to the
stream provider.

Details of the proposed scheduling method is presented in
section IV.

D. Transcoding Virtual Machine (VM)

VM(s) are allocated from the cloud provider to process GOP
tasks. In this work, we assume that the allocated VMs are
homogeneous. Each VM has a local queue where the required
data for GOPs are preloaded before execution. When a free
spot appears in the local queue of a VM, the scheduler is
notified to map a GOP to the VM. We assume that the GOP
tasks in the local queue are scheduled using the FCFS method.

E. Virtual Cluster Manager (VCM)

VCM monitors the operation of transcoding VMs in the
VLSC architecture, and resizes the VM cluster to meet the
clients’ QoS demands and to minimize the incurred cost of the
streaming service provider. In the current study, we consider a
static resource provision policy (i.e.,a fixed number of VMs).
The implementation of dynamic resource provisioning will be
studied in our future work.

F. Video Merger

The purpose of video merger is to place all the transcoded
GOPs in the right order and create the live stream. Video
merger sends the transcoded live streams to the viewers.

IV. QOS-AWARE SCHEDULING METHOD

The transcoding scheduler architecture is illustrated in Fig-
ure 3. For scheduling, GOPs of the requested video streams
are batched in a queue upon arrival. To minimize the startup
delay of video streams, we consider another queue termed the
startup queue. The first few GOPs of each new video stream
are placed in the startup queue that has a higher priority in
compare to the batch queue. To avoid any execution delay,
each VM is allocated a local queue where the required data
for GOPs are preloaded, before the GOP transcoding execution
started.

For each GOP j from video stream %, denoted G;j, the
arrival time and the deadline (denoted J;;) are available.
In live video streaming, the scheduler is not aware of the
execution time G;; of the transcoding tasks. However, the GOP
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Fig. 3: QoS-aware scheduling architecture in VLSC. First few
GOPs of each stream is queued in the startup queue and the
rest are placed in the batch upon arrival. Each transcoding VM
is allocated a local queue to preload GOPs before starting their
execution.

execution time can be predicted based on the method provided
in Section III-B. Therefore, we assume that an estimation for
the execution time of each GOP G;; (briefly called transcoding
time and denoted 7;;) is available.

Once a free spot appears in a VM local queue, the scheduler
is executed to map a GOP to the free spot. The scheduler maps
GOPs to the VM that provides the shortest completion time.

In general, to estimate the completion time of an arriving
GOP G, on VM;, we add up the estimated remaining
execution time of the currently executing GOP in V M} with
the estimated execution time of all tasks ahead of GG, in the
local queue of V' M;. Finally, we add the estimated execution
time of G, (i.e., 7). Let ¢, the remaining estimated execution
time of the currently executing task on V M;, and let ¢, is the
current time. Then, we can estimate the task completion time
for G, (denoted ) as follows:

n
@m:tc+tr+z7_p+7_m ()

p=1

where 7, denotes the estimated execution time of any task
waiting ahead of G, in local queue of VM; and n is the
number of waiting tasks in the local queue of V M;. Recall
that, in live streaming, transcoding tasks have hard deadline.
That is, if a GOP’s estimated minimum completion time ¢,
is larger than its presentation deadline J;;, then the GOP is
dropped, and the scheduler moves to the next GOP in the
queue.

In the proposed scheduling method, we assign a higher
priority to the GOP tasks in the startup queue. However, the
priority should not cause missing the deadlines of tasks waiting
in the batch queue. Let Gy, the first GOP in the batch queue
and GG, the first GOP in the startup queue. At each scheduling
event, G5 can be scheduled before G, only if it does not cause
G to miss its deadline. For that purpose, we calculate the
minimum completion time of G across all VMs. Then, we
can calculate the minimum completion time of G, assuming
that GG, has already been mapped to a VM, and finally check
if G, will miss its deadline or not. If not, then G4 can be
scheduled before Gy,

The performance of the proposed scheduling method also
depends on the queuing policy of the batch queue. We can

utilize any conventional queuing policy (e.g.,FCFS, SDF or
SJF) to determine the precedence of tasks in the batch queue.

