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Abstract: A*computational grid is a widespread 
computing environment which provides huge 
computational power for large-scale distributed 
applications. One of the most important issues in such 
an environment is resource management. Load 
balancing which is a part of resource manager, has a 
considerable effect on resources’ performance. There 
are several factors which affect the stability of the load 
balancing in the grid. Among these factors, accurate 
criterion for estimating the workload, considering the 
workload transmission cost, validity of the information 
about other nodes and the overhead imposed by the 
method are more effective. In this paper we propose a 
novel method for load balancing which tries to satisfy 
these factors. The proposed method is implemented on 
an agent-based resource management system, called 
ARMS. There are several simulations which indicate 
that the proposed method outperforms than similar 
methods.  
 
Key-words: Grid computing, Load Balancing, Agent-
based Resource management system (ARMS), Virtual 
routing, PACE. 
 

I. INTRODUCTION 
 

Grid infrastructure provides us with the ability to 
dynamically link together resources as an ensemble 
to support the execution of large-scale, resource-
intensive, and distributed applications [1]. Grid 
permits users to interface with the resources 
uniformly, providing a powerful platform for global 
computing. Resource management and scheduling 
are key issues in this platform [2, 4]. An ideal 
resource manager should efficiently utilize all of the 
grid resources [4, 5]. 

Load balancing is an important issue for the 
problem of utilization. Load balancing are those 
mechanisms which are designed to equally spread the 
load on resources and maximize their utilization [10]. 
These mechanisms can be broadly categorized as 
centralized or decentralized, dynamic or static, 
periodic or non-periodic [10]. 

Most of current load balancing methods in the 
grid environment are borrowed from those in 
distributed systems [13]. However lack of a 
common/realistic definition for load [6], 
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communication overhead and ignoring transmission 
cost [8] are crucial limitations for most of current 
load balancing methods in grid and distributed 
systems. Furthermore vastness and high degree of 
dynamism are two additional difficulties in the grid 
environment. 

Frequent workload variation is a major 
characteristic of the grid dynamism [1,2]. Therefore, 
for the sake of accuracy in load balancing methods, it 
is necessary to update load information frequently. 
However, frequent updating in the grid, leads to 
enormous communication overhead. In other words, 
here we have a trade-off between reliability and 
scalability [8]. In [16] Dahlin proposed a load 
estimating method (instead of load exchanging) 
which drastically reduces the load exchanging 
needed. Though, utilizing load estimation method 
needs a more precise load definition. 

In [8] Dhaka1 et al. proposed a combinatorial 
definition for load. However In spite of more 
accuracy and estimation capability, it finally 
considers (counts) the number of jobs, which is not a 
precise scale for load measuring. 

QLBVR [3] is a multi-level load balancing 
method for distributed systems which balances the 
load among nodes according to their queue length 
and request arrival rate. It also uses virtual routing 
method for checking the scattering profitability. 
Virtual routing changes load balancing difficulty to 
an optimal routing problem in the following way.  

Virtual routing adds a virtual node, which is 
called as the destination node (node d), in the 
network system. Connect node d with each 
neighboring node i by a virtual direct link (i, d). Let 
the nodal delay of node i be considered as the 
communication delay on link (i, d). As shown in Fig. 
1, a three-node system has been converted into a 
datagram network, in which node i essentially acts as 
a router. The loads which arrive at node i, are routed 
to destination node d via every node ij ≠ , with the 
goal of minimizing the mean link delay. Then, each 
node i in the system only considers the routing paths 
of (i, d) and (i, j) → (j, d) where j is a neighbor of i. 
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Fig. 1.Routing paths for each node  
 
Considering the grid specifications and the above 

limitations, in this work we attempt to propose a 
novel method that does not need a lot of information 
to be exchanged, taking in to account a more accurate 
definition for load as well as considering 
transmission cost. This method is implemented in an 
agent-based resource manager called ARMS. We will 
discuss ARMS and the proposed method in detail, 
during the next sections.  

The rest of the paper is organized as follows: 
Section 2 introduces the agent-based resource 
management system (ARMS). In Section 3, neighbor 
level load balancing method is described. The 
performance metrics and simulation results are 
included in Section 4. At the end, we present the 
conclusion of the article as well as the future works 
which can be done in the same direction as the 
inclination of this research. 
 

