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Abstract

During the recent years, workflows have emerged as an important abstraction for collaborative
research and managing complex large-scale distributed data analytics. Workflows are increasingly
becoming prevalent in various distributed environments, such as clusters, grids, and clouds. These
environments provide complex infrastructures that aid workflows in scaling and parallel execution
of their components. However, they are prone to performance variations and different types of
failures. Thus, workflow management systems need to be robust against performance variations and
tolerant against failures. Numerous research studies have investigated fault-tolerant aspect of the
workflow management system in different distributed systems. In this study, we analyze these efforts
and provide an in-depth taxonomy of them. We present the ontology of faults and fault-tolerant
techniques then position the existing workflow management systems with respect to the taxonomies
and the techniques. In addition, we classify various failure models, metrics, tools, and support
systems. Finally, we identify and discuss the strengths and weaknesses of the current techniques
and provide recommendations on future directions and open areas for the research community.

Keywords: Fault-tolerance, Workflows, Cloud Computing, Algorithms, Distributed Systems, Task
Duplication, Task Retry, Checkpointing

1. Introduction

Workflows orchestrate the relationships between dataflow and computational components by
managing their inputs and outputs. In the recent years, scientific workflows have emerged as a
paradigm for managing complex large scale distributed data analysis and scientific computation.
Workflows automate computation, and thereby accelerate the pace of scientific progress easing the
process for researchers. In addition to automation, it is also extensively used for scientific repro-
ducibility, result sharing and scientific collaboration among different individuals or organizations.
Scientific workflows are deployed in diverse distributed environments, starting from supercomputers
and clusters, to grids and currently cloud computing environments [1, 2].

Distributed environments usually are large scale infrastructures that accelerate complex workflow
computation; they also assist in scaling and parallel execution of the workflow components. The
likelihood of failure increases specially for long-running workflows [3]. However, these environments
are prone to performance variations and different types of failures. This demands the workflow
management systems to be robust against performance variations and fault-tolerant against faults.

Over the years, many different techniques have evolved to make workflow scheduling fault-
tolerant in different computing environments. This chapter aims to categorize and classify dif-
ferent fault-tolerant techniques and provide a broad view of fault-tolerance in workflow domain for
distributed environments.

Workflow scheduling is a well studied research area. Yu et al. [4] provided a comprehensive view of
workflows, different scheduling approaches, and different workflow management systems. However,
this work did not throw much light into fault-tolerant techniques in workflows. Plankensteiner
et al. [5] have recently studied different fault-tolerant techniques for grid workflows. Nonetheless,
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Figure 1: Architecture of cloud workflow management system. Portal, enactment engine, and resource broker form the
core of the WFMS performing vital operations, such as designing, modeling, and resource allocation. To achieve these
operations, the workflow management services (left column) provide security, monitoring, database, and provenance
management services. In addition, the Directory and Catalogue services (right column) provide catalog and meta-data
management for the workflow execution.

they do not provide a detailed view into different fault-tolerant strategies and their variants. More
importantly, their work does not encompass other environments like clusters and clouds.

In this chapter, we aim to provide a comprehensive taxonomy of fault-tolerant workflow schedul-
ing techniques in different existing distributed environments. We first start with an introduction to
workflows and workflow scheduling. Then, we introduce fault-tolerance and its necessity. We pro-
vide an in-depth ontology of faults in section 4. Following which, different fault-tolerant workflow
techniques are detailed. In section 6, we describe different approaches used to model failures and
also give definition of various metrics used in literature to assess fault-tolerance. Finally, promi-
nent workflow management systems are introduced and a description of relevant tools and support
systems that are available for workflow development is provided.

2. Background

2.1. Workflow Management Systems

Workflow management systems (WFMS) enable automated and seamless execution of workflows.
It allows users to define and model workflows, set their deadline and budget limitations, and the
environments in which they wish to execute. The WFMS then evaluates these inputs and executes
them within the defined constraints.

The prominent components of a typical cloud WFMS is given in Figure 1. The workflow portal
is used to model and define abstract workflows i.e., tasks and their dependencies. The workflow
enactment engine takes the abstract workflows and parses them using a language parser. Then,
the task dispatcher analyses the dependencies and dispatches the ready tasks to the scheduler. The
scheduler, based on the defined scheduling algorithms schedules the workflow task onto a resource.
We further discuss about workflow scheduling in the next section. Workflow enactment engine also
handles the fault-tolerance of the workflow. It also contains a resource allocation component which
allocates resources to the tasks through the resource broker.

The resource broker interfaces with the infrastructure layer and provides a unified view to the
enactment engine. The resource broker communicates with compute services to provide the desired
resource.

The directory and catalogue services house information about data objects, the application and
the compute resources. This information is used by the enactment engine, and the resource broker
to make critical decisions.
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Figure 2: Components of workflow scheduling.

Workflow management services, in general, provide important services that are essential for the
working of a WFMS. Security and identify services ensure authentication and secure access to the
WFMS. Monitoring tools constantly monitor vital components of the WFMS and raise alarms at
appropriate times. Database management component provides a reliable storage for intermediate
and final data results of the workflows. Provenance management services capture important in-
formation such as, dynamics of control flows and data, their progressions, execution information,
file locations, input and output information, workflow structure, form, workflow evolution, and
system information [6]. Provenance is essential for interpreting data, determining its quality and
ownership, providing reproducible results, optimizing efficiency, troubleshooting and also to provide
fault-tolerance.

2.2. Workflow Scheduling

As mentioned earlier, a workflow is a collection of tasks connected by control and/or data
dependencies. Workflow structure indicates the temporal relationship between tasks. Workflows
can be represented either in Directed Acyclic Graph (DAG) (as shown in Figure 3) or non-DAG
formats.

Scheduling in workflows maps its tasks on to distributed resources such that the dependencies
are not violated. Workflow Scheduling is a well-known NP-Complete problem [7].

The workflow scheduling architecture specifies the placement of the scheduler in a WFMS and
it can be broadly categorized into three types as illustrated in Figure 2: centralized, hierarchical,
and decentralized [4]. In the centralized approach, a centralized scheduler makes all the scheduling
decisions for the entire workflow. The drawback of this approach is that it is not scalable; however,
it can produce efficient schedules as the centralized scheduler has all the necessary information. In
hierarchical scheduling, there is a central manager responsible for controlling the workflow execution
and assigning the sub-workflows to low-level schedulers. The low-level schedulers map tasks of the
sub-workflows assigned by the central manager. In contrast, decentralized scheduling has no central
controller. It allows tasks to be scheduled by multiple schedulers, each scheduler communicates with
each other and schedules a sub-workflow or a task [4].

Workflow schedule planning for workflow applications also known as planning scheme are of two
types: static(offline) and dynamic(online). Static scheme map tasks to resources at the compile time.
These algorithms require the knowledge of workflow tasks and resource characteristics beforehand.
On the contrary, dynamic scheme can make few assumptions before execution and make scheduling
decision just-in-time [8]. Here, both dynamic and static information about environment is used in
scheduling decisions.

Further, workflow scheduling techniques are the approaches or methodologies used to map work-
flow tasks to resources, and it can be classified into two types: heuristics and meta-heuristics.
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Figure 3: Examples of the state-of-the-art workflows [11]: (a) Epigenomics: DNA sequence data obtained from the
genetic analysis process is split into several chunks and are used to map the epigenetic state of human cells. (b) LIGO:
detects gravitational waves of cosmic origin by observing stars and black holes. (c) Montage: creates a mosaic of the
sky from several input images. (d) CyberShake: uses the Probabilistic Seismic Hazard Analysis (PSHA) technique
to characterize earth-quake hazards in a region. (e) SIPHT: searches for small un-translated RNAs encoding genes
for all of the bacterial replicas in the NCBI database.

Heuristic solutions exploit problem-dependent information to provide an approximate solution trad-
ing optimality, completeness, accuracy, and/or processing speed. It is generally used when finding
a solution through exhaustive search is impractical. It can be further classified into list based
scheduling, cluster based scheduling, and duplication based algorithms [9, 10]. On the other hand,
meta-heuristics are more abstract procedures that can be applied to a variety of problems. A
meta-heuristic approach is problem-independent and treats problems like black boxes. Some of the
prominent meta-heuristic approaches are genetic algorithms, particle swarm optimization, simulated
annealing, and ant colony optimization.

