
1-4244-0220-4/$20.00© 2006 IEEE.
1

A Novel Load Balancing Method in an Agent-based Grid

Mohsen Amini Salehi
Computer Department, Faculty of Engineering,

Ferdowsi University of Mashhad,
Mo_am88@stu-mail.um.ac.ir

Hossain Deldari
Computer Department, Faculty of Engineering,

Ferdowsi University of Mashhad,
hd@um.ac.ir

Abstract: A*computational grid is a widespread
computing environment which provides huge
computational power for large-scale distributed
applications. One of the most important issues in such
an environment is resource management. Load
balancing which is a part of resource manager, has a
considerable effect on resources’ performance. There
are several factors which affect the stability of the load
balancing in the grid. Among these factors, accurate
criterion for estimating the workload, considering the
workload transmission cost, validity of the information
about other nodes and the overhead imposed by the
method are more effective. In this paper we propose a
novel method for load balancing which tries to satisfy
these factors. The proposed method is implemented on
an agent-based resource management system, called
ARMS. There are several simulations which indicate
that the proposed method outperforms than similar
methods.

Key-words: Grid computing, Load Balancing, Agent-
based Resource management system (ARMS), Virtual
routing, PACE.

I. INTRODUCTION

Grid infrastructure provides us with the ability to
dynamically link together resources as an ensemble
to support the execution of large-scale, resource-
intensive, and distributed applications [1]. Grid
permits users to interface with the resources
uniformly, providing a powerful platform for global
computing. Resource management and scheduling
are key issues in this platform [2, 4]. An ideal
resource manager should efficiently utilize all of the
grid resources [4, 5].

Load balancing is an important issue for the
problem of utilization. Load balancing are those
mechanisms which are designed to equally spread the
load on resources and maximize their utilization [10].
These mechanisms can be broadly categorized as
centralized or decentralized, dynamic or static,
periodic or non-periodic [10].

Most of current load balancing methods in the
grid environment are borrowed from those in
distributed systems [13]. However lack of a
common/realistic definition for load [6],

*This work was supported by the Iran Telecommunication
Research Center (ITRC).

communication overhead and ignoring transmission
cost [8] are crucial limitations for most of current
load balancing methods in grid and distributed
systems. Furthermore vastness and high degree of
dynamism are two additional difficulties in the grid
environment.

Frequent workload variation is a major
characteristic of the grid dynamism [1,2]. Therefore,
for the sake of accuracy in load balancing methods, it
is necessary to update load information frequently.
However, frequent updating in the grid, leads to
enormous communication overhead. In other words,
here we have a trade-off between reliability and
scalability [8]. In [16] Dahlin proposed a load
estimating method (instead of load exchanging)
which drastically reduces the load exchanging
needed. Though, utilizing load estimation method
needs a more precise load definition.

In [8] Dhaka1 et al. proposed a combinatorial
definition for load. However In spite of more
accuracy and estimation capability, it finally
considers (counts) the number of jobs, which is not a
precise scale for load measuring.

QLBVR [3] is a multi-level load balancing
method for distributed systems which balances the
load among nodes according to their queue length
and request arrival rate. It also uses virtual routing
method for checking the scattering profitability.
Virtual routing changes load balancing difficulty to
an optimal routing problem in the following way.

Virtual routing adds a virtual node, which is
called as the destination node (node d), in the
network system. Connect node d with each
neighboring node i by a virtual direct link (i, d). Let
the nodal delay of node i be considered as the
communication delay on link (i, d). As shown in Fig.
1, a three-node system has been converted into a
datagram network, in which node i essentially acts as
a router. The loads which arrive at node i, are routed
to destination node d via every node ij ≠ , with the
goal of minimizing the mean link delay. Then, each
node i in the system only considers the routing paths
of (i, d) and (i, j) → (j, d) where j is a neighbor of i.

2

Fig. 1.Routing paths for each node

Considering the grid specifications and the above

limitations, in this work we attempt to propose a
novel method that does not need a lot of information
to be exchanged, taking in to account a more accurate
definition for load as well as considering
transmission cost. This method is implemented in an
agent-based resource manager called ARMS. We will
discuss ARMS and the proposed method in detail,
during the next sections.

