

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 157 – 162, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MLBLM: A Multi-level Load Balancing Mechanism in
Agent-Based Grid

Mohsen Amini Salehi1, Hossain Deldari2, and Bahare Mokarram Dorri3

1 Department of Software Engineering, Faculty of Engineering, Islamic Azad University,
Mashhad Branch, Iran

2 Department of Software Engineering, Ferdowsi University, Mashhad, Iran
3 Management and Planning Organisation of Khorasan, Mashhad, Iran

Amini@mshdiau.ac.ir, hd@ferdowsi.um.ac.ir, mokarram@mpo-kh.ir

Abstract. A computational grid is a widespread computing environment that
provides huge computational power for large-scale distributed applications.
Load balancing, has a considerable effect on the grid middleware performance.
Current load balancing methods cannot satisfy all necessities for the grid. In this
paper, a Multi-level Load Balancing Method (MLBM) is proposed. Cooperation
among different levels in this method, removes disadvantages of each level,
while satisfy most of load balancing requirements needed. Simulation results
indicate that this new mechanism surpasses its predecessors in increasing effi-
ciency and decreasing communication overhead.

1 Introduction

A computational grid is a hardware and software infrastructure that provides consis-
tent, pervasive and inexpensive access to high end computational capacity. An ideal
grid middleware should provide access to all the available resources seamlessly and
fairly [1].

ARMS is an agent-based resource manger for grid computing which is aimed at
provisioning scalability and adaptability [1]. In this system, agents cooperate with
each other to achieve resource discovery. Each agent organizes all service information
of a resource into Agent Capability Tables (ACTs). The agents are equipped with a
performance prediction toolkit called PACE [1], [2] to predict available efficiency of
resources. Experiments testify a high level of precision attained through PACE.

Considering the largeness, dynamic resources, and other specifications of the grid,
it is impossible to utilize resources in equilibrium, unless using efficient load balanc-
ing methods. However, lack of a well-organized load balancing method is a crucial
problem in most of grid resource managers, like ARMS.

Taking into account the ARMS specifications and the importance of load balanc-
ing, in this work, we attempt to propose a multi layer load balancing mechanism for
ARMS.

Load balancing methods are designed essentially to spread the load on resources
equally and maximize their utilization while minimizing the total task execution time
[3]. Recently, some methods have been suggested for load balancing in the grid [1],
[4], [5]. Heuristic approaches are applied in most of these methods.

158 M.A. Salehi, H. Deldari, and B.M. Dorri

J. Cao implemented a load balancing method in ARMS [1]. As stated in [1], the ef-
ficiency of the mechanism highly depends on the number of cooperating ants (n) as
well as their step count (m) which is defined by the grid user itself.

Some load balancing methods, like QLBVR [6], are periodical. It balances the ex-
tra load among neighboring nodes according to their average queue length and request
arrival rate. This method uses virtual routing [6] method for checking the balancing
profitability. Virtual routing changes the load balancing difficulty to an optimal rout-
ing problem by adding a virtual node in the network system.

In our proposed method, which is provided in the next section, we intend to use the
advantages of both attitudes. Furthermore, there is an effective load balancing method
in ARMS, which provides an optimal scheduling within a node [2]. We call this
method a ‘local-level’ load-balancing and we use it as the first level of load balancing
in our new multi-layer approach, MLBM.

The rest of the paper is organized as follows: Section 2 contains a survey on cur-
rent load balancing methods. In Section 3, different levels of MLBM method are de-
scribed. Performance metrics and simulation results are included in Section 4. At last,
we will present the conclusion as well as the relevant future works.

2 Proposed Method

In this section, firstly, a new load balancing method based on ant colony heuristic is
proposed, and then a complementary method, which tries to compensate its defects, is
suggested. Coupling these two methods with local-level will construct MLBM.

In this paper, the number of waiting jobs is considered as a criterion for measuring
load in a node.

2.1 Grid-Level Load Balancing

In this level, an echo system of intelligent ants is suggested. Interactions between
these ants will result in load balancing throughout the grid. Here, echo system means
that the ants are created on demand to achieve load balancing. They may bear off-
spring or they commit suicide according to their environmental conditions. Every ant
in the new mechanism hops ‘m’ steps and then balances ‘k’ overloaded nodes with ‘k’
underloaded. In the next subsections, we will describe the grid-level method.

2.1.1 Creating, Moving and Deciding of Ants
If a node understands that it is overloaded, it can create a new ant with a few steps to
balance the load quickly. A memory space, which is divided into an underloaded list
(Min-List) and an overloaded list (Max-List), is allocated to each ant in which the ant
records specifications of the overloaded and underloaded nodes while wanders.