Each scheduling algorithm for any workflow has one or many objectives. The most prominent
strategies or objectives used are given in Figure 2. Time, cost, energy, QoS, and fault-tolerance
are most commonly used objectives for a workflow scheduling algorithm. Algorithms can be with a
single objective or multiple objectives based on the scenario and the problem statement. The rest of
the chapter is focused on scheduling algorithms and workflow management systems whose objective
is fault-tolerance.

3. Introduction to Fault-Tolerance

Failure is defined as any deviation of a component of the system from its intended functionality.
Resource failures are not the only reason for the system to be unpredictable, factors such as, design
faults, performance variations in resources, unavailable files, and data staging issues can be few of
the many reasons for unpredictable behaviors.

Developing systems that tolerate these unpredictable behaviors and provide users with seamless
experience is the aim of fault-tolerant systems. Fault tolerance is to provide correct and continuous
operation albeit faulty components. Fault-tolerance, robustness, reliability, resilience and Quality

4



of Service (QoS) are some of the ambiguous terms used for this. These terminologies are used
interchangeably in many works. Significant works are done in this area encompassing numerous
fields like job-shop scheduling [12], supply chain [13], and distributed systems [10, 14].

Any fault-tolerant WFMS need to address three important questions [14]: (a) what are the
factors or uncertainties that the system is fault-tolerant towards? (b) What behavior makes the
system fault-tolerant? (c) How to quantify the fault-tolerance i.e., what is the metric used to measure
fault-tolerance?

In this survey we categorize and define the taxonomy of various types of faults that a WFMS
in a distributed environment can experience. We further develop an ontology of different fault-
tolerant mechanisms that are used until now. Finally we provide numerous metrics that measure
fault-tolerance of a particular scheduling algorithm.

3.1. Necessity for Fault-Tolerance in Distributed Systems

Workflows, generally, are composed of thousands of tasks, with complicated dependencies be-
tween the tasks. For example, some prominent workflows (as shown in Figure 3) widely considered
are Montage, CyberShake, Broadband, Epigenomics, LIGO Inspiral Analysis, and SIPHT, which
are complex scientific workflows from different domains such as astronomy, life sciences, physics and
biology. These workflows are composed of thousands of tasks with various execution times, which
are interdependent.

The workflow tasks are executed on distributed resources that are heterogeneous in nature.
WFMSs that allocates these workflows uses middleware tools that require to operate congenially in a
distributed environment. This very complex and complicated nature of WFMSs and its environment
invite numerous uncertainties and chances of failures at various levels.

In particular, in data-intensive workflows that continuously process data, machine failure is
inevitable. Thus, failure is a major concern during the execution of data-intensive workflows frame-
works, such as MapReduce and Dryad [15]. Both transient (i.e., fail-recovery) and permanent (i.e.,
fail-stop) failures can occur in data-intensive workflows [16]. For instance, Google reported on
average 5 permanent failures in form of machine crashes per MapReduce workflow during March
2006 [17] and at least one disk failure in every run of MapReduce workflow with 4000 tasks.

Necessity for fault-tolerance arises from this very nature of the application and environment.
Workflows are applications that are most often used in a collaborative environment spread across
the geography involving various people from different domains (e.g., [11]). So many diversities
are potential causes for adversities. Hence, to provide a seamless experience over a distributed
environment for multiple users of a complex application, fault-tolerance is a paramount requirement
of any WFMS.

4. Taxonomy of Faults

Fault is defined as a defect at the lowest level of abstraction. A change in a system state due to
a fault is termed as an error. An error can lead to a failure, which is a deviation of the system from
its specified behavior [18, 19]. Before we discuss about fault-tolerant strategies it is important to
understand the fault-detection and identification methodologies and the taxonomy of faults.

Fault Characteristics

SeverityTimeOriginatorAccuracy Location Stage Frequency

Known Unknown

Faults

Types Classes

Transient Intermittent Permanent Crash Fail-Stop Byzantine

Faults

Figure 4: Elements through which faults can be characterized.

Faults can be characterized in an environment through various elements and means. Lackovic
et al. [20] provide a detailed list of these element that are illustrated in Figure 4. Accuracy of fault
detection can be either known or unknown faults. Known faults are those which have been reported
before and solutions for such faults are known. Location is the part of the environment where the
fault occurs. Originator is the part of the environment responsible for the fault to occur. Stage of
the fault refers to the phase of the workflow lifecycle (design, build, testing, and production) when
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the fault occurred. Time is the incidence time in the execution when the fault happened. Frequency,
as the name suggests identifies the frequency of fault occurrence. Severity specifies the difficulty in
taking the corrective measures and details the impact of a particular fault. More details of these
elements can be found in [20].

Fault Characteristics 

Severity Time Originator Accuracy Location Stage Frequency 

Known Unknown 

Generic View Processor View 

Transient Intermittent Permanent Crash Fail-Stop 

Faults 

Byzantine 

Figure 5: Faults: views and their classifications.

At a high level, faults can be viewed in two different ways, generic view, and the processor view.
The generic view of faults can be classified into three major types as shown in Figure 5: transient,
intermittent and permanent [20]. Transient faults invalidate only the current task execution, on a
rerun or restart these fault most likely will not manifest again [21]. Intermittent faults appear at
infrequent intervals. Finally, permanent faults are faults whose defects cannot be reversed.

From a processor’s perspective, faults can be classified into three classes: crash, fail-stop, and
byzantine [19]. This is mostly used for resource or machine failures. In the crash failure model,
the processor stops executing suddenly at a specific point. In fail-stop processors internal state is
assumed to be volatile. The contents are lost when a failure occurs and it cannot be recovered. How-
ever, this class of failure does not perform an erroneous state change due to a failure [22]. Byzantine
faults originate due to random malfunctions like aging or external damage to the infrastructure.
These faults can be traced to any processor or messages [23].

Faults in a workflow environment can occur at different levels of abstraction [5]: hardware,
operating system, middleware, task, workflow, and user. Some of the prominent faults that occur are
network failures, machine crashes, out-of-memory, file not found, authentication issues, file staging
errors, uncaught exceptions, data movement issues, and user-defined exceptions. Plankensteiner et
al. [5] detail various faults and map them to different level of abstractions.

5. Taxonomy of Fault-Tolerant Scheduling Algorithms

This section details the workings of various fault-tolerant techniques used in WFMS. In the rest of
this section, each technique is analyzed and their respective taxonomies are provided. Additionally,
prominent works using each of these techniques are explained. Figure 6 provides an overview of
various techniques that are used to provide fault-tolerance.

5.1. Replication

Redundancy in space is one of the widely used mechanisms for providing fault-tolerance. Redun-
dancy in space means providing additional resources to execute the same task to provide resilience
and it is achieved by duplication or replication of resources. There are broadly two variants of
redundancy of space, namely, task duplication and data replication.

5.1.1. Task Duplication
Task duplication creates replica of tasks. Replication of tasks can be done concurrently [24],

where all the replicas of a particular task start executing simultaneously. When tasks are replicated
concurrently, the child tasks start its execution depending on the schedule type. Figure 7 illustrates
the taxonomy of task duplication.

Schedules types, are either strict or lenient. In strict schedule the child task executes only when
all the replicas have finished execution [25]. In the lenient schedule type, the child tasks start
execution as soon as one of the replicas finishes execution [24].

Replication of task can also be performed in a backup mode, where the replicated task is activated
when the primary tasks fail [26]. This technique is similar to retry or redundancy in time. However,
here, they employ a backup overloading technique, which schedules the backups for multiple tasks
in the same time period to effectively utilize the processor time.
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Figure 6: Taxonomy of workflow scheduling techniques to provide fault-tolerance.
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Figure 7: Different aspects of task duplication technique in providing fault-tolerance.

Duplication is employed to achieve multiple objectives, the most common being fault-tolerance [25,
27, 28, 29]. When one task fails, the redundant task helps in completion of the execution. Addition-
ally, algorithms employ data duplication where data is replicated and pre-staged, thereby moving
data near computation especially in data intensive workflows to improve performance and reli-
ability [30]. Furthermore, estimating task execution time a priori in a distributed environment is
arduous. Replicas are used to circumvent this issue using the result of the earliest completed replica.
This minimizes the schedule length to achieve hard deadlines [31, 32, 33, 34], as it is effective in
handling performance variations [24]. Calheiros et al. [35] replicated tasks in idle time slots to reduce
the schedule length. These replicas also increase resource utilization without any extra cost.

