
GRID LOAD BALANCING USING AN ECHO SYSTEM OF
INTELLIGENT ANTS

Mohsen Amini Salehi, Hossain Deldari

Department of Software Engineering, Faculty of Engineering Ferdowsi University of Mashhad
 Iran

mo_am88@stu_mail.um.ac.ir , hd@um.ac.ir

ABSTRACT
A computational grid is a widespread computing
environment that provides huge computational power for
large-scale distributed applications. One of the most
important issues in such an environment is resource
management for which agent-based approaches are
appropriate. Load balancing as a part of resource
management, has a considerable effect on performance.
Ant colony is a metaheuristic that can be instrumental for
grid load balancing. This paper presents an echo system
of intelligent, autonomous and cooperative ants. The ants
in this environment can procreate and also may commit
suicide depending on existing conditions. A new concept
called Ant level load balancing is presented for improving
the performance of the mechanism. A performance
evaluation model is derived. Theoretical analyses and
simulation results indicate that this new mechanism
surpasses its predecessor.

KEY WORDS
ARMS, Ant colony, Grid computing, and Load balancing

1. INTRODUCTION

A computational grid is a hardware and software
infrastructure that provides consistent, pervasive and
inexpensive access to high-end computational capacity.
An ideal grid environment should provide access to all
available resources seamlessly and fairly.
Resource manager is an important infrastructural
component of a grid computing environment. Its overall
aim is to efficiently schedule applications that need to
utilize the available resources in the grid environment.
ARMS is an agent-based resource manager infrastructure
for the grid [1]. In ARMS, each agent can simultaneously
stand for a resource questioner, resource provider, and
also a matchmaker. Details of the design and
implementation of ARMS can be found in [1]. In this
work we use ARMS as an experimental platform.
Cosy is a job scheduler that supports job scheduling as
well as advanced reservations [2]. It is integrated into
ARMS agents to perform global grid management; Cosy
needs a load balancer to better utilize available resources.
Load balancing algorithms are designed to spread the load
on resources equally and maximize their utilization while
minimizing the total task execution time [3]. This is
crucial in a computational grid where the most important
issue is to fairly assign jobs to resources.

In general, load balancing mechanisms can be broadly
categorized as centralized or decentralized, dynamic or
static, and periodic or non-periodic. There is a good
survey on them in [3].
In [4], Cao et al propose a self-organizing load balancing
mechanism using ants, but it was simple and inefficient,
we call it the seminal approach. The main contribution of
this paper is the optimization of this seminal mechanism.
Thus, we propose a modified mechanism based on a
swarm of intelligent ants that uniformly balance the load
throughout the grid. The intelligent ants have memory and
learning capabilities. They react to their environment and
so better utilize grid resources.
The rest of the paper is organized as follows: Section 2
introduces Ant colony optimization and self-organizing
mechanisms for load balancing. Section 3 describes the
proposed mechanism. The performance metrics and
simulation results are included in Section 4. At the end,
we present the conclusion of the article as well as the
future works of this research.

2. ANT COLONY OPTIMIZATION

Swarm intelligence [5] is an area inspired by observing
the behaviors of insects such as wasps, ants or honey bees.
The ants, for example, have little intelligence for their
hostile and dynamic environment. Ants perform activities
such as organizing their dead into cemeteries and foraging
for food. They organize such activities through indirect
communication known as “stigmergy”. This
communication accomplishes with a chemical substance
deposits from ants called pheromone.
Inspiring such ants achievements are used in solving some
heuristic problems, like optimal routing, coordinating
robots, sorting and especially load balancing [4, 6, and 7].
The main contribution is done in load balancing context
by Messor [7].

2.1 Messor

Messor is a grid computing system that is implemented on
top of the Anthill framework [7].
Ants in this system can be in Search–Max or Search–Min
states. In the Search–Max state, an ant wanders around
randomly until it finds an overloaded node; the ant then
switches to the Search–Min state to find an underloaded
node. After these stages, the ant balances the two
overloaded and underloaded nodes found. Once an ant

517-029 47

mailto:mo_am88@stu_mail.um.ac.ir
bryson

meets a node, it retains its information about the nodes
visited. Other crossover ants can use this information to
perform more efficiently. However, with respect to the
dynamism of the grid, this information could not be
reliable for a long time and may even cause erroneous
decision making by other ants.

