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Abstract—Many applications in federated Grids have quality-
of-service (QoS) constraints such as deadline. Admission control
mechanisms assure QoS constraints of the applications by
limiting the number of user requests accepted by a resource
provider. However, in order to maximize their profit, resource
owners are interested in accepting as many requests as possible.
In these circumstances, the question that arises is: what is
the effective number of requests that can be accepted by a
resource provider in a way that the number of accepted external
requests is maximized and, at the same time, QoS violations
are minimized. In this paper, we answer this question in the
context of a virtualized federated Grid environment, where
each Grid serves requests from external users along with its
local users and requests of local users have preemptive priority
over external requests. We apply analytical queuing model to
address this question. Additionally, we derive a preemption-
aware admission control policy based on the proposed model.
Simulation results under realistic working conditions indicate
that the proposed policy improves the number of completed
external requests (up to 25%). In terms of QoS violations, the
95% confidence interval of the average difference with other
policies is between (14.79%,18.56%).

I. INTRODUCTION

Large scale shared computing resources, such as federated
Grids, serve different types of users with diverse performance
expectations. Specifically, many applications in these envi-
ronments cannot tolerate performance variations and need
to secure strict quality-of-service (QoS) for their users.
Applications such as media servers [15] and individualized
patient treatment [14], [19], are instances of QoS-constrained
applications.

A federated Grid environment, as a large scale resource
sharing system, aims to provide a framework that intercon-
nects islands of Grids [4] and facilitates executing appli-
cations with heavy computational requirements, which can
potentially have QoS constraints. Recently, resources in such
environments are provisioned in the form of Virtual Machines
(VMs), which allow different types of users to create execu-
tion environments for their applications. GridWay [22] and
specifically InterGrid [4] are instances of such federated Grid
environments.

As illustrated in Figure 1, in each constituent Grid of
a federated Grid environment, the provisioning rights over
several resource providers (e.g. clusters) inside the Grid
are delegated to a gateway (GW). The gateways coordinate
resource allocation for requests coming from other Grids

(external users) through contracts between them [4]. On the
other hand, local users of each resource provider (cluster)
send their requests directly to the local resource manager
(LRM) of the cluster.

Typically, local requests have priority over external re-
quests in each cluster [7]. In other words, the organization
that owns the resources would like to ensure that its local
users (hereafter termed local requests) have priority access
to the resources. In this situation, external users (hereafter
termed external requests) are welcome to use resources if
they are available. Nonetheless, external requests should not
delay the execution of local requests.

Fig. 1. Illustration of distinct users (i.e. local and external requests) in a
federated Grid where each Grid is composed of several clusters.

To assure that the local requests of a cluster can get access
to the resources, in our previous research [2], we leveraged
preemption of external requests in favor of local requests.
However, preemption leads to increase in response time of
requests. Especially, when the external requests are deadline
constrained, preemption increases the likelihood of deadline
violation.

Deadline violations of external requests become more
critical as a cluster is over-subscribed to the external requests
(i.e. in Figure 1 the queuing time of external requests in the
LRM gets long). In general, there are several approaches
in resource sharing environments, to meet deadline con-
straints for applications. One common approach is applying
admission control mechanisms that prevents the resources
from becoming over-subscribed and, as a result, deadline
violations are avoided.

On the other hand, resource owners are interested to accept
as many external requests as possible which potentially lead
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to more deadline violations. Therefore, the question that
arises is: what is the ideal number of external requests a
cluster can accept in a way that the number of accepted
external requests in a cluster is maximized while the QoS
violation is avoided?

Previous research works on admission control either have
been in non-prioritized environment, or did not consider the
impact of preempting VMs [18], [1], [12], [23]. However,
our work considers these issues and finds out the number of
external requests (i.e. queue length) for each cluster.

