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1 Introduction

1.1 Motivation

Growth of Internet usage in the last decade has been at an unprecedented rate from
16 million, which is about 0.4% of total population in 1995, to more than 3 billion
users, which is about half of the world’s population in mid-2014. This revolution-
ized the way people communicate and share their information. According to [60],
just during 2013, 4.4 zettabytes (4.4 x 27%bytes) of information have created and
replicated, and it estimated to grow up to 44 zettabytes by 2020. Below, we explain
few sources from such massive data generation.

Facebook! has an average of 1.39 billion monthly active users exchanging bil-
lions of messages and postings every day [6]. There is also a huge surge in mul-
timedia content like photos and videos. For example, in popular photo sharing so-
cial network Instagram 2, on average, 70 million photos uploaded and shared every
day [12]. According to other statistics published by Google on its video streaming
service, YouTube?, has approximately 300 hours of video uploaded every minute
and billions of views generated every day [21].

Along with Individuals, organizations are also generating a huge amount of data,
mainly due to increased use of networked sensors in various sectors of organiza-
tions. For example, by simply replacing traditional bar code systems with Radio
Frequency Identification (RFID) systems organizations have generated 100 to 1000
times more data [58].

Organization’s interest on customer behavior is another driver for producing mas-
sive data. For instance, Wal-Mart* handles more than a million customer transac-
tions each hour and maintains a database that holds more than 2.5 petabytes of
data [58]. Many businesses are creating a 360° view of a customer by combining
transaction data with social networks and other sources.

Data explosion is not limited to individuals or organizations. With the increase
of scientific equipment sensitivity and advancements in technology, the scientific
and research, community is also generating a massive amount of data. Australian
Square Kilometer Array Pathfinder radio telescope [3] has 36 antennas streams ap-
proximately 250 GB of data per second per antenna that collectively produces nine
terabytes of data per second. In another example, particle accelerator, particle de-
tector, and simulations at Large Hadron Collider (LHC) at CERN [13] generate
approximately 15 petabytes of data per year.

! https://facebook.com
2 https://instagram.com
3 http://www.youtube.com
4 http://www.walmart.com
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1.2 Big Data Overview

The rapid explosion of data is usually referred as “Big Data”, which is a trending
topic in both industry and academia. Big data (aka Massive Data) is defined as,
data that cannot be handled or analyzed by conventional processing and storage
tools. Big data is also characterized by features,known as 5V’s. These features are:
volume, variety, velocity, variability, and veracity [26] [33].

Traditionally, most of the available data is structured data and stored in conven-
tional databases and data-warehouses for supporting all kinds of data analytics. With
the Big data, data is no longer necessarily structured. Instead, it contains a variety
of data sources, including structured, semi-structured, and unstructured data [26].
It is estimated that 85% of total organizational data are unstructured data [58] and
almost all the data generated by individuals (e.g., emails, messages, blogs, and mul-
timedia) are unstructured data too. Traditional relational databases are no longer a
viable option to store text, video, audio, images, and other forms of unstructured
data. This creates a need for special types of NoSQL databases and advanced ana-
lytic methods.

Velocity of data is described as problem of handling and processing data at the
speeds at which they are generated to extract a meaningful value. Online retailers
store every attribute (e.g., clicks, page visits, duration of visits to a page) of their
customers’ visits to their online websites. There is a need to analyze customers’
visits within a reasonable timespan (e.g., real-time) to recommend similar items and
related items with respect to the item a customer is looking at. This helps companies
to attract new customers and keep an edge over their competitors. Some organiza-
tions analyze data as a stream in order to reduce data storage. For instance, LHC
at CERN [13] analyzes data before storing to meet the storage requirements. Smart
phones are equipped with modern location detection sensors that enable us to under-
stand the customer behavior while, at the same time, creating the need for real-time
analysis to deliver location-based suggestions.

Data variability is the variation in data flow with time of day, season, events, etc.
For example, retailers sell significantly more in November and December compared
to rest of year. According to [1], traffic to retail websites surges during this period.
The challenge, in this scenario, is to provide resources to handle sudden increases in
users’ demands. Traditionally, organizations were building in-house infrastructure
to support their peak-estimated demand periods. However, it turns out to be costly, as
the resources will remain idle during the rest of the time. However, the emergence of
advanced distributed computing platforms, known as ‘the cloud’, can be leveraged
to enable on-demand resource provisioning through third-party companies. Cloud
provides efficient computational, storage and other services to organizations and
relieves them from the burden of over-provisioning resources [53].

Big data provides advantage in decision-making and analytics. However, among
all data generated in 2013 only 22% of data are tagged, or somehow characterized
as useful data for analysis, and only 5% of data are considered valuable or “Target
Rich” data. The quality of collected data, to extract a value from, is referred as
veracity. The ultimate goal of an organization in processing and analyzing data is
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to obtain hidden information in data. Higher quality data increases the likelihood
of effective decision-making and analytics. A McKinsey study found that retailers
using full potential from Big data could increase the operating margin up to 60%
[48]. To reach this goal, the quality of collected data needs to be improved.

1.3 Big Data Adoption

Organizations have already started tapping into the potential of Big data. Conven-
tional data analytics are based on structured data, such as the transactional data, that
are collected in a data warehouse. Advanced massive data analysis helps to com-
bine traditional data with data from different sources for decision-making. Big data
provides opportunities for analyzing customer behavior patterns based on customer
actions inside (e.g., organization website) and outside (e.g., social networks).

In a manufacturing industry, data from sensors that monitor machines’ operation
are analyzed to predict failures of parts and replace them in advance to avoid sig-
nificant down time [11]. Large financial institutions are using Big data analytics to
identify anomaly in purchases and stop frauds or scams [23].

In spite of the wide range of emerging applications for Big data, organizations are
still facing challenges to adopt Big data analytics. A report from AIIM [4], identified
three top challenges in the adoption of Big data, which are lack of skilled workers,
difficulty to combine structured and unstructured data, and security and privacy con-
cerns. There is a sharp rise in the number of organizations showing interest to invest
in Big data related projects. According to [8], in 2014, 47% of organizations are re-
portedly investing in Big data products, as compared to 38% in 2013. IDC predicted
that the Big data service market has reached 11 billion dollars in 2009 [20] and it
could grow up to 32.4 billion dollars by end of 2017 [15]. Venture capital funding
for Big data projects also increased from 155 million dollars in 2009 to more than
893 million dollars in 2013 [20].

1.4 The Chapter Structure

From the late 90’s, when Big data phenomenon was first identified, until today, there
has been many improvements in computational capabilities, storage devices have
become more inexpensive, thus, the adoption of data-centric analytics has increased.
In this study, we provide an overview of Big data analytic types, offer insight into
Big data technologies available, and identify open challenges.

The rest of this paper is organized as following. In section 2, we explain different
categories of Big data analytics, along with application scenarios. Section 3 of the
chapter describes Big data computing platforms available today. In section 4, we
provide some insight into the storage of huge volume and variety data. In that sec-
tion, we also discuss some commercially available cloud-based storage services. In
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section 5, we present two real-world Big data analytic projects. Section 6 discusses
open challenges in Big data analytics. Finally, we summarize and conclude the main
contributions of the chapter in section 7.