2.2 Self-Organizing Agents for Grid Load Balancing

Cao proposed a modified mechanism in [4], in which an
ant always wanders ‘2m+ 1’ steps to finally balance two
overloaded and underloaded nodes.
As stated in [4], the efficiency of the mechanism highly
depends on the number of cooperating ants (n) as well as
their step count (m). If a loop includes a few steps, the ant
will initiate the load balancing process frequently. If an
ant initiates with a larger m, then it wanders for a longer
time and decreases the frequency of performing the load
balancing process. This implies that the ant’s step count
should be determined according to the system’s load.
However, with this method the number of ants and the
number of their steps are defined by the user and would
not change during the load balancing process. In fact, the
user’s defining the number of ants and their wandering
steps is impractical in an environment such as the grid,
where users have no background knowledge and the
ultimate goal is to introduce a transparent, powerful
computing service to end users.
Considering the above defects, we propose a new
mechanism that can be adaptive to environmental
conditions and turn out better results. In the next section,
the proposed method is described.

3. PROPOSED METHOD

In the new mechanism, we propose an echo system of
intelligent ants which react commensurately to their
conditions. Interactions between these intelligent,
autonomous ants result in load balancing throughout the
grid.
Here, echo system means that ants are created on demand
to achieve load balancing during their lives adaptively.
They may bear offspring when they sense that the system
is drastically unbalanced and commit suicide when they
detect equilibrium in the environment. These ants care for
every node visited during their steps and record node
specifications for future decision making. Moreover,
every ant in the new mechanism hops ‘m’ steps (the value
of ‘m’ is determined adaptively) instead of ‘2m+1,’ and in
the end of the ‘m’ steps wandering, balances ‘k’
overloaded with ‘k’ underloaded nodes, instead of one
overloaded with one underloaded. This results in an
earlier convergence of the system with fewer ants and less
communication overhead.
In the next sections, we describe the proposed method in
more details.

3.1 Creating Ants

If a node understands that it is overloaded, it can create a
new ant with a few steps to balance the load as quickly as
possible.
There are many ways in which a node can measure its
load (overloaded or not). We consider the load as the
number of the jobs waiting in the ready queue of a node,
for the sake of simplicity.

3.2 Moving and Deciding

A memory space is allocated to every ant in which the ant
records specifications of the environment while wanders.
The memory space is divided into an underloaded list
(Min List) and an overloaded list (Max List). In the
former, the ant saves specifications of the underloaded
nodes visited. In the latter, specifications of the
overloaded nodes visited are saved.
At every step, the ant randomly selects one of the node’s
neighbors.

3.2.1 Deciding Algorithm

After entering a node, the ant first checks its memory to
determine whether this node was already visited by itself
or not. If not, the ant can determine the condition of the
node, i.e. overloaded, underloaded or equilibrium, using
its acquired knowledge from the environment.
As the load quantity of a node is a linguistic variable and
the state of the node is determined relative to system
conditions, decision making perform adaptively by
applying fuzzy logic.
To make a decision, the ant deploys the node’s current
workload and its (i.e. the ant’s) remained steps as two
inputs to the fuzzy inference system. Then the ant
determines the state of the node, i.e. Max, Avg or Min.
The total average of the load visited is kept as the ant’s
internal knowledge about the environment. The ant uses it
for building membership functions of the node’s
workload.
Thus, the ant can make a proper decision. If the result is
“Max” or “Min”, the node’s specifications must be added
to the ant’s max list or the min list. Subsequently, the
corresponding counter for Max, Min, or Avg increases by
one. These counters also measure the ant’s knowledge
about the environment. How this knowledge is used is
explained in the next sections.
We can express the inference system as following
relation:

><→
><∗><

MaxAvgMinDecide
VAFRmStepHMHMLLLoadRA

,,
,,,,,: (1)

3.2.2 Ant Level Load Balancing

In the subtle behavior of ants and their interactions, we
can see that when two ants face each other, they stop for a
moment and touch tentacles, probably for recognizing
their team members. This is what inspired the first use of
this inspiration.
With respect to the system structure, it is more possible
that two or more ants meet each other on the same node.

