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ABSTRACT 
A computational grid is a widespread computing 
environment that provides huge computational power for 
large-scale distributed applications. One of the most 
important issues in such an environment is resource 
management for which agent-based approaches are 
appropriate. Load balancing as a part of resource 
management, has a considerable effect on performance. 
Ant colony is a metaheuristic that can be instrumental for 
grid load balancing. This paper presents an echo system 
of intelligent, autonomous and cooperative ants. The ants 
in this environment can procreate and also may commit 
suicide depending on existing conditions. A new concept 
called Ant level load balancing is presented for improving 
the performance of the mechanism. A performance 
evaluation model is derived. Theoretical analyses and 
simulation results indicate that this new mechanism 
surpasses its predecessor. 
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1. INTRODUCTION 
 

A computational grid is a hardware and software 
infrastructure that provides consistent, pervasive and 
inexpensive access to high-end computational capacity. 
An ideal grid environment should provide access to all 
available resources seamlessly and fairly.  
Resource manager is an important infrastructural 
component of a grid computing environment. Its overall 
aim is to efficiently schedule applications that need to 
utilize the available resources in the grid environment.  
ARMS is an agent-based resource manager infrastructure 
for the grid [1]. In ARMS, each agent can simultaneously 
stand for a resource questioner, resource provider, and 
also a matchmaker. Details of the design and 
implementation of ARMS can be found in [1]. In this 
work we use ARMS as an experimental platform.  
Cosy is a job scheduler that supports job scheduling as 
well as advanced reservations [2]. It is integrated into 
ARMS agents to perform global grid management; Cosy 
needs a load balancer to better utilize available resources. 
Load balancing algorithms are designed to spread the load 
on resources equally and maximize their utilization while 
minimizing the total task execution time [3]. This is 
crucial in a computational grid where the most important 
issue is to fairly assign jobs to resources.  

In general, load balancing mechanisms can be broadly 
categorized as centralized or decentralized, dynamic or 
static, and periodic or non-periodic. There is a good 
survey on them in [3]. 
In [4], Cao et al propose a self-organizing load balancing 
mechanism using ants, but it was simple and inefficient, 
we call it the seminal approach. The main contribution of 
this paper is the optimization of this seminal mechanism. 
Thus, we propose a modified mechanism based on a 
swarm of intelligent ants that uniformly balance the load 
throughout the grid. The intelligent ants have memory and 
learning capabilities. They react to their environment and 
so better utilize grid resources. 
The rest of the paper is organized as follows: Section 2 
introduces Ant colony optimization and self-organizing 
mechanisms for load balancing. Section 3 describes the 
proposed mechanism. The performance metrics and 
simulation results are included in Section 4. At the end, 
we present the conclusion of the article as well as the 
future works of this research. 
 

2. ANT COLONY OPTIMIZATION 
 

Swarm intelligence [5] is an area inspired by observing 
the behaviors of insects such as wasps, ants or honey bees. 
The ants, for example, have little intelligence for their 
hostile and dynamic environment. Ants perform activities 
such as organizing their dead into cemeteries and foraging 
for food. They organize such activities through indirect 
communication known as “stigmergy”. This 
communication accomplishes with a chemical substance 
deposits from ants called pheromone.  
Inspiring such ants achievements are used in solving some 
heuristic problems, like optimal routing, coordinating 
robots, sorting and especially load balancing [4, 6, and 7]. 
The main contribution is done in load balancing context 
by Messor [7]. 
 

2.1 Messor 
 

Messor is a grid computing system that is implemented on 
top of the Anthill framework [7]. 
Ants in this system can be in Search–Max or Search–Min 
states. In the Search–Max state, an ant wanders around 
randomly until it finds an overloaded node; the ant then 
switches to the Search–Min state to find an underloaded 
node. After these stages, the ant balances the two 
overloaded and underloaded nodes found. Once an ant 
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meets a node, it retains its information about the nodes 
visited. Other crossover ants can use this information to 
perform more efficiently. However, with respect to the 
dynamism of the grid, this information could not be 
reliable for a long time and may even cause erroneous 
decision making by other ants.  
 