More specifically, in this paper, we propose a preemption-
aware admission control policy within the LRM of each clus-
ter. This policy determines the suitable number of external
requests that can be accepted within each cluster of a Grid.
The objective of the policy is maximizing the number of
accepted external requests as well as minimizing deadline
violation for external requests. We apply analytical queuing
model to address this question. The advantage of applying
analytical methods is that it provides a performance model
based on system parameters. Additionally, analytical methods
evaluate performance metrics in a time efficient manner and,
therefore, reduce the computational time.

We carry out this research in the context of InterGrid [4]
which complies with the characteristics mentioned for vir-
tualized federated Grid systems. A detailed structure of
InterGrid is discussed in the next section.

The rest of this paper is organized as follows: In Section II,
an overview of the InterGrid environment is provided. In
Section III related research work is introduced. The proposed
analytical queuing model is described in Section IV, which is
followed by the preemption-aware admission control policy
in Section IV-A. Performance evaluation of the proposed
policy is reported in Section V. Finally, conclusion and future
works are provided in Section VI.

II. BACKGROUND AND CONTEXT

As we carry out our study in the context of InterGrid,
we provide a short description on its architecture and imple-
mentation in this section. Interested readers can refer to [4]
for more details. The structure of different components in
InterGrid is similar to that presented in Figure 1. Therefore,
we refer to that figure while we describe InterGrid in this
section.

InterGrid aims to provide a framework that allows users
to create execution environments for various applications
on top of the physical infrastructure participating in Grid
systems. Peering arrangements established between gateways
(termed IGG in the InterGrid context) enable the allocation
of resources from different Grids to fulfill the requirements
of the execution environments.

The Local Resource Manager (LRM)1 is the resource
manager in each cluster and provisions resources for the local
and external requests. Virtual Machine (VM) technology is

1This component is also called Virtual Infrastructure Engine (VIE) in the
InterGrid.

used in each cluster of InterGrid for resource provisioning.
Requests in InterGrid are contiguous and have to be served
within resources of a single cluster. Each request has the
following characteristics:

• Type of the request (local/external);
• Duration of the request;
• Deadline of the request.
Since local requests in the clusters have high priority,

external requests are preempted in favor of local requests.
Preempted external requests are rescheduled in the next avail-
able time-slot. Local requests in the clusters are immediate
and non-preemptive. This means that local requests require
resources as soon as they are submitted to the LRM and when
they get access to the resources they will be running until
their completion.

The central element of the IGG is the scheduler, which
implements provisioning policies and peering with other
IGGs. The scheduler performs creation, starting, and stopping
of VMs through the Virtual Machine Manager (VMM). The
VMM implementation is generic, so different LRMs can
interact with it. Currently, it is possible for the VMM to
interact with OpenNebula [5] and Eucalyptus [16] as different
LRMs. In addition, two interfaces to connect to a Grid
middleware (i.e., Grid’5000) and a Cloud IaaS provider (i.e.,
Amazon EC22) have been developed.

III. RELATED WORK

Significant research work has been done on admission
control in Grid computing. Much research has also been
undertaken on preempting jobs/VMs in distributed systems.
In this section, we provide a review on the recent research
in these areas and position our work in relation with them.

Sandholm et al. [18] investigated how admission control
can increase user fulfillment in a computational market.
Specifically, they considered the mixture of best-effort (to
improve resource utilization) and QoS-constrained jobs (to
improve revenue). They also leveraged partial preemption
of best-effort requests. The admission control policy accepts
a new request if the current requests can still respect their
QoS. Therefore, the feasibility test should be done for each
incoming request. Conversely, our work focuses on finding
out the ideal queue length and does not impose overhead on
the system for each incoming request.

Almeida et al. [1] proposed an optimization model for
admission control and resource allocation in a virtualized
web server that considers owners revenue and cost while
guarantees the response time of requests. They considered
several request classes and with a certain probability guaran-
tee that the response time of each class will not be more than
what is agreed in the SLA. In their analysis they consider the
Poisson distribution for arrival rate and exponential service
rate. Our research differs from this work in that we consider
general distribution for service time in our analysis (which
is more realistic based on the available workloads [10]).

