Cost Efficient Repository Management for Cloud-Based On-Demand Video Streaming

Mahmoud Darwich∗†, Ege Beyazit∗, Mohsen Amini Salehi†‡, Magdy Bayoumi∗
∗Center for Advanced Computer Studies (CACS)
†High Performance Cloud Computing (HPCC) Laboratory
‡School of Computing and Informatics
University of Louisiana at Lafayette, Louisiana 70503
Email: {mkd1007, exb6143, amini, mab}@louisiana.edu

Abstract—Video transcoding is the process of converting a video to the format supported by the viewer’s device. Video transcoding requires a huge storage and computational resources, thus, many video stream providers choose to carry it out on the cloud. Video streaming providers generally need to prepare several formats of the same video (termed pre-transcoding) and stream the appropriate format to the viewer. However, pre-transcoding requires enormous storage space and imposes a significant cost to the stream provider. More importantly, pre-transcoding proven to be inefficient due to long-tail access pattern to video streams in a repository. To reduce the incurred cost, in this research, we propose a method to partially pre-transcode video streams and re-transcode the rest of it in an on-demand manner. We will develop a method to strike a trade-off between pre-transcoding and on-demand transcoding. We term the lazy transcoding of videos as re-transcoding and storing of videos as pre-transcoding.

Recent studies show that accessing videos of a VSP follows a long tail distribution [7]. That is, there are few videos that are accessed very frequently while there is a huge portion of videos that are rarely accessed. Thus, research works have been undertaken (e.g., [4], [8]) to alleviate the cost overhead of pre-transcoding by transcoding rarely-accessed videos in an on-demand (i.e., lazy) manner. In this manner, one or few formats of a video is stored and transcoding is performed on-the-spot upon request to access a format of video that is not already pre-transcoded. This has become feasible with the enormous computational capacity clouds offer. We term the lazy transcoding of videos as re-transcoding and storing of videos as pre-transcoding.

Re-transcoding induces the computational cost of VSPs which is generally more expensive than the storage cost [9], this is because computation power are charged in on hourly basis in cloud. Therefore, the re-transcoding approach would be beneficial to VSPs, only if it is applied on the rarely accessed videos. Conversely, if it is applied on frequently accessed videos (FAVs), it increases the cost overhead significantly as we have to pay for every time the video stream is transcoded.

The challenge is how to achieve partial pre-transcoding? That is, which parts of the video should be re-transcoded and which part pre-transcoded?

To address these challenges, in this paper, we propose a method to perform pre-transcoding on a portion of the video.

In summary, the contributions of this paper are: (A) Proposing method to reduce the incurred cost of using cloud services through pre-transcoding, re-transcoding, or partially-pretranscoding videos in the repository. (B) Analyzing the impact of our proposed method when the rate of access to video streams in a repository varies.

Experimental results demonstrate that our proposed partial-
transcoding method can reduce the cost overhead of VSPs significantly. The research outcome of this paper can help VSPs to reduce their cost overhead without losing Quality of Service (QoS) demanded by their viewers.

The rest of the paper is organized as follows: section II provides some background on video streaming and transcoding. Section III presents the partial pre-transcoding method. Experiment setup is detailed in section IV. Experimental results are discussed in section V, related works are presented in section VI and finally section VII concludes the paper.

II. BACKGROUND

A. Video Stream Structure

A video stream is a set of sequences as shown in Fig. 1. Each sequence is built of several Group Of Pictures (GOPs). The first block of a sequence is called a sequence header that contains some meta-data about that sequence. Also, each GOP is constructed of a GOP header followed by several frame types, starting with I (intra) frame, followed by a P (predicted) and B (bi-directional) frames. Each frame is further comprised of slices that are formed from macroblocks (MB) [17].

As each GOP can be processed independently, video transcoding operation is commonly achieved at the GOP level [17]. That is, each GOP is considered as a unit for processing or pre-transcoding.