Task duplication is achieved by replicating tasks in either idle cycles of the resources or exclu-
sively on new resources. Some schedules use a hybrid approach replicating tasks in both idle cycles
and new resources [35]. Idle cycles are those time slots in the resource usage period where the re-
sources are unused by the application. Schedules that replicate in these idle cycles profile resources
to find unused time slot, and replicate tasks in those slots. This approach achieves benefits of task
duplication and simultaneously considers monetary costs. In most cases, however, these idle slots
might not be sufficient to achieve the needed objective. Hence, task duplication algorithms com-
monly place their task replicas on new resources. These algorithms trade off resource costs to their
objectives.

There is a significant body of work in this area encompassing platforms like cluster, grids, and
clouds [31, 25, 27, 28, 29, 32, 33, 34, 36]. Resources considered can either be bounded or unbounded
depending on the platform and the technique. Algorithms with bounded resources consider a limited
set of resources. Similarly, an unlimited number of resources are assumed in an unbounded system
environment. Resource types used can either be homogeneous or heterogeneous in nature. homo-
geneous resources have similar characteristics, and heterogeneous resources on the contrary vary in
their characteristics such as, processing speed, CPU cores, memory and etc. Darbha et al. [31] is one
of the early works, which presents an enhanced search and duplication based scheduling algorithm
(SDBS) that takes into account the variable task execution time. They consider a distributed system
with homogeneous resources and assume an unbounded number of processors in their system.

5.1.2. Data Replication
Data in workflows are either not replicated (and are stored locally by the processing machines)

or is stored on the distributed file system (DFS) where it is automatically replicated (e.g., in Hadoop
Distributed File System (HDFS)). Although the former approach is efficient, particularly in data-
intensive workflows, it is not fault-tolerant. That is, failure of a server storing data causes the re-
execution of the affected tasks. On the other hand, the latter approach offers more fault tolerance
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but is not efficient due to significant network overhead and increasing the execution time of the
workflow.

Hadoop, is a platform for executing data-intensive workflows, uses a static replication strategy
for fault-tolerance. That is, users can manually determine the number of replicas that have to be
created from the data. Such static and blind replication approach imposes a significant storage
overhead to the underlying system (e.g., cluster or cloud) and slows down the execution of the
MapReduce workflow. One approach to cope with this problem is to adjust the replication rate
dynamically based on the usage rate of the data. This will reduce the storage and processing cost
of the resources [37]. Cost-effective incremental replication (CIR) [38] is a strategy for cloud based
workflows that predicts when a workflow is needed to replicate to ensure the reliability requirement
of the workflow execution.

There are four major data-replication methods for data-intensive workflows on large-scale dis-
tributed systems (e.g., clouds) namely, synchronous and asynchronous replication, rack-level repli-
cation, and selective replication. These replication methods can be applied on input, intermediate,
or output data of a workflow.

In synchronous data replication, such as those in HDFS, writers (i.e., producer tasks in a work-
flow) are blocked until replication finishes. Synchronous replication method leads to a high consis-
tency because if a writer of block A returns, all the replicas of block A are guaranteed to be identical
and any reader (i.e., consumer tasks in a workflow) of block A can read any replica. Nonetheless,
the drawback of this approach is that the performance of writers might get affected as they have
to be blocked. In contrast, asynchronous data replication [16] allows writers to proceed without
waiting for a replication to complete. The asynchronous data replication consistency is not as ac-
curate as the synchronous method because even if a writer of block A returns, a replica of block A
may still be in the replication process. Nonetheless, performance of the writers improves due to the
non-blocking nature. For instance, with an asynchronous replication in Hadoop, Map and Reduce
tasks can proceed without being blocked.

Rack-level data replication method enforces replication of the data blocks on the same rack in
a data center. In cloud data centers machines are organized in racks with a hierarchical network
topology. A two-level architecture with a switch for each rack and a core switch is a common network
architecture in these data centers. In this network topology the core switch can become bottleneck
as it is shared by many racks and machines. That is, there is heterogeneity in network bandwidth
where inter-rack bandwidth is scarce compared to intra-rack bandwidth. One example of bandwidth
bottleneck is in the Shuffling phase of MapReduce. In this case, as the communication pattern
between machines is all-to-all, the core switches become over-utilized whereas rack-level switches
are underutilized. Rack-level replication reduces the traffic transferred through the bandwidth-scarce
core switch. However, the drawback of the rack-level replication approach is that it cannot tolerate
rack-level failures and if a rack fails, all the replicas become unavailable. There are observations
that show rack-level failures are infrequent which proves the efficacy of rack-level replication. For
instance, one study shows that Google experiences approximately 20 rack failures within a year [39].

Selective data replication is an approach where the data generated by the previous step of the
workflow are replicated on the same machine, where they are generated. For instance, in a chained
MapReduce workflow, once there is a machine failure at the Map phase, the affected Map tasks can
be restarted instantly, if the data generated by the previous Reduce tasks were replicated locally on
the same machine. In this manner, the amount of intermediate data that needs to be replicated in
the Map phase is reduced remarkably. However, it is not very effective for Reduce phase, because
Reduce data are mostly locally consumed.

ISS [16] is a system that extends the APIs of HDFS and implements a combination of three
aforementioned replication approaches. It implements a rack-level replication that asynchronously
replicates locally-consumed data. The focus of ISS is on the management of intermediate data in
Hadoop data-intensive workflows. It takes care of all aspects of managing intermediate data such
as writing, reading, Shuffling, and replicating. Therefore, a programming framework that utilizes
ISS does not need to consider Shuffling. ISS transparently transfers intermediate data from writers
(e.g., Map tasks) to readers (e.g., Reduce tasks).

As mentioned earlier, replicating input data or intermediate data on stable external storage
systems (e.g., distributed file systems) is expensive for data-intensive workflows. The overhead is due
to data replication, disk I/O, network bandwidth, and serialization which can potentially dominate
the workflow execution time [40]. To avoid these overheads, in frameworks such as Pregel [41], which
is a system for iterative graph computation, intermediate data are maintained in memory. Resilient
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Figure 8: Taxonomy of resubmission fault-tolerant technique.

Distributed Datasets (RDDs) [40] is a research that enables data reuse in a fault-tolerant manner.
RDDs are parallel data structures that enable users to persist intermediate data in memory and
manipulate them using various operators. It also controls the partitioning of the data to optimize
data placement. RDD has been implemented within the Spark [42] framework.

5.2. Resubmission

Resubmission tries to re-execute components to mitigate failures. Resubmission or redundancy
in time helps recover from transient faults or soft errors. Resubmission is employed as an effective
fault-tolerant mechanism by around 80% of the WFMSs [5]. Li et al. [43] claim that 41% of failures
are recovered in their work through resubmission. Some of the WFMS that support resubmis-
sion for fault-tolerance are Askalon, Chemomentum, GWES, Pegasus, P-Grade, Proactive, Triana,
Unicore [5].

Resubmission can be classified into two levels: workflow and task resubmission as illustrated
in Figure 8. In workflow resubmission, as the name suggests, the entire application or a partial
workflow is resubmitted [44].

Task resubmission, retries the same task to mitigate failure. Task retry/resubmission can be
either done on the same resource or another resource [5]. Resubmission on the same resource is
applicable when a task fails due to a transient failure or due to file staging issues. In other cases this
might not be the best approach to mitigate failures. Resubmission of the task can be either done
on a fixed predefined resource [45] or on an arbitrary resource or a resource with high reliability.
A fixed predefined resource is not necessarily the same resource, but the drawbacks are similar to
that. Selecting a resource arbitrarily without a strategy is not the most effective solution to avoid
failures. Employing a strategy whilst selecting resources, like choosing resources with high reliability,
increases the probability of addressing failures. Zhang et al. [28] rank resources based on a metric
called reliability prediction and use this metric to schedule their task retries.

Resources considered can either be homogeneous or heterogeneous in nature. In a heterogeneous
resource type environment, different resource selection strategies have different impact on cost and
time. A dynamic algorithm must take into consideration deadline and budget restrictions, and select
resources that provide fault-tolerance based on these constraints. Clouds providers like Amazon,
offer resources in an auction-like mechanism for low cost with low SLAs called spot instances. Poola
et al. [46] have proposed a just-in-time dynamic algorithm that uses these low cost instances to
provide fault-tolerant schedules considering the deadline constraint. They resubmit tasks upon
failures to either spot or on-demand instances based on the criticality of the workflow deadline.
This algorithm is shown to provide fault-tolerant schedule whilst reducing costs.