2http://aws.amazon.com/ec2
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Additionally, we consider circumstances when preemption
takes place whereas they do not assume preemption in their
work.

Xavier et al. [23] applied an admission control policy for
shared resources where some large jobs takes precedence
over many small jobs that are waiting in the queue. Resource
providers determine the resource prices based on the degree
of contention and instantaneous utilization of resources.
Consumers also bid for the resources based on their budget.
In general, a job can get a resource if it can compensate the
loss of earning resulting from not admitting several small
jobs. On the contrary, we study a situation where preemption
happens and requests also have different priorities.

QoPS is a scheduler that provides QoS (response time)
guarantee for parallel jobs in a distributed system [12]. In
QoPS the cost of running a job depends on the amount of
resource usage as well as responsiveness of the job. For this
purpose, QoPS makes reservation for jobs and reschedules
other jobs in a way that their deadlines are met. In our
research we deal with the number of requests that can be
accepted, whereas policies such as QoPS determines the
scheduling/rescheduling of the accepted requests within the
queue.

A performance model is provided to work out the run time
of an external task in a single processor of a Network of
Workstations (NOW) [7] where local and external requests
coexist and local tasks have preemptive priority over external
tasks. Although the considered scenario is similar to the
scenario we consider, the main difference is that we take
into account several parallel external requests whereas Gong
et al. have considered one sequential external request at
any moment. In other words, there is no queue for external
requests in [7] whereas our research focuses on the number
of external requests that can be admitted without violating
their deadlines.

IV. ANALYTICAL QUEUING MODEL

In this section, we describe the analytical model to find the
ideal queue length for external requests within the LRM of
each cluster in the federated Grid environment. This section
is followed by the proposal of an admission control policy,
built upon the analytical model provided. Table I gives the
list of symbols we use along with their meanings.

It is worth noting again that submitted local requests to a
cluster have to be executed immediately unless the requested
resources are occupied by other local requests. On the other
hand, an external request that is running within a cluster is
preempted to free space for the local request. In this case,
the preempted external request is rescheduled on the next
available time-slot.

The queuing model that represents a gateway along with
several non-dedicated clusters (i.e. clusters with shared re-
sources between local and Grid requests) is depicted in
Figure 2. According to this figure, cluster j receives requests
from two independent sources. One source is a stream of
local requests with mean arrival rate λj and the other is a

TABLE I
DESCRIPTION OF SYMBOLS USED IN THE QUEUING MODEL.

Symbol Description
E(Wj) Expected waiting time of external requests in the LRM queue cluster j
E(Tj) Expected service time of external requests in cluster j
E(Rj) Expected response time of external requests in cluster j

D Expected deadline of external requests
Λj Arrival rate of external requests to cluster j
µj
l Service rate of local requests in cluster j

µj
e Service rate of external requests in cluster j
ω Mean duration of external requests
λj Arrival rate of local requests to cluster j
ρje Λj/µ

j
e

ρjl λj/µ
j
l

α Scale parameter in Gamma distribution
β Shape parameter in Gamma distribution
θj Coefficient of Variance (CV) for service time of local requests in cluster j
eji ith running slice for an external request in cluster j
lji Mean duration of local request i in cluster j

ratel Low-urgency rate
ul Average deadline ratio for low-urgency requests
uh Average deadline ratio for high-urgency requests
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Fig. 2. Queuing model for resource provisioning in a Grid with n clusters.

stream of external requests, which are sent by the gateway
with mean arrival rate Λj .

As mentioned earlier, the analytical model aims at working
out the ideal queue length for external requests in each cluster
in a way that deadline violations of external requests are
minimized and, at the same time, the number of completed
external requests is maximized. Our analysis is based on the
following assumptions:

• All requests are moldable applications which can spread
over all available resources in a cluster. Therefore, we
can assume that each cluster is a single server.