B. Cloud Services for Video Stream Transcoding

Cloud providers offer different services in an on-demand manner and charge their users in a pay-as-you-go manner. A cloud-based video streaming system utilizes different cloud services as follows:

- Computational Services: Computational services in clouds are generally provided through Virtual Machines (VM) and users are charged in an hourly basis.
- Storage Services: Users are charged for storage services based on the volume of their data stored on the cloud usually on a monthly basis.
- Content Delivery Network (CDN) services: CDN is a technology that reduces the delay to access different static content types, including video streams, through the Internet. CDN technology replicates the content (e.g., video content) in different geographical areas to minimize the network travel time of content to users [10], [11].

Amazon Web Services\footnote{https://aws.amazon.com/} is a major cloud provider and offers all the foregoing cloud services with a high reliability. Although this study is independent of AWS technology and can work on any of cloud provider, we consider AWS services, charging model, and costs for our evaluations.

Amazon Elastic Compute Cloud (Amazon EC2) provides computational services in form of VMs. It offers various types of VMs to cover different computational demands. General purpose \textasciitilde{t2-small} VM type is the most common service used for different type of processing and we utilize this VM type for our evaluations as well. The hourly cost of \textasciitilde{t2-small} VM is \$0.026. Amazon Simple Storage Service (Amazon S3) is the storage service of Amazon cloud. Amazon S3 costs \$0.03 for each Gigabyte of stored data in a month. Amazon also offers the CDN service (called CloudFront\footnote{https://aws.amazon.com/cloudfront/}). It delivers the content to users (i.e., viewers) through a worldwide network of data centers with minimum delay [12]. Amazon charges \$0.085 for each Gigabyte of data uses CloudFront for the first 10TB per month.

It is worth noting that CDN services are required, in addition to storage services to perform pre-transcoded cloud-based video streaming. However, the CDN cost is not applied when we provide on-demand video transcoding service.

III. PROPOSED PARTIAL PRE-TRANSCODING METHOD

A. Video Streams Access Pattern

As re-transcoding cost is incurred every time a video stream is transcoded, it is crucial to know the access pattern to videos. Previous studies show that accessing video streams follow a long tail distribution. Other observations (e.g., [15]) reveal that, within each video stream, the beginning segments (GOPs) are watched more frequently than the rest of the video streams.

Miranda et al. [15] show that the distribution of the views within a video stream follows a long tail distribution. More specifically, they show that the distribution of accesses to GOPs of a video stream can be expressed by Power-law [18] model. Therefore, if a video stream is accessed \(V \) times, then we can estimate the number of times each GOP is viewed. Let \(GOP_i \) as the \(i \)th GOP in a video stream, then the number of views for \(GOP_i \), denoted \(P_i \), is estimated based on Equation 1. In this equation, \(\alpha \) is a constant with value 0.1.

\[
P_i = \frac{V}{\Gamma_i^\alpha}
\]

(1)

B. Storage Cost of Video Streams

The storage cost of a video stream depends on the video size, and the cloud storage unit price. The equation of cloud storage cost for video \(v \) is defined as:

\[
C_S = \frac{S_v \cdot P_S}{2^{10}}
\]

(2)

where \(S_v \) is the size of video \(v \) in MB, \(P_S \) is the storage unit price in dollar per GB, the term \(2^{10} \) is used to convert the
video size unit from MB to GB. Equation 2, however, might be extended to compute the storage cost of each GOP in the video stream. The equation of storage cost for GOP$_i$ is $C_{S_i} = \frac{P_T \cdot S_{GOP_i}}{2^{10}}$, where S_{GOP_i} is the size of GOP$_i$.

C. Transcoding Cost of Video Streams

The transcoding cost is the cost of using virtual machines (VMs) that depends on the time span of utilizing VMs and the type of VM utilized for transcoding. Let P_T the cost of using VM for an hour, and τ_v the estimated transcoding time of video v in seconds. Then, the cost of transcoding of video v, denoted C_T, is obtained using Equation 3.

$$C_T = \frac{P_T \cdot \tau_v}{3600} \tag{3}$$

It is noteworthy that Equation 3 determines the cost for one time re-transcoding of a video. However, if a video is re-transcoded V times, the total cost would be $V \cdot C_T$.

Estimation of transcoding execution time (τ_v, in Equation 3) can be obtained based on historic transcoding execution times of the video in the past. In particular, the estimated transcoding time of video v is the sum of transcoding time of all GOPs in that video, i.e., $\tau_v = \sum_{i=1}^{m} \tau_i$, where τ_i is the estimated transcoding time of GOP$_i$ and m is the total number of GOPs in video v.