2 Big Data Analytics

Big data analytics is the process of exploring Big data, to extract hidden and valu-
able information and patterns [52]. Big data analytics helps organizations in more
informed decision-making. Big data analytics applications can be broadly classi-
fied as descriptive, predictive, and prescriptive. Figure 1 illustrates the data analytic
classes, techniques, and example applications. In the rest of this section, with refer-
ence to Figure 1, we elaborate on these Big data analytic types.

Regression Based on last year’s sales, how much profit this year?
*Descriptive#

Visualization Interactive dashboards in BI

Forecasting Forecasting companies performance
Big data analytics ——Predictive {Prediction Predicting failure of machines

Scoring Financial credit score for companies or individuals

Optimization Optimize energy consumption and raw material in manufacturing

—Prescriptive—Numeric Modeling Control oil drilling model using internal and external variables

Simulation Simulation scenarios in disaster management

Fig. 1 Types of Big data analytics: The second level in the hierarchy is the categorization of ana-
lytics. The third level,explains the typical techniques, and provides example in the corresponding
analytic category.

2.1 Descriptive Analytics

Descriptive analytics mines massive data repositories to extract potential patterns
existing in the data. Descriptive analytics drills down into historical data to detect
patterns like variations in operating costs, sales of different products, customer buy-
ing preferences, etc.

Typically it is the first step of analytics in decision-making, answering the ques-
tion of “what has happened? ”. It summarizes raw data into a human understandable
format. Most of the statistical analysis used in day-to-day Business Intelligence (BI)
regarding a company’s production, financial operations, sales, inventory and cus-
tomers come under descriptive analytics [62]. Analytics involve simple techniques,
such as regression to find correlation among various variables and drawing charts,



6 Authors Suppressed Due to Excessive Length

to identify trends in the data, and visualize data in a meaningful and understandable
way, respectively.

For example, Dow Chemicals used descriptive analytics to identify under-utilized
space in its offices and labs. As a result, they were able to increase space utilization
by 20% and save approximately $4 million annually [22].

2.2 Predictive Analytics

With descriptive analytics organizations can understand what happened in the past.
However, at a higher level of decision-making is to address the question of “what
could happen? ”. Predictive analytics helps to combine massive data from differ-
ent sources with the goal of predicting future trends or events. Predictive analytics
evaluates the future, by forecasting trends, by generating prediction models, and by
scoring.

For example, industries use predictive analytics to predict machine failures us-
ing streaming sensor data [11]. Organizations are able to forecast their sales trends
or overall performance [45]. Financial institutions devote a lot of resources to pre-
dict credit risk scores for companies or individuals. Eventhough predictive analytics
cannot predict with 100% certainty, but it helps the companies in estimating future
trends for more informed decision-making.

Southwest airlines has partnered with National Aeronautics and Space Adminis-
tration (NASA) to work on a Big data-mining project [14]. They apply text-based
analysis on data from sensors in their planes in order to find patterns that indicate
potential malfunction or safety issues.

Purdue University uses Big data analytics to predict academic and behavioral
issues [18]. For each student, the system predicts and generates, a risk profile indi-
cating how far a student succeeds in a course and labels the risk levels as green (high
probability of success), yellow (potential problems), and red (risk of failure) by us-
ing data from various sources, such as student information and course management
systems for this analytics.

E-commerce applications apply predictive analytics on customer purchase his-
tory, customer behavior online, like page views, clicks, and time spend on pages,
and from other sources [59] [27]. Retail organizations are able to predict customer
behavior to target appropriate promotions and recommendations [38]. They use pre-
dictive analysis to determine the demand of inventory and maintain the supply chain
accordingly. Predictive analysis also helps to change price dynamically to attract
consumers and maximize profits [2].
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2.3 Prescriptive Analytics

Descriptive and predictive analytics helps to understand the past and predict the
future. The next stage in decision-making is “how can we make it happen?” - the
answer is prescriptive analytics. The goal of prescriptive analytics is to assist profes-
sionals in assessing the impact of different possible decisions. It is a relatively new
analytic method. According to Gartner [9], only 3% of companies use prescriptive
analytics in their decision-making. Prescriptive analytics involves techniques such
as optimization, numerical modeling, and simulation.

Oil and Gas exploration industries use prescriptive analytics to optimize the ex-
ploration process . Explorers are using massive datasets from different sources in
the exploration process and use prescriptive analytics to optimize drilling loca-
tion [16]. They use earth’s sedimentation characteristics, temperature, pressure, soil
type, depth, chemical composition, molecular structures, seismic activity, machine
data, and others to determine the best possible location to drill [5] [31]. This helps to
optimize selection of drilling location, and avoid the cost and effort of unsuccessful
drills.

Health care is one of the sectors benefiting from applying Big data prescrip-
tive analytics. Prescriptive analytics can recommend diagnoses and treatments to a
doctor by analyzing patient’s medical history, similar conditioned patient’s history,
allergies, medicines, environmental conditions, stage of cure, etc. According to [7],
the Aurora Health Care Center saves six million USD annually by using Big data
analytics and recommending best possible treatment to doctors.

3 Big Data Analytics Platforms

There are several Big data analytics platforms available. In this section, we present
advances within the Big data analytics platforms.

3.1 MapReduce

MapReduce framework represents a pioneering schema for performing Big data an-
alytics. It has been developed for a dedicated platform (such as a cluster). MapRe-
duce framework has been implemented in three different ways. The first implemen-
tation was achieved by Google [30] under a proprietary license. The other two im-
plementations are: Hadoop [43] and Spark [66],which are available as open-source.
There are other platforms that, in fact, stem from these basic platforms.

The core idea of MapReduce is based on developing two input functions namely,
Map and Reduce. Programmers need to implement these functions. Each of these
functions utilizes the available resources to process Big data in parallel. The MapRe-
duce works closely with a distributed storage system to carry out operations such
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as storing input, intermediate, and output data. Distributed file systems, such as
Hadoop Distributed File System (HDFS) [56] and Google File System (GFS), have
been developed to the MapReduce framework [32].

Every MapReduce workflow typically contains three steps (phases) namely,
Mapping step, Shuffling step, and Reduce step. In the Map step, user (programmer)
implements the functionality required in the Map function. The defined Map func-
tion will be executed against the input dataset across the available computational re-
sources. The original (i.e., input) data are partitioned and placed in a distributed file
system (DFS). Then, each Map task processes a partition of data from the DFS and
generates intermediate data that are stored locally on the worker machines where
the processing was taking place.

Distributing the intermediate data on the available computational resources is
required to enable parallel Reduce. This step is known as Shuffling. The distribution
of the intermediate data is performed in an all-to-all fashion that generally creates a
communication bottleneck. Once the distribution of intermediate data is performed,
the Reduce function is executed to produce the output, which is the final result of the
MapReduce processing. Commonly, developers create a chain of MapReduce jobs
(also referred to as a multi-stage MapReduce job), such as the Yahoo! WebMap [24].
In this case, the output of one MapReduce job is consumed as the intermediate data
for the next MapReduce job in the chain.