• Local requests are immediate and must be processed
as soon as they are submitted. We assume an M/G/1
queue to model the service time of local requests.

• External requests are submitted to a queue in each
cluster that can be modeled as an M/G/1/K queue
model.

In this situation, the analysis goal is finding out the suitable
value of Kj for cluster j in a way that deadline of the external
requests is not violated. Thus, our primary objective function
can be expressed as follows:

E(Rj) = E(Wj) + E(Tj) ≤ D (1)

where E(Rj) is the expected response time; E(Wj) and
E(Tj) are the expected waiting time and expected service
time for external requests in cluster j, respectively. D is the
expected deadline for external requests. Over the next few
paragraphs we discuss how E(Wj), E(Tj) can be obtained
for cluster j.

If we suppose that an external request, with overall run-
time ω, encounters n preemptions before getting completed,
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then the service time (T ) of the external request e can be
formulated as follows:

Tj = ej1 + lj1 + ej2 + lj2 + ...+ ejn + ljn + ε (2)

where lji is the duration of the local request i and eji is the
ith running slice of the external request e in cluster j and
we have ej1 + ej2 + ... + ejn + ε = ω. Also, ε is the last
running slice of e. Given that the arrival rate of requests
follows the Poisson distribution, we can conclude that eji
follows the exponential distribution and n follows Gamma
distribution [13]. Therefore, we have E(n) = λjω where λj

is the arrival rate of local requests in cluster j. Thus, E(Tj)
is worked out based on Equation 3.

E(Tj) = E(E(Tj |n)) = E(ω + lj1 + lj2 + ...+ ljn|n)
= E(ω + n·E(lj1))

= ω + λjωE(lj1)

(3)

where E(lj1) = 1/(µj
l − λj) since it follows the M/G/1

queuing system. Hence, the expected service time and vari-
ance of service time for external requests (E(Tj) and V (Tj)
respectively) are worked out through Equations 4 and 5 [7]:

E(Tj) =
µj
l ·ω

µj
l − λj

=
ω

1− ρjl
(4)

V (Tj) =
ρjl

(1− ρjl )
3
·
θ2j + 1

µj
e

·ω (5)

where θj is the coefficient of variance (CV ) of service
time for local requests; µj

e is the service rate of external
requests; and ρjl is the queue utilization for local requests in
cluster j. According to Bose [3], the average waiting time of
external requests in the M/G/1/K queue is obtained based
on Equation 6:

E(Wj) =
1

Λj

Kj−1∑

k=0

k·P j
d,k+

Kj

Λj
(P j

d,0+ρje−1)−E(Tj) (6)

where, ρje is the queue utilization for external requests and
is calculated based on Equations 4 as follows:

ρje = Λj ·E(Tj) =
ω·Λj

1− ρjl
(7)

Also in Equation 6, P j
d,k is the probability that a newly

arriving external request observes k requests waiting in the
queue of cluster j. This is irrespective of whether or not the
external request finally joins the queue. P j

d,k is obtained as
follows [3]:

P j
d,k =

P j
∞,k

Kj−1∑

i=0

P j
∞,i

, k = 0, 1, ...,Kj − 1 (8)

Based on Equation 8, to work out P j
d,0, we need P j

∞,0 and
P j
∞,k. P j

∞,0 is equivalent to the probability of zero length

queue in an M/G/1 queue, which is: P j
∞,0 = 1 − ρje [13].

However, P j
∞,k is obtained according to Equation 9 [3].

P j
∞,k =

1

µj
e

·
(
ak−1·P j

∞,0 +
k−1∑

i=1

aKj−i·P j
∞,i

)
(9)

where ajk is defined as follows:

ajk =

∫ ∞

0

(tλj)k

k!
· e−tλj · bj(t)· dt (10)

bj(t) in Equation 10 is the probability density function (PDF)
of service time for external requests in cluster j.