II. Agent-based Resource Management 
 

As mentioned above, Resource management is an 
important infrastructural component of a grid 
computing environment. Agent-based Mechanisms 
are considered to be suitable for grid resource 
management, since agents have the capability to 
control their own knowledge rather than relying on a 
fixed function query engine [2, 4].  

ARMS is an Agent-based resource manger for 
grid computing which is aimed at provisioning 
scalability and adaptability [2]. In ARMS, each agent 
can simultaneously stand for a resource questioner, 
resource provider, and also a matchmaker. These 
agents cooperate with each other to achieve resource 
discovery.  

An agent in the system can have many local 
resources that can provide services. The agent can 
take them as its own capabilities. It must decide how 
and when to advertise this service information to 
other neighboring agents. An agent can also receive 
many service advertisements from neighboring 
agents. However, service information can also be 
propagated to a large area after many steps of 
advertisement over a period of time. All of the 
service information is organized into Agent 
Capability Tables (ACTs) in each agent. The service 
information contains all performance related 
information of a grid resource, which can be used to 

estimate its performance. Therefore the agents are 
equipped with a performance prediction toolkit called 
PACE [5, 9, 14]. 

Application performance prediction provides the 
important functionality that enables the grid load 
balancing capabilities described in this research. The 
PACE toolkit [5] is used to supply this ability for 
both the local schedulers and the grid agents. The 
main components of the PACE toolkit include 
application tools (AT), resource tools (RT), and an 
evaluation engine (EE). The PACE evaluation engine 
can mingle application and resource models at 
execution time to produce performance data e.g. total 
execution time. In the work described in [9] an ASCI 
(Accelerated Strategic Computing Initiative) core 
application, Sweep3D, is used to exemplify the 
performance prediction capabilities of PACE. The 
validation results illustrate that a high level of 
precision can be attained, and the process benefits 
from a quick evaluation time. These characteristics 
allow PACE forecasting data to be used on-the-fly 
for grid resource load balancing.  

While an ARMS system can achieve grid load 
balancing as a result of trying to meet QoS 
requirements specified explicitly by users [13], 
neighbor level load balancing is investigated in this 
research for agents to achieve load balancing for 
batch queuing jobs which are not explicitly coupled 
with execution deadlines. 

 In [4, 15] there are load balancing mechanisms 
on ARMS using ant colony optimization, however 
the basics of our work are different in the following 
ways: 

• The new approach is a prevention mechanism 
while [4] is detection and recovery one. This 
implies that in the new approach we initially 
try to impede the unbalance. 

• Ant colony is an offline mechanism, while 
the new one is online. In other words in the 
former, there might be nodes that had not 
been met for a long time [4], however in the 
new approach, all the nodes cooperate in the 
load balancing process periodically. 

Neglecting the transmission cost and high 
communication overhead is another deficiency in [4].  

However our mechanism and the previous one are 
not oppositions, instead they could be synergetic. 

In the next section we propose our new 
mechanism. 

 
III. Neighbor Level Load Balancing Using Virtual 

Routing 
 

Considering stated disadvantages for current load 
measurement methods, we first provide a more 
accurate load measurement/estimation method which 
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relies on the time needed for executing current jobs 
(instead of number of current jobs). Then we propose 
our new load balancing method based on this new 
measurement/estimation policy. 

In the ARMS, agents obtain their resource 
capabilities using PACE and exchange them with 
their neighbors periodically. An agent advertises its 
load information only to its neighbors, for the 
purpose of scalability needed in the grid [11]. It is 
possible to attach load characteristics of the nodes to 
this exchanging information.  

Here, we consider the total execution time (gained 
through PACE evaluation engine in each node), 
average of the job arriving rate and job completion 
rate (considering the number of arrivals/completions 
in a certain fixed interval of time in each node) as the 
load information. This information helps to provide a 
more accurate measurement as well as estimation for 
load as follows: 

 

TtttjTttCtLttL iiii ),()()()( ∆++∆+−=∆+ (1) 
 

Where Li(t) shows the total time needed for 
executing current waiting jobs, )( ttCi ∆+ indicates 
the number of jobs completed in the interval ),[ ttt ∆+ .