3.2 Apache Hadoop

Hadoop [43] framework was developed as an open-source product by Yahoo! and
widely adopted for Big data analytics by the academic and industrial communities.
The main design advantage of Hadoop is its fault-tolerance. In fact, Hadoop has
been designed with the assumption of failure as a common issue in distributed sys-
tems. Therefore, it is robust against failures commonly occur during different phases
of execution.

Hadoop Distributed File System (HDFS) and MapReduce are two main building
blocks of Hadoop. The former is the storage core of Hadoop (see Section 4.1 for
details). The latter, MapReduce engine, is above the file system and takes care of
executing the application by moving binaries to the machines that have the related
data.

For the sake of fault-tolerance, HDFS replicates data blocks in different racks;
thus, in case of failure in one rack, the whole process would not fail. A Hadoop clus-
ter includes one master node and one or more worker nodes. The master node in-
cludes four components namely, JobTracker, TaskTracker, NameNode, and DataN-
ode. The worker node just includes DataNode and TaskTracker. The JobTracker
receives user applications and allocates them to available TaskTracker nodes, while
considering data-locality. JobTracker assures about the health of TaskTrackers based
on regular heartbeats it receives from them. Although Hadoop is robust against fail-
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ures in a distributed system, its performance is not the best amongst other available
tools because of frequent disk accesses [55].

3.3 Spark

Spark is a more recent framework developed at UC Berkeley [66]. It is being used
for research and production applications. Spark offers a general-purpose program-
ming interface in the Scala programming language for interactive, in-memory data
analytics of large datasets on a cluster.

Spark provides three data abstractions for programming clusters namely, resilient
distributed datasets (RDDs), broadcast variables, and accumulators. RDD is a read-
only collection of objects partitioned across a set of machines. It can reconstruct
lost partitions or recover in the event of a node failure. RDD uses a restricted shared
memory to achieve fault-tolerance. Broadcast variables and accumulators are two
restricted types of shared variables. Broadcast variable is a shared object wrapped
around a read-only value, which ensures it is only copied to each worker once.
Accumulators are shared variables with an add operation. Only workers can perform
an operation on an accumulator and only users’ driver programs can read from it.
Eventhough, these abstractions are simple and limited, they can be used to develop
several cluster-based applications.

Spark uses master/slave architecture. It has one master instance, which runs a
user-defined driver program. At run-time, the driver program launches multiple
workers in the cluster, which read data from the shared filesystem (e.g., Hadoop
Distributed File System). Workers create RDDs and write partitions on RAM as de-
fined by the driver program. Spark supports RDD transformations (e.g., map, filter)
and actions (e.g., count, reduce). Transformations generate new datasets and actions
return a value, from the existing dataset.

Spark has proved to be 20X faster than Hadoop for iterative applications, was
shown to speed up a real-world data analytics report by 40X, and has been used
interactively to scan a 1 TB dataset with 57 seconds latency [65].

3.4 High Performance Computing Cluster

LexisNexis Risk Solutions originally developed High Performance Computing Clus-
ter (HPCC)?, as a proprietary platform, for processing and analyzing large volumes
of data on clusters of commodity servers more than a decade ago. It was turned into
an open-source system in 2011. Major components of an HPCC system include a
Thor cluster and a Roxie cluster, although the latter is optional. Thor is called the
data refinery cluster, which is responsible for extracting, transforming, and loading

5 http://hpcesystems.com
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(ETL), as well as linking and indexing massive data from different sources. Roxie is
called the query cluster, which is responsible for delivering data for online queries
and online analytical processing (OLAP).

Similar to Hadoop, HPCC also uses a distributed file system to support parallel
processing on Big data. However, compared with HDFS, the distributed file system
used by HPCC has some significant distinctions. First of all, HPCC uses two types of
distributed file systems; one is called Thor DFS that is intended to support Big data
ETL in the Thor cluster; the other is called Roxie DFS that is intended to support
Big data online queries in the Roxie cluster. Unlike HDFS that is key-value pair
based, the Thor DFS is record-oriented, which is flexible enough to support data
sets of different formats, such as CSV, XML, fixed or variable length of records,
and records with nested structures. Thor DES distributes a file across all nodes in
the Thor cluster with an even number of records for each node. The Roxie DFS uses
distributed B+ tree for data indexing to support efficient delivery of data for user
queries.

HPCC uses a data-centric, declarative programming language called Enterprise
Control Language (ECL) for both data refinery and query delivery. By using ECL,
the user specifies what needs to be done on data instead of how to do it. The data
transformation in ECL can be specified either locally or globally. Local transforma-
tion is carried out on each file part stored in a node of the Thor cluster in a paral-
lel manner; whereas global transformation processes the global data file across all
nodes of the Thor cluster. Therefore, HPCC not only pioneers the current Big data
computing paradigm that moves computing to where the data is, but also maintains
the capability of processing data in a global scope. ECL programs can be extended
with C++ libraries and compiled into optimized C++ code. A performance compar-
ison of HPCC with Hadoop shows that, on a test cluster with 400 processing nodes,
HPCC is 3.95 faster than Hadoop on the Terabyte Sort benchmark test [51]. One
of the authors of this chapter is currently conducting a more extensive performance
comparison of HPCC and Hadoop on a variety of Big data analysis algorithms.
More technical details on HPCC can be found in [19] [10] [50] [51].

4 Distributed Data Management Systems for Big Data Analytics

As we discussed earlier in this chapter, huge volumes and a variety of data create a
need for special types of data storage. In this section, we discuss recent advances in
storage systems for Big data analytics and some commercially available cloud-based
storage services.
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4.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS)® is a distributed file system designed
to run reliably and to scale on commodity hardware. HDFS achieves high fault-
tolerance by dividing data into smaller chunks and replicating them across several
nodes in a cluster. It can scale up to 200 PB in data, and 4500 machines in single
cluster. HDFS is a side-project of Hadoop and works closely with it.

HDFS is designed to work efficiently in batch mode, rather than in interactive
mode. Characteristics of typical applications developed for HDFS, such as write
once and read multiple times, and simple and coherent data access, increases the
throughput. HDFS is designed to handle large file sizes from Gigabytes to a few
Terabytes.

HDFS follows the master/slave architecture with one NameNode and multiple
DataNodes. NameNode is responsible for managing the file system’s meta data and
handling requests from applications. DataNodes physically hold the data. Typically,
every node in the cluster has one DataNode. Every file stored in HDFS is divided
into blocks with default block size of 64 MB. For the sake of fault-tolerance, every
block is replicated user-defined number of times (recommended to be a minimum
of 3 times) and distributed across different data nodes. All meta data about replica-
tion and distribution of the file are stored in the NameNode. Each DataNode sends a
heartbeat signal to NameNode. If it fails to do so, the NameNode marks the DataN-
ode as failed.