Gong et al. [7] showed that the service time of external
requests in the presence of preemption in a cluster follows
the Gamma distribution. Therefore, we can apply the moment
matching to acquire the parameters of the Gamma distribu-
tion (scale(α) and shape(β)). In this case, αβ = E(Tj) and
α2β = V (Tj) and consequently α and β are obtained as
follows:

αj =
ρjl (θ

2
j + 1)

µj
e(1− ρjl )

2
,βj =

(1− ρjl )µ
j
l ·ω

ρjl (θ
2
j + 1)

(11)

Hence, bj(t) in Equation 10 can be calculated as follows:

bj(t) =
(t/α)β−1· e−t/α

α·Γ(β) (12)

where Γ(β) is the Gamma function.

A. The Proposed Admission Control Policy
Here, we discuss how the analysis mentioned in the

previous section can be adapted as the admission control
policy for external requests within each cluster of a Grid.
The positioning of this policy is demonstrated as “AC” in
Figure 2.

As we can see in Equation 1, solving the queuing model
entails knowing “D” (deadline). The deadline of an external
request includes the amount of time a request can possibly
wait. For the sake of accuracy, similar to [6], [11], we
have categorized external requests into low-urgency and high-
urgency based on their criticality. In low-urgency requests
the deadline is significantly greater than run time of the
requests (i.e. deadlineRatio = deadline/runtime is high).
By contrast, in high-urgency requests the deadline ratio is
low. Having the average deadline ratio for the low-urgency
and high-urgency requests, the upper bound for response time
of external requests in Equation 1 (D) is worked out as
follows:

D = (ratel·ul·ω) + ((1− ratel)·uh·ω) (13)

where ratel determines the percentage of external requests
which have low-urgency; also ul and uh are deadline ratios
for low-urgency and high-urgency external requests, respec-
tively.

Then, the preemption-aware admission control policy
(PACP), which is built upon the analysis of Section IV, can
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be constructed. This policy is shown in the form of pseudo-
code in Algorithm 1. In the beginning of the Algorithm (step
1), D indicates the maximum time on average an external
request can be postponed without violating its deadline. Next,
in steps 4-10, in each iteration of the loop the queue length is
increased by one up until the average response time (E(R)),
in step 9, exceeds D.

Algorithm 1: Preemption-aware Admission Control Pol-
icy (PACP) in cluster j.

Input: Λj ,θj ,ω,λj ,µj
e,µj

l ,ratel,ul,uh

Output: Kj (Queue length)
1 D ← (ratel ∗ ul ∗ ω) + ((1− ratel) ∗ uh ∗ ω);
2 Kj ← 0;
3 ExpectedResponsej ← 0;
4 while ExpectedResponsej < D do
5 /*calculating E(R) for a queue with

length Kj in cluster j*/
6 σ ← 0;
7 for N j

q ← 0 to Kj − 1 do
8 σ+ = N j

q ·P
j

d,Nj
q
;

9 ExpectedResponsej ← 1
Λj

·σj +
Kj

Λj
(P j

d,0+ρje−1);
10 Kj ← Kj + 1;

The output of the algorithm is Kj , which is the ideal
number of external requests that can be admitted by cluster
j. Once Kj is obtained for cluster j, the LRM of the cluster
will not accept any external requests beyond Kj .

It is worth mentioning that, in practice, the LRM in
a cluster can get the required parameters for PACP by
analyzing the clusters’ workload. Such parameters have been
used in similar researches [8], [24].

Although we considered the Poisson arrival in the analysis,
in the next section we examine how efficient the provided
analysis and the proposed policy would be under real arrival
model (i.e. non-Poisson).

V. PERFORMANCE EVALUATION
In this section, we discuss different performance metrics

considered, the scenario in which the experiments are car-
ried out, and finally, experimental results obtained from the
simulations are discussed.

A. Performance Metrics

1) Deadline Violation Rate (DVR): Measures the percent-
age of deadline violations within the whole external requests.
In fact, users are interested in a policy that results in less
deadline violations. High values of this metric express less
user satisfaction. The DVR of external requests in a Grid is
calculated based on Equation 14.