Algorithms usually have a predefined limit for the number of retries that they will attempt [28, 47]
to resolve a failure. Some algorithms also have a time interval in addition to the number of retries
threshold [45]. However, there are algorithms that consider infinite retries as they assume the faults
to be transient in nature [48].
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Figure 9: Different approaches used in resubmission algorithms.
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Algorithms using resubmission can be broadly classified into four types as shown in Figure 9:
Heuristic based [43, 45, 49], meta-heuristic based [44], hybrid of resubmission and checkpointing [28],
and hybrid of resubmission and replication [50]. Heuristic based approaches are proven to be highly
effective, although these solutions are specific to a particular use case and take lot of assumptions.
Meta-heuristics provide near optimal solutions and are more generics approaches; however, they
are usually time and memory consuming. Hybrid approaches with checkpointing saves time, do not
perform redundant computing, and does not over utilize resources. However, these approaches delay
the makespan as resubmission retries a task in case of failures, although, checkpointing reruns from
a saved state it still requires additional time delaying the makespan. Replication with redundant
approaches waste resources but do not delay the makespan as the replicas eliminates the necessity
of rerunning a task.
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Figure 10: Classification of resubmission mechanisms.

Finally, resubmission fault-tolerant mechanism is employed in two major ways (Figure 10): proac-
tive and reactive. In the proactive mechanism [44, 51], the algorithm predicts a failure or a perfor-
mance slowdown of a machine and reschedules it on another resource to avoid delays or failures. In
reactive mechanism, the algorithms resubmit tasks or a workflow after a failure occurs.

Resubmission in workflow provides resilience for various faults. However, the drawback of this
mechanism is the degradation in the total execution time when large number of failures occurs.
Resubmission is ideal for an application during the execution phase and replication is well suited at
the scheduling phase [50].

5.3. Checkpointing

Checkpointing is an effective and widely used fault-tolerant mechanism. In this process, states
of the running process are periodically saved to a reliable storage. These saved states are called
checkpoints. Checkpointing restores the saved state after a failure, i.e., the process will be restarted
from its last checkpoint or the saved state. Depending on the host, we can restart the process
on the same machine (if it has not failed) or on another machine [52, 23]. WFMS actively employ
checkpointing as their fault-tolerant mechanism. More than 60% of these systems uses checkpointing
to provide resilience [5].

A checkpoint data file typically contains data, states and stack segments of the process. It also
stores information of open files, pending signals and CPU states [53].

5.3.1. Checkpoint Selection Strategies
How often or when to take checkpoints is an important question while checkpointing. Various

systems employ different checkpoint selection strategies. Prominent selection strategies are [53, 54,
55, 56]:

• event activity as a checkpoint.

• take checkpoints at the start and end time of an activity.

• take a checkpoint at the beginning and then after each decision activity.

• user defines some static stages during build-stage.

• take checkpoint when runtime completion duration is greater than maximum activity duration.

• take checkpoint when runtime completion duration is greater than mean duration of the ac-
tivity.

• when an activity fails.
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Figure 11: Taxonomy of checkpointing mechanism.

• when an important activity finishes completion.

• after a user defined deadline (e.g., percentage of workflow completion).

• under system changes like availability of services.

• application defined stages.

• based on linguistic constructs for intervention of programmers.

5.3.2. Issues and Challenges
Checkpointing provides fault-tolerance against transient faults only. If there is a design fault,

checkpointing cannot help recover from it [57]. Another challenge here is to decide the number of
checkpoints to be taken. More the checkpoints, higher the overhead, whereas lower checkpoints
leads to excessive loss of computation [58]. The overhead imposed by checkpointing depends on the
level that it is applied (e.g., process or virtual machine level). A mathematical model is provided
in [59] to calculate the checkpointing overhead of virtual machines.

In message-passing systems inter-process dependencies are introduced by messages. When one
or more processes fail, these dependencies may lead to a restart even if the processes did not fail.
This is called rollback propagation that may lead the system to the initial state. This situation
is called domino effect [54]. Domino effect occurs if checkpoints are taken independently in an
uncoordinated fashion in a system. This can be avoided by performing checkpoints in a coordinated
manner. Further, if checkpoints are taken to maintain system-wide consistency then domino effect
can be avoided [54].

5.3.3. Taxonomy of Checkpointing
As shown in Figure 11, there are four major checkpointing approaches: Application/workflow-

level, task/activity level, user level, and system level implementation.
In application/workflow-level checkpointing implementation is usually performed within the

source code, or is automatically injected into the code using external tools. It captures the state
of the entire workflow and its intermediate data [58, 53]. This can be further classified into coor-
dinated, uncoordinated, or communication-induced [54]. Coordinated approach takes checkpoints in
a synchronized fashion to maintain a global state. Recovery in this approach is simple and domino
effect is not experienced in this method. It maintains only one permanent checkpoint on a reliable
storage, eliminating the need for garbage collection. The drawback is incurring a large latency in
committing the output [54].

Coordinated checkpointing can further be achieved in the following ways: Non-blocking Check-
point Coordination, Checkpointing with Synchronized Clocks, Checkpointing and Communication
Reliability, and Minimal Checkpoint Coordination.

Non-Blocking Checkpoint Coordination: Here, the initiator takes a checkpoint and broadcasts a
checkpoint request to all other activities. Each activity or task takes a checkpoint once it receives
this checkpoint request and then further re-broadcasts the request to all tasks/activities.

Checkpointing with Synchronized Clocks: This approach is done with loosely synchronized clocks
that trigger local checkpointing for all activities without an initiator.

Checkpointing and Communication Reliability: This protocol saves all the in-transit messages
by their destination tasks. These messages are not saved when reliable communication channels are
not assumed.
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Minimal Checkpoint Coordination: In this case, only a minimum subset of the tasks/activities
is saved as checkpoints. The initiator identifies all activities with which it has communicated since
the last checkpoint and sends them a request. Upon receiving the request, each activity further
identifies other activities it has communicated since the last checkpoint and sends them a request.

Uncoordinated checkpointing allows each task to decide the frequency and time to saved states.
In this method, there is a possibility of domino effect. As this approach is not synchronized, it
may take many useless checkpoints that are not part of the global consistent state. This increases
overhead and do not enhance the recovery process. Multiple uncoordinated checkpoints force garbage
collection to be invoked periodically.

The last type of workflow-level checkpointing is Communication-Induced Checkpointing. In this
protocol the information about checkpointing is piggybacked in the application messages. The
receiver then uses this information to decide whether or not to checkpoint.

Based on the intermediate data, workflow-level checkpointing can also be sub-categorized into two
types: Light-weight and Heavy-Weight as illustrated in Figure 12. In Light-weight checkpointing the
intermediate data is not stored, only a reference to it is stored assuming that the storage is reliable.
Alternatively, heavy-weight checkpointing stores the intermediate data along with other things in a
checkpoint [58, 53].

Task-level checkpointing saves the register, stack, memory, and intermediate states for every
individual task running on a virtual machine [60] or a processor [58, 53]. When a failure occurs the
task can restart from the intermediate saved state and this is especially important when the failures
are independent. This helps recover individual units of the application.

User-level checkpointing uses a library to do checkpoints and the application programs are linked
to it. This mechanism is not transparent as the applications are modified, recompiled and re-linked.
The drawback being this approach cannot checkpoint certain shell scripts, system calls, and parallel
application as the library may not be able access system files [57].

System-level checkpointing can be done either at the operating system level or the hardware
level. This mechanism is transparent to the user and it does not necessarily modify the application
program code. The problem with operating system level checkpointing is that it cannot be portable
and modification at the kernel level is not always possible and difficult to achieve [57].

5.3.4. Performance Optimization
As discussed earlier, optimizing performance in a checkpoint operation is a challenge. The

frequency of checkpoints impacts the storage and computation load. Checkpointing schemes can be
broadly divided into online and offline checkpointing schemes as illustrated in Figure 13.

An offline checkpointing scheme determines the frequency for a task before its execution. The
drawback being it is not an adaptive approach. On the other hand, online schemes determine the
checkpointing interval dynamically based on the frequency of fault occurrences and the workflow
deadline. The dynamic checkpointing is more adaptive and is able to optimize performance of the
WFMS.