HDFS maintains a Secondary NameNode, which is periodically updated with in-
formation from NameNode. In case of NameNode failure, HDFS restores a NameN-
ode with information from the Secondary NameNode, which ensures fault-tolerance
of the NameNode. HDFS has a built-in balancer feature, which ensures uniform data
distribution across the cluster, and re-replication of missing blocks to maintain the
correct number of replications.

4.2 NoSQL Databases

Conventionally, Relational Database Management Systems (RDBMS) are used to
manage large datasets and handle tons of requests securely and reliably. Built-in
features, such as data integrity, security, fault-tolerance, and ACID (atomicity, con-
sistency, isolation, and durability) have made RDBMS a go-to data management
technology for organizations and enterprises. In spite of RDBMS’ advantages, it is
either not viable or is too expensive for applications that deal with Big data. This
has made organizations to adopt a special type of database called “NoSQL” (Not
an SQL), which means database systems that do not employ traditional “SQL” or
adopt the constraints of the relational database model. NoSQL databases cannot pro-

6 http://hadoop.apache.org
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vide all strong built-in features of RDBMS. Instead, they are more focused on faster
read/write access to support ever-growing data.

According to December 2014 statistics from Facebook [6], it has 890 Million av-
erage daily active users sharing billions of messages and posts every day. In order to
handle huge volumes and a variety of data, Facebook uses a Key-Value database sys-
tem with memory cache technology that can handle billions of read/write requests.
At any given point in time, it can efficiently store and access trillions of items. Such
operations are very expensive in relational database management systems.

Scalability is another feature in NoSQL databases, attracting large number of
organizations. NoSQL databases are able to distribute data among different nodes
within a cluster or across different clusters. This helps to avoid capital expenditure
on specialized systems, since clusters can be built with commodity computers.

Unlike relational databases, NoSQL systems have not been standardized and fea-
tures vary from one system to another. Many NoSQL databases trade-off ACID
properties in favor of high performance, scalability, and faster store and retrieve op-
erations. Enumerations of such NoSQL databases tend to vary, but they are typically
categorized as Key-Value databases, Document databases, Wide Column databases
and Graph databases. Figure 2 shows a hierarchical view of NoSQL types, with two
examples of each type.

Amazon DynamoDb
Key-Value based_EMemcached

Apache Cassandra
Wide-Column based —|:
Apache HBase

NoSQL Databases

Couchbase
Document based —|:
MangoDB

Neodj
—— Graph based—[
OrientDB

Fig. 2 Categorization of NoSQL databases: The first level in the hierarchy is the categorization of
NoSQL. Second level, provides examples for each NoSQL database type.

4.2.1 Key-Value Database

As the name suggests, Key-Value databases store data as Key-Value pairs, which
makes them schema-free systems. In most of Key-Value databases, the key is func-



Massive Data Analysis: Tasks, Tools, Applications and Challenges 13

tionally generated by the system, while the value can be of any data type from a
character to a large binary object. Keys are typically stored in hash tables by hash-
ing each key to a unique index.

All the keys are logically grouped, eventhough data values are not physically
grouped. The logical group is referred to as a ‘bucket’. Data can only be accessed
with both a bucket and a key value because the unique index is hashed using the
bucket and key value. The indexing mechanism increases the performance of stor-
ing, retrieving, and querying large datasets.

There are more than 40 Key-Value systems available with either commercial or
open-source licenses. Amazon’s DynamoDB’, which is a commercial data storage
system, and open-source systems like Memcached®, Riak?, and Redis!? are most
popular examples of Key-Value database systems available.These systems differ
widely in functionality and performance.

Key-Value databases are appropriate for applications that require one to store or
cache unstructured data for frequent and long-term usages, such as chat applica-
tions, and social networks. Key-Value databases can also be used in applications
that require real-time responses that need to store and retrieve data using primary
keys, and do not need complex queries. In consumer-faced web applications with
high traffic, Key-Value systems can efficiently manage sessions, configurations, and
personal preferences.

4.2.2 Wide Column Database

A column-based NoSQL database management system is an advancement over a
Key-Value system and is referred to as a Wide Column or column-family database.
Unlike the conventional row-centric relational systems [34], Wide Column databases
are column-centric. In row-centric RDBMS, different rows are physically stored in
different places. In contrast, column-centric NoSQL databases store all correspond-
ing data in continuous disk blocks, which speeds up column-centric operations, such
as aggregation operations. Eventhough Wide Column is an advancement over Key-
Value systems, it still uses Key-Value storage in a hierarchical pattern.

In a Wide-Column NoSQL database, data are stored as name and value pairs,
rather than as rows, which are known as columns. Logical grouping of columns is
named as column-family. Usually the name of a column is a string, but the value
can be of any data type and size (character or large binary file). Each column con-
tains timestamp information along with a unique name and value. This timestamp
is helpful to keep track of versions of that column. In a Wide-Column database,
the schema can be changed at any time by simply adding new columns to column-
families. All these flexibilities in the column-based NoSQL Systems are appropriate

7 http://aws.amazon.com/dynamodb/
8 http://memcached.org/

9 http://basho.com/riak/

10 http://redis.io/
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to store sparse, distributed, multidimensional, or heterogeneous data. A Wide Col-
umn database is appropriate for highly scalable applications, which require built-
in versioning and high-speed read/write operations. Apache Cassandra!! (Origi-
nated by Facebook) and Apache HBase!? are the most widely used Wide Column
databases.

4.2.3 Document Database

A Document database works in a similar way as Wide Column databases, except
that it has more complex and deeper nesting format. It also follows the Key-Value
storage paradigm. However, every value is stored as a document in JSON '3, XML
14 or other commonly used formats. Unlike Wide Column databases, the structure
of each record in a Document database can vary from other records. In Document
databases, a new field can be added at anytime without worrying about the schema.
Because data/value is stored as a document, it is easier to distribute and maintain
data locality. One of the disadvantages of a Document database is that it needs to
load a lot of data, even to update a single value in a record. Document databases
have built-in approach of updating a document, while retaining all old versions of
the document. Most Document database systems use secondary indexing [37] to
index values and documents in order to obtain faster data access and to support
query mechanisms. Some of the database systems offer full-text search libraries and
services for real-time responses.

One of the major functional advantages of document databases is the way it in-
terfaces with applications. Most of the document database systems use JavaScript
(JS) as a native scripting language because it stores data in JS friendly JSON for-
mat. Features such as JS support, ability to access documents by unique URLs, and
ability to organize and store unstructured data efficiently, make Document databases
popular in web-based applications. Documents databases serve a wide range of web
applications, including blog engines, mobile web applications, chat applications,
and social media clients.

Couchbase'® and MongoDB!® are among popular document-style databases.
There are over 30 document databases. Most of these systems differ in the way data
are distributed (both partition and replications), and in the way a client accesses the
system. Some systems can even support transactions [35].

' http://cassandra.apache.org/

12 http://hbase.apache.org/

13 http://json.org

14 http://www.w3.0rg/TR/2006/REC-xml11-200608 16/
15 http://couchbase.com/

16 http://mangodb.org/



Massive Data Analysis: Tasks, Tools, Applications and Challenges 15

4.2.4 Graph Databases

All NoSQL databases partition or distribute data in such a way that all the data
are available in one place for any given operation. However, they fail to consider
the relationship between different items of information. Additionally, most of these
systems are capable of performing only one-dimensional aggregation at a time.