DV R =
(a· v) + r

a+ r
· 100 (14)

where a, r are the number of accepted and rejected external
requests in a Grid. v is the deadline violation ratio within the
accepted external requests (0 ≤ v ≤ 1).

2) Completed External Requests: Admission control poli-
cies usually limit the number of requests processed in a
cluster. This is, however, against the resource owner’s aim
who benefits from processing as many requests as possible.
Therefore, we are interested to see how different policies
affect the number of completed external requests within each
cluster and subsequently within a Grid.

B. Experimental Setup
We use GridSim [21], a discrete event simulator, to

evaluate the performance of the admission control policy.
We consider a Grid with 3 clusters with 64, 128, and 256
processing elements and with different computing speeds
(s1 = 2000, s2 = 3000, s3 = 2100 MIPS) respectively.
These sizes are in accordance with the average demand of
the current scientific high performance computing applica-
tions [9].

Each cluster is managed via an LRM with a conservative
backfilling scheduler to improve the resource utilization [17].
We assume all processing elements of each cluster as a
single core CPU with one VM. Since the requests contain
moldable applications, the number of VMs required by a
request adapts to the number of VMs in the allocated cluster
and the duration (execution time) of the request changes
accordingly.

The performance of our admission control policy also
depends on the scheduling policy in the gateway (IGG) where
incoming external requests are allocated to different clusters
(see Figure 1). We applied several scheduling policies in
the IGG to schedule the incoming external requests amongst
different clusters of a Grid. However, because of lack of space
we have reported the results where the round robin policy
was applied in IGG. Based on this policy, the arrival rate of
external requests to cluster j is: Λj = Λg/n where Λg is
the arrival rate to a Grid and n is the number clusters in the
Grid.

1) Baseline Policies: For the sake of comparison, we
evaluate PACP against 3 other policies. Details of these
policies are described below:

• Conservative Admission Control Policy (CACP): As a
baseline policy, this policy admits as many requests as
assigned by the IGG. In fact, this policy favors resource
owners since it does not reject any external request
with the aim of maximizing the number of completed
external requests. From the queuing model perspective,
this policy considers an M/G/1/∞ queue within each
cluster, where queue length is infinite.

• Aggressive Admission Control Policy (AACP): The
other baseline policy considers the other extreme of
spectrum where each cluster accepts one external re-
quest at any time and tries to finish that within its
deadline. We can argue that this policy favors accepted
requests since it just tries to minimize deadline violation
rate of accepted requests.

• Rate-based Admission Control Policy (RACP): Sharifian
et al. [20] proposed this policy which is the most similar
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to our policy in the area. In this policy the queue length
is determined based on the service rate for external
requests and local request arrival rate in a cluster (i.e.
Nq = µe/λ). We compare our proposed policy (PACP)
with RACP to show its performance in comparison with
recent works in the area.

2) Workload Model: In the experiments conducted,
a workload model based on Grid Workload Archive
(GWA) [10] has been configured to generate a two-day-long
workload of bag-of-tasks requests. This model is based on
traces of 7 Grids over a year and is a good representative for
Grid workloads.

For the sake of accuracy, each experiment is carried
out 10 times by using different workloads. The results of
the experiments are analyzed from practical and statistical
perspectives. In the statistical analysis we applied T-student
test and we have verified the normality of the underlying
data as well as equity of variance. Also, we assured that
CV of all the reported results is less than 0.1. In Table II,
different characteristics of the workload are described. Since
the distribution of local requests and external requests are
independent of each other in each cluster, we mention them
in distinct columns. The values of parameters in Table II are
chosen based on realistic values collected and analyzed by
Iosup et al. [10].