5.3.5. Checkpointing in WFMS
WFMSs employ checkpointing at various levels. At Workflow-level, two types of checkpointing

can be employed Light-weight and Heavy-weight as stated earlier. Light-weight checkpointing is
used by Chemomentum, GWEE, GWES, Pegasus, P-grade, and Traina WFMS. Similarly, heavy-
weight checkpointing is employed by GWEE and GWES. Task-level checkpointing is employed by
both Pegasus and P-Grade. Proactive WFMS checkpoints at the operating system level [5].

Kepler also checkpoints at the workflow layer [3], whereas, Karajan allows checkpointing the
current state of the workflow at a global level. Here, timed or program-directed checkpoints can
be taken, or checkpoints can be taken automatically at preconfigured time intervals, or it can be
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taken manually [61]. SwinDeW-C checkpoints using a minimum time redundancy based selection
strategy [62].

5.4. Provenance

Provenance is defined as the process of metadata management. It describes the origins of data,
the processes involved in its production, and the transformations it has undergone. Provenance can
be associated with process(es) that aid data creation [63]. Provenance captures multiple important
information like dynamics of control and data flows, their progressions, execution information, file
locations, input and output information, workflow structure, form, workflow evolution, and system
information [6]. Provenance is essential for interpreting data, determining its quality and ownership,
providing reproducible results, optimizing efficiency, troubleshooting, and also to provide fault-
tolerance [64, 65].

RetrospectiveProspective

Provenance

Failure Models Distributions

Log-NormalWeibullExponentialPoisson UniformLog-NormalWeibullExponentialPoisson Uniform

Figure 14: Forms of provenance.

Flat Hierarchical 

Failure Masking 

Online Offline 

Checkpointing 
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Figure 15: Forms of failure masking.

As detailed in Figure 14, provenance can be of two forms: prospective and retrospective [65].
Prospective provenance captures the specifications that need to be followed to generate a data
product or class of data products. Retrospective provenance captures the executed steps similar to
a detailed log of task execution. It also captures information about the execution environment used
to derive a specific data product.

Provenance information is used to rerun workflows, these reruns can overcome transient system
errors [66]. Provenance allows users to trace state transitions and detect the cause of inconsistencies.
It is used to design recovery or undo paths from workflow fault states at the task granularity level.
It is used as an effective tool to provide fault-tolerance in several WFMS.

5.5. Rescue Workflow

The rescue workflow technique ignores failed tasks and executes the rest of the workflow until
no more forward progress can be made.

A rescue workflow description called rescue DAG containing statistical information of the failed
nodes is generated, which is used for later resubmission [4]. Rescue workflow technique is used by
Askalon, Kepler and DAGMan [4, 62].

5.6. User-Defined Exception Handling

In this fault-tolerant technique, users can specify a particular action or a predefined solution for
certain task failures in a workflow. Such a technique is called user-defined exception handling [4].
This could also be used to define alternate tasks for predefined type of failures [45].

This mechanism is employed by Karajan, GWES, Proactive, and Kepler among the prominent
WFMS [62, 5].

5.7. Alternate Task

The alternate task fault-tolerant scheduling technique defines an alternative implementation of a
particular task. When the predefined task fails, its alternative implementation is used for execution.
This technique is particularly useful when two or more different implementations are available for
a task. Each implementation has different execution characteristics but take the same input and
produce same outputs. For example, there could be a task with two implementations, where one
is less memory or compute intensive but unreliable, while the alternate implementation is memory
intensive or compute intensive but more reliable. In such cases, the later implementation can be
used as an alternative task.

This technique is also useful to semantically undo the effect of a failed task, that is, alternate
tasks can be used to clean up the states and data of a partially executed failed task [4, 45].
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Figure 16: Methods for evaluating trust in trust-based algorithms used for fault-tolerant WFMS.

5.8. Failure Masking

Failure masking fault-tolerant technique ensures service availability, despite failures in tasks or
resources [57]. This is typically achieved by redundancy, and in the event of failure the services are
provided by the active (i.e., surviving) tasks or resources masking failures. Masking can be of two
forms: hierarchical group masking and flat group masking.

Hierarchical group masking uses a coordinator to monitor the redundant components and decides
which copy should replace the failed component. The major drawback of this approach is the single
point of failure of the coordinator.

Flat group masking resolves this single point of failure by being symmetric. That is, the redun-
dant components are transparent and a voting process is used to select the replacement in adversity.
This approach does not have a single point of failure, but imposes more overhead to the system.

5.9. Slack Time

Task slack time represents a time window within which the task can be delayed without extending
the makespan. It is intuitively related to the robustness of the schedule. Slack time is computed as
the minimum spare time on any path from the considered node to the exit node of the workflow.
The formal definition of slack is given by Sakellariou and Zhao in [51].

Shi et al. [10] present a robust scheduling for heterogeneous resources using slack time to sched-
ule tasks. They present a ε-constraint method where robustness is an objective and deadline is
a constraint. This scheduling algorithm tries to find schedules with maximum slack time with-
out exceeding the specified deadline. Similarly, Poola et al. [67] presented a heuristic considering
heterogeneous cloud resources, they divided the workflow into partial critical paths and based on
the deadline and budget added slack time to these partial critical paths. Slack time added to the
schedule enables the schedule time to tolerate performance variations and failures up to a certain
extent, without violating the deadline.

5.10. Trust-Based Scheduling Algorithms

Distributed environments have uncertainties and are unreliable, added to this, some service
providers may slightly violate SLAs for many reasons including profitability. Therefore, WFMS
typically employ trust factor to make the schedule trustworthy. Trust is composed of many at-
tributes including reliability, dependability, honesty, truthfulness, competence, and timeliness [68].
Including trust into workflow management significantly increases fault-tolerance and decreases fail-
ure probability of a schedule [68, 69].

Conventionally, trust models are of two types: identity-based and behavior-based. Identity-based
trust model uses trust certificates to verify the reliabilities of components. behavior-based models
observe and take the cumulative historical transaction behavior and also feedback of entities to
evaluate the reliability [70].

Trust is evaluated by three major methods as shown in Figure 16: Direct trust, Recommendation
Trust, and Integrated Trust. Direct trust is derived from the historical transaction between the user
and the service. Here, no third party is used to evaluate the trust of the service [70]. Direct trust
can be broadly of two types local trust and global trust [71]. local trust is computed based on a local
system’s transactions and similarly global trust is evaluated considering the entire global system’s
history. Yang et al. [69] use direct trust in their scheduling algorithm to decrease failure probability
of task assignments and to improve the trustworthiness of the execution environment.

Recommendation trust is where the user consults a third party to quantify the trust of a ser-
vice [70]. Integration trust is a combination of both direct and recommendation trust. This is usually
done by a weighted approach [71]. Tan et al. [71] have proposed a reliable workflow scheduling al-
gorithm using fuzzy technique. They propose an integrated trust metric combining direct trust and
recommendation trust using a weighted approach.
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Figure 17: Distributions used for modeling failures for workflows in distributed environments.

Some of the drawbacks of trust models are: 1) majority of the trust models are designed for a
particular environment under multiple assumptions. 2) trust is mostly studied in isolation without
involving other system components [70].

6. Modeling of Failures in Workflow Management Systems

Failure models define failure rates, frequencies and other statistically details observed in real
systems, these models are used mainly in simulation and prediction systems to recreate failures.
Failures can follow Poisson, Exponential, Weibull, Log normal, or uniform distributions, as illus-
trated in Figure 17. Failures can be independent or co-related. Benoit et al [72] model resource
failure through Poisson distribution, they assume failures to be statistically independent and as-
sume a constant failure rate for each processor. Chen and Deelman [48] also assume failure to be
independent but use an exponential distribution and also use a non constant failure rate. Dongarra
et al’s. [73] work is similar to [48], but they assume constant failure rate for each processor.

Weibull distribution is widely used in failure modeling in different ways. Litke et al. [74] use
Weibull distribution to estimate the failure probability of the next assigned task for a specific
resource based on the estimated execution time of each task on the resource. Plankensteiner et
al. [5] use a combination of distribution to model failures. They use Weibull distribution for mean
time between failure (MTBF) for clusters and to model the size of failure. Further, they use Log-
Normal distribution to estimate the duration of failure. Rahman et al. [75] use Weibull distribution
in their simulation environment to determine whether a task execution will fail or succeed. If a task
is likely to fail, they generate a random number from a uniform distribution and if that number is
less than the failure probability of a resource at a particular grid, then the task is failed.