48

As mentioned earlier, each of these ants may gather
specifications of some overloaded and underloaded nodes.
The amount of information is not necessarily the same for
each ant, e.g. one has specifications of four overloaded
and two underloaded while the other ant has two
overloaded and six underloaded in the same position, in
this situation, ants can balance their load by exchanging
knowledge. We call this “ant level load balancing”. In the
last example, after ant level load balancing of the two co-
positions, the ants have specifications of three overloaded
and four underloaded nodes in their memories. This result
in better performance in the last step, when the ant wants
to balance the load of ‘k’ overloaded with ‘k’ underloaded
nodes. This operation can be applied to more than two
ants.
Actually when two or more co-positioned ants exchange
their knowledge, they extend their movement radius to a
bigger domain and this causes better awareness of the
environment. There is a similar idea which is inspired
from the pheromone deposits from the ants while
wandering. Other ants can pursue the ant by using this
pheromone deposited. This idea is applied in most of ant
colony optimization problems [5]. There is, however, a
subtle difference between these two ideas. The
information retained by the ant may become invalid over
time. This problem can be solved by evaporation [5],
however, evaporation is not applicable in some cases, e.g.
in the grid, where load information varies frequently. In
the new idea, though, the00 knowledge exchanged is
completely reliable.

3.2.3 Creating New Ants While Wandering

In special conditions, especially when the ant’s life span
is long while the ant is continuing it’s wandering, its
memory may get full, but it still encounters nodes which
are overloaded or underloaded. In this situation, if a
node’s load is overloaded, the ant bears a new one with
predefined steps. If the ant encounters an underloaded
node, it immediately exchanges its specification with the
biggest load in the list of underloaded elements. This
results in a better balancing performance and more
adaptability to the environment. Here, adaptability
translates into increasing the number of the ants
automatically, whenever there are many overloaded
nodes.

3.3 Load Balancing, Starting New Itineration

When the ant’s hops end, it must start the balancing
operation between its overloaded (Max) and underloaded
(Min) elements gathered during its wanderings and then
disperse the amount of load among them equally. With
high probability, the number of elements in the Max list
and the Min list are close because of using ant level load
balancing, this improves the performance.
 After load balancing, the ant must reinitiate to begin a
new itineration. One of the fields that must be initiated is
the ant’s step counts. However as stated in previous
sections, the ant’s step counts (m) must be commensurate
to system conditions [4]. Therefore, if most of the nodes

visited were underloaded or in equilibrium, the ant should
prolong its wandering steps, i.e. decrease the load
balancing frequency and vice versa. To do this requires
the ant’s knowledge about the environment. This
knowledge should be based the number of overloaded,
underloaded and equilibrium nodes visited during the last
itineration.
Because of fuzzy logic power in the adaptation among
several parameters in a problem, and considering the step
counts (m) as a linguistic variable, e.g. short, medium,
long, it is rational to use fuzzy logic for determining the
next itineration step counts.
The fuzzy controller determines the next itineration step
counts (NextM for short) based on the number of
overloaded, underloaded and equilibrium nodes visited,
along with the step counts during the last itineration
(LastM for short). In other words, the number of
overloaded, underloaded and equilibrium nodes seen
during the LastM, indicates the recent condition of the
environment, while the “LastM” itself reports lifetime
history of the ant.
This fuzzy system can be stated as a relation as follows:

><→
><∗><∗

><∗><

DeadTHHMLTLNextM
THHMLTLLastMhmlAvgCount

hmlMinCounthmlMaxCountRB

,,,,,
,,,,,,

,,,,:
(2)

In this system, a large number of underloaded and
especially equilibrium elements indicate equilibrium
states. Consequently, the NextM should be prolonged, in
which case it lowers the load balancing frequency. One
can say that, If an ant’s step counts extend to extreme
values, its effect tends to be zero. Base on this premise,
we can conclude that an ant with too long step counts does
not have any influence on the system balance. Rather, it
imposes its communication overhead on the system. In
this situation, the ant must commit suicide. This is the last
ring of the echo system. Therefore, if the NextM is fired in
the “Dead” membership function, the ant does not start
any new itineration.