),( tttji ∆+ is the number of jobs arriving in the same 

interval. Finally T is a constant coefficient which 
shows the average execution time. 

Moreover the receiver agent can estimate the time 
gap between sending and receiving the information 
and applies it as an approximation for transmission 
cost between the two nodes. 

The agents in the system exchange their status 
information at periodic interval of time Ts, which is 
called the status exchange interval. The instant at 
which this information exchange happens is called a 
status exchange epoch. Each status exchange interval 
is further divided into identical subintervals denoted 
as estimation intervals Te. The points of division are 
called estimation epochs, in which each node 
estimates its neighbors load according to (1). 

 In Fig. 2, Tn−1, Tn stand for the status exchange 
epochs and t1, t2 denote the estimation epochs. These 
estimation epochs postpone the status exchange 
epochs and therefore communication overhead 
decreases. 

Fig. 2 .Intervals of estimation and status exchange [3]. 
 

These exchanges are not dedicated to the load 
balancing method and are inherently used in resource 
advertisement in ARMS. We opportunistically attach 
our favorite fields to them. Therefore we assert that 
the method has a few communications overhead on 
the whole system. 

Now, the load scheduling decision is taken as 
follows: utilizing the load information received in the 
last Ts and using (1), the agents estimate the current 
load of their neighbors in each estimation epoch 
while estimation is not required in the exchange 
epochs. Then the agent computes the average load on 
its neighboring agents. An agent calls itself 
“overloaded” if its load is greater than the average 
load of its neighbors. Agents in the neighboring set, 
whose estimated load is less than the estimated 
average load by more than a thresholdθ , form an 
active set. However, because of the transmission cost, 
sending the agent’s load to all of the active set 
members might not be profitable [8]. We compass the 
problem of profitability using virtual routing and try 
to send the extra loads to those members of the active 
set which mostly satisfy the profitability. The sender 
each time finds a member of the active set which has 
the most profit (result in less response time) and then 
it sends its jobs (extra load) to the selected member 
of the active set.  

It is clear that most of the equalizations occur 
only between nearby agents. However, load can be 
spread to a large area after many steps of 
equalizations over a period of time. 

It is probable that an underloaded agent situated 
in active set of two or more than two overloaded 
agents simultaneously. In these circumstances, 
overloaded agents may send their extra load to the 
underloaded at the same time and make the 
underloaded agent, overloaded. Hence this condition 
causes instability for the proposed method. We use a 
locking technique to avoid these situations. Therefore 
each agent only sends its load information to one 
requester, and does not respond to any other agent at 
the same time. This continues until the agent 
dismisses by the requester. 

 
IV. Performance Evaluation 

 

In performance evaluation described in this section, 
we investigate several common statistics to show 
performance of the method described. 
 

A. Performance Metrics 
 

There are a number of performance metrics that can 
be used to describe grid resource management and 
scheduling systems. In this work several communal 
statistics are investigated and used to describe the 
effect of grid load balancing.  
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Let P be the number of agents of an ARMS 
system and Wpk (p=1,2,……,P) be the workload of 
the agent p at the period k. The average workload of 
all P agents is: 

P
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The mean square deviation of Wpk  that characterizes 
the load balancing level of the system is defined as: 
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It is obvious that load balancing can not be 
achieved without any overhead. In at most all 
methods the load balancing process imposes 
additional network connections among nodes. 
However as mentioned earlier, this communication 
overhead is minimized in this method due to the 
ARMS characteristics and load estimation method. 
Nevertheless, in system load balancing efficiency (e)
is another metrics that takes consideration of system 
costs for load balancing. Let Tk be the total time spent 
in all agents to achieve a load balancing level Lk. The 
system efficiency ek is represented using the average 
of an agent connection time to load balancing level 
upturn during the latest period and calculated as 
follows: 

k

k
k T

LLe −= 0 (4) 

Most of the time, these metrics explained recently 
are conflictive, that is not all metrics can be elevated 
at the same time. For example, a high load balancing 
level does not indicate high efficiency, as sometimes 
good load balancing may be accomplished through 
too many load balancing operations, resulting in low 
system efficiency.  
 