Accordingly, Equation 3 can be extended to compute the transcoding cost of each GOP in the video stream. The equation of transcoding cost for GOP$_i$ in the video stream is represented by

$$C_{T_i} = \frac{P_T \cdot \tau_i}{3600}, \text{ where } \tau_i \text{ is the estimated transcoding time of GOP}_i.$$

D. Algorithm 1

The goal of this algorithm is to minimize the incurred cost of using cloud services for VOD transcoding. For that goal, the algorithm is executed for each video in the VSP repository periodically (e.g., monthly). The pseudo code for this algorithm is presented in Algorithm 1. It receives the video size, estimated video transcoding time, storage unit price, transcoding unit price, and number of views of the video in the last time period (e.g., last month) as input values. The output of the algorithm is whether to pre-transcode the whole video or re-transcode it upon request.

The algorithm calculates the cost of storage and transcoding according to what was discussed in Equation 2 and 3 (see steps 1 and 2 Algorithm 1). We calculate the ratio of video storage cost to video transcoding cost in step 6 (called cost ratio). When the ratio is less than or equal 1, it means that the cost of pre-transcoding is less than or equal the re-transcoding cost, thus, we store that video format, otherwise, we call Algorithm 2 to decide about partial pre-transcoding of the video. It is worth noting that for a new video $V = 0$, thus, we postpone its transcoding to when it is requested.

E. Algorithm 2

When the cost ratio for a video is greater than 1, Algorithm 2 is called to possibly pre-transcode a portion of the video (termed partially pre-transcoded video). It is proven that the access pattern of GOPs within a video stream follows a long tail distribution [15]. That is, the first GOPs of a video stream are watched more often than the rest. Thus, the cost ratio of GOPs constantly increases for the later GOPs in the video stream. Accordingly, it is possible to find a boundary GOP so that all GOPs before it need to be pre-transcoded and all GOPs after that re-transcoded. We call this dividing point as GOP threshold (GOP_{th}). Formally, GOP_{th} is defined as the first GOP of a video stream that has its cost ratio greater than one.

Algorithm 2 receives GOPs of a video stream, GOP size, estimated transcoding time of GOP, storage unit price, transcoding unit price and number of requests for the video stream in the last time period as input values.

Algorithm 2 searches for the GOP threshold by calculating the cost ratio of each GOP sequentially, starting from the first GOP in the video stream (step 1 to 5 in Algorithm 2). After finding the GOP threshold, Algorithm 2 pre-transcodes the GOPs before GOP threshold and re-transcodes the GOPs after it as shown in Algorithm 2

Fig. 2 illustrates how Algorithm 2 functions based on the long tail access pattern to GOPs within a video stream. Once we find the GOP threshold, all the GOPs with cost ratio less than 1 (i.e., $R_t < 1$) are pre-transcoded and the rest of GOP are re-transcoded.

IV. EXPERIMENT SETUP

A. Videos Synthesis

VSPs have large video streams repository. However, we do not have access to such repositories. Downloading a large quantity of videos and then transcoding them is a long and costly process. Therefore, we simulate large repositories by synthesizing videos.

To accurately synthesize videos, we need to know the distribution of characteristics of videos. Specifically, GOP size,

As we are dealing with VOD, we expect that videos have been watched, thus, transcoded before. However, this is not the case when we deal with live stream videos. In that case such historic execution information is not available.
Algorithm 1: Partial pre-transcoding a video

Input:
- Size of video \(v \): \(S_v \)
- Transcoding time of video \(v \): \(\tau_v \)
- Transcoding unit price: \(P_T \)
- Storage unit price: \(P_S \)
- Number of views in the last time period: \(V \)

Output:
-Fully pre-transcode or fully re-transcode a video

1. Calculate cost of transcoding of \(v \):
 \[C_T \leftarrow \frac{P_T \cdot \tau_v}{3600} \]
2. Calculate cost of storage of \(v \):
 \[C_S \leftarrow \frac{S_v \cdot P_S}{2^{10}} \]
3. If \(V = 0 \):
 - Re-transcode the whole video \(v \)
4. If \(\frac{C_S}{V \cdot C_T} \leq 1 \):
 - Pre-transcode video \(v \)
5. Otherwise:
 - Perform partial pre-transcoding using Algorithm 2
6. End