2.2 Self-Organizing Agents for Grid Load Balancing 
 

Cao proposed a modified mechanism in [4], in which an 
ant always wanders ‘2m+ 1’ steps to finally balance two 
overloaded and underloaded nodes. 
As stated in [4], the efficiency of the mechanism highly 
depends on the number of cooperating ants (n) as well as 
their step count (m). If a loop includes a few steps, the ant 
will initiate the load balancing process frequently. If an 
ant initiates with a larger m, then it wanders for a longer 
time and decreases the frequency of performing the load 
balancing process. This implies that the ant’s step count 
should be determined according to the system’s load. 
However, with this method the number of ants and the 
number of their steps are defined by the user and would 
not change during the load balancing process. In fact, the 
user’s defining the number of ants and their wandering 
steps is impractical in an environment such as the grid, 
where users have no background knowledge and the 
ultimate goal is to introduce a transparent, powerful 
computing service to end users. 
Considering the above defects, we propose a new 
mechanism that can be adaptive to environmental 
conditions and turn out better results. In the next section, 
the proposed method is described. 

 

3. PROPOSED METHOD 
 

In the new mechanism, we propose an echo system of 
intelligent ants which react commensurately to their 
conditions. Interactions between these intelligent, 
autonomous ants result in load balancing throughout the 
grid.  
Here, echo system means that ants are created on demand 
to achieve load balancing during their lives adaptively. 
They may bear offspring when they sense that the system 
is drastically unbalanced and commit suicide when they 
detect equilibrium in the environment. These ants care for 
every node visited during their steps and record node 
specifications for future decision making. Moreover, 
every ant in the new mechanism hops ‘m’ steps (the value 
of ‘m’ is determined adaptively) instead of ‘2m+1,’ and in 
the end of the ‘m’ steps wandering, balances ‘k’ 
overloaded with ‘k’ underloaded nodes, instead of one 
overloaded with one underloaded. This results in an 
earlier convergence of the system with fewer ants and less 
communication overhead.  
In the next sections, we describe the proposed method in 
more details. 
 

3.1 Creating Ants 
 

If a node understands that it is overloaded, it can create a 
new ant with a few steps to balance the load as quickly as 
possible.  
There are many ways in which a node can measure its 
load (overloaded or not). We consider the load as the 
number of the jobs waiting in the ready queue of a node, 
for the sake of simplicity.  
 

3.2 Moving and Deciding 
 

A memory space is allocated to every ant in which the ant 
records specifications of the environment while wanders. 
The memory space is divided into an underloaded list 
(Min List) and an overloaded list (Max List). In the 
former, the ant saves specifications of the underloaded 
nodes visited. In the latter, specifications of the 
overloaded nodes visited are saved. 
At every step, the ant randomly selects one of the node’s 
neighbors.  
 

3.2.1 Deciding Algorithm 
 

After entering a node, the ant first checks its memory to 
determine whether this node was already visited by itself 
or not. If not, the ant can determine the condition of the 
node, i.e. overloaded, underloaded or equilibrium, using 
its acquired knowledge from the environment. 
As the load quantity of a node is a linguistic variable and 
the state of the node is determined relative to system 
conditions, decision making perform adaptively by 
applying fuzzy logic.  
To make a decision, the ant deploys the node’s current 
workload and its (i.e. the ant’s) remained steps as two 
inputs to the fuzzy inference system. Then the ant 
determines the state of the node, i.e. Max, Avg or Min.
The total average of the load visited is kept as the ant’s 
internal knowledge about the environment. The ant uses it 
for building membership functions of the node’s 
workload.  
Thus, the ant can make a proper decision. If the result is 
“Max” or “Min”, the node’s specifications must be added 
to the ant’s max list or the min list. Subsequently, the 
corresponding counter for Max, Min, or Avg increases by 
one. These counters also measure the ant’s knowledge 
about the environment. How this knowledge is used is 
explained in the next sections. 
We can express the inference system as following 
relation: 
 

><→
><∗><

MaxAvgMinDecide
VAFRmStepHMHMLLLoadRA

,,
,,,,,: (1) 