After entering a node, the ant should determine state of the node, i.e. overloaded,
underloaded or equilibrium, using its acquired knowledge from the environment. As
the state of the node is determined relative to the system conditions, decision making
is performed adaptively by applying adaptive fuzzy logic. To make a decision, the ant
deploys the node’s current workload and its (i.e. the ant’s) remained steps as two in-
puts to the fuzzy inference system. Then, the ant determines the state of the node.

 MLBLM: A Multi-level Load Balancing Mechanism in Agent-Based Grid 159

Therefore, If the result is “overloaded” or “underloaded”, the node specifications
must be added to the ant’s max-list or min-list. Subsequently, the corresponding
counter for Max, Min, or Avg increases by one.

In special circumstances, especially when an ant’s life span is long while the ant is
continuing its wandering, its memory may get full, but it still encounters nodes which
are overloaded or underloaded. In this situation, if a node load is overloaded, the ant
bears a new one with predefined steps. Here, adaptability translates into increasing the
number of the ants automatically, whenever there are many overloaded nodes.

2.1.2 Load Balancing, Starting New Itineration
When the ant’s hops end, it must start the balancing operation between its overloaded
(Max) and underloaded (Min) elements gathered. After load balancing, the ant must
reinitiate to begin a new itineration. One of the fields that must be initiated is the ant’s
step counts. However, the ant’s step counts (m) must be relative to system conditions
[1]. Therefore, if most of the nodes visited were underloaded or in equilibrium, the ant
should prolong its wandering steps, i.e. decrease the load balancing frequency and
vice versa. Doing this requires the ant’s knowledge about the environment. Adaptive
fuzzy logic is again used in determining the next itineration step counts. The
controller determines the next step counts (NextS) based on the number of overloaded,
underloaded and equilibrium nodes visited, along with the step counts during the last
itineration (LastS). Actually, the former indicates recent condition of the environment,
while later reports lifetime history of the ant. This fuzzy system can be stated as a
relation as follows:

><>→<
><><><

DeadthhmltlNextSthhmltlLastS

hmlAvgCnthmlMinCnthmlMaxCntRA

,,,,,,,,,*

,,*,,*,,:
 (1)

If an ant’s step counts extend to extreme values, its effect tends to be zero. Based
on this premise, one can conclude that an ant with too long step counts does not have
any influence on the system balance. In this circumstance, the ant must commit sui-
cide i.e. NextS is fired in the “Dead” membership function.

2.2 Neighbor-Level Load Balancing

As mentioned before, we use neighbor-level load balancing as the second layer in
MLBM. The algorithm of this level works as follows:

In ARMS, agents use PACE to obtain their resource capabilities information.
Agents periodically exchange this information with their neighbors. An agent adver-
tises its load information only among its neighbors. Load characteristics of the nodes
could be attached to this exchanging information. Moreover, the receiver agent can
estimate the time gap between sending and receiving the information as the transmis-
sion cost. The agents in the system exchange their status information at periodic
interval of time Ts . We opportunistically append our favorite fields to them.

Based on the load information received in the last Ts, the agents estimate the cur-
rent load of their neighbors in each interval. Then, the agent computes the average
load on its neighboring agents. An agent calls itself “overloaded” if its load is greater

160 M.A. Salehi, H. Deldari, and B.M. Dorri

than the average load of its neighbors. Neighbors, whose estimated load is less than
the average, form an active set. However, because of the transmission cost, sending
the agent load to all of the active set members might not be profitable [7]. We com-
pass the problem of profitability using virtual routing [6].

2.3 MLBM: Multi-level Load Balancing Mechanism

Each of the two proposed methods has some defects. Neighbor-level method has a
limited vision and grid-level method imposes too much communication overhead and
is not fair. Combining these two methods with the local-level, would satisfy most of
requirements for an ideal load balancing method. Now, MLBM works as follows:

Agents, periodically, exchange their state information in ARMS. Load information
is attached to this exchanging data. Each agent uses local-level method to make its re-
sources balance. Moreover, each overloaded agent uses neighbor-level method, to
balance its load with adjacent neighbors. At the same time, some ants may pass
through that agent and choose it for further balancing. However, if a node is over-
loaded, for several periods of time, and it has not been visited during this time, then
the node itself creates a new ant to balance its load throughout a wider area.

Consider that in neighbor-level method, scattering radius is limited; however this
flaw was compensated using ants. On the other side, using neighbor-level, the load
inequality decreases. This causes fewer ants and less communication overhead.
Moreover, as each node uses neighbor-level method, even if it is not visited by any
ant, it can achieve load balancing. Thus the mechanism is fair.