Distributions are used to evaluate reliability of tasks and resources. Wang et al. [76] uses ex-
ponential distribution to evaluate task reliability based on real-time reputation. The reputation is
defined by using their task failure rate.

All the above works consider failures to be independent. However, Javadi et al. [18] consider
failures to be spatial and temporally correlated. Spatial correlations of failures imply that multiple
failures occur on various nodes with a specified time interval. Temporal correlation denotes skewness
in failures over time. They use spherical covariance model to determine temporal failure correlation
and Weibull distribution for failure modeling.

7. Metrics Used to Quantify Fault-Tolerance

There are various metrics to measure the robustness or fault-tolerance of a workflow sched-
ule. Each metric measures a different aspect and reports the schedule robustness based on certain
constraints and assumptions. We present some prominent metrics used in the literature.

Makespan Standard Deviation: It reports the standard deviation of the makespan. Narrower
the distribution, better the schedule [77].

Makespan differential Entropy: Measures the differential entropy of the distribution, if the
uncertainty is less, then the schedule is more robust [78].

Mean slack: Amount of time the task can be delayed without delaying the schedule is called
task slack time. The slack of a schedule is the summation of slack times of all the tasks. Hence,
more the slack in a schedule means more failures it can tolerate. Therefore, the schedule is more
robust [78].

Probabilistic metric: Defines the makespan probability within two bounds. If the probability
is high, then the robustness is high. This is because higher probability indicates that the makespan
is close to the average makespan [79].
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Lateness likelihood: A schedule is late if the makespan exceeds a given deadline. This metric
gives the probability of the schedule to be late. If the lateness likelihood is high, the robustness of
the schedule is low [10].

Reliability: Reliability of a compute service during a given time is defined as per the equation 1,

Reliability = (1 − (numFailure/n)) ∗mttf, (1)

where, numFailure is the number of failures experiences by the users, n is the number of users,
and mttf is the promised mean time to failure [80].

Workflow Failure Ratio: It is the percentage of failed workflows due to one or more task
failures [81].

Request Rejection Ratio: It is the ratio of number of rejected requests to the total re-
quests [81].

Workflow Success Probability: The success probability of the entire workflow is given as a
product of the success probabilities of individual tasks [28].

Standard Length Ratio: It indicates the performance of the workflow. It is the ratio
of turnaround time to the critical path time including the communication time between tasks.
Turnaround time is the workflows’ running time. Lower value of this metric signifies better perfor-
mance [28].

Trust: This metric presents the trustworthiness of a particular resource. It is given by the
following equation

Trust(Si) = wi ∗DT (Si) + (1 − wi) ∗RT (Si), (2)

where, DT (Si) is the direct trust based on historical experiences of the ith service, RT (Si) is
the recommendation trust by other users and wi is the weight of DT (Si) and RT (Si) for the ith

service [71].
Failure probability (Rp): It is the likelihood of the workflow to fail before the given dead-

line [10, 67], which can be formulated as below:

Rp = (TotalRun− FailedRun)/(TotalRun), (3)

where TotalRun is number of times the experiment was conducted and FailedRun is number of
times the constraint, finishtn 6 D was violated. Here, D is the deadline of the workflow and
finishtn is the workflow elapsed time.

Tolerance time (Rt): It is the amount of time a workflow can be delayed without violating the
deadline constraint. This provides an intuitive measurement of robustness given the same schedule
and resource to task mapping, expressing the amount of uncertainties it can further withstand. It
is given by the Equation 4

Rt = D − finishtn . (4)

8. Survey of Workflow Management Systems and Frameworks

This section provides a detailed view of the state-of-the-art WFMSs and also provide information
about the different fault-tolerant techniques used, as described in section 5. These WFMSs are
summarized in Table 1.

8.1. Askalon

Askalon [52] is a WFMS developed at the University of Innsbruck, Austria. It facilitates the
development and optimization of applications on grid computing environments [52, 4]. The sys-
tem architecture of it consists of the following components: 1) Scheduler : maps single or multiple
workflows tasks onto the grid; 2)Enactment Engine: ensures reliable and fault-tolerant execution of
applications; 3)Resource Manager : is responsible for negotiation, reservation, allocation of resources
and automatic deployment of services. It also shields the user from low-level grid middleware tech-
nology; 4) Performance Analysis: supports automatic instrumentation and bottleneck detection
(e.g., excessive synchronization, communication, load imbalance, inefficiency, or non scalability)
within the grid; 5) Performance Prediction service: estimates execution times of workflow activities
through a training phase and statistical methods based on a combination of historical data obtained
from the training phase and analytical models [82, 52].
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Askalon uses an xml-based workflow language called AGWL for workflow orchestration. It
can be used to specify DAG-constructs, parallel loops and conditional statements such as switch
and if/then/else. AGWL can express sequence, parallelism choice and iteration workflow structures.
Askalon uses a graphical interface called Teuta to support the graphical specification of grid workflow
applications based on the UML activity diagram [82, 52].

Askalon can detect faults at the following levels. 1) Hardware level: Machine crashes and
network failures. 2) OS level: Exceeded disk quota, out of disk space, and file not found errors. 3)
Middleware-level: Failed authentication, failed job-submission, unreachable services and file staging
failures. 4) Workflow level: Unavailable input data, data movement faults. However, the system
cannot detect task level faults. Further, the system can recover from the following faults at different
levels: 1) Hardware level: Machine crashes and network failures; 2) OS level: Exceeded disk quota,
out of disk space; 3) Middleware-level: Failed job-submission; 4) Workflow level: Data movement
faults. Nonetheless, it does not recover from task level faults and user-defined exceptions. Fault-
tolerant techniques like checkpointing, migration, restart, retry and replication are employed to
recover from these faults [5, 82, 52].

8.2. Pegasus

It is a project of the USC Information Sciences Institute and the Computer Science department
at the University of Wisconsin Madison, United States. Pegasus enables scientists to construct
workflows in abstract terms by automatically mapping the high-level workflow descriptions onto
distributed infrastructures (e.g., Condor, Globus, or Amazon EC2). Multiple workflow applications
can be executed in this WFMS [83].

Workflows can be described using DAX a DAG XML description. The abstract workflow de-
scribes application components and their dependencies in the form of a DAG [47].

Workflow application can be executed in variety of target platforms including local machine,
clusters, grids and clouds. The WFMS executes jobs, manages data, monitors execution and handles
failures. Pegasus WFMS has five major components: 1) Mapper, generates an executable workflow
from an abstract workflow. It also restructures the workflow to maximize performance. It further
adds transformations aiding in data management and provenance generation; 2) Local Execution
Engine, submits jobs to the local scheduling queue by managing dependencies and changing the
state; 3) Job Scheduler, schedules and manages individual jobs on local and remote resources; 4)
Remote Execution Engine, manages execution of one or more tasks on one or more remote nodes;
5) Monitoring Component, monitors the workflow execution. It records the tasks logs, performance
and provenance information in a workflow database. It notifies events such as failures, success and
statuses [84].

Pegasus stores and queries information about the environment, such as storage systems, compute
nodes, data location, through various catalogs. Pegasus discovers logical files using the Replica
Catalog. It looks up various user executables and binaries in Transformation Catalog. Site Catalog
is used to locate computational and storage resources [84, 47].

Pegasus has its own lightweight job monitoring service called Kickstart. The mapper embeds all
jobs with Kickstart [84]. This helps in getting runtime provenance and performance information of
the job. This information is further used for monitoring the application.

Resource selection is done using the knowledge of available resources, their characteristics and the
location of the input data. Pegasus supports pluggable components where a customized approach
for site selection can be performed. It has few choices of selection algorithms, such as random,
round-robin and min-min.

Pegasus can handle failures dynamically at various levels building on the features of DAGMan
and HTCondor. It is equipped to detect and recover from faults. It can detect faults at the following
levels: At the Hardware and Operating System levels, it can detect exceeding CPU time limit and file
non-existence. At the level of Middleware, it detects authentication, file staging, and job submission
faults. At Task and Workflow levels job crashes and input unavailability are detected. DAGMan
helps recover the following failures at different levels: at Hardware level, it can recover from machine
crashes and network failures by automatically resubmitting. Middleware faults detected can also
be recovered. Data movement faults can also be treated with recovery at task and workflow level.
At Workflow level, redundancy is used and light-weight checkpoints are supported [5, 84]. If a
job fails more than the set number of retries, then the job is marked as a fatal failure. When a
workflow fails due to such failures, the DAGMan writes a rescue workflow. The rescue workflow
is similar to the original DAG without the fatal failure nodes. This workflow will start from the
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point of failure. Users can also re-plan the workflow, in case of workflow failures and move the
computation left to an alternate resource. Pegasus uses retries, resubmissions, and checkpointing to
achieve fault-tolerance [84].