 
3.2.2 Ant Level Load Balancing 
 

In the subtle behavior of ants and their interactions, we 
can see that when two ants face each other, they stop for a 
moment and touch tentacles, probably for recognizing 
their team members. This is what inspired the first use of 
this inspiration. 
With respect to the system structure, it is more possible 
that two or more ants meet each other on the same node. 
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As mentioned earlier, each of these ants may gather 
specifications of some overloaded and underloaded nodes. 
The amount of information is not necessarily the same for 
each ant, e.g. one has specifications of four overloaded 
and two underloaded while the other ant has two 
overloaded and six underloaded in the same position, in 
this situation, ants can balance their load by exchanging 
knowledge. We call this “ant level load balancing”. In the 
last example, after ant level load balancing of the two co-
positions, the ants have specifications of three overloaded 
and four underloaded nodes in their memories. This result 
in better performance in the last step, when the ant wants 
to balance the load of ‘k’ overloaded with ‘k’ underloaded 
nodes. This operation can be applied to more than two 
ants.  
Actually when two or more co-positioned ants exchange 
their knowledge, they extend their movement radius to a 
bigger domain and this causes better awareness of the 
environment. There is a similar idea which is inspired 
from the pheromone deposits from the ants while 
wandering. Other ants can pursue the ant by using this 
pheromone deposited. This idea is applied in most of ant 
colony optimization problems [5]. There is, however, a 
subtle difference between these two ideas. The 
information retained by the ant may become invalid over 
time. This problem can be solved by evaporation [5], 
however, evaporation is not applicable in some cases, e.g. 
in the grid, where load information varies frequently. In 
the new idea, though, the00 knowledge exchanged is 
completely reliable. 
 

3.2.3 Creating New Ants While Wandering 
 

In special conditions, especially when the ant’s life span 
is long while the ant is continuing it’s wandering, its 
memory may get full, but it still encounters nodes which 
are overloaded or underloaded. In this situation, if a 
node’s load is overloaded, the ant bears a new one with 
predefined steps. If the ant encounters an underloaded 
node, it immediately exchanges its specification with the 
biggest load in the list of underloaded elements. This 
results in a better balancing performance and more 
adaptability to the environment. Here, adaptability 
translates into increasing the number of the ants 
automatically, whenever there are many overloaded 
nodes.  
 

3.3 Load Balancing, Starting New Itineration 
 

When the ant’s hops end, it must start the balancing 
operation between its overloaded (Max) and underloaded 
(Min) elements gathered during its wanderings and then 
disperse the amount of load among them equally. With 
high probability, the number of elements in the Max list 
and the Min list are close because of using ant level load 
balancing, this improves the performance. 
 After load balancing, the ant must reinitiate to begin a 
new itineration. One of the fields that must be initiated is 
the ant’s step counts. However as stated in previous 
sections, the ant’s step counts (m) must be commensurate 
to system conditions [4]. Therefore, if most of the nodes 

visited were underloaded or in equilibrium, the ant should 
prolong its wandering steps, i.e. decrease the load 
balancing frequency and vice versa. To do this requires 
the ant’s knowledge about the environment. This 
knowledge should be based the number of overloaded, 
underloaded and equilibrium nodes visited during the last 
itineration. 
Because of fuzzy logic power in the adaptation among 
several parameters in a problem, and considering the step 
counts (m) as a linguistic variable, e.g. short, medium, 
long, it  is rational to use fuzzy logic for determining the 
next itineration step counts.  
The fuzzy controller determines the next itineration step 
counts (NextM for short) based on the number of 
overloaded, underloaded and equilibrium nodes visited, 
along with the step counts during the last itineration 
(LastM for short). In other words, the number of 
overloaded, underloaded and equilibrium nodes seen 
during the LastM, indicates the recent condition of the 
environment, while the “LastM” itself reports lifetime 
history of the ant. 
This fuzzy system can be stated as a relation as follows: 
 

><→
><∗><∗

><∗><

DeadTHHMLTLNextM
THHMLTLLastMhmlAvgCount

hmlMinCounthmlMaxCountRB

,,,,,
,,,,,,

,,,,:
(2) 

 

In this system, a large number of underloaded and 
especially equilibrium elements indicate equilibrium 
states. Consequently, the NextM should be prolonged, in 
which case it lowers the load balancing frequency. One 
can say that, If an ant’s step counts extend to extreme 
values, its effect tends to be zero. Base on this premise, 
we can conclude that an ant with too long step counts does 
not have any influence on the system balance. Rather, it 
imposes its communication overhead on the system. In 
this situation, the ant must commit suicide. This is the last 
ring of the echo system. Therefore, if the NextM is fired in 
the “Dead” membership function, the ant does not start 
any new itineration. 
 