In each experiment, we change one characteristic of the
workload, while other characteristics are unchanged as fol-
lows:

• Arrival rate of local requests varies through changing αl

(we term it local scale which stands for scale parameter
in the Weibull distribution). For external requests, we
keep Me = 90 seconds and αe=1.7 (called external
scale). For local requests we keep Ml = 90 seconds.

• Task duration of local requests varies: We keep αe =
1.7, Me = 90 seconds, and αl = 4.

• Arrival rate of external requests varies: We keep αl = 4,
Ml = 90 seconds, and Me = 90 seconds.

• Task duration of external requests varies: We keep αl =
4, Ml = 90, and αe = 1.7.

There are also some points on the value of parameters in the
workloads:

• In Table II, by increasing αl and αe inter-arrival time
increases (i.e. requests arrive less often). Therefore, as
we expect that in reality external requests arrive more
frequently, we assign lower values of α to them.

• Mean duration of external tasks (ω), which is needed
in algorithm 1, is ω = meanNumberofTasks ∗
meanTaskDuration.

• To be more realistic, the local workload assigned to each
cluster is proportional to cluster capacity (i.e. bigger
clusters are receiving more and bigger local requests).
In fact, the values mentioned in Table II are the average
characteristics of the local workload on the cluster
with 128 processing elements. On the cluster with 64
processing elements, the mean task duration is decreased
by 1 and the scale parameter (αl) is increased by 1.

In the cluster with 256 processing elements the mean
task duration is increased by 1 and the αl parameter is
decreased by 1.

The GWA workload model does not have deadline for
requests. Thus, similar to [6], [11], we synthetically assign
deadlines to low-urgency and high-urgency external requests.
Deadline ratio is distributed normally within each class of the
requests. In our experiments, we consider the deadline ratio
for low-urgency as: N(4, 1) and for high-urgency external
requests as: N(2, 1). In fact, we have run the experiments
for different values of deadline ratio in low and high-urgency
requests. However, due to shortage of space we just report
the mentioned situation. Finally, the arrival sequence of
high-urgency and low-urgency request classes are distributed
uniformly throughout the workload.
C. Experimental Results

1) Deadline Violation Rate (DVR): One of the goals of
this paper is to express the impact of admission control
policies on the deadline violation in a federated Grid and with
the presence of preemption. Therefore, in this experiment
we report the DVR for external requests when different
admission control policies are applied.

As we can see in all sub-figures of Figure 3, PACP has
resulted in less deadline violations when compared with
other policies. Specifically, we observe a rise in DVR as
the average duration of tasks in local and external requests
increases (Figures 3(a) and 3(c)). In Figure 3(b) and 3(d)
we notice that DVR in all policies decreases when the inter-
arrival time of local requests and external requests increases.
In fact, in Figure 3(b), when the inter-arrival time of local
requests increases, fewer preemptions take place for external
requests and thus DVR decreases. On the other hand, in
Figure 3(d), as external requests become less frequent, fewer
external requests join the queue and existing external request
have more opportunity to get completed before their deadline.

In all cases, the difference between PACP and other
policies is more significant when there is more load in
the system which shows the efficiency of PACP when the
system is heavily loaded. The only exception is when task
duration for external requests is long (more than 100 seconds
in Figure 3(c)) which indicates that when external requests
are becoming long, the queuing policies cannot affect DVR
significantly. In the best situation (in Figure 3(c), where the
average task duration is 80 seconds) we observe that PACP
results in around 20% less deadline violation when compared
to RACP. In other points (between 70 and 90), the 95%
confidence interval (CI) of the average difference between
RACP and PACP is (14.79,18.56) where P-value<0.001.

This experiment also expresses that although AACP ac-
cepts few external requests, its DVR is the highest. This is
because in Equation 14, the number of rejections is very
high and, therefore, the value of r dominates the result.
RACP in these experiments is functioning close to the
CACP. Particularly, in Figure 3(d) since inter-arrival time of
external requests increases, RACP admission rate increases
and approaches CACP. However, in Figure 3(a) and 3(c)
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TABLE II
PARAMETERS OF THE WORKLOAD MODEL.