A Graph database is a special type of database that is ideal for storing and han-
dling relationship between data. As the name implies Graph databases use a graph
data model. The vertices of a graph represent entities in the data and the edges rep-
resent relationships between entities. Graph data model, perfectly fits for scaling
out and distributing across different nodes. Common analytical queries in Graph
databases include finding the shortest path between two vertices, identifying clus-
ters, and community detection.

Social graphs, World Wide Web, and the Semantic Web are few well-known use-
cases for graph data models and Graph databases. In a social graph, entities like
friends, followers, endorsements, messages, and responses are accommodated in a
graph database, along with relationships between them. In addition to maintaining
relationships, Graph databases make it easy to add new edges or remove existing
edges. Graph databases also support the exploration of time-evolving graphs by
keeping track of changes in properties of edges and vertices using time stamping.

There are over 30 graph database systems. Neo4j !7 and Orient DB!8 are popular
examples of graph-based systems. Graph databases found their way into different
domains, such as social media analysis (e.g., finding most influential people), e-
commerce (e.g., developing recommendations system), and biomedicine (e.g., to
analyze and predict interactions between proteins). Graph databases also serve in
several industries, including airlines, freight companies, healthcare, retail, gaming,
and oil and gas exploration.

4.2.5 Cloud-Based NoSQL Database Services

Amazon DynamoDB: DynamoDB' is a reliable and fully managed NoSQL data
service, which is a part of Amazon Web Services (AWS). It is a Key-Value database
that provides a schema-free architecture to support ever-growing Big data in orga-
nizations and real-time web applications. DynamoDB is well optimized to handle
huge volume of data with high efficiency and throughput. This system can scale
and distribute data, virtually, without any limit. DynamoDB partitions data using a
hashing method and replicates data three times and distributes them among data cen-
ters in different regions in order to enable high availability and fault-tolerance. Dy-
namoDB automatically partitions and re-partitions data depending on data through-

17 http://meod;j.org/
18 http://www.orientechnologies.com/orientdb/
19 http://aws.amazon.com/dynamodb/
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put and volume demands. DynamoDB is able to handle unpredictable workloads
and high volume demands efficiently and automatically.

DynamoDB offers eventual and strong consistency for read operations. Eventual
consistency does not always guarantee that a data read is the latest written version
of the data, but significantly increases the read throughput. Strong consistency guar-
antees that values read are the latest values after all write operations. DynamoDB
allows the user to specify a consistency level for every read operation. DynamoDB
also offers secondary indexing (i.e., local secondary and global secondary), along
with the indexing of the primary key for faster retrieval.

DynamoDB is a cost efficient and highly scalable NoSQL database service from
Amazon. It offers benefits such as reduced administrative supervision, virtually un-
limited data throughput, and the handling of all the workloads seamlessly.

Google BigQuery: Google uses massively parallel query system called as ‘Dremel’
to query very large datasets in seconds. According to [54], Dremel can scan 35 bil-
lion rows in ten seconds even without indexing. This is significantly more efficient
than querying a Relational DBMS. For example, on Wikipedia dataset with 314 mil-
lion rows, Dremel took 10 seconds to execute regular expression query to find the
number of articles in Wikipedia that include a numerical character in the title [54].
Google is using Dremel in web crawling, Android Market, Maps, and Books ser-
vices.

Google brought core features of this massive querying system to consumers as
a cloud-based service called ‘BigQuery’?°. Third party consumers can access Big-
Query through either a web-based user interface, command-line or through their
own applications using the REST API. In order to use BigQuery features, data has
to be transferred into the Google Cloud storage in JSON encoding. The BigQuery
also returns results in JSON format.

Along with an interactive and fast query system, Google cloud platform also pro-
vides automatic data replication, on-demand scalability, and handles software and
hardware failure without administrative burdens. In 2014, using BigQuery, scanning
one terabyte of data only cost $5, with additional cost for storage >'.

Windows Azure Tables: Windows Azure Tables?? is a NoSQL database tech-
nology with a Key-Value store on the Windows Azure platform. Azure Tables also
provides, virtually, unlimited storage of data. Azure Tables is highly scalable and
supports automatic partitioning. This database system distributes data across mul-
tiple machines efficiently to provide high data throughput and to support higher
workloads. Azure Tables storage provides the user with options to select a Partition-
Key and a Row-Key upfront, which may later be used for automatic data partition-
ing. Azure Tables follows only the strong consistency data model for reading data.
Azure Tables replicates data three times among data centers in the same region and
additional three times in other regions to provide a high degree of fault-tolerance.

20 http://cloud.google.com/bigquery/
21 https://cloud.google.com/bigquery/pricing
22 http://azure.microsoft.com/
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Azure Tables is a storage service for applications with huge volume of data, and
needs schema-free NoSQL databases. Azure Tables uses primary key alone and it
does not support secondary indexes. Azure Tables provides the REST-based API to
interact with its services.

5 Examples of Massive Data Applications

In this section, a detailed discussion of solutions proposed by our research team for
two real-world Big data problems are presented.

5.1 Recommendations in e-Commerce

Recommender systems are gaining wide popularity in e-commerce, as they are be-
coming major drivers of incremental business value and user satisfaction [40] [38].
In this section, we will describe the architecture behind a recommendation engine
for eBay, a large open marketplace [39]. In an e-commerce system, there are two
major kinds of recommendation scenarios: pre-purchase and post-purchase.

In the pre-purchase scenario, the system recommends items that are good alter-
natives for the item the user is viewing. In the post-purchase scenario, the recom-
mendation system recommends items complementary or related to an item, which
the user has bought recently.

Real-time Performance

Offline Model Generation The Data Store System
s N4 D
Custers_|
S
Cluster Model R Similar ltems ~ |[S™eTofe™ &
Generation <):> :f\> Recommender
——— (SIR) Similar ltems |
— _Clickstream J |
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Clusters Model Conceptual Related Items Bought Item
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Fig. 3 The recommendation system architecture with three major groups: The Offline Modeling
System; The Data Store; The Real-time Performance System.
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5.1.1 Architecture

The architecture of the recommendation system, as illustrated in Figure 3, consists
of the Data Store, the Real-time Performance System, and the Offline Model Gen-
eration System. The Data Store holds the changes to website data as well as models
learned. The Real-time Performance System is responsible for recommending items
using a session state of the user and contents from Data Store. The Offline Model
Generation System is responsible for building models using computationally inten-
sive offline analyse. Next, we present a detailed discussion about these components.