4. PERFORMANCE EVALUATIONS

In this section, we investigate several common statistics to
show the performance of the mechanism described.

4.1 Efficiency

To prove that the new mechanism increases efficiency, it
should be compared with the mechanism described in [4].
First, we introduce some of the most important criteria in
load balancing:
Let P be the number of agents and Wpk where (p: 1, 2... P)
is the workload of the agent p at step k . The average
workload is:

P

W
W

P

p
pk

k

∑
== 1 (3)

The mean square deviation of Wpk that describing the load
balancing level of the system, is defined as:

49

P

WW
L

P

p
pkk

k

∑
=

−
= 1

2)(
(4)

Finally, The system load balancing efficiency (e) is
defined as:

k

k
k C

LL
e

−
= 0 (5)

Where ek means efficiency at step k and Ck is the total
number of agent connections that have been made, to
achieve a load balancing level Lk. To compare the
efficiency of these two mechanisms, we should
consider

Tradnew kk ee / .
As ‘L0’ indicates the load balancing level at the beginning
of the load balancing process and is equal in both new and
seminal mechanisms, we shall discuss the value of Lk.
For the sake of simplicity, assume that every node gets to

kW after balancing process, and needs no more balancing,
i.e.

0=− pkk WW (6)
On the other hand, after ‘k’ stage, if the memory space
considered for overloaded and underloaded elements is
equal to ‘a’ (a>2), then we have ‘ka’ elements balanced,
and then:

P

WW
L

kap

p
pkk

knew

∑
−

=
−

= 1

2)(
(7)

While in the seminal approach we have:

P

WW
L

kp

p
pkk

kTrad

∑
−

=

−
=

2

1

2)(
(8)

As we suppose that ‘a>2’, we can conclude:
kaPkP −>− 2 (9)

After the ‘k’ stages, the difference in the balanced nodes
in these two mechanisms is:

)2(2 −=+−− akkaPaP (10)
Then:

P

WW

P

WW
L

kp

kap
pkk

kap

p
pkk

kTrad

∑∑
−

=

−

=

−
+

−
=

2
2

1

2)()(
(11)

P

WW
L

kap

p
pkk

knew

∑
−

=

−
= 1

2)(
(12)

newTrad kk LL > → 1<newk

L
L (13)

With r

e
e

One o
the ne

extreme case, if a=2 then the mechanism resembles the
seminal one, with half steps (S).
Consider that memory space (a) is effective if and only if
the ant can fill it during its wandering steps. Therefore if
‘a’ increases, then the amount of steps (S) must increase
accordingly to prevent performance degradation. This
means that:

If ∞→a then ∞→S (15)
Increasing ‘S’ causes a decrease in load balancing
frequency and consequently an increase in convergence
time.
The other side effect of overly trips is reserving many
nodes for balancing (by means of remaining pheromone in
the nodes) causes them to balance too late; moreover other
ants should wander a lot to find a free unbalanced node.
These side effects result in performance degradation. On
the other hand, increasing memory space results in
occupying too much space, it’s processing time by the
nodes and communication overhead.
Actually there is a trade-off between the step counts (S)
and memory allocated to each ant (a).
If a<<S, then the memory allocated expires rapidly and
the ant compels to generate new ants. This explodes the
ant population and subsequently increases their
communication and also remaining pheromone; finally
leading an increase in time. The load balancing level,
though, decreases because of increasing the probability of
balancing every node more than one time.
On the other side, if a�S, then the probability of creating
new ants decreases. Subsequently the ant’s population
reduces. Cutting down the ant population results in
increasing speed and decreasing the communication and
the pheromone left by the ants. The final result, however,
is not satisfactory (final load balancing level is high).Due
to the above mentioned reasons and with respect to
several experiments shown in Figures 1,2 and Table 1, we
deduce that to satisfy the different parameters alluded to,
it is better to set allocated memory at about half of the
step counts.
Experiments achieved with different memory size
allocated, where S=15 initially, are reported here.