The rest of the paper is organized as follows:
Section 2 introduces the agent-based resource
management system (ARMS). In Section 3, neighbor
level load balancing method is described. The
performance metrics and simulation results are
included in Section 4. At the end, we present the
conclusion of the article as well as the future works
which can be done in the same direction as the
inclination of this research.

II. Agent-based Resource Management

As mentioned above, Resource management is an
important infrastructural component of a grid
computing environment. Agent-based Mechanisms
are considered to be suitable for grid resource
management, since agents have the capability to
control their own knowledge rather than relying on a
fixed function query engine [2, 4].

ARMS is an Agent-based resource manger for
grid computing which is aimed at provisioning
scalability and adaptability [2]. In ARMS, each agent
can simultaneously stand for a resource questioner,
resource provider, and also a matchmaker. These
agents cooperate with each other to achieve resource
discovery.

An agent in the system can have many local
resources that can provide services. The agent can
take them as its own capabilities. It must decide how
and when to advertise this service information to
other neighboring agents. An agent can also receive
many service advertisements from neighboring
agents. However, service information can also be
propagated to a large area after many steps of
advertisement over a period of time. All of the
service information is organized into Agent
Capability Tables (ACTs) in each agent. The service
information contains all performance related
information of a grid resource, which can be used to

estimate its performance. Therefore the agents are
equipped with a performance prediction toolkit called
PACE [5, 9, 14].

Application performance prediction provides the
important functionality that enables the grid load
balancing capabilities described in this research. The
PACE toolkit [5] is used to supply this ability for
both the local schedulers and the grid agents. The
main components of the PACE toolkit include
application tools (AT), resource tools (RT), and an
evaluation engine (EE). The PACE evaluation engine
can mingle application and resource models at
execution time to produce performance data e.g. total
execution time. In the work described in [9] an ASCI
(Accelerated Strategic Computing Initiative) core
application, Sweep3D, is used to exemplify the
performance prediction capabilities of PACE. The
validation results illustrate that a high level of
precision can be attained, and the process benefits
from a quick evaluation time. These characteristics
allow PACE forecasting data to be used on-the-fly
for grid resource load balancing.

While an ARMS system can achieve grid load
balancing as a result of trying to meet QoS
requirements specified explicitly by users [13],
neighbor level load balancing is investigated in this
research for agents to achieve load balancing for
batch queuing jobs which are not explicitly coupled
with execution deadlines.

 In [4, 15] there are load balancing mechanisms
on ARMS using ant colony optimization, however
the basics of our work are different in the following
ways:

• The new approach is a prevention mechanism
while [4] is detection and recovery one. This
implies that in the new approach we initially
try to impede the unbalance.

• Ant colony is an offline mechanism, while
the new one is online. In other words in the
former, there might be nodes that had not
been met for a long time [4], however in the
new approach, all the nodes cooperate in the
load balancing process periodically.

Neglecting the transmission cost and high
communication overhead is another deficiency in [4].

However our mechanism and the previous one are
not oppositions, instead they could be synergetic.

In the next section we propose our new
mechanism.

III. Neighbor Level Load Balancing Using Virtual

Routing

Considering stated disadvantages for current load
measurement methods, we first provide a more
accurate load measurement/estimation method which

1

32

d

3

relies on the time needed for executing current jobs
(instead of number of current jobs). Then we propose
our new load balancing method based on this new
measurement/estimation policy.

In the ARMS, agents obtain their resource
capabilities using PACE and exchange them with
their neighbors periodically. An agent advertises its
load information only to its neighbors, for the
purpose of scalability needed in the grid [11]. It is
possible to attach load characteristics of the nodes to
this exchanging information.

Here, we consider the total execution time (gained
through PACE evaluation engine in each node),
average of the job arriving rate and job completion
rate (considering the number of arrivals/completions
in a certain fixed interval of time in each node) as the
load information. This information helps to provide a
more accurate measurement as well as estimation for
load as follows:

TtttjTttCtLttL iiii),()()()(∆++∆+−=∆+ (1)

Where Li(t) shows the total time needed for
executing current waiting jobs,)(ttCi ∆+ indicates
the number of jobs completed in the interval),[ttt ∆+ .