Data Store: The Data Store provides data services to both the Offline Model
Generation and the Real-time Performance components. It provides customized ver-
sions of similar services to each of these components. For example, we consider a
service that provides access to item inventory data. The Offline Modeling compo-
nent has access to longitudinal information of items in the inventory, but not an effi-
cient way of keyword search. On the other hand, the Real-time Performance System
does not have access to longitudinal information, but it can efficiently search for
item properties in the current inventory. Two types of data sources are used by our
system: Input Information sources and Output Cluster models.

o Input Information Sources:

The Data Store is designed to handle continuous data sources such as users’ ac-
tions and corresponding state changes of a website. At the same time, it also
stores models, which are generated by the Offline Model Generation System.
The data in the Data Store can be broadly categorized into inventory data, click-
stream data, transaction data, and conceptual knowledge-base. The inventory
data contains the items and their properties. Clickstream data includes the raw
data about the users’ actions with dynamic state of the website. Even though
the purchasing history can be recreated from clickstream data, it is stored sep-
arately as transaction data for efficient access. Conceptual knowledge-base in-
cludes ontology-based hierarchical organization of items, referred to as the cat-
egory tree, lexical knowledge source, and term dictionary of category-wise im-
portant terms/phrases.

e Qutput Cluster Model: The Data Store contains two types of knowledge struc-

tures: Cluster Model and Related Cluster Model. The Cluster Model contains the
definitions of clusters used to group the items that are conceptually similar. The
clusters are represented as bag-of-phrases. Such a representation helps to cluster
representatives as search queries and facilitates to calculate term similarity and
item-coverage overlap between the clusters.
The Related Cluster Model is used to recommend complementary items to users
based on their recent purchases. This model is represented as sparse graph with
clusters as nodes and edge between the clusters represents the likelihood of pur-
chasing items from one cluster after purchasing an item in another cluster. Next,
we discuss how these cluster models are used in the Realtime Performance Sys-
tem and, then, how they are generated using Offline Model Generation System.
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Real-time Performance System: The primary goal of the Real-time Perfor-
mance System is to recommend related items and similar items to the user. It con-
sists of two components, Similar Items Recommendation (SIR), which recommends
users similar items based on current viewing item . Related Items Recommender
(RIR) that recommends users the related items based on their recent purchases.
Real-time Performance System is essential to generate the recommendations in real-
time to honor the dynamic user actions. To achieve this performance, any compu-
tationally intensive decision process is compiled to offline model. It is required to
indexed data source such that it can be queried efficiently and to limit the computa-
tion after retrieving.

The cluster assignment service generates normalized versions of a cluster as a
Lucene?? index. This service performs similar normalization on clusters and input
item’s title and its static properties, to generate the best matching clusters. The SIR
and RIR systems use the matching clusters differently. SIR selects the few best items
from the matching clusters as its recommendations. However, RIR picks one item
per query it has constructed to ensure the returned recommendations relates to the
seeded item in a different way.

Offline Model Generation:

o Clusters Generation: The inventory size of an on-line marketplace ranges in the
hundreds of millions of items and these items are transient, i.e., covering a broad
spectrum of categories. In order to cluster such a large scale and diverse inven-
tory, the system uses distributed clustering approach on a Hadoop Map-Reduce
cluster, instead of a global clustering approach.

o Cluster-Cluster Relations Generation: An item-to-item co-purchase matrix is
generated using the purchase history of users from the transactional data set.
Hadoop Map-Reduce clusters are employed to compute Cluster-related cluster
pairs from the item-to-item co-purchase matrix.

5.1.2 Experimental results

We conducted A/B tests to compare the performance of our Similar and Related
Items Recommender systems described in this section over the legacy recommenda-
tion system developed by Chen & Canny [28]. The legacy system clusters the items
using generative clustering and later it uses a probabilistic model to learn relation-
ship patterns from the transaction data. One of the main differences, is the way these
two recommendation system generate the clusters. The legacy system uses item data
(auction title, description, price), whereas our system uses user queries to generate
clusters.

A test was conducted on Closed View Item Page (CVIP) in eBay to compare our
Similar Items Recommender algorithm with the legacy algorithm. CVIP is a page
that is used to engage a user by recommending similar items after an unsuccess-
ful bid. We also conducted a test to compare our Related Items Recommender with

23 http://lucene.apache.org/
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legacy algorithm [28]. Both the test results show significant improvement in user
engagement and site-wide business metrics with 90% confidence. As we are not per-
mitted to publish actual figures representing system performances, we are reporting
relative statistics. Relative improvements in user engagement (Click Through Rate)
with our SIR and RIR, over legacy algorithms, are 38.18% and 10.5%, respectively.

5.2 Link Prediction in Biomedical Literature

Predicting the likelihood of two nodes associating in the future, which do not have
direct association between them in the current timestep, is known as the link pre-
diction problem. Link prediction is widely used in social network analysis. Link
prediction has wide range of applications such as identifying missing information,
identifying spurious interactions, and studying the evolution of the network. In e-
commerce, link prediction is used for building recommendation systems, and in
bio-informatics, it is used to predict protein-protein interactions.

Katukuri at el., [41], proposed a supervised link prediction method, to predict un-
known association of medical concepts using bio-medical publication information
from Medline?*. Medline is a National Institute of Health (NIH)’s citation database
with more than 21 million publication citations. Figure 4 illustrates different stages
in the proposed supervised link prediction approach. A temporal concept network is
generated using relevant medical concepts extracted from publications. In the con-
cept network, each node represents a medical concept and an edge between two
nodes represents relationship that two medical concepts co-occurred at least in one
publication. Document frequency of a given concept is a weight of node and co-
occurrence frequency of two concepts is edge weight. Now, link prediction problem
is formulated as a process of identifying whether a pair of concepts, which are not
directly connected in the current duration concept network, will be connected di-
rectly in the future.

This link prediction problem is formulated as a supervised classification task.
Training data is automatically labeled by comparing concept network snapshots of
two consecutive time periods. This automatic labeling approach helps to avoid need
for domain experts.

In automatic labeling method, concept pairs, which are not directly connected
in the first snapshot, are labeled based on its possible connection strength in the
second snapshot. Connections strength is categorized as follows (S is edge weight
in second snapshot, and minimum _support and margin (ranges between 0 to 1) are
user-defined values):

Connection as strong: S > minimum_support

Connection as emerging: margin X minimum_support < S < minimum_support.
Connection as weak: S < margin X minimum_support.

No connection: S=0.

N

4 http://www.ncbi.nlm.nih.gov/pubmed/
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Given a pair of nodes that has no direct connection in first snapshot is assigned
with positive class label if this pair is strongly connected in the second snapshot
and is assigned negative class label if it has weak connection or no connection the
second snapshot, and the pairs with intermediate values of strength are labeled as
emerging.

Feature
Snapshot 1 Extraction
Concept Supervised N Prediction
(oo ] S0 e =
Generation Automatic
Snapshot 2 Labeling

Fig. 4 Implementation flow diagram for supervised link prediction in biomedical literature

For each of labeled concept pairs, a set of topological features (random-walk
based and neighborhood-based) is extracted from the first snapshot of the concept
network. The topological feature set also includes Common neighbors, Adamic/Adar,
Jaccard Co-efficient, and Preferential Attachment [36]. Along with topological fea-
tures, semantically-enriched features, like Semantic CFEC [41] are extracted. Com-
bining labeled concept pairs with the corresponding feature set generates the train-
ing instances. Supervised classification algorithms, such as SVM, and C4.5 decision
tree are used to generate prediction models. The classification accuracy of prediction
models is calculated using cross-validation, which is on average 72% [41].