Algorithm 2: Partial pre-transcoding a video

Input:
- Video \(v \) with \(m \) GOPs
- Size of GOP \(i \): \(S_i \)
- Transcoding time of video GOP \(i \): \(\tau_i \)
- Transcoding unit price: \(P_T \)
- Storage unit price: \(P_S \)
- Views number in the last time period: \(V \)

Output:
- Partial pre-transcoding a video

1. For each GOP \(i \) in the video stream \(v \):
 - Estimated number of views for GOP \(i \):
 \[P_i \leftarrow V \cdot \text{GOP}_i^{\alpha} \]
 - Calculate cost of transcoding of GOP \(i \):
 \[C_T_i \leftarrow \frac{P_T \cdot \tau_i}{3600} \]
 - Calculate cost of storage of GOP \(i \):
 \[C_S_i \leftarrow \frac{S_i \cdot P_S}{2^{10}} \]
 - Calculate cost ratio of GOP \(i \):
 \[R_i \leftarrow \frac{C_S_i}{P_i \cdot C_T_i} \]
2. If \(R_i > 1 \):
 - GOP \(i \) \leftarrow GOP \(i \)
 - Break;
3. Else:
 - Continue;
4. End
5. Pre-transcode GOP \(i \) to GOP \(i-1 \)
6. Re-transcode GOP \(i \) to GOP \(m \)

TABLE I: statistics of GOP size and number of GOPs in a video repository

<table>
<thead>
<tr>
<th>GOP size (Kbytes)</th>
<th>number of GOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>655.08</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>201.44</td>
</tr>
<tr>
<td>Standard error mean</td>
<td>0.57</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>656.20</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>633.96</td>
</tr>
<tr>
<td>Total no. of GOP</td>
<td>2018</td>
</tr>
<tr>
<td>Min. GOP size</td>
<td>1.91</td>
</tr>
<tr>
<td>Max. GOP size</td>
<td>2192.65</td>
</tr>
</tbody>
</table>

Fig. 3: distribution of GOP size and numbers of GOPs in videos

(a) GOP size histogram
(b) GOPs of video histogram

B. View Pattern for Synthesized Videos

According to [7], we model the access pattern to repository by applying Weibull distribution to generate long tail access pattern. The frequently accessed videos (FAVs) that have high access rates, are located at the beginning of the Weibull curve and those have less views are in the long tail. We determine the percentage of FAVs number in the repository based on the shape and scale coefficients \(\alpha \) and \(\beta \) respectively of the Weibull distribution. As alpha decreases, the number of FAVs increases in the repository and vice versa. The interval range of \(\alpha \) used in the experiment is \([0.4 : 2.4]\) while \(\beta = 1 \).
C. Storage and Computation Prices

The prices of storage and computation used in the experiments are modeled based on Amazon Web Service (AWS) prices as shown in Table II.

<table>
<thead>
<tr>
<th>Transcoding storage CDN</th>
<th>Transcoding storage CDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2-small s3 CloudFront</td>
<td>$0.026 /hour $0.03 GB/month $0.085 GB/month</td>
</tr>
</tbody>
</table>

TABLE II: AWS computation, storage, and Content Delivery Network (CDN) services and their prices in US dollar $.

D. Baseline Methods for Comparison

To evaluate our proposed algorithms, we compare them against two baseline methods that are Fully pre-transcoding (that stores the whole video streams) and Fully re-transcoding (that re-transcodes all video streams upon request). These two methods ignore the metadata of processing and storage costs of the video streams.

V. EXPERIMENTAL RESULTS

A. Impact of FAVs percentage in repository

We create several synthesized repositories of video streams to illustrate the performance of the proposed algorithms. Each synthesized repository is made of total 50,000 videos with a percentage of FAVs. The shape parameter in of Weibull distribution (α) controls the percentage of FAVs in the repositories. The percentage of FAVs based on α and β are shown in Table III. The average view of videos in the repositories is 1.99. We conduct each experiment 10 times and report the mean and 95% confidence interval.