),(tttji ∆+ is the number of jobs arriving in the same

interval. Finally T is a constant coefficient which
shows the average execution time.

Moreover the receiver agent can estimate the time
gap between sending and receiving the information
and applies it as an approximation for transmission
cost between the two nodes.

The agents in the system exchange their status
information at periodic interval of time Ts, which is
called the status exchange interval. The instant at
which this information exchange happens is called a
status exchange epoch. Each status exchange interval
is further divided into identical subintervals denoted
as estimation intervals Te. The points of division are
called estimation epochs, in which each node
estimates its neighbors load according to (1).

 In Fig. 2, Tn−1, Tn stand for the status exchange
epochs and t1, t2 denote the estimation epochs. These
estimation epochs postpone the status exchange
epochs and therefore communication overhead
decreases.

Fig. 2 .Intervals of estimation and status exchange [3].

These exchanges are not dedicated to the load
balancing method and are inherently used in resource
advertisement in ARMS. We opportunistically attach
our favorite fields to them. Therefore we assert that
the method has a few communications overhead on
the whole system.

Now, the load scheduling decision is taken as
follows: utilizing the load information received in the
last Ts and using (1), the agents estimate the current
load of their neighbors in each estimation epoch
while estimation is not required in the exchange
epochs. Then the agent computes the average load on
its neighboring agents. An agent calls itself
“overloaded” if its load is greater than the average
load of its neighbors. Agents in the neighboring set,
whose estimated load is less than the estimated
average load by more than a thresholdθ , form an
active set. However, because of the transmission cost,
sending the agent’s load to all of the active set
members might not be profitable [8]. We compass the
problem of profitability using virtual routing and try
to send the extra loads to those members of the active
set which mostly satisfy the profitability. The sender
each time finds a member of the active set which has
the most profit (result in less response time) and then
it sends its jobs (extra load) to the selected member
of the active set.

It is clear that most of the equalizations occur
only between nearby agents. However, load can be
spread to a large area after many steps of
equalizations over a period of time.

It is probable that an underloaded agent situated
in active set of two or more than two overloaded
agents simultaneously. In these circumstances,
overloaded agents may send their extra load to the
underloaded at the same time and make the
underloaded agent, overloaded. Hence this condition
causes instability for the proposed method. We use a
locking technique to avoid these situations. Therefore
each agent only sends its load information to one
requester, and does not respond to any other agent at
the same time. This continues until the agent
dismisses by the requester.

IV. Performance Evaluation

In performance evaluation described in this section,
we investigate several common statistics to show
performance of the method described.

A. Performance Metrics

There are a number of performance metrics that can
be used to describe grid resource management and
scheduling systems. In this work several communal
statistics are investigated and used to describe the
effect of grid load balancing.

4

Let P be the number of agents of an ARMS
system and Wpk (p=1,2,……,P) be the workload of
the agent p at the period k. The average workload of
all P agents is:

P

W
W

P

p
pk

k

∑
== 1 (2)

The mean square deviation of Wpk that characterizes
the load balancing level of the system is defined as:

P

WW
L

P

p
pkk

k

∑
=

−
= 1

2)(
(3)

It is obvious that load balancing can not be
achieved without any overhead. In at most all
methods the load balancing process imposes
additional network connections among nodes.
However as mentioned earlier, this communication
overhead is minimized in this method due to the
ARMS characteristics and load estimation method.
Nevertheless, in system load balancing efficiency (e)
is another metrics that takes consideration of system
costs for load balancing. Let Tk be the total time spent
in all agents to achieve a load balancing level Lk. The
system efficiency ek is represented using the average
of an agent connection time to load balancing level
upturn during the latest period and calculated as
follows:

k

k
k T

LLe −= 0 (4)

Most of the time, these metrics explained recently
are conflictive, that is not all metrics can be elevated
at the same time. For example, a high load balancing
level does not indicate high efficiency, as sometimes
good load balancing may be accomplished through
too many load balancing operations, resulting in low
system efficiency.