Implementing such a computationally intensive phase to extract features needed
for generating the predictive model on massive data needs large computational re-
sources. For example, a snapshot of the concept network for years 1991-2010 has
nearly 0.2 million nodes and nearly 44 million edges. Processing millions of publi-
cations to extract medical concepts, generating class labels and extracting features
from large well-connected network is computationally heavy. To handle such com-
putations on large graphs, the prediction system is developed by using the MapRe-
duce framework and a Hadoop cluster environment. We implemented the MapRe-
duce fuctions to extract the medical concepts from millions of publications in Med-
line dataset, to generate the labeled data, and to extract structual features from the
large concept graph.

Implementing such a graph computation method on MapReduce framework has
its own limitations. One of the drawbacks of MapReduce framework is its inability
to retain the state of a graph across multiple iterations [17]. One approach to retain
the state in a MapReduce pipeline is by explicitly writing the graph to disk after one
iteration and reading it back from disk in the next iteration. This approach proves to
be inefficient due to the huge increase in I/O operation and bandwidth [17].

Google proposed a Bulk Synchronous Parallel processing model called Pregel
[47], which is a message passing model. Unlike MapReduce framework, this model
helps by retaining the graph state across the iterations. Apache Giraph is open source
alternative to Pregel, which is built on top of MapReduce framework. In such dis-
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tributed graph systems, a graph is partitioned and distributed among different cluster
nodes. Each vertex has information about itself along with its neighbors. In our link
prediction, features like the Jaccard Coefficient, can be extracted in parallel since
such calculations depend only on information local to each vertex. However, other
features, like the Semantic CFEC, need to be calculated by exploring all the paths
between given pair of nodes, which can be formulated as an all-pairs-path problem.
There are several frameworks [47], [46] that can calculate the all-pairs-path prob-
lem by passing information through edges, but between just a pair of nodes at a
time. However, these frameworks cannot support the operation of finding all paths
between all pairs in parallel. In our case, there is a need to extract such features
for millions of concept pairs. To the best of our knowledge, there is no algorithm
or framework that can support such a problem to run in a distributed environment.
This is one of the open computational challenges in graph analytics that needs to be
investigated by the research community.

6 Current Issues of Big Data Analytics

In this section, we discuss several open challenges relating to computation, storage,
and security in Big data analytics.

6.1 Data Locality

One prominent aspect in efficient Big data processing is the ability to access data
without a significant latency. Given the transfer-prohibitive volume of Big data, ac-
cessing data with low latency can be accomplished only through data locality. In
fact, data movement is possible in computations with moderate to medium volume
of data where the data transfer to processing time ratio is low. However, this is not
the case for Big data analytics applications. The alternative approach to alleviate the
data transfer problem is moving the computation to where the data resides. Thus,
efficient data management policies are required in the Big data analytics platforms
to consider issues such as maximizing data locality and minimizing data migration
(i.e., data transfer) between cloud data centers [64].

One of the key features of the Hadoop framework is its ability to take the effects
of data locality into account. In Hadoop, the JobTracker component tries to allocate
jobs to nodes where the data exists. Nonetheless, there are cases in which all the
nodes that host a particular data node are overloaded. In this situation, JobTracker
has to schedule the jobs on machines that do not have the data.

To expedite data processing, Spark keeps the data in main memory, instead of
on disk. Spark’s data locality policy is similar to Hadoop. However, in Spark, the
Reduce tasks are allocated to machines where the largest Map outputs are gener-
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ated. This reduces data movement across the cluster and improves the data locality
further.

6.2 Fault-Tolerance of Big Data Applications

In long-running, Big data analytics applications, machine failure is inevitable. Both
transient (i.e., fail-recovery) and permanent (i.e., fail-stop) failures can occur during
the execution of such applications [42]. Google reports experiencing on average, 5
machine crashes during a MapReduce job in March 2006 [29] and at a minimum
one disk failure in each execution of a MapReduce job with 4000 tasks. Because of
the criticality of failure, any resource allocation method for Big data jobs should be
fault-tolerant.

MapReduce was originally designed to be robust against faults that commonly
happen at large-scale resource providers with many computers and devices such as
network switches and routers. For instance, reports show that during the first year
of a cluster operation at Google there were 1000 individual machine failures and
thousands of hard-drive failures.

MapReduce uses logs to tolerate faults. For this purpose, the output of Map and
Reduce phases create logs on the disk [49]. In the event that a Map task fails, it is re-
executed with the same partition of data. In case of failure in Reducer, the key/value
pairs for that failed Reducer are re-generated.

6.3 Replication in Big Data

Big data applications either do not replicate the data or do it automatically through
a distributed file system (DFS). Without replication, the failure of a server storing
the data causes the re-execution of the affected tasks. Although the replication ap-
proach provides more fault-tolerance, it is not efficient due to network overhead and
increasing the execution time of the job.

Hadoop platform provides user a static replication option to determine the num-
ber of times a data block should replicate within the cluster. Such a static replication
approach adds significant storage overhead and slows down the job execution. A
solution to handle this problem is the dynamic replication that regulates the replica-
tion rate based on the usage rate of the data. Dynamic replication approaches help
to utilize the storage and processing resources efficiently [63].

Cost-effective incremental replication [44] is a method, for cloud-based jobs,
that is capable of predicting when a job needs replication. There are several other
data replication schemes for Big data applications on clouds. In this section, we dis-
cuss four major replication schemes namely, Synchronous and Asynchronous repli-
cation, Rack-level replication, and Selective replication. These replication schemes
can be applied at different stages of the data cycle.
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Synchronous data replication scheme (e.g., HDFS) ensures data consistency
through blocking producer tasks in a job until replication finishes. Even though Syn-
chronous data replication yields high consistency, it introduces latency, which af-
fects the performance of producer tasks. In Asynchronous data replication scheme [42],
a producer proceeds regardless of the completion of a producer task on a replica of
the same block. Such a non-blocking nature of this scheme improves the perfor-
mance of the producer. But consistency of Asynchronous replication is not as pre-
cise as the Synchronous replication. When Asynchronous replication is used in the
Hadoop framework, Map and Reduce tasks can continue concurrently.

Rack-level data replication scheme ensures that all the data replicas occur on the
same rack in a data center. In fact, in data centers, servers are structured in racks with
a hierarchical topology. In a two-level architecture, the central switch can become
the bottleneck as many rack switches share it. One instance of bandwidth bottleneck
is in the Shuffling step of MapReduce. In this case, the central switch becomes
over-utilized whereas rack-level switches are under-utilized. Using the Rack-level
replication helps reduce the traffic that goes through the central switch. However,
this schema cannot tolerate rack-level failures. But recent studies suggest, the rack-
level failures are uncommon, which justifies the adoption of Rack-level replication.

In Selective data replication, intermediate data generated by the Big data appli-
cation are replicated on the same server where they were generated. For example, in
the case of Map phase failures in a chained MapReduce job, the affected Map task
can be restarted directly, if the intermediate data from previous Reduce tasks were
available on the same machine. The Selective replication scheme reduces the need
for replication in the Map phase. However, it is not effective in Reduce phase, since
the Reduce data are mostly consumed locally.