4. PERFORMANCE EVALUATIONS 
 

In this section, we investigate several common statistics to 
show the performance of the mechanism described.  
 

4.1 Efficiency 
 

To prove that the new mechanism increases efficiency, it 
should be compared with the mechanism described in [4]. 
First, we introduce some of the most important criteria in 
load balancing: 
Let P be the number of agents and Wpk where (p: 1, 2... P)
is the workload of the agent p at step k . The average 
workload is: 

P

W
W

P

p
pk

k

∑
== 1 (3) 

The mean square deviation of Wpk that describing the load 
balancing level of the system, is defined as: 
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Finally, The system load balancing efficiency ( e ) is 
defined as: 

k

k
k C

LL
e

−
= 0 (5) 

Where ek means efficiency at step k and Ck is the total 
number of agent connections that have been made, to 
achieve a load balancing level Lk. To compare the 
efficiency of these two mechanisms, we should 
consider

Tradnew kk ee / .
As ‘L0’ indicates the load balancing level at the beginning 
of the load balancing process and is equal in both new and 
seminal mechanisms, we shall discuss the value of Lk. 
For the sake of simplicity, assume that every node gets to 

kW after balancing process, and needs no more balancing, 
i.e.  

0=− pkk WW (6) 
On the other hand, after ‘k’ stage, if the memory space 
considered for overloaded and underloaded elements is 
equal to ‘a’ (a>2), then we have ‘ka’ elements balanced, 
and then:  

P

WW
L

kap

p
pkk

knew

∑
−

=
−

= 1

2)(
(7) 

While in the seminal approach we have: 

P

WW
L

kp

p
pkk

kTrad

∑
−

=

−
=

2

1

2)(
(8) 

As we suppose that ‘a>2’, we can conclude: 
kaPkP −>− 2 (9) 

After the ‘k’ stages, the difference in the balanced nodes 
in these two mechanisms is: 

)2(2 −=+−− akkaPaP (10) 
Then: 
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P
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newTrad kk LL > → 1<newk

L
L (13) 
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One o
the ne

extreme case, if a=2 then the mechanism resembles the 
seminal one, with half steps (S). 
Consider that memory space (a) is effective if and only if 
the ant can fill it during its wandering steps. Therefore if 
‘a’ increases, then the amount of steps (S) must increase 
accordingly to prevent performance degradation. This 
means that: 

If ∞→a then ∞→S (15) 
Increasing ‘S’ causes a decrease in load balancing 
frequency and consequently an increase in convergence 
time.  
The other side effect of overly trips is reserving many 
nodes for balancing (by means of remaining pheromone in 
the nodes) causes them to balance too late; moreover other 
ants should wander a lot to find a free unbalanced node. 
These side effects result in performance degradation. On 
the other hand, increasing memory space results in 
occupying too much space, it’s processing time by the 
nodes and communication overhead. 
Actually there is a trade-off between the step counts (S) 
and memory allocated to each ant (a).
If a<<S, then the memory allocated expires rapidly and 
the ant compels to generate new ants.  This explodes the 
ant population and subsequently increases their 
communication and also remaining pheromone; finally 
leading an increase in time. The load balancing level, 
though, decreases because of increasing the probability of 
balancing every node more than one time.  
On the other side, if a�S, then the probability of creating 
new ants decreases. Subsequently the ant’s population 
reduces. Cutting down the ant population results in 
increasing speed and decreasing the communication and 
the pheromone left by the ants. The final result, however, 
is not satisfactory (final load balancing level is high).Due 
to the above mentioned reasons and with respect to 
several experiments shown in Figures 1,2 and Table 1, we 
deduce that to satisfy the different parameters alluded to, 
it is better to set allocated memory at about half of the 
step counts. 
Experiments achieved with different memory size 
allocated, where S=15 initially, are reported here. 