B. System Modeling

In this work, agent systems and the method are
simulated in a simplified way using several aspects of
parameters sufficient to outline system characteristics
statistically.
• MAgents. The agents can be mapped in a graph.

This simplification is done in some similar
works [12, 13, and 4]. For the sake of
simplification we use a 20*20 square to show the
graph (grid environment), thus all of experiments
described later include 400 agents. In this square
each agent might have at most 8 neighbors.

• MWorkload. A workload value and corresponding
distribution are used to characterize system
workload. Initially the value is generated
randomly; however it changes during time with

regard to the load balancing, completion rate and
arrival rate.

• Processing rate and arrival rate. In each period,
processing (completion) rate and request arrival
rate are assigned to each agent randomly.

C. Simulation Results

The first experiment illustrates the relation between
load balancing level and period count in two different
ways. However both of them are repeated for
different values of θ .

In the first way, we assume that the system load is
unvarying during the load balancing process. As
shown in Fig. 3.a as the time elapsed, the system
approaches to the final convergence. However it
doesn’t improve more than a specific value. This is
the point that the load balancing method prefers to
execute jobs locally instead of sending them to the
others. In other words, as time elapses a wavelike
load distribution is created. As shown in Table1, the
balancing level has a few fluctuations in last
iterations because of that transmission delay exceeds
the executing time locally.

In the second way, according to (1) we assume
that the load of each agent changes proportional to
the processing rate and arriving rate during the time.
We achieved the experiment through hundred periods
to show the final balancing level of the system. As
shown in Fig. 3.b, even the load of the system
fluctuated during the time; the load balancing method
keeps the balancing level of the system steady
especially when θ approaches to zero.

In the second experiment we concentrate on the
effect of virtual routing on saving time spent for load
balancing. The comparison is done with an algorithm
which does not using virtual routing i.e. does not
considering transmission cost. In this algorithm each
agent sends the extra load to neighbors with the
lowest load. In this work we name such an algorithm
a “Best fit” algorithm. For the sake of comparison, we
calculated the total time spent in all agents for
sending the extra load to the neighbors in each period
(Cost). As illustrated in Fig. 4 the new method spent
less time (with different values forθ). This is
because the new method considers the transmission
overhead while the best fit algorithm does not.

5

0

20

40

60

80

100

0 10 20 30 40 50

Period

Level

Teta=0 Teta=3 Teta=4

Teta=5 Teta=10

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100

Period

Level

Teta=0 Teta=1 Teta=2

Teta=3 Teta=4 Teta=5

(b)
Fig. 3. Relation between period count (Period) and balancing

level (Level). (a) Load is constant, (b) load varying, during the
time.

TABLE I

PROPORTION OF LOAD AND BALANCING LEVEL WHEN
THE LOAD IS CONSTANT

Period(P) Balance Level(L)
0 78.60925518

1 39.90507487

2 33.44248795

5 25.11827024

10 22.73581976

15 21.12841688

30 19.38846306

45 18.79893614

50 18.71910788

The last experiment shows the efficiency of the
method (for different values ofθ) in comparison with
the best fit algorithm. It is obvious from (4) that
smaller Tk result in better efficiency; however
balancing level in kth iteration is effective. As shown
in Fig. 5, the new method has a better efficiency.

This was predictable from the former experiment;
however this experiment shows that while Tk is much
smaller than the best fit algorithm, there is no much
difference between Lk in both methods.

Fig. 4. Time overhead (Cost) comparison between using
Neighbor level and Best fit algorithm during several periods

(Period).

Fig. 5. Efficiency comparison between the new method and
best fit algorithm during several periods.

V. CONCLUSION

The main contribution of this work includes
providing a load balancing method for agent based
grid which considers the time needed for sending
jobs to other nodes. This method imposes less
overhead to the underlying platform while increasing
resource utilization and improving completion time
of all jobs.

There are many important features required by a
grid computing system and not discussed in this
work, e.g. security, billing contracts between agents
when they exchange the load of their customers, and
data management. Future work will focus on the
refinement of the system prototype and the proposed
algorithm.