Monitoring and debugging is also done to equip users to track and monitor their workflows. Three
different logs are generated which are used to collect and process data [84]. 1) Pegasus Mapper Log
helps relate the information about the abstract workflow from the executable workflow allowing
users to correlate user-provided tasks to the jobs created by Pegasus. 2) Local workflow execution
engine logs contain status of each job of the workflow. 3) Job logs capture provenance information
about each job. It contains fine-grained execution statistics for each task. It also includes a web
dashboard to facilitate monitoring [84].

8.3. Triana

Triana [85] is a data-flow system developed at Cardiff University, United Kingdom. It is a com-
bination of an intuitive graphical interface with data analysis tools. It aims to support applications
on multiple environments, such as peer-to-peer and grid computing. Triana allows users to integrate
their own middleware and services besides providing a vast library of pre-written tools. These tools
can be used in a drag-and-drop fashion to orchestrate a workflow.

Triana addresses fault-tolerance in a user-driven and interactive manner. When faults occur, the
workflow is halted, displaying a warning, and allowing the user to rectify. At the hardware level,
machine crashes and network errors are detected. Missing files and other faults are detected by the
workflow engine at the operating system level. Except deadlock and memory leaks that cannot be
detected at the middleware and the task level, all other faults can be detected. In the workflow level,
data movement and input availability errors are detected. Light-weight checkpointing and restart
of services are supported at the workflow level. Retires, alternate task creations, and restarts are
supported at the task level by the workflow engine [5].

8.4. UNICORE 6

Unicore [86] is a European grid technology developed by collaboration between German research
institutions and industries. Its main objective is to access distributed resources in a seamless, secure,
and intuitive way. The architecture of UNICORE is divided into three layers namely, client layer,
service layer, and systems layer. In the client layer, various clients, like UNICORE Rich Client
(graphical interface), UNICORE command-line (UCC) interface, and High Level API (HiLA) a
programming API are available.

The service layer contains all the vital services and components. This layers has services to main-
tain a single site or multiple sites. Finally, the system layer has the Target System Interface (TSI)
between the UNICORE and the low-level resources. Recently added functionalities to UNICORE
6 contains support for virtual organizations, interactive access based on X.509 certificates using
Shibboleth, and improved data management through the integration of DataFinder. GridBeans
and JavaGAT help users to support their applications further. UNICORE 6 also introduces for-
each-loops and iteration over file-sets in addition to existing workflow constructs. It also supports
resubmission and reliability measurement for task and workflows. Added to these new monitoring
tools, availability and service functionality are also improved.

8.5. Kepler

The Kepler system [87, 88, 3] is developed and maintained by the cross-project collaboration
consisting of several key institutions: UC Davis, UC Santa Barbara, and UC San Diego. Kepler
system allows scientists to exchange, archive, version, and execute their workflows.

Kepler is built on Ptolemy, a dataflow-oriented system. It focuses on an actor-oriented modeling
with multiple component interaction semantics. Kepler can perform both static and dynamic check-
ing on workflow and data. Scientists can prototype workflows before the actual implementation.
Kepler system provides web service extensions to instantiate any workflow operation. Their grid
service enables scientists to use grid resources over the internet for a distributed workflow. It further
supports foreign language interfaces via the Java Native Interface (JNI), giving users the benefits
to use existing code and tools. Through Kepler users can link semantically compatible but syntac-
tically incompatible services together (using XSLT, Xquery, etc.). Kepler supports heterogeneous
data and file formats through Ecological Metadata Language (EML) ingestion. Fault-tolerance is
employed through retries, checkpointing, and alternative versions.
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8.6. Cloudbus Workflow Management System
The WFMS [89, 90, 91] developed at The University of Melbourne provides an efficient man-

agement technique for distributed resources. It aids users by enabling their applications to be
represented as a workflow and then execute them on the cloud platform from a higher level of
abstraction. The WMS is equipped with an easy-to-use graphical workflow editor for application
composition and modification, an XML-based workflow language for structured representation. It
further includes a user-friendly portal with discovery, monitoring, and scheduling components.

Workflow monitor of the WFMS enables users to view the status of each task, they can also
view the resource and the site where the task is executed. It also provides the failure history of each
task. The workflow engine contains workflow language parser, resource discovery, dispatcher, data
management, and scheduler. Tuple space model, event-driven approach, and subscription approach
make WMS flexible and loosely coupled in design. Failures are handled by resubmitting the tasks to
resources without a failure history for such tasks. WMS uses either Aneka [92] and/or Broker [93]
to manage applications running on distributed resources.

8.7. Traverna
Taverna [94, 95] is an open source and domain-independent WFMS created by the myGrid team.

It is a suite of tools used to design and execute scientific workflows and aid in silico experimentation.
Taverna engine is capable of performing iterations, looping, and data streaming. It can interact with
various types of services including web services, data warehouses, grid services, cloud services, and
various scripts like R, distributed command-line, or local scripts.

The Traverna server allows workflows to be executed in distributed infrastructures like clusters,
grids and clouds. The server has an interface called Taverna Player through which users can execute
workflows from web browsers or through third-party clients. Taverna Provenance suite records
service invocations and workflow results both intermediate and final. It also supports pluggable
architecture that facilitates extensions and contributions to the core functionalities. Here, retries
and alternate resources are used to mitigate failures.

8.8. The e-Science Central (e-SC)
The e-Science Central [96] was created in 2008 as a cloud data processing system for e-Science

projects. It can be deployed on both private and public clouds. Scientists can upload data, edit,
run workflows, and share results using a Web Browser. It also provides an application programming
interface through which external application can use the platforms functionality.

The e-SC facilitates data storage management, tools for data analysis, automation tools, and
also controlled data sharing. All data are versioned and support reproduction of experiments, aiding
investigation into data changes, and their analysis.

The e-SC provenance service collects information regarding all system events and this provenance
data model is based on the Open Provenance Model (OPM) standard. It also provides fine grained
security control modeled around groups and user-to-user connections.

8.9. SwinDeW-C
Swinburne Decentralized Workflow for cloud (SwinDew-C) [62] is a cloud based peer-to-peer

WFMS developed at Swinburne University of Technology, Australia. It is developed based on their
earlier project for grid called SwinDeW-G. It is built on SwinCloud infrastructure that offers unified
computing and storage resources. The architecture of SwinDeW-C can be mapped into four basic
layers: application layer, platform layer, unified resource layer, and fabric layer.

In SwinDeW-C users should provide workflow specification consisting of task definitions, process
structures, and QoS constraints. SwinDeW-C supports two types of peers: An ordinary SwinDeW-C
peer is a cloud service node with software service deployed on a virtual machine; and SwinDeW-C
coordinator peers, are special nodes with QoS, data, and security management components. The
cloud workflow specification is submitted to any coordinated peer, which will evaluate the QoS
requirement and determine its acceptance through a negotiation process. A coordinated peer is
setup within every service provider. It also has pricing and auditing components. All peers that
reside in a service provider communicate with its coordinated peer for resource provisioning. Here,
each task is executed by a SwinDeW-C peer during the run-time stage.

SwinDeW-C also allows virtual machines to be created with public clouds providers, such as
Amazon, Google, and Microsoft. Checkpointing is employed for providing reliability. Additionally,
QoS management components including performance management, data management, and security
management are integrated into the coordinated peers.
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8.10. Big Data Workflow Frameworks: MapReduce, Hadoop, and Spark

Recently, Big data analytics has gained considerable attention both in academia and industry.
Big data analytics is heavily reliant on tools developed for such analytics. In fact, these tools
implement a specific form of workflows, known as MapReduce [97].

MapReduce framework is a runtime system for processing big data workflows. The framework
usually runs on a dedicated platform (e.g., a cluster). There are currently two major implementations
of the MapReduce framework. The original implementation with a proprietary license was developed
by Google [97]. After that, Hadoop framework [98] was developed as an open-source product by
Yahoo! and widely applied for big data processing.