Fig. 5a shows the total cost of fully pre-transcoding, fully re-transcoding and partial pre-transcoding methods when the percentage of FAVs vary. When α is small, the percentage of FAVs increases and they, in turn, increase the cost of transcoding process. As illustrated in the figure, the fully storage cost does not change and it stays constant even when changing the percentage of FAVs, because the fully storage cost is independent of the number of views of video streams.

The experiment shows that our proposed method always reduces the incurred cost comparing to fully re-transcoding method by up to 70% when 30% of the repository is FAVs. Also, comparing to the fully pre-transcoding method, our proposed approach reduces the cost up to 60%. As the percentage of FAVs increases, our proposed method can reduce the total incurred cost significantly.

Similarly, in Fig. 5b, we includes the cost of Content Delivery Network (CDN) to the cloud storage cost. The proposed partial re-transcoding method reduces the cost up by 66%. In fact, when we consider CDN, the total cloud storage cost is increased. We note that as the cost ratio is increased, the number FAVs which are dependent on this ratio, decreases in the repository.

B. Impact of average of number of views

In this experiment, we increase the average number of views of FAVs without increasing percentage of FAVs, as shown in Fig. 5c. In this experiment, the repository includes 20% of FAVs. The average number of views of FAVs is multiplied by constant 2, 3, 4, and 5 and the remaining videos in the repository are divided by the same constants.

The cost of fully re-transcoding increases, because FAVs have high views which has direct impact on the re-transcoding cost. The proposed method outperforms the fully pre-transcoding and fully re-transcoding methods. As the views of videos streams increases, the total cost of partial pre-transcoding method reduces.

VI. RELATED WORK

Gao et al. [16] proposed a scheme that partially transcodes video contents in the Cloud. Their approach aims to store the first segments of a video contents which are more frequently viewed, while transcode the remaining video contents online when requested, resulting storage and transcoding computation cost efficiency. Their system model is based on a partial transcoding of a video segments and a dynamic storing system that is adapted to the video access rate change. They designed online algorithm to optimize the performance of their scheme. They stated that the viewers play 20% of the video duration. they adopted the video access pattern by implementing the truncated exponential distribution to represent the video view rate. They demonstrated that their method reduces 30% of operational cost by compared to storing the whole video.

<table>
<thead>
<tr>
<th>α</th>
<th>FAVs</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>30%</td>
<td>1</td>
</tr>
<tr>
<td>0.6</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III: Percentage of FAVs in the repository varies by changing α in the Weibull distribution.
Zhao et al. [14] proposed an approach to trade-off between computation and storage costs and to minimize the cost for multi version videos. They utilized the transcoding weight graph which is the transcoding relationships among versions of a video, along with the popularity of those different versions of the video. Based on the popularity and transcoding relationships among different video versions, their method decides which versions of a video should be stored in the repository or re-transcoded on demand. Their results shows reduction in the cost when compared to storing all versions.

Jokhio et al. [13] developed a strategy to strike a trade off between the computation and storage costs of a video. They estimated the computation cost, the storage cost, and the video popularity information of individual transcoded videos and then utilized this information to make decisions on how long a video should be stored or how frequently it should be re-transcoded from a given source video. They compared their proposal to semisynthetic and realistic load patterns. Their results indicated that their strategy is more cost-efficient than the two intuitive strategies.

VII. Conclusion

In this paper, we propose a method to reduce the incurred cost of using cloud services through pre-transcoding, re-transcoding, or partially pre-transcoding of videos in the videos repository. We also analyze the impact of our proposed method when the rate of access to video streams in a repository varies. Experiment results show that as the percentage of FAVs in the repository increases, the proposed method reduces the total incurred cost significantly. In particular, by increasing the number of views of FAVs, our method reduces the total incurred cost by up to 70%. Our future work will focus on the prediction of the number of views of a video stream by applying machine learning techniques. The method will operate based on views statistics over the past and thus we can develop offline algorithms to estimate the cost of video stream transcoding in the cloud. This method will help VSPs to optimize the cost of using cloud resources.

REFERENCES