A) Mem=15 B) Mem=10 C) Mem=7 D) Mem=5
Figure 1. Comparing final convergence with different

memory space
10 Level
Tradk

espect to (13), we have:

2
)(2

0

0 >→
−

−
=

Trad

new

Trad

new

Trad

new

k

k

k

k

k

k

e
e

LL
LL

(14)

f th
w

0
2
4
6
8

0 10 20

a
0

3000
6000
9000

12000

0 10 20

a

T

(a)

ime

(b)
e most important parameter
mechanism is the ant’s mem
s
o

in the efficiency of
ry space (a). In an

50

0

300
600

900
1200

1500

0

An

Figure 2. Relation betwee
balancing level b) time c) A

Cou

a Time(ms
5 10274
8 4906
14 971

Table 1. Relation between
initial Ste

4.2 Load Balancing Spee

Actually, adaptively deter
differentiation in load bal
other words, as time
approaches convergence a
decreases, hence postpon
On the contrary, the n
overhead as the system
reality, in an environment
convergence is impract
dynamism/vastness and if
last long.
Figure 3 shows a sch
balancing frequency betw
mechanism.

0

2000

4000

6000

8000

0 5

F

Figure 3. Comparison bet

new method’s load

4.3 Simulation and Expe

Simulations are achieved
proposed in [4]. The agen
modeled in a simplified
behavior. In this way, the
grid. The squares used i
agents. The Workload is
agent, which is determi
considered static and all o
value of 100.
The first experiment invo
In this experiment, as
communication in the new
than in the seminal appro

method, every time an ant wanders ‘S’ steps, it balances
t -No
5 10 15

a

(c)
n memory allocated and a) load
nt no, where the Ant initial Step

nts (S)=15

) Level Ant No
1.9455 1197
3.0363 797
8.6015 325

 memory size (a) and ants with
p Counts (S=15)

d

mining the step counts causes a
ancing frequency over time. In
increases, the whole system
nd the load balancing frequency
ing the final convergence time.
ew mechanism imposes less
nears to the balance state. In
 such as the grid, attaining final
ical because of its inherent
 balancing occurs, it would not

ematic comparison for load
een the new and the seminal

10 15

T
Trad New

ween the seminal (Trad) and the
 balancing frequency (F).

rimental Results

 according to the specifications
t system and the mechanism are
 way to outline the system
 agents are mapped to a square
n experiments include all 400
represented by a value in each
ned randomly. Resources are
f the agents having a capability

lves total network connections.
 shown in Figure 4.a, ant

 mechanism is drastically less
ach. This is because, in the new

‘k’ elements. While in the traditional method, the ant
wanders ‘2S+1’ steps and then balances only two
elements. Therefore, as seen below, with an equal initial
step count (S=15), the ant in the new mechanism only
goes through 2000 stages to get final convergence, while
traditional method, passes 7000 stages. Figure 4.b
illustrates the comparison between a colony of ants using
S=15 and a memory size=7. This figure illustrates that, in
the new mechanism, the communication count goes flat.
This occurs when the step counts enlarge and load
balancing frequency decreases, i.e. in the last seconds.

0

50000

100000

150000

200000

250000

0 5 10 15 20T(s)

C

New method Trad

0

200000

400000

600000

0 5 10 15 20

T(s)

C

New Method
Trad

Figure 4. Comparing agent communications (C) between the
new and seminal (Trad) method. Final results using. a) one

ant S=15, a=7 b) a colony of ants, N=220, s=15, a=7

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400

Dead Ant No

L

init 250

init 200
init 190

init 145

Figure 5. Impact number of created ants on the load

balancing level (L), the experiment achieved with different
numbers of initial ants (init).

The second experiment focused on the relation between
load balancing levels and the number of dead ants.
As can be seen in Figure 5, as the number of dead ants
rises, load balancing level decline, i.e. it approaches final
convergence. This experiment is conducted with different
initial ants. Repeating the experiment with a different
initial number of ants proves that, if more ants are
deployed, the load balancing level improves.
The third experiment concentrates on the correlation
between an ant’s step counts and the load balancing level.