The MapReduce framework is based on two main input functions, Map and Reduce that are
implemented by the programmer. Each of these functions is executed in parallel on large-scale
data across the available computational resources. Map and Reduce collectively form a usually
huge workflow to process large datasets. The MapReduce storage functionality for storing input,
intermediate, and output data is supported by distributed file systems developed specifically for
this framework, such as Hadoop Distributed File System (HDFS) [99] and Google File System
(GFS) [100].

More specifically, every MapReduce program is composed of three subsequent phases namely,
Map, Shuffle, and Reduce. In the Map phase, the Map function implemented by the user is executed
on the input data across the computational resources. The input data is partitioned into chunks
and stored in a distributed file system (e.g., HDFS). Each Map task loads some chunks of data from
the distributed file system and produces intermediate data that are stored locally on the worker
machines. Then, the intermediate data are fed into the Reduce phase. That is, the intermediate
data are partitioned to some chunks and processed by the Reduce function, in parallel.

Distributing the intermediate data across computational resources for parallel Reduce processing
is called Shuffling. The distribution of intermediate data is accomplished in an all-to-all manner
that imposes a communication overhead and often is the bottleneck. Once the intermediate data
are distributed, the user-defined Reduce function is executed and the output of the MapReduce is
produced. It is also possible to have a chain of MapReduce workflows (a.k.a multi-stage MapReduce),
such as Yahoo! WebMap [101]. In these workflows, the output of a MapReduce workflow is the
intermediate data for the next MapReduce workflow.

Spark [42] is a framework developed at UC Berkeley and is being utilized for research and produc-
tion applications. Spark offers a general-purpose programming interface in the Scala programming
language [102] for interactive and in-memory data mining across clusters with large datasets. Spark
has proven to be faster than Hadoop for iterative applications.

MapReduce has been designed to tolerate faults that commonly occur at large scale infras-
tructures where there are thousands of computers and hundreds of other devices such as network
switches, routers, and power units. Google and Hadoop MapReduce can tolerate crashes of Map
and Reduce tasks. If one of these tasks stops, it is detected and a new instance of the same task is
launched. In addition, data are stored along with their checksum on disks that enables corruption
detection. MapReduce [97] uses a log-based approach for fault tolerance. That is, output of the
Map and Reduce phases are logged to the disk [103] (e.g., a local disk or a distributed file system).
In this case, if a Map task fails then it is re-executed with the same partition of data. In case of
failure in the Reduce phase, the key/value pairs for that failed Reducer have to be re-generated.

8.11. Other Workflow Management Systems

WFMSs are in abundance that can schedule workflows on distributed environments. These
WFMS primarily schedule application on clusters and grids. Karajan [61] is one such WFMS, that
was implemented to overcome the shortcoming of GridAnt [104]. It was developed at the Argonne
National Laboratory. Karajan is based on the definition of hierarchical workflow components.

Imperial College e-Science Network Infrastructure (ICENI) [105] was developed at London e-
science centre, which provides a component-based grid-middleware. GridFlow [106], Grid Workflow
Execution Engine [107], P-Grade [108], Chemomentum [109] are other WFMS that schedule work-
flow applications on grid platforms. Each of these workflow engine have their own unique properties
and have different architectures supported by a wide variety of tools and software.
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9. Tools and Support Systems

9.1. Data Management Tools

Workflow enactment engine need to move data from compute nodes to storage resources and
also from one node to another. Kepler uses GridFTP [87] to move files, to fetch files from remote
locations. Unicore uses a data management system called DataFinder [110]. It provides with
management of data objects and hides the specifics of storage systems by abstracting the data
management concepts. For archival of data Tivoli Storage Manager 1 could be used. It reduces
backup and recovery infrastructure. It can also back up into the cloud with openstack and vCloud
integrations. Traditional protocols like HTTP, HTTPS, SFTP are also used for data movement.

9.2. Security and Fault-Tolerance Management Tools

In SwinDeW-C secure communications are ensured through GnuPG 2, which is a free implemen-
tation of OpenPGP. Globus uses the X.509 certificates, an established secure data format. These
certificates can be shared among public key based software. Unicore 6 employs an interactive access
based on X.509 certificates called Shibboleth 3 that enables Single Sign-On as well as authentication
and authorization. The International Grid Trust Federation4 (IGTF) is a trust service provider that
establishes common policies and guidelines. Similarly, The European Grid Trust project5 provides
new security services for applications using GRID middleware layer.

Access control to services can be attained through access control lists (ACLs), which can be
attached to data items so that privileges for specific users and groups can be managed. DAGMan
offers fault-tolerance to Pegasus through its rescue DAG. Additionally, provenance plays an impor-
tant role in fault-tolerance. Most WFMS use Open Provenance Model format6 and the W3C PROV
model7 to achieve and manage provenance information.

9.3. Cloud Development Tools

Infrastructure resources are offered by public and private clouds. Public clouds are offered by
many providers like Amazon AWS, Google Compute Engine, Microsoft Azure, IBM cloud and many
others. Private clouds could be built using Openstack, Eucalyptus and VMware to name a few.
Cloud providers offer many storage solutions that can be used by WFMSs. Some of the storage
solutions offered are Amazon S3, Google’s BigTable, and the Microsoft Azure Storage. Oracle also
offers a cloud based database as a service for business.

Amazon through its Amazon Simple Workflow (SWF) 8 provides a fully-managed task coordina-
tor through which developers can build, run, and scale jobs. Chaos Monkey 9 is a free service that
randomly terminates resources in your cloud infrastructures. This helps test the system for failures
and help develop fault-tolerant systems in cloud.

9.4. Support Systems
myExperiment [111] is a social network environment for e-Scientist developed by a joint team

from the universities of Southampton, Manchester and Oxford. It provides a platform to discuss
issues in development, to share workflows and reuse other workflows. It is a workflow warehouse
and a gateway to established environments.

Workflow Generator [112], created by Pegasus provides synthetic workflow examples with their
detailed characteristics. They also provide a synthetic workflow generator and traces and execution
logs from real workflows.

Failure Trace Archive [113] is a public repository of availability traces of parallel and distributed
systems. It also provides tools for their analysis. This will be useful in developing fault-tolerant
workflow schedulers.

1http://www-03.ibm.com/software/products/en/tivostormana/
2https://www.gnupg.org/
3http://www.internet2.edu/products-services/trust-identity-middleware/shibboleth/
4http://www.igtf.net/
5http://www.gridtrust.eu/gridtrust/
6http://openprovenance.org/
7http://www.w3.org/2011/prov
8http://aws.amazon.com/swf/
9https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey/
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10. Summary

Workflows have emerged as a paradigm for managing complex large scale data analytics and com-
putation. They are largely used in distributed environments such as, grids and clouds to execute
their computational tasks. Fault-tolerance is crucial for such large scale complex applications run-
ning on failure-prone distributed environments. Given the large body of research in this area, in this
chapter, we provided a comprehensive view on fault-tolerance for workflows in various distributed
environments.

In particular, this chapter provides a detailed understanding of faults from a generic viewpoint
(e.g. transient, intermittent, and permanent) and a processor viewpoint (such as, crash, fail-stop and
byzantine). It also describes techniques such as replication, resubmission, checkpointing, provenance,
rescue-workflow, exception handling, alternate task, failure masking, slack time, and trust-based
approaches used to resolve these faults by which, a transparent and seamless experience to workflow
users can be offered.

Apart from the fault-tolerant techniques, this chapter provides an insight into numerous failure
models and metrics. Metrics range from makespan oriented, probabilistic based, reliability based,
and trust-based among others. These metrics inform us about the quality of the schedule and
quantify fault-tolerance of a schedule.

Prominent WFMSs are detailed and positioned with respect to their features, characteristics,
and uniqueness. Lastly, tools such as, those for describing workflow languages, data-management,
security and fault-tolerance, tools that aid in cloud development, and support systems (including
social networking environments, and workflow generators) are introduced.

In effect, the stance of this chapter is helpful for developers and researchers working in the
area of workflow management systems, as it identifies strength and weaknesses in this field and
proposes future directions. This chapter provides a holistic view of fault-tolerance in WFMSs
and techniques employed by different existing systems. The chapter also identifies the research
trends and provides recommendations on future research areas in the area of fault-tolerant workflow
management systems.
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