3 Performance Evaluation

There are a number of performance metrics used to describe grid scheduling systems
which are investigated. Let P be the number of agents of ARMS system and Wpk (p=1,
2… P) be the workload of the agent p at period k. The average workload is:

P

W

W

P

p
pk

k

∑
== 1 (2)

The mean square deviation of Wpk, which characterizes the load balancing level of
the system, is defined as (3). Let Tk be the total time spent in all agents to achieve a
load balancing level Lk. Then, load balancing efficiency ek , is calculated according
to (4).

P

WW

L

P

p
pkk

k

∑
=

−
= 1

2)(
 (3)

k

k
k T

LL
e

−= 0 (4)

 MLBLM: A Multi-level Load Balancing Mechanism in Agent-Based Grid 161

In this work, Agent system, Workload, and Resources are modeled as follows:

• Agents. Agents are mapped to a square grid. This simplification has been done in
similar works [1], [4], and [5]. All of experiments described later include 400
agents.

• Workload. A workload value and corresponding distribution are used to charac-
terize the system workload. The value is generated randomly in each agent.

• Resources. Resources are defined in the same way as workload.

4 Simulation Results

First experiment involves total network connections needed. As shown in Fig.1, total
communication needed (C), in MLBM, is drastically less than the conditions only
grid-level or seminal method [1] is used. It can be seen that the communication count
goes flat in the last seconds, when the load balancing frequency decreases.

Fig. 1. Comparing communications needed (C) in MLBM, Grid-level, and Seminal method
during the time (T(s))

In second experiment, convergence speed is compared between the three methods.

Fig. 2. Convergence speed in MLBM, Grid-level and Neighbor-level methods

For the sake of comparison, we examined balancing level (L) achieved during the
time. The results are illustrated in Fig.2. As stated before, slow convergence speed
was a defect in neighbor-level method. However, Fig.2 explains that the combination
of the two methods cope the disadvantage.

In the last experiment, system efficiency is discussed. Efficiency (e) is calculated
for MLBM, grid-level, and seminal ant method [1] during the time (T). Fig.3 proves
that MLBM has the best efficiency between others.

162 M.A. Salehi, H. Deldari, and B.M. Dorri

Fig. 3. Comparing efficiency (e) between MLBM, grid-level, seminal method in time (T)

5 Conclusion and Future Works

In this research, we proposed a multi-level load balancing method (MLBM) for grid
environment; overloaded nodes get balances through these layers. In the first layer,
which is ‘node-level’, an efficient scheduler tries to use node’s resources equally. The
second level, which is called ‘neighbor-level’, periodically scatters the extra load of
overloaded nodes to a limited domain. The third level, which is ‘grid-level’, is a col-
ony of intelligent ants which spread the regional extra load throughout the grid.

Cooperation of these layers in a multi-layer framework (MLBM) alleviates their
disadvantages and, as exhibited in the paper, results in better efficiency.

In our future works, we plan to prove MLBM mathematically, promoting ant’s
intelligence and adaptation as well as adding billing contracts between resources as
they exchange customer loads and overcome security considerations.

References

1. J. Cao: Self-Organizing Agents for Grid Load Balancing, Proc. 5th IEEE/ACM Int. Work-
shop on Grid Computing.

2. J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd: Agent-Based Grid Load Bal-
ancing Using Performance-Driven Task Scheduling, in Proc. of 17th IEEE Int. Parallel and
Distributed Processing Symp. Nice, (2003), 218-224.

3. A. Y. Zomaya and Y. The: Observations on using genetic algorithms for dynamic load-
balancing, IEEE Trans. on Parallel and Distributed Systems, (2001), 899-911.

4. M. Amini, H. Deldari: Grid Load Balancing Using an Echo System of Ants, in Proc. Of 24th
IASTED Int. Cnf, Innsbruck, (2006) 47–52.

5. M. Amini, H. Deldari: A Novel Load balancing Method in an Agent-based Grid, in Proc. Of
IEEE Int. Cnf on Computing and Informatics, Kuala Lumpur, (2006).

6. Z. Zeng and B.Veeravalli: Rate-Based and Queue-Based Dynamic Load Balancing
Algorithms in Distributed Systems, Proc. of the 10th Int. Cnf. on Parallel and Distributed
Systems, (2004), 156-163.

7. S. Dhaka1, B. S. Paskaleva, M. Hayat, E. Schamiloglu, C. T. Abdallah: Dynamical Dis-
crete-Time Load Balancing in Distributed Systems in the presence of Time Delays, in Proc.
42nd IEEE Decision and Control Vol.5, (2003), 5128-5134.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