B. System Modeling 
 

In this work, agent systems and the method are 
simulated in a simplified way using several aspects of 
parameters sufficient to outline system characteristics 
statistically. 
• MAgents. The agents can be mapped in a graph. 

This simplification is done in some similar 
works [12, 13, and 4]. For the sake of 
simplification we use a 20*20 square to show the 
graph (grid environment), thus all of experiments 
described later include 400 agents. In this square 
each agent might have at most 8 neighbors. 

• MWorkload. A workload value and corresponding 
distribution are used to characterize system 
workload. Initially the value is generated 
randomly; however it changes during time with 

regard to the load balancing, completion rate and 
arrival rate. 

• Processing rate and arrival rate. In each period, 
processing (completion) rate and request arrival 
rate are assigned to each agent randomly. 

 

C. Simulation Results 
 

The first experiment illustrates the relation between 
load balancing level and period count in two different 
ways. However both of them are repeated for 
different values of θ .

In the first way, we assume that the system load is 
unvarying during the load balancing process. As 
shown in Fig. 3.a as the time elapsed, the system 
approaches to the final convergence. However it 
doesn’t improve more than a specific value. This is 
the point that the load balancing method prefers to 
execute jobs locally instead of sending them to the 
others. In other words, as time elapses a wavelike 
load distribution is created. As shown in Table1, the 
balancing level has a few fluctuations in last 
iterations because of that transmission delay exceeds 
the executing time locally. 

In the second way, according to (1) we assume 
that the load of each agent changes proportional to 
the processing rate and arriving rate during the time. 
We achieved the experiment through hundred periods 
to show the final balancing level of the system. As 
shown in Fig. 3.b, even the load of the system 
fluctuated during the time; the load balancing method 
keeps the balancing level of the system steady 
especially when θ approaches to zero.  

In the second experiment we concentrate on the 
effect of virtual routing on saving time spent for load 
balancing. The comparison is done with an algorithm 
which does not using virtual routing i.e. does not 
considering transmission cost. In this algorithm each 
agent sends the extra load to neighbors with the 
lowest load. In this work we name such an algorithm 
a “Best fit” algorithm. For the sake of comparison, we 
calculated the total time spent in all agents for 
sending the extra load to the neighbors in each period 
(Cost). As illustrated in Fig. 4 the new method spent 
less time (with different values forθ ). This is 
because the new method considers the transmission 
overhead while the best fit algorithm does not. 
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(b) 
Fig. 3. Relation between period count (Period) and balancing 

level (Level). (a) Load is constant, (b) load varying, during the 
time. 

 
TABLE I 

PROPORTION OF LOAD AND BALANCING LEVEL WHEN 
THE LOAD IS CONSTANT 

Period(P) Balance Level(L)
0 78.60925518 

1 39.90507487 

2 33.44248795 

5 25.11827024 

10 22.73581976 

15 21.12841688 

30 19.38846306 

45 18.79893614 

50 18.71910788 

The last experiment shows the efficiency of the 
method (for different values ofθ ) in comparison with 
the best fit algorithm. It is obvious from (4) that 
smaller Tk result in better efficiency; however 
balancing level in kth iteration is effective. As shown 
in Fig. 5, the new method has a better efficiency. 

This was predictable from the former experiment; 
however this experiment shows that while Tk is much 
smaller than the best fit algorithm, there is no much 
difference between Lk in both methods. 

 

Fig. 4. Time overhead (Cost) comparison between using 
Neighbor level and Best fit algorithm during several periods 

(Period). 
 

Fig. 5. Efficiency comparison between the new method and 
best fit algorithm during several periods.  

 

V. CONCLUSION 

The main contribution of this work includes 
providing a load balancing method for agent based 
grid which considers the time needed for sending 
jobs to other nodes. This method imposes less 
overhead to the underlying platform while increasing 
resource utilization and improving completion time 
of all jobs. 

There are many important features required by a 
grid computing system and not discussed in this 
work, e.g. security, billing contracts between agents 
when they exchange the load of their customers, and 
data management. Future work will focus on the 
refinement of the system prototype and the proposed 
algorithm. 
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