 

A) Mem=15      B) Mem=10      C) Mem=7      D) Mem=5 
Figure 1. Comparing final convergence with different 

memory space 
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 mechanism is drastically less 
ach. This is because, in the new 

‘k’ elements. While in the traditional method, the ant 
wanders ‘2S+1’ steps and then balances only two 
elements. Therefore, as seen below, with an equal initial 
step count (S=15), the ant in the new mechanism only 
goes through 2000 stages to get final convergence, while 
traditional method, passes 7000 stages. Figure 4.b 
illustrates the comparison between a colony of ants using 
S=15 and a memory size=7. This figure illustrates that, in 
the new mechanism, the communication count goes flat. 
This occurs when the step counts enlarge and load 
balancing frequency decreases, i.e. in the last seconds.  
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Figure 4. Comparing agent communications (C) between the 
new and seminal (Trad) method. Final results using. a) one 

ant S=15, a=7 b) a colony of ants, N=220, s=15, a=7  
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Figure 5. Impact number of created ants on the load 

balancing level (L), the experiment achieved with different 
numbers of initial ants (init). 

 

The second experiment focused on the relation between 
load balancing levels and the number of dead ants. 
As can be seen in Figure 5, as the number of dead ants 
rises, load balancing level decline, i.e. it approaches final 
convergence. This experiment is conducted with different 
initial ants. Repeating the experiment with a different 
initial number of ants proves that, if more ants are 
deployed, the load balancing level improves. 
The third experiment concentrates on the correlation 
between an ant’s step counts and the load balancing level. 

(b) 

(a) 
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We use the average step counts of the swarm over time 
for measurement. It is obvious from Figure 6 that when 
approaching convergence, the step count increases. This 
causes the delay to final convergence. 

0
50

100
150
200
250

8 10 12 14 16 18

avg step

L

Figure 6. Relation between Step count(S) and the load 
balancing Level (L). 

 

The fourth experiment indicates the effect of ant level 
load balancing on the final result. As seen in Figure 7, ant 
level load balancing produces a better convergence. 
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Figure 7. Effects of using Ant level balancing level on 

Balancing Level (L). 

It is clear that ant level load balancing cannot be achieved 
without costs. As illustrated in Figure 7, ant level load 
balancing consumes more time, although the results are 
better. We must acknowledge that this causes the ant to 
obtain global information even while moving locally.  
The fifth experiment presents the efficiency of the new 
method in comparison with the seminal one. As shown in 
Figure 8, the new mechanism with different initial step 
counts is more efficient.  

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10T(s)

e

S=15, a=7

Traditional

S=20, a=10

S=10, a=5

 
Figure 8.Efficiency (e) comparison between the traditional 

and the new method with different step counts and memory 
allocated. 

 

On the other hand, comparing the new mechanism’s 
efficiencies, with different initial step counts, shows the 
effect of the trade-off in determining the initial step count. 
In this case, if the initial S is high, e.g. S=20, then, as the 
probability of balancing a node decreases by more than 
one time, the balancing level (Lk) increases, causing a fall 
in L0-Lk and, consequently, final efficiency. In the other 

way, low values for initial S, e.g. S=10, as mentioned 
earlier, increases the ant population and consequently 
their connections (Ck). This again results in decreasing the 
final efficiency by considering (5). 
Consider that the stage has not a completely true meaning 
in our method. Instead, we think of periods of time as 
stages (k).

5. CONCLUSION 
 

As described in the previous sections, equalizing the load 
of all available resources is one of the most important 
issues in the grid. In this way, with respect to grid 
specifications, an echo system of autonomous, rational 
and adaptive ants was proposed to meet the challenge of 
load balancing. There are great differences between the 
proposed mechanism and similar mechanisms which 
deploy ant colony optimization. We believe that ant level 
load balancing is the most important difference. 
In our future work, we plan to extend the applications of 
ant level load balancing in addition to implementing the 
mechanism in a more realistic environment, thus 
promoting the ant’s intelligence and adaptation as well as 
adding billing contracts between resources as they 
exchange customer loads and overcome security 
considerations. 
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