V. PERFORMANCE EVALUATION
A. Simulation Setup

We used CloudSim [17], a discrete event simulator, to model
our system and evaluate the performance of the scheduling
methods. The results of our evaluations are depicted in Fig-
ures 4 to 5. To study the system under different live streaming
traffics, we evaluated it with varying number of live streaming
requests within the same time unit. We utilized benchmarking
videos* to simulate the live streaming sources. We modeled
the performance of our VMs based on the characteristics of
T2.Micro VMs in Amazon EC2’ that are available for free.
For the sake of accuracy, each experiment has been repeated
10 times and the average and 95% confidence interval of the
results are reported.

B. Impact of Applying QoS-aware Scheduling

Figure 4a demonstrates how the average startup delay of live
streams is reduced when the proposed QoS-aware scheduling
method is applied in compare with the situation that the
scheduling method is not QoS-aware. We observe that using
the QoS-aware scheduling, we can keep the average startup
delay less than 1 second. More importantly, the startup delay
remains almost constant as the number of live streaming
requests increases.

Figure 4b shows that the average drop rate is almost always
less than 7%. The essence of this experiment is to demonstrate
that it is feasible to transcode live video streams while they
are streamed and in an on-demand basis.

Figure 4c illustrates the incurred cost to the service provider
with and without QoS-aware scheduling. In this figure, the
vertical axis shows the incurred cost based on the AWS costs.
However, because the incurred costs values were small for the
experimented benchmarks, for better representation, the values
has been multiplied by 1000 in the graph. As we can see in this
figure, the incurred cost to the service provider is almost the
same in both cases. The total time that cloud VMs are utilized
is also the same. This experiment expresses that using the QoS-
aware scheduler, we can improve the users’ QoS satisfaction
without incurring extra cost to the stream provider.

C. Impact of Applying Various Queuing Policies

Figure 5 shows how the queuing policy of the batch queue
impacts the startup delay and the GOP drop rate, when the
QoS-aware scheduling method is applied. To demonstrate that,
we evaluated three different policies, namely first come first
serve (FCFS), shortest job first (SJF) and shortest deadline
first (SDF).

The results of these experiments are shown in Figure 5.
We observe that as the number of live streaming requests
increases, SDF leads to the lowest startup delay and drop
rate. This is because SDF maps the most urgent GOP tasks
(i.e.,tasks with fast approaching deadlines) first. However,
SJF prioritizes GOPs with short transcoding time, regardless
of their deadline urgency. This results in a large drop rate
for GOP tasks with urgent deadlines, which are common in

“The videos can be downloaded from: https://goo.gl/TE5iJ5
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live streaming systems. In the FCFS policy, GOPs in the
batch queue have to wait until all GOPs arrived earlier to
be transcoded. This leads to the highest drop rate in compare
with other queuing policies.

Figure 5c illustrates that all three queuing policies cost
almost the same. Similar to Figure 4c, we multiplied the
incurred cost by 1000 for better presentation. In fact, the
total transcoding time of all the videos are the same and the
stream service provider incurs almost the same amount for any
queuing policy when a fixed number of VMs are allocated.

VI. RELATED WORK

Techniques, architectures, and challenges of video transcod-
ing have been investigated by Ahmad et al. [13] and Vetro
et al. [14].

Video transcoding is a computationally heavy and time
consuming process. It requires huge storage and comput-
ing infrastructures for processing. Making use of cloud ser-
vices is becoming a common practice for streaming service
providers [18]-[20]. Accordingly, researchers have investi-
gated several challenges in utilizing cloud services.