ACKNOWLEDGMENT

We are grateful Mrs. Bahare Mokarram for her helps
and Mr. Adel Najjaran for his ideas.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 2 4 6 8 10 12

Cost

using VR Teta=0 Best fit
Teta=5 Teta=10
Teta=3 Teta=4

0

20

40

60

80

100

120

0 10 20 30

efficiency

Period

Efficiency new method
Efficiency Best fit
Teta=3
Teta=4
Teta=5
Teta=10

(a)

Period

6

REFERENCES
[1] F. Berman, G. Fox, and T. Hey, eds. John Wiley Grid

Computing: Making the Global Infrastructure a Reality,and
Sons, 2003.

[2] J.Cao, ”Agent-Based Resource Management System
(ARMS),” PhD Thesis, Warwick University Dept. of
Computer Science,2001

[3] Z. Zeng, B. Veeravalli, Rate-Based and Queue-Based
Dynamic Load Balancing Algorithms in Distributed Systems,
“Proc. 10th IEEE Int. Conf. on Parallel and Distributed
Systems.

[4] J. Cao, Self-Organizing Agents for Grid Load Balancing, in
“Proc. 5th IEEE/ACM Int. Workshop on Grid Computing
(GRID’04).

[5] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,
J.S. Harper, and D. V. Wilcox, PACE – a toolset for the
performance prediction of parallel and distributed systems,
Int. J. High Performance Computing Applications Vol. 3,
2000, pp. 228-251.

[6] B. S. Joshi, S. H. Hosseini, K. Vairavan, A Methodology for
Evaluating Load Balancing Algorithms, in “Proc. 2nd IEEE
Int. High Performance Distributed Computing Symp.”,
pp.216 – 222, 1993

 [7] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated
Load Information Scheduling Algorithm for Distributed
Computing System,” Computers and Mathematics with
Applications, 37, pp. 57-85, 1999.

[8] S. Dhaka1, B. S. Paskaleva , M. M. Hayat, E. Schamiloglu,
C. T. Abdallah, Dynamical Discrete-Time Load Balancing in
Distributed Systems in the presence of Time Delays, in “Proc.
42nd IEEE Decision and Control Conference” , Vol.5,
pp.5128 – 5134, 2003.

 [9] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
Performance modelling of parallel and distributed computing
using PACE, in “Proc. 19th IEEE International Performance,
Computing and Communication Conference”, pp. 485-492,
Phoenix, AZ, USA, 2000.

[10] A. Y. Zomaya, Y.Teh, Observations on using genetic
algorithms for dynamic load-balancing, IEEE Transactions
on Parallel and Distributed Systems , vol.12, No. 9, 2001, pp.
899-911 .

[11] Orly Kremien, Jeff Kramer. Methodical analysis of adaptive
load sharing algorithms, IEEE Transactions on Parallel and
Distributed Systems 3(Nov.1992), pp. 747-760.

[12] S.Viswanathan, B. Veeravalli, D. Yu, G. Robertazzi, Design
and Analysis of a Dynamic Scheduling Strategy with
Resource Estimation for Large-Scale Grid Systems. In “Proc.
5th IEEE/ACM Int. Grid Computing Workshop”, pp.163-170,
2004.

[13] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd,
Agent-Based Grid Load Balancing Using Performance-
Driven Task Scheduling, in “Proc. of 17th IEEE Int. Parallel
and Distributed Processing Symp.”, Nice, France, 2003.

[14] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G.R.Nudd,
“Modeling of ASCI High Performance Applications Using
PACE”, in Proc. of 15th Annual UK Performance Engineering
Workshop, Bristol, UK, pp. 413-424, 1999.

[15] M. Amini, H. Deldari, “Grid Load Balancing Using an Echo
System of Intelligent Ants”, in Proc. Of 24th IASTED
International Multi-Conference parallel and Distributed
Computing and Networks (PDCN06), Innsbruck, Austria, pp.
47-52, 2006.

[16] M. Dahlin, “Interpreting stale load information”, IEEE
TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS,
VOL. 11 (10), OCTOBER 2000, pp. 1033-1047.