Data replication on distributed file systems is costly due to disk I/O operations,
network bandwidth, and serialization overhead. These overheads can potentially
dominate the job execution time [65]. Pregel [47], a framework for iterative graph
computation, stores the intermediate data in memory to reduce these overheads.
Spark [66] framework uses a parallel data structures known as Resilient Distributed
Datasets (RDDs) [65] to store intermediate data in memory and manipulate them
using various operators. They also control the partitioning of the data to optimize
the data placement.

6.4 Big Data Security

In spite of the advantages offered by Big data analytics on clouds and the idea of
Analytics as a Service, there is an increasing concern over the confidentiality of
the Big data in these environments [25]. This concern is more serious as increasing
amount of confidential user data are migrated to the cloud for processing. Genome
sequences, health information, and feeds from social networks are few instances of
such data.
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A proven solution to the confidentiality concerns of sensitive data on cloud is
to employ user-side cryptographic techniques for securing the data [25]. However,
such techniques limit the cloud-based Big data analytics in several aspects. One
limitation is that the cryptographic techniques usually are not transparent to end-
users. More importantly, these techniques restrict functionalities, such as searching
and processing, that can be performed on the users’ data. Numerous research works
are being undertaken to address these limitations and enable seamless Big encrypted
data analytics on the cloud. However, all of these efforts are still in their infancy and
not applicable to Big data scale processing.

Another approach to increase data confidentiality is to utilize multiple cloud stor-
age units simultaneously [61]. In this approach, user data are sharded based on a
user-side hashing function, and then the data for each cloud is encrypted and up-
loaded across multiple clouds. It is noteworthy that sharding and distributing of the
data are achieved based on some lightweight user-side processing. Therefore, the
control and distribution of the data is determined merely at the user-side. Although
such sharding approach seems interesting for Big data analytics, challenges, such as
processing sharded data across multiple clouds, still remains unsolved.

Hybrid clouds have proven to be helpful in increasing the security of Big data
analytics. In particular, they can be useful for cloud-based Big data analytics where
a portion of the data is sensitive and needs specific trusted resources for execu-
tion. One approach is to label the data and treat them differently based on their
labels [67]. As such, non-sensitive data are pushed to a public cloud for process-
ing and sensitive data are processed in a private cloud. The coordination is accom-
plished through a scheduler placed within local resources that determines where a
data should be processed depending on its label.

6.5 Data Heterogeneity

One of the major challenges researchers are facing is "How to integrate all the data
from different sources to maximize the value of data”. In the World Wide Web
(WWW), there is a huge amount of data created by social network sites, blogs,
and websites. However, every source is different in data structure, semantics, and
format. Structure of data from these sources varies from well-structured data (e.g.,
databases) to unstructured data (e.g., heterogeneous documents).

Vivek Singh at el., [57], developed a framework to detect situations (such as epi-
demics, traffic jams) by combining information from different streams like Twitter,
Google Insights, and satellite imagery. In this framework, heterogeneous real-time
data streams are combined by converting selected attributes and unified across all
streams. There are several other proposed frameworks that can combine different
data sources for various chosen domain-specific applications. Most of these solu-
tions use a semantics-based approach. Ontology matching is a popular semantics-
based method, which finds the similarity between the ontologies of different sources.
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Ontology is a vocabulary and description of a concept and its relationship with
others in the respective domain. In the Web example, ontology is used to transform
unstructured or partially structured data from different sources. Most of them are
human readable format (e.g., HTML) and are hard for the machine to understand.
One of the most successful ontology integration projects is Wikipedia, which is
essenstially integrated with human intervention. Semantic Web tools are used to
convert the unstructured Web to a machine understandable structure. Semantic Web
adds ontology constructs into web pages and enables machines to understand the
contents of a webpage. It helps to automate integration of heterogeneous data from
different sources on the Web using ontology matching.

7 Summary and Discussion

Size of data in the digital universe is almost doubling every year and has reached to
a stage that they cannot be processed by the conventional programming, computing,
storage, visualization, and analytical tools. In this study, we reviewed different types
of analytic needs arising in research and industry. We broadly categorized the cur-
rent analytical applications as descriptive, predictive, and prescriptive and identified
several real-world applications of each type.Then, we provided an overview of the
state-of-the-art on platforms, tools, and use cases for massive data analytics.

In particular, we discussed that cloud services are helpful platforms in allevi-
ating many of the massive data processing challenges. MapReduce compute re-
sources, NoSQL databases, virtually unlimited storages, and customized filesys-
tems, amongst many others, are useful cloud services for massive data analytics.

We provided two use-cases that were investigated within our research team. The
first one, recommendation in e-commerce applications, consists of a number of com-
ponents that can be partitioned into three major groups: The Data Store that contains
data about the active and temporarily changing state of an e-commerce web site; The
Real-time Performance System that generates recommendations in real-time based
on the information in the Data Store; and the offline model generation that conducts
computationally intensive offline analyses. The Real-time Performance System con-
sists of two components, similar items recommender (SIR) and related items recom-
mender (RIR). Both of these components take a seed item as input, and return a set
of items that are similar or related to that seed item.

The second use case addresses the problem of link prediction that proposes asso-
ciations between medical concepts that did not exist in earlier published works. In
this project, we model biomedical literature as a concept network, where each node
represents a biomedical concept that belongs to a certain semantic type, and each
edge represents a relationship between two concepts. Each edge is attached with a
weight that reflects the significance of the edge. Based on the constructed massive
graph, a machine-learning engine is deployed to predict the possible connection be-
tween two indirectly connected concepts.
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In the course of our research on massive data analytics tools and projects, we

have learnt key lessons and identified open challenges that have to be addressed by
researchers to further advance efficient massive data analytics. Below, we highlight
some of the lessons and challenges:

In many analytical applications (e.g., recommendation system in e-commerce),
even with availability of state-of-the-art Big data technologies, treating customer
data as a data stream is not yet viable. Therefore, some steps (e.g., model building
in recommendation systems), have to be performed offline.

It is difficult, if not impossible, to come up with a generic framework for var-
ious types of analytics. For instance, in the recommendation system, which is
an example of predictive data analytics in e-commerce, there are many subtle
nuances. Thus, a specific architecture is required based on the merits of each
application. Accordingly, in the eBay application, we noticed that Related Items
Recommendation (RIR) needs a different architecture compared to Similar Items
Recommendation (SIR).

Many Big data analytics (e.g., biomedical link prediction) process massive
graphs as their underlying structure. Distributed graph techniques need to be
in place for efficient and timely processing of such structures. However, to the
best our knowledge, there is not yet a comprehensive distributed graph analytic
framework that can support all conventional graph operations (e.g., path-based
processing in distributed graphs).

Data locality and replication management policies ought to be cleverly integrated
to provide robust and fault-tolerant massive data analytics.

As massive data are generally produced from a great variety of sources, novel,
semantics-based solutions should be developed to efficiently support data hetero-
geneity.
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