The way videos are segmented affects both the transmission
and the transcoding time of video streams. Jokhio et al. [12]

present how video segmentation impacts the transcoding time
of spatial resolution reduction. They split the video into
segments that contain a number of GOPs. Alternatively, we
treat each GOP as the processing unit (i.e.,task). Our initial
experiments demonstrated that considering GOPs as the pro-
cessing unit improves the transmission and transcoding time
in live-streaming.

Ashraf et al. [19] propose a stream-based admission control
and scheduling (SBACS) using a two-step prediction model.
They determine the rejection rate of arriving streams based on
the waiting time of the current streaming tasks in the system.
Their proposed scheduling method drops (i.e.,discards) parts
of the video stream to prevent video transcoding jitters.

In our previous work [21], [22], we proposed a scheduling
and a resource provisioning method to enable on-demand
video transcoding for Video-On-Demand (VOD) streams on
the cloud. The goal in those works was to guarantee the QoS
demanded by the video viewers while minimizing the incurred
cost of using cloud services. The current work is different
from [21], [22] from several aspects. Firstly, in this work, we
investigate live video streaming in which the transcoding time
of GOPs are unknown. Secondly, in live video streaming, GOP
tasks that miss their deadlines are dropped whereas in VOD



they have to be completed even if they miss their deadlines.
These differences increase the uncertainty in live video streams
and makes their scheduling a more challenging problem.

Networking challenges in live video streaming has been the
subject of many interesting research works during the past
few years. In particular, Cicco et al. [23] present an approach
to adapt live streaming bit-rate based on viewers’ Internet
bandwidth. Liao et al. [24] propose a framework that applies
optimization techniques in live video streaming to improve the
viewers’ QoS demands, such as startup delay and playback
continuity.

Live video streaming is rapidly becoming a global ser-
vice. Such rapid growth in demand has essentially introduced
scalability challenges. Cloud services provide features that
can be utilized to address the scalability challenges. Wang
et al. [3] propose a cloud resource management framework
that functions based on the global demand for live streaming.
Payberah er al. [4] investigate how to minimize the cost of
cloud services while providing desired QoS for peer to peer
(P2P) video streaming. It presents a model to decide the right
number of active helper (e.g.,Amazon EC2) and passive helper
(e.g.,Amazon S3) to limit the expense while maximizing the
QoS (e.g.,playback continuity).

Previous research works on live video streaming using cloud
concentrate on utilizing cloud services to gain a higher QoS
satisfaction (e.g., provide less delay) and more scalability.
However, transcoding of live video streams using cloud ser-
vices to provide a high display quality on a wide variety of
display devices has not been studied yet.

VII. CONCLUSION AND FUTURE WORK

In this research, we proposed the VLSC architecture to en-
able cloud-based transcoding of live video streams to support
high video quality on diverse viewers’ display devices. We
also proposed a scheduling method that is aware of the QoS
demands of live streaming viewers. The scheduling method
functions based on a time estimator component that predicts
the transcoding (i.e.,execution) time of GOP tasks before
executing them. In particular, this research presented how to
increase the live streaming quality by decreasing the startup
delay and the GOP drop rate and without imposing extra cost
to the video stream provider. Experimental results based on
realistic workloads illustrated that the proposed scheduling
method provides a low drop rate (less that 10% of GOP tasks)
and a low startup delay (less that 1 second), specifically when
combined with the SDF queuing policy.

The VLSC architecture and its QoS-aware scheduling can
help small- and medium-size live video stream providers to
utilize cloud resources as their infrastructure and offer a
high-quality live streaming service to their viewers without
investing in infrastructure or incurring any extra cost.

In future, we plan to extend the architecture with an elastic-
ity manager component that dynamically resizes the resources
obtained from cloud resources. In particular, we are interested
to investigate the impact of utilizing heterogeneous VMs on
the incurred cost and QoS satisfaction. Another avenue of
future works is to extend the VLSC architecture to support
a combination of VOD and live streaming within the same
system.
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