(b)

(a)

51

We use the average step counts of the swarm over time
for measurement. It is obvious from Figure 6 that when
approaching convergence, the step count increases. This
causes the delay to final convergence.

0
50

100
150
200
250

8 10 12 14 16 18

avg step

L

Figure 6. Relation between Step count(S) and the load
balancing Level (L).

The fourth experiment indicates the effect of ant level
load balancing on the final result. As seen in Figure 7, ant
level load balancing produces a better convergence.

0

30

60

90

0 50 100

T

L with ant lev el balance

without ant lev el balance

Figure 7. Effects of using Ant level balancing level on

Balancing Level (L).

It is clear that ant level load balancing cannot be achieved
without costs. As illustrated in Figure 7, ant level load
balancing consumes more time, although the results are
better. We must acknowledge that this causes the ant to
obtain global information even while moving locally.
The fifth experiment presents the efficiency of the new
method in comparison with the seminal one. As shown in
Figure 8, the new mechanism with different initial step
counts is more efficient.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10T(s)

e

S=15, a=7

Traditional

S=20, a=10

S=10, a=5

Figure 8.Efficiency (e) comparison between the traditional

and the new method with different step counts and memory
allocated.

On the other hand, comparing the new mechanism’s
efficiencies, with different initial step counts, shows the
effect of the trade-off in determining the initial step count.
In this case, if the initial S is high, e.g. S=20, then, as the
probability of balancing a node decreases by more than
one time, the balancing level (Lk) increases, causing a fall
in L0-Lk and, consequently, final efficiency. In the other

way, low values for initial S, e.g. S=10, as mentioned
earlier, increases the ant population and consequently
their connections (Ck). This again results in decreasing the
final efficiency by considering (5).
Consider that the stage has not a completely true meaning
in our method. Instead, we think of periods of time as
stages (k).

5. CONCLUSION

As described in the previous sections, equalizing the load
of all available resources is one of the most important
issues in the grid. In this way, with respect to grid
specifications, an echo system of autonomous, rational
and adaptive ants was proposed to meet the challenge of
load balancing. There are great differences between the
proposed mechanism and similar mechanisms which
deploy ant colony optimization. We believe that ant level
load balancing is the most important difference.
In our future work, we plan to extend the applications of
ant level load balancing in addition to implementing the
mechanism in a more realistic environment, thus
promoting the ant’s intelligence and adaptation as well as
adding billing contracts between resources as they
exchange customer loads and overcome security
considerations.

ACKNOWLEDGEMENTS

This research work was supported by Iran
Telecommunication Research Center (ITRC). We are also
grateful to Mrs. Bahare Mokarram for her helps, Mr. Adel
Najjaran Toosi for his ideas and Mr. Saeed Ghani Abadi
and Mrs. Adele Amini for their editing.
REFERENCES

[1] J.Cao, Agent-Based Resource Management System
(ARMS), PhD Thesis, Warwick University, Dept. of
Computer Science, 2001.

[2] ttp://www.ccl-nece.de/macj/software.htm
[3] Y. Zomaya, and Y. Teh, Observations on using

genetic algorithms for dynamic load-balancing,
IEEE Trans. on Parallel and Distributed Systems,
12(9), 2001, 899-911.

[4] J. Cao, Self-Organizing Agents for Grid Load
Balancing, Proc. 5th IEEE/ACM International
Workshop on Grid Computing, 2004, 388-395.

[5] M. Dorigo, G. Caro, Ant Colony Optimization: A
New Meta-Heuristic, IEEE, 1999.

[6] J. Liu, X. Jin, Y. Wang, Agent-Based Load
Balancing on Homogeneous Minigrids: Macroscopic
Modeling and Characterization, IEEE TRANS. ON
PARALLEL AND DISTRIBUTED SYSTEMS, 16(7),
2005, 586-598

[7] Montresor, et al, Messor: Load-Balancing through a
Swarm of Autonomous Agents, Proc. of 1st Int.
Workshop on Agents and Peer-to-Peer Computing,
Italy, 2002.

52