Input Parameter Distribution external Requests Local Requests
Inter-arrival Time Weibull (0.2 ≤ αe ≤ 3.2,βe = 7.86) (2 ≤ αl ≤ 10,βl = 7.86)

No. of Tasks Weibull (ae = 1.76, be = 2.11) (al = 1.76, bl = 2.11)
Task Duration Normal (60 ≤ Me ≤ 110,σe = 6.1) (60 ≤ Ml ≤ 110,σl = 6.1)
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Fig. 3. Deadline Violation Rate (DVR) resulted from different policies. The experiment is carried out by modifying (a) the average local task duration (Ml)
and (b) the scale parameter (αl) in local requests. In (c),(d) for external requests with altering the mean task duration (Me) and the scale parameter (αe) as
mentioned in Table II.

as service rate of external requests decreases, a greater
difference appears between RACP and CACP. In Figure 3(a),
the 95% CI of the average difference between RACP and
PACP is (14.12,17.86) and P-value<0.001.

2) Completed External Requests: Resource owners, in
general, prefer to run as many external requests as possible.
Therefore, in this experiment we report the percentage of
external requests getting served. Different sub-figures in
Figure 4 show how various policies affect the number of
completed external requests from different aspects.

In general, we observe in all sub-figures of Figure 4
that AACP leads to the least number of completed external
requests (because of too many rejections) whereas CACP
results in the most number of completed external requests
(always 100%) because it does not reject any of the ex-
ternal requests. We also witness that PACP, almost in all
cases outperforms RACP. Superiority of PACP is particu-
larly remarkable when the local/external requests are not
long. According to Figures 4(a) and 4(c), the percentage of
completed external requests decreases by increasing the task
duration for both local and external requests. Since PACP
adaptively decreases the queue length, deadline violation rate
is minimized. Hence, the percentage of completed external
requests decreases. Similarly, in RACP by increasing task
duration of local or external requests, service rate for external
requests decreases and consequently, number of completed
external requests reduces. However, these figures note that
PACP still performs better in comparison with RACP. The

result of the 95% CI of the average difference between
RACP and PACP in Figure 4(a) is (14.12,17.86) and P-
value<0.001; In the same figure, the most difference between
the two policies is around 25% when task duration for local
requests is 70-80 seconds. Moreover, the 95% CI of the
average difference between RACP and PACP in Figure 4(c)
is (17.09,21.3) and P-value<0.001.

Figure 4(d) shows that PACP leads to completion of more
external requests in comparison with RACP. We notice that as
the external requests become less frequent PACP and RACP
approach CACP and finally when external scale parameter is
more than 2.0 all the external requests are accepted.

VI. CONCLUSIONS AND FUTURE WORK
In this research we considered a virtualized federated

Grid environment where local requests and external requests
coexist in each cluster and local requests have preemptive
priority over the external requests. In this environment,
we explored the ideal number of external requests that a
cluster can accept without violating deadlines. We developed
a performance model based on queuing theory and then
we proposed a preemption-aware admission control policy
(PACP) in the LRM of each cluster which determines the
ideal queue length for external requests in the cluster. We
compared the performance of the proposed policy with 3
other policies. Results of the experiments indicate that the
PACP significantly decreases the deadline violation rate for
external requests (up to 20%). Additionally, PACP leads to
completing more external requests (up to 25%) in a two-day-
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Fig. 4. Percentage of completed external requests resulted from different policies. The experiment is performed by modifying: (a) the mean task duration
for local requests (Ml) and (b) the scale parameter (αl) for local requests. Also, in (c) , (d) with altering the mean task duration for external requests (Me);
and scale parameter (α e) of inter-arrival time for external requests.

long workload. In future, we plan to relax the assumption of
moldable applications and solve the problem for all types of
parallel requests. Additionally, we will consider revenue for
resource owner based on different types of